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Abstract

We review subfactor theory and its applications to algebraic quantum field
theory with emphasis on classification theory.

1 Brief introduction

My speciality is subfactor theory within theory of operator algebras, and more specif-
ically, I work on studies of mathematical structures appearing in operator algebraic
approaches to algebraic quantum field theory. Everyone knows existence of the field
of operator algebras, but my experience suggests that rather few know about concrete
results and methods in theory of operator algebras, beyond appearance of its name
in connection to noncommutative geometry and quantum invariants low dimensional
topology. Thus, taking this opportunity, I would like to start with explanations on
our aims and methods in operator algebrai theory for non-experts. After that, I will
review my recent research results. I refrain from stating precise definitions and exact
statements of theorems here, and refer the reader to the references for all such things.

2 Aims of theory of operator algebras

Noncommutative geometry of Connes and quantum invariants in 3-dimensional topol-
ogy, starting with the discovery of the Jones polynomial, are particularly famous
among interactions of operator algebra theory and other fields of mathematics. My
research is closely related to the latter, so I have written and talked about them
on many occasions, but these are rather applications of operator algebra theory and
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are not exactly within operator algebra theory in a narrow sense. So before going
into such applications, I would like to start with internal aims and techniques within
operator algebra theory. I refer the reader to [24] as general textbooks on operator
algebra theory.

We study algebras of bounded linear operators on a Hilbert space, which is usu-
ally assumed to be separable and infinite dimensional, in theory of operator algebras.
We further require that an algebra is closed under the ∗-operation and an appro-
prite topology. Depending on the choice between the norm topology and the strong
operator topology, we obtain a C∗-algebra and a von Neumann algebra. (The weak
operator topology also gives a von Neumann algebra as well as the strong opera-
tor topology.) The strong and weak operator topologies are weaker than the norm
topology, and closedness under a weaker topology is a stronger condition, needless to
say, so a von Neumann algebra is automatically a C∗-algebra, but methods to study
C∗-algebras and von Neumann algebras are often technically different, so many op-
erator algebraists think that theory of operator algebras consists of two different,
but not entirely disjoint, theories of C∗-algebras and von Neumann algebras. We, of
course, have several similarities and interactions between these two, so it is important
to know what is happening in the other, and some people work really in the both,
but many people work in only one of them, and I work on theory of von Neumann
algebras. (Many people outside of theory of operator algebras think that operator
algebra theory and C∗-algebra theory are synonyms, and this is not logically wrong in
the above sense that a von Neumann algebra is automatically a C∗-algebra, but this
is against feeling of many operator algebraists.) Here, note that it is very important
to assume that an algebra is closed under an appropriate topology. For example,
consider a discrete countable group G and its left regular representation λ. Linear
combinations of the unitary operators λg , g ∈ G, make an infinite dimensional alge-
bra, but we need to make a closure in an appropriate topology to obtain a C∗-algebra
or a von Neumann algebra, in order to use a general theory of operator algebras.
Some infinite dimensional algebras without completeness, or even a topology, have
been often studied in other fields of mathematics, but I feel that a truly interesting
structure emerges after a completion. (It is true in many cases that we see interesting
structures ready before a completion, and then we do not need to make a completion,
but I feel that this is just because we happen to be in a lucky situation.)

The main aim in theory of operator algebras is to understand structures of C∗-
algebras and von Neumann algebras, and thus classification theory is naturally a
central topic. That is, we would like to obtain a (computable) complete invariant or
a complete enumerative list for operator algebras themselves, their automorphisms,
group actions on them, or their subalgebras. In this sense, it would be an ultimate
goal to make a complete classification list of all the operator algebras, but such a
classification seems to be hopelessly difficult, unfortunately, as well as classification
problems for all topological spaces or all Banach spaces. Needless to say, we have
many other important problems than the classification problems, such as investigating
a property that holds for all or most of operator algebras, determining the class of
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operator algebras for which a certain condition holds, computing (not necessarily
complete, but interesting) invariants, and constructing intriguing examples. Free
probability of Voiculescu and a series of work on exact C∗-algebras by Kirchberg are
particularly important in connection to such problems, but I limit this review paper
to problems directly related to classifications, partly due to my limited taste and
knowledge.

