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Abstract. We construct a one-parameter automorphism group of the injec-

tive type II1 factor with Connes spectrum {0} which is not stably conjugate to an

infinite tensor product action. We construct a countable family of one-parameter

automorphism groups of the injective type II1 factor such that all are stably con-

jugate but no two are cocycle conjugate.

§0 Introduction

We exhibit a one-parameter automorphism group of the approximately finite

dimensional (AFD) factor of type II1 which has Connes spectrum {0} and is not

stably conjugate to an infinite tensor product action. We also construct a countable

family of one-parameter automorphism groups of the AFD factor of type II1, all of

which are stably conjugate but no two of which are cocycle conjugate. This shows

the difference between the two notions, cocycle conjugacy and stable conjugacy.

At a certain stage of development, the existence of a non-ITPFI AFD type

III0 factor was a focal point of the structure analysis of factors. In the first section,

we prove a corresponding result for one-parameter automorphism groups.
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In our previous work [10], we considered a one-parameter automorphism

group which fixes a Cartan subalgebra of the AFD type II1 factor R elementwise,

and showed that if it has full spectrum, i.e., spectrum equal to R, then it is cocycle

conjugate to an infinite tensor product one-parameter automorphism group (Theo-

rem 1.6 of [10]). Now, we consider the problem of whether all one-parameter auto-

morphism groups of the AFD type II1 factor R are cocycle (or stably) conjugate to

an infinite tensor product one-parameter automorphism group. The answer to this

problem would be expected to be negative, in analogy with the existence of an AFD

type III0 factor which is not ITPFI. (See Araki-Woods [1] and Connes-Woods [4]

for related definitions and results.) In fact, we shall construct an example of a one-

parameter automorphism group α of the AFD type II1 factor R, with Γ(α) = {0},

which is not stably conjugate to an infinite tensor product one-parameter automor-

phism group. The main technical tool is taken from Connes-Woods [4].

In §2, we exhibit a countable family of one-parameter automorphism groups

of the AFD type II1 factor R, with Connes spectra {0}, all of which are all stably

conjugate, but no two of which are cocycle conjugate.

In our earlier work [9] on one-parameter automorphism groups of R, we used

stable conjugacy for classification when the Connes spectrum is {0}, and obtained

two complete invariants: the type of the crossed product algebra and the flow

given by the dual action on the center of the crossed product algebra. For actions

fixing a Cartan subalgebra and certain actions arising from the irrational rotation

algebra, we also showed the uniqueness, up to cocycle conjugacy, of one-parameter

automorphism groups with full Connes spectrum in [10,11]. One is naturally led

to ask whether cocycle conjugacy and stable conjugacy coincide for one-parameter
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automorphism groups or not. Cocycle conjugacy for general actions trivially implies

stable conjugacy, but the converse is true in some cases, and false in others. For

example, the two notions coincide for discrete amenable groups and do not coincide

for Td, d > 1. (See the first paragraph of §2.) The problem for T or R is more

subtle than for discrete groups or Td, d > 1. We will show in §2 that stable

conjugacy does not imply cocycle conjugacy for either T or R. The main tools are

the basic construction for subalgebras and the method developed by Christensen

in [2].

The main part of this work was done at the Institut des Hautes Études

Scientifiques with the support of an Alfred Sloan doctoral dissertation fellowship.

The author expresses gratitude to the Institute and to the Sloan Foundation. The

author is thankful to Prof. A. Connes for calling attention to these problems, to

Prof. E. Christensen for suggestions concerning §2, and to Prof. M. Takesaki for

numerous helpful suggestions.

§1 One-parameter automorphism groups of non-product type

We construct an example of a one-parameter automorphism group α of the

AFD type II1 factor R with Γ(α) = {0} which is not stably conjugate to an in-

finite tensor product one-parameter automorphism group in this section, using a

technique from Connes-Woods [4]. We consider the following property first. This

is an analogue of the condition in Lemma 2.1 of Connes-Woods [4].

