Title: Independence of families of ℓ -adic representations and uniform constructibility

Abstract: Let k be a number field, \overline{k} an algebraic closure of k, $\Gamma_k = \operatorname{Gal}(\overline{k}/k)$. A family of continuous homomorphisms $\rho_{\ell} : \Gamma_k \to G_{\ell}$, indexed by prime numbers ℓ , where G_{ℓ} is a locally compact ℓ -adic Lie group, is said to be independent if $\rho(\Gamma_k) = \prod \rho_{\ell}(\Gamma_k)$, where $\rho = (\rho_{\ell}) : \Gamma_k \to \prod G_{\ell}$. Serre gave a criterion for such a family to become independent after a finite extension of k. We will explain Serre's criterion and show that it applies to families coming from the ℓ -adic cohomology (or cohomology with compact support) of schemes separated and of finite type over k. This application uses a variant of Deligne's generic constructibility theorem with uniformity in ℓ .