An important idea in classification theories of operator algebras is that those in
a nice class can be completely classified by an algebraic invariant. Another equally
important idea is that we can obtain a simple characterization on which algebraic
invariants can indeed arise. These ideas have an origin in a series of stunning work of
A. Connes in 1970’s and have been sources of many studies. More detailed descrip-
tions of these are given as follows. The conditions for “nice” classes are generally
called “amenability”. This notion originally appears for a discrete group G, and
is defined as existence of a nontrivial positive and translation invariant linear func-
tional on �∞(G). (Here positivity of a linear functional means that it maps any
positive elements in �∞(G) to a positive number.) Abelian groups and finite groups
are amenable. (However, even for the integer group Z, such a linear functional is
constructed only with a transcendental method arising from the axiom of choice. It
often happens in operator algebra theory that such a transcendental map carries im-
portant pieces of information.) For general discrete groups, amenability is a condition
“close” to commutativity in a sense. For example, free groups having at least two
generators are “the most noncommutative” in the sense that elements never commute
except for trivial cases, and they are typical examples of non-amenable groups. A
notion of amenability is extended to non-discrete groups easily. We have a notion of
amenability for operator algebras as an analogue of this amenability for groups and
this condition for operator algebras have many equivalent formulations. The most
major achievement of A. Connes within operator algebra theory is a characterization
of amenability for von Neumann algebras. That is, he has proved that amenability
of a von Neumann algebra is equivalent to hyperfiniteness which means that the al-
gebra can be approximated internally with finite dimensional algebras. (Note that it
is often a useful and important idea to pursue an analogue for operator algebras of
a notion for groups or fields, based on an idea that groups, rings, and fields are all
“similar”.) Thus we have important problems such as classification of amenable op-
erator algebras, classification of actions of (not necessarily discrete) amenable groups
on amenable operator algebras, and classification of amenable operator subalgebras
(after a suitable definition of amenability for inclusions of operator algebras). In the
last nearly thirty years, we have seen much great progress on such problems, but
still we are far from the completion. The notion of amenability for groups may not
be ubiquitous in the entire mathematics, but it is a decisively important condition
in operator algebra theory. We have several reasons to believe that unified classi-
fication with a simple invariant would immediately fail, if we proceed beyond the
amenable class. Also from an operator algebraic viewpoint, an amenable discrete
group is “almost like Z”, but the other discrete groups are “entirely different”. (Dis-
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crete groups of a Lie group, such as SL(n,Z), are important objects in recent theory
of operator algebras, but they are very far from being amenable, and few operator
algebraic results are known for them. For completely general operator algebras, it is
believed that whatever strange condition we may think, anything can happen, as long
as it is not obviously prohibited. There is a so-called “Gromov Principle” that any
non-trivial statement for general discrete countable groups have a counter-example.
Many statements on discrete groups can be translated into those operator algebras,
by passing to group algebras, so an analogous statement to this Principle is believed
to hold for operator algebras.)

Next I explain what is an “algebraic invariant” in general. By the word “alge-
braic”, I mean that the same or an similar invariant can be defined without topology.
We usually consider some maps, such as linear functionals on operator algebras, ∗-
homomorphisms from one operator algebra to another, or more complicated maps,
and study the set of all such maps with some equivalence relations. It is often the
case that the set of equivalence classes is “small” and has some algebraic structure.
A typical such example is K-theory for C∗-algebras. “Some equivalence relations”
often arise from “trivialization” of inner automorphisms of an algebra, which is of the
form x �→ Ad(u)(x) = uxu∗ for some unitary u in the operator algebra. Examples of
“some algebraic structure” are (finitely generated) abelian groups, tensor categories,
and ergodic flows. (It may not be appropriate to call the last one “algebraic”.) All
the classification theorems on von Neumann algebras (and their subalgebras, group
actions on them), initiated by Connes and developed by Haagerup, Jones, Ocneanu,
Popa, and other people, claim that such algebraic invariants are complete under
assumptions of some amenability. In the classification theory of simple separable
C∗-algebras, the relevant algebraic invariants are K-theoretic, and many classifica-
tion theories have been successful along the line of the Elliott conjecture stating that
amenable simple separable C∗-algebras are completely classified by the K-theoretic
invariants. (We are, however, still far from a complete solution to this conjecture.)
Here, the K-theoretic invariants are essentially K0- and K1-groups, but we need some
extra related data for the classification.