Definition 1.1. Let M be the AFD type II1 factor R or the AFD type II∞

factor R0,1. For a one-parameter automorphism group α of M, consider the Sakai
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flip σ : x ⊗ y �→ y ⊗ x on M⊗M. Because σ commutes with α ⊗ α on M⊗M,

we can extend σ to σα on (M⊗M) �α⊗α R. We consider the following property:

(∗) σα is trivial on Z((M⊗M) �α⊗α R).

Proposition 1.2. The property (∗) is invariant under stable conjugacy.

Proof. First consider replacing αt by βt which is cocycle conjugate to αt. Then σα

on (M⊗M) �α⊗α R is conjugate to σβ on (M⊗M) �β⊗β R. Next replace αt by

αt⊗it, where it is the trivial action of R on L(H). Then σα on Z((M⊗M)�α⊗αR)

is conjugate to σα⊗i on Z((M⊗ L(H) ⊗M ⊗ L(H)) �α⊗i⊗α⊗i R). Thus we get

the conclusion. Q.E.D.

The following result corresponds to Lemma 2.1 in Connes-Woods [4].

Proposition 1.3. If a one-parameter automorphism group α of the AFD type II1

factor R is of infinite tensor product type, then it has the property (∗).

Proof. Let αt be of infinite tensor product type with respect to the decomposition

R =
⊗∞

n=1 Mn, where Mn is a matrix algebra, and consider the infinite tensor

product with respect to the trace. Let σm be the Sakai flip on (
⊗m

n=1 Mn) ⊗

(
⊗m

n=1 Mn). Then σ = limm→∞ σm ⊗ 1, and σα = limm→∞(σm ⊗ 1)α. Thus

it is enough to show that (σm ⊗ 1)α is trivial on Z((R ⊗ R) �α⊗α R). But for

this statement, we may assume that αt is trivial for the first m components by

perturbing αt by a unitary cocycle. Then the above assertion is trivial, and we are

done. Q.E.D.

We now have the following theorem. The argument is parallel to the proof

of Theorem 2.3 in Connes-Woods [4].
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Theorem 1.4. Let a one-parameter automorphism group α of the AFD type II∞

factor R0,1 be defined as follows. For an ergodic and infinite-measure preserving

transformation T on X such that T × T−1 is dissipative, construct the crossed

product algebra L∞(X) �T Z ∼= R0,1. Define α by αt(x) = x for x ∈ L∞(X) and

αt(u) = eitu for the implementing unitary u. Then the action α does not have the

property (∗) of Definition 1.1, and hence it is not stably conjugate to an infinite

tensor product one-parameter automorphism group.

Proof. The flow given by (α⊗ α)̂on Z((R0,1 ⊗R0,1) �α⊗α R) is a Poincaré flow,

given by the 1-cocycle obtained by the equivalence relation (Tx, y, t+1) ∼ (x, y, t) ∼

(x,Ty, t + 1) on X × X ×R. (See Proposition 1.3 in [10].) Let E be any T × T−1

invariant set in X ×X, σX the flip on X ×X. Let Ẽ be the subset of X ×X ×R

generated by E × [0, 1[ and the above equivalence relation. Suppose that α has

the property (∗). Because σα acts on Z((R0,1 ⊗ R0,1) �α⊗α R) by σX , we get

that the set Ẽ is invariant under σX ⊗ id. This implies that σX preserves E. Now

by Lemma 2.2 in Connes-Woods [4], we get σX ∈ [T × T−1]. Then for almost all

(x, y) ∈ X × X, we have an integer n(x, y) such that

σX(x, y) = (y, x) = (Tn(x,y)x, T−n(x,y)y),

so that y ∈ T -orbit of x, but this is impossible because the orbit is countable.

Q.E.D.

An example of a transformation T as in Theorem 1.4 is given in Harris-

Robins[5]. (See also §3 of Connes-Woods [4].) If we form αe for the above one-

parameter automorphism group α and an invariant projection e ∈ L∞(X) ⊂ R0,1

5



with finite trace, we get an example of a one-parameter automorphism group β of

the AFD type II1 factor R, with Γ(β) = {0}, which is not stably conjugate to an

infinite tensor product one-parameter automorphism group.