I also explain basic ideas that are commonly shared in this type of classifica-
tion theories. A commutative von Neumann algebra is of a form L∞(X,µ) and a
commutative (unital) C∗-algebra is of a form C(X), where (X,µ) in the former is
a measure space and X in the latter is a compact Hausdorff space. (If a commuta-
tive C∗-algebra is not unital, we need to consider continuous functions on a locally
compact Hausdorff space vanishing at infinity.) Thus, it is an old idea that theories
of von Neumann algebras and C∗-algebras are “noncommutative integration/ergodic
theory” and “noncommutative topology”, respectively. Noncommutative geometry
of Connes is also a recent far-reaching extension of this idea. One important and
rather surprising idea in classification theories mentioned above is that passing to
noncommutative algebras makes classification statements simpler (although it does
not make technical aspects easier at all). For example, consider classification of auto-
morphisms of the hyperfinite II1 factor, which has been one of the most fundamental
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examples of von Neumann algebras since the initiation of the theory by Murray and
von Neumann, and is, of course, amenable. If we have two automorphisms α, β whose
non-trivial powers are never inner, then we have another automorphism θ and a uni-
tary u in the algebra so that we have Ad(u) ·α = θ ·β · θ−1. The inner automorphism
Ad(u) is regarded as a “trivial automorphism”, so that a “generic” automorphism,
in the sense that no non-trivial powers become trivial, is essentially unique for this
operator algebra. This is a great achievement of Connes. A commutative counter-
part of an automorphism of the hyperfinite II1 factor in ergodic theory is a measure
preserving ergodic transformation of a Lebesgue space with a probability measure,
but a statement that all such transformations are conjugate is obviously false. (Ac-
tually such transformations are all orbit equivalent, and this fact is important for
operator algebra theory, but orbit equivalence loses information which group acts on
a Lebesgue space, and this is a problem from a viewpoint of classification of group
actions.) It is important that we have Ad(u) in the above classification theorem of
Connes and the fact that a noncommutative algebra can have an inner automorphism
not equal to the identity map plays a role in uniqueness here. Furthermore, since
commutative C∗-algebras should be amenable whichever definition we may use, a
counterpart of the Elliott conjecture on K-theoretic classification of simple amenable
C∗-algebras in the commutative setting would be a statement that (locally) compact
Hausdorff spaces are classified up to homeomorphism with K-theory, which is, of
course, entirely false. Recall that a commutative C∗-algebras have “many” ideals
(unless it is the scalar field C), so they are far from being simple. Thus the Elliott
conjecture predicts that we have a simple and plain classification statement under an
assumption that C∗-algebras are close to being commutative in terms of amenability,
but far from being commutative in terms of simplicity. It has been recently shown
that even for amenable simple C∗-algebras, we have various rather strange phenom-
ena, but still, in comparison to topology, we have a simpler picture after passing to
the noncommutative world.

Finally note that a proof of such a classification theorem is always highly technical
and relies on improving of approximations step by step while controlling errors.

3 Subfactor theory of Jones

Next, I explain how subfactor theory initiated by V. F. R. Jones [13] fits into a general
framework as above and why it is related to several “quantum something”. I have
written and talked on these topics on many occasions, so I will be rather brief and
refer the reader to our book [9].

The definition of a simple algebra, of course, requires triviality of two-sided ide-
als (closed under an appropriate topology). For von Neumann algebras, it has been
known that this condition is equivalent to the property that the center is equal to C,
and for a historic reason, the terminology “factor” has been used, rather than a “sim-
ple von Neumann algebra”. Since the days of Murray and von Neumann, studying
factors has been a central theme in theory of von Neumann algebras. Then in subfac-
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tor theory, we study the situation where a factor N is included in another factor M .
Usually, the larger factor M is fixed, so we often write “a subfactor N ⊂ M”, but we
also use the terminology “a subfactor” for meaning the inclusion of N in M in many
cases. Again by in idea that groups, rings, and fields are all similar, we consider an
analogue of an index of a subgroup and a degree of an extension of a field, and call it
the Jones index of a subfactor. This Jones index takes a value in the interval [1,∞]
and can be a non-integer. In this setting, we are interested in an analogue of the
Galois theory of extensions of fields and its “quantization”. (Usually, one considers a
field and its extension in theory of fields, and we can similarly consider here a factor
and its extended factor, but in many cases, it is more natural to fix a larger factor and
study its subfactors.) A direct analogue of classical Galois theory has been studied
in theory of operator algebras for many years as follows. Consider a factor M and
an action of a finite group G on M such that any non-trivial element of G acts as a
non-inner automorphism of M . (Here an idea that an inner automorphism is “trivial”
again appears.) We write MG for the fixed point algebra of this action, and then
it is automatically a factor and we can recover the group G just from the inclusion
MG ⊂ G. More concretely, we consider automorphisms of M that fix all the elements
of the subfactor MG, and then the original action of G appears. We also have a Galois
correspondence between subgroups of G and intermediate algebras of M and MG.
The Jones index of this subfactor MG ⊂ M is the order of G. It is an important
idea in subfactor theory to extend this viewpoint to a general subfactor N ⊂ M
and regard N as a “fixed point algebra” under an action of something like a group.
Such an idea was materialized in a very strong form of paragroup theory by Ocneanu
[20]. Here, I explain this theory in a form due to Longo and Izumi. Recall that if
a subfactor indeed comes from an action of a finite group as a fixed point algebra,
then the finite group can be recovered from the subfactor as a certain automorphism
group of the larger algebra. For a general subfactor, we consider endomorphisms
rather than automorphisms and obtain a certain algebraic system. (By simplicity of
M , any endomorphism is automatically injective. It is more interesting to consider
a non-surjective endomorphism. For such an endomorphism, the image is a proper
subalgebra of M that is isomorphic to M . Such a case does not occur for finite dimen-
sional algebras, of course, but this easily happens for infinite dimensional algebras.)
We have a product operation here, defined as a composition of endomorphisms. We
also have an operation of a direct sum as follows. (Note that if we just add two endo-
morphisms as maps, then the resulting map is not an endomorphism in general.) For

two endomorphisms ρ, σ of M , we define a homomorphism x �→
(

ρ(x) 0
0 σ(x)

)
from

M to M ⊗M2(C). The image is in M ⊗M2(C) and not in M , but if M falls in a class
of type III factor that naturally arises in the setting of algebraic quantum field theory
that I will explain below, then we have an easy isomorphism from M ⊗ M2(C) onto
M , and using this, we obtain an endomorphism of M that is the direct sum of ρ, σ.
Furthermore, we can define a notion of a dimension for endomorphisms and it takes
a value in [1,∞]. This is essentially the same as the square root of the Jones index
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mentioned above. We also have a notion of irreducibility for endomorphisms and if a
dimension is finite, we can make an irreducible decomposition of an endomorphism in
the unique way in an appropriate sense. The dimension is additive and multiplicative
with respect to a direct sum and a composition, respectively, and an algebraic system
of endomorphisms behaves similarly to an algebraic system of unitary representations
of a compact group where we have a direct sum and a tensor product. For an en-
domorphism, we have a notion of a conjugate endomorphism which is an analogue
of a contragredient representation, and we have a direct analogue of the Frobenius
reciprocity for conjugate endomorphisms. We have two differences between our endo-
morphisms here and unitary representations of compact groups as follows. First, our
dimensions are now not necessarily integers. Second, our compositions of endomor-
phisms are no necessarily commutative, though the tensor product operation, which
is the corresponding operation in representation theory, is commutative in an obvious
sense. (We have compositions of endomorphisms of an infinite dimensional algebra.
There is no reason for such an operation to be commutative.) This algebraic system
is a certain tensor category having endomorphisms as objects. We have a notion
of amenability for such a category and a tensor category having only finitely many
irreducible objects are amenable, as an analogue of a finite group. In such a case, we
say that a category is rational. The rules of irreducible decompositions of composi-
tions of two irreducible objects are called the fusion rules. By comparing two ways of
irreducible decompositions of a product of three objects, we obtain 6j-symbols, as in
representation theory of compact groups. We simply call them 6j-symbolsi, or quan-
tum 6j-symbols. A paragroup is an abstract algebraic system and axiomatized with
several properties of such categories of endomorphisms like those on fusion rules and
quantum 6j-symbols. Popa’s classification theorem says that if we have amenability
for both factors and paragroups, then subfactors are completely classified by para-
groups. We omit details on these categories, quantum 6j-symbols, and paragroups
and refer the reader to the book [9] for precise definitions. Here we only make brief
remarks, in comparison to similar structures appearing in conformal field theory and
quantum groups, that the fusion rules here are not necessarily commutative and that
the (quantum) dimensions are always positive now. Here we also remark that if a
tensor category arising from a subfactor as above has only finitely many irreducible
objects, then we can construct a complex-number valued topological invariant of 3-
dimensional oriented closed manifolds, and more generally, 3-dimensional topological
quantum field theory from such a category. This is a construction of Ocneanu by
generalizing the one by Turaev-Viro. (Note that a category here does not have a
braiding in general. We also have operator algebraic methods to produce a braiding.)