Remark 1.5. There exists another type of one-parameter automorphism

group α of the AFD type II1 factor R, with Γ(α) = R, which is not cocycle

conjugate to an infinite tensor product one-parameter automorphism group. This

type of one-parameter automorphism group α does not satisfy αt ∈ Out(R), t �= 0,

while Γ(α) = R, and therefore it cannot be cocycle conjugate to an action of

product type. (See Introduction of [11] for a more detailed explanation.) This does

not have an analogue in the case of AFD type III factors.

§2 Cocycle conjugacy and stable conjugacy

Cocycle conjugacy for general actions trivially implies stable conjugacy, but

the converse is true in some cases, and false in other cases, as shown below. (Recall

that α and β are said to be stably conjugate if α ⊗ id∞ and β ⊗ id∞ are cocycle

conjugate, where id∞ is the trivial action on the separable type I∞ factor.) Sta-

ble conjugacy implies cocycle conjugacy for discrete amenable group actions on R

because the characteristic invariant is a stable conjugacy invariant. (See Theorem

2.7 in Ocneanu [12].) For the tori Td, d ≥ 2, it is not difficult to construct two ac-

tions on R which are stably conjugate, but not cocycle conjugate: Take an ergodic

action α on R and set β = α ⊗ id2, where id2 is the trivial action on M2(C). (See

Olesen-Pedersen-Takesaki [13] for the construction of ergodic actions.) Proposition

4.7 in [13] asserts that these are not cocycle conjugate. But this construction does

not work for T: The one-dimensional torus T does not have an ergodic action on R

6



and if an action of T on R has a factor as its fixed point algebra, then it is unique

up to conjugacy. (See Corollary 4.7 in Paschke [14], our Theorem 2.2 [9], and a

remark on p. 185 of Jones [7].) Thus, the problem for T or R is more subtle. We

will show that stable conjugacy does not imply cocycle conjugacy for either T or

R.

Define two actions α and β by

αt =
∞⊗

n=1

Ad
(

exp 2πit

(
3n/2 0

0 −3n/2

))
,

βt =
∞⊗

n=1

Ad
(

exp 2πit

(
3n+2/2 0

0 −3n+2/2

))
.

Here we identify the AFD type II1 factor R with the infinite tensor product

⊗∞
n=1 M2(C) with respect to the trace τ . We denote by ejk(n), 1 ≤ j, k ≤ 2,

the matrix units in the n-th factor M2(C). We also denote by D2 the set of diag-

onal matrices in M2(C). Because
⊗∞

n=1 D2 is in the fixed point algebra of α, we

can show that Γ(α) ⊆ 3nZ for each n, whence Γ(α) = {0}. Note that

αt = Ad


exp 2πit




6 0 0 0
0 −3 0 0
0 0 3 0
0 0 0 −6





 ⊗ βt,

and so αt and βt are stably conjugate. In the following, we will prove that these

two actions are not cocycle conjugate. To obtain a contradiction, suppose that they

are cocycle conjugate: there is an automorphism θ of R and an α-unitary cocycle

ut such that θ ·βt · θ−1 = Ad(ut) ·αt, for all t ∈ R. We will reach a contradiction at

the end of this section. The basic idea of the proof is as follows: For large N , the
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ut’s are almost contained in the first N factors, and thus βt · θ−1 is almost equal to

θ−1 · αt at the (N + 1)-st factor and later on. Then θ−1 should be like a backward

shift by 2 there, but such an automorphism does not exist.

Because both the groups αt and βt have period 1, u1 is a scalar; thus we may

assume ut also has also period 1, without loss of generality. Let ε < 1/51200, and

choose N ≥ 2 such that for any t ∈ R, there exists a such that

(1) a ∈ M2(C) ⊗ · · · ⊗ M2(C)︸ ︷︷ ︸
N times

⊗C⊗ C⊗ · · · , ‖ut − a‖2 ≤ ε.

Assertion 2.1. In the context above, for any

x ∈ M2(C) ⊗ · · · ⊗M2(C)︸ ︷︷ ︸
N times

⊗C⊗ C⊗ · · · , ‖x‖∞ ≤ 1,

there exists y such that

(2)




y ∈ M2(C) ⊗ · · · ⊗ M2(C)︸