Now Popa’s classification theorem mentioned above falls in a general principle,
explained in the above section, that an algebraic invariant becomes complete un-
der amenability, and in this sense, the result itself is similar to other classification
theorems, but we now have a new feature as follows. A very nice abstract character-
ization of paragroups has been obtained by Ocneanu, but it is not clear at all what
examples of paragroups we indeed have, and this problem can be studied within in
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a framework of operator algebras. On one hand, finitely generated abelian groups
and ergodic flows, which appear as invariants of operator algebraic objects, have
been studied well for a long time. On the other hand, a history of studies of tensor
categories is relatively short, and not much has been known beyond representation
theories of groups and quantum groups having deformation parameters. We, how-
ever, think, from a viewpoint of theory of subfactors, that tensor categories arising
from quantum groups with a deformation parameter q are special, we have a great
deal of other tensor categories, and operator algebras are useful for studies of them.
(The biggest evidence for such an idea is a combinatorial study of Haagerup [12, 1]
for subfactors with small Jones index. He made an exhaustive search for paragroups
in a very limited index range, found a large list of candidates that do not seem to
be related to usual quantum group theory, and proved that two of them are indeed
realized after very hard computations.) So, even if one is interested only in ten-
sor categories and topological invariants arising from them, not in operator algebras
themselves, one can still hope for obtaining new results not known in other fields
with operator algebraic mathods. One informal reason for such possibility is that
infinite dimensional operator algebras are so “large” that one can put many mathe-
matical objects into them. In the case of operator algebraic invariants such as finitely
generated abelian groups and ergodic flows, we do not obtain really new examples
through operator algebras, so the new situation for tensor categories is different from
these predecessors and interesting for this reason. This is a basis for a series of new
relations between subfactor theory and “quantum something”.

4 Algebraic Quantum Field Theory

There have been different mathematical approaches to quantum field theory, and
here I explain the one based on operator algebras. This approach relies on algebras
of bounded linear operators, rather than operator valued distributions, and is called
“algebraic” quantum field theory in this sense. A standard textbook is [11], and one
can look at a proceedings volume [18] for recent developments. Here I present a basic
setting below.

We fix a “spacetime” and consider appropriate bounded regions in it, those called
double cones for example. To each such a region O, we assign a von Neumann algebra
A(O) generated by physical observables in O. (We are now in the realm of quantum
mechanics, so physical quantities are represented as operators on a Hilbert space.)
We have a fixed Hilbert space for all O’s. Mathematically speaking, this gives a
family of operator algebras parameterized by O’s. We require a set of physically
natural axioms to hold for such a family of operator algebras and study such families
mathematically. Here I explain only the fundamental axioms, though we often assume
various sets of extra axioms in concrete studies. First, we assume that we have a
larger operator algebra for a larger spacetime region O, which means that we have
more observable quantities in a larger region. Second, if two regions O1, O2 are
spacelike separated, then two operator algebras A(O1), A(O2) commute, which is
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called locality. This means a relativistic requirement that if one cannot reach O1

from O2 even with a speed of light, then we have no interactions between them,
and thus physical quantities in these two regions commute. Next we assume that
we have a projective unitary representation ug of a group of “spacetime symmetry”
on the Hilbert space and ugA(O)u∗

g = A(gO) holds, which is called covariance. A
physically natural choice of the spacetime symmetry is the inhomogeneous Lorentz
group of the 4-dimensional Minkowski space, but we will also consider other choices
of the symmetry below. We also have axioms on a vacuum vector and positivity of
energy, but I omit explanations on them here. We often call a family {A(O)} of
operator algebras a net of operator algebras, because the index set of double cones
O is directed with respect to inclusions.

Now we have a mathematical problem of studying structures of such nets of oper-
ator algebras under a suitable set of axioms and even classifying them with a certain
algebraic invariant. Our algebraic invariant is representation theory of a net of oper-
ator algebras. Suppose we have a net {A(O)} of operator algebras. These operator
algebras act on a Hilbert space from the beginning by definition, but we also con-
sider their representations on other Hilbert spaces. The original Hilbert space has
a special vector called a vacuum vector by an axiom, so the original representation
on this Hilbert space is called a vacuum representation. We then consider a com-
patible family of representations of the algebras {A(O)} with covariance property
on another Hilbert space, without requiring a vacuum vector there, and study uni-
tary equivalence classes of such representations. We further have notions of a direct
sum, irreducible decomposition, a tensor product, and a dimension for such repre-
sentations. Note that we now have representations of a family of algebras, so the
notion of tensor product is not obvious at all here. (In quantum group theory, they
have a coproduct, but we do not have such an operation here.) Also, considering
a dimension in the ordinary sense is meaningless since it is always infinite. These
difficulties are overcome with the Doplicher-Haag-Roberts (DHR) theory [8]. That
is, one first shows that any representation, up to unitary equivalence, is realized as
an endomorphism of a net of operator algebras, based on the Haag duality, which is a
stronger form of locality. (Note that an endomorphism of a net of operator algebras,
appropriately defined, gives a new representation on the original Hilbert space. The
DHR theory says that any representation can be put in this form after a (possible)
change within the unitary equivalence class.) Then the operation called a “tensor
product” is defined as a composition of two endomorphism and a dimension is also
defined nicely. It is obvious that this situation is similar to that in subfactor theory
explained in the previous section. Actually, the DHR theory is much older than sub-
factor theory of Jones, and the relations between the two were clarified by Longo [17].
In the previous section, we saw that the composition operation of endomorphisms is
not commutative, but here, due to locality in the axioms, we have commutativity of
composition, up to unitary equivalence. In this way, we obtain a tensor category of
representations of a net of operator algebras.

As I mentioned above, the most natural choice for the spacetime would be the
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4-dimensional Minkowski space. Many deep results have been obtained for this set-
ting, but in connection to “quantum something”, we have interesting mathematical
structures on spacetime of lower dimensions, such as 1, as in [10], for example. One
dimensional case is not a “spacetime” any more, but any dimension is allowed in
axiomatic mathematical studies, and for the case of one space dimension and one
time dimension, which is quite interesting both mathematically and physically in the
context of conformal field theory, a net of operator algebras on the 2-dimensional
Minkowski space is decomposed into a tensor product of two nets of operator al-
gebras on one-dimensional spaces in an appropriate sense, and such nets are called
chiral nets and well-studied. One might suspect that problems in lower dimensions,
particularly in dimension one, are mathematically easier, but this is not the case. For
nets of operator algebras on a one-dimensional space, one take non-empty bounded
open intervals as O in the above, but then a subtle and interesting problem, which
does not occur in dimension three or higher, arises from the fact that its complement
is not connected. For example, a composition of two endomorphisms arising from
representations is commutative up to unitary equivalence, as mentioned above, and
this unitary operator producing the unitary equivalence in the one-dimensional set-
ting brings a braiding. In this way, the representation category becomes braided. In
dimension 3 or higher, this braiding automatically becomes trivial, but many non-
trivial examples of interesting braiding happen in the one-dimensional setting and
braided tensor categories corresponding to the Wess-Zumino-Witten models are re-
alized. Also, the dimensions of representations are automatically integers in a higher
dimensional spacetime, but we have non-integer dimensions of representations for
nets of operator algebras on a one-dimensional space and they are counterparts of
quantum dimensions in quantum group theory.

5 Tensor category, modular invariant, α-induction

I have finally come to my own research topics. The contents of this section describe
what I have been studying after writing the book [9]. I refer the reader to references
for all technical matters, and briefly mention the main results.

5.1 Completely rational AQFT

As explained above, a net of operator algebras on one-dimensional “spacetime” pro-
duces a braided tensor category, but in connection to conformal field theory and topo-
logical quantum field theory, we are interested in tensor categories which have only
finitely many irreducible objects and a non-degenerate braiding. The finiteness con-
dition is usually called rationality. The non-degeneracy of a braiding is equivalent to
invertibility of the S-matrix, and a braided tensor category with this non-degeneracy
and rationality is called a modular tensor category. See [25] for details on this notion.
Our main results in [16] are that we have a simple operator algebraic sufficient condi-
tion for the rationality condition of the representation category and that the braiding
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is automatically non-degenerate under this condition. We call this operator algebraic
condition complete rationality. By results in [26], [28], we know that the nets of
operator algebras arising from loop groups of SU(n) [22] are completely rational. Xu
further studied completely rational nets of operator algebras in detail in [29, 30, 31].
Roughly speaking, complete rationality is preserved under various operations for nets
of operator algebras.

5.2 α-induction and modular invariant

As mentioned above, representation theory of nets of operator algebras has much
similarity to that of compact groups. A method of α-induction gives a machinery
in representation theory of nets of operator algebras, analogous to induction and
restriction in the ordinary representation theory. As an analogy of a pair of a group
and its subgroup, we consider a pair of a net of operator algebras and a net of
subalgebras, and we produce a representation of a larger net from that of a smaller
net. We use the name “induction” here because we pass from smaller algebras to
larger algebras, but in the setting of nets of operator algebras, a larger net has
a “smaller symmetry”, so this is more like a restriction operation in some sense.
This construction of α-induction was first defined in Longo-Rehren [19], and many
interesting properties and examples were found by Xu [27]. Böckenhauer-Evans [2]
further studied this construction. Around the same time as Longo and Rehren,
Ocneanu [21] has made a combinatorial study on the A-D-E Dynkin diagrams from
a quite different motivation. In [3], we have proved that both definitions of Longo-
Rehren and Ocneanu can be generalized to a situation where we have a braiding in
the sense of Rehren [23] and we have a unified definition there. By combining both
ideas, we have obtained several results in [4, 5, 14]. We would like to construct a
representation of a larger net of operator algebras from athat of a smaller net, and
use a braiding in the α-induction method. A braiding always comes in a pair of an
overcrossing and an undercrossing, and depending on these, we have two kinds of α-
induction. We distinguish them by putting the ± symbol. Actually, we cannot make
a genuine representation of a larger net from that of a smaller net in general, and
we obtain only a “quasi”-representation in some sense. If we take the intersections
of the “quasi”-representations arising from α-induction with a positive braiding and
those with a negative braiding, then it exactly gives the representations of the larger
net. If the representation category fo the smaller net is modular (as in the completely
rational case, for example), then we have a finite dimensional unitary representation
of SL(2,Z), and we can produce a matrix with non-negative integer entries in the
commutant of the range of this unitary representation by using positive and negative
α-inductions. This was proved in [3] under a very general assumption based on works
of Ocneanu and Böckenhauer-Evans [2]. Such matrices have been studied well in
general under the name of “modular invariant” and several classification theorems,
starting with [6], have been obtained. (See [7] for example.) Our results enable one
to interpret and realize such classification results with operator algebraic methods.
Much has been studied about tensor categories arising from α-induction which do
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not have a braiding in general.

5.3 A central charge and classification of nets of factors

I recall a basic idea for classification is that we should have simple complete algebraic
invariants for the amenable case. For nets of operator algebras, each von Neumann
algebra A(O) assigned to a spacetime region O is always isomorphic to the unique
hyperfinite type III1 factor, an amenable factor, under the standard set of axioms, so
the isomorphism class of each algebra is useless for classification of nets. We expect
that representation theory for completely rational nets on the one-dimensional space
would give a complete invariant, but no results of this type have been obtained. It
is also totally unclear that which modular tensor category arises as a representation
category of a net of operator algebra. All the constructions so far have been obtained
depending on the case. Thus the general classification and construction problems are
very far from a satisfactory solution, but we have recently obtained a first classification
theorem in this direction in [15] as follows. We consider nets of operator algebras
on the one-dimensional space, and we compactify the space to S1. (This is just for
simplicity of various descriptions. We could work on R without compactification if
we want. We also take the orientation preserving diffeomorphism group of S1 as
the group of “spacetime” symmetries. (It is not mathematically clear how strong
this assumption is, but we have many interesting examples satisfying this condition.)
Then we can define a real number, called the “central charge”, for a net of operator
algebras through representation theory of the Virasoro algebra. It is well-known that
if this central charge c is less than one, then it can take only values in a discrete series,
and our main results in [15] say that in such a case, we have a complete classification
and listing of nets of operator algebras. We fully use theories of α-induction and
modular invariants mentioned above. The classification result is described with pairs
of the A-D-E Dynkin diagrams.

6 Future developments

Classification of nets of operator algebras still has many open problems, such as find-
ing a complete invariant, characterizing possible invariants, and listing all the possible
nets. We also have various problems on relations among extra axioms in addition
to the standard set of axioms. Furthermore, we have limited (or no) knowledge on
its relations to quantum groups, vertex operator algebras, the monster group, the
moonshine, and topological quantum field theory. I finish this survey with a hope of
further developments on these and yet-unknown directions.
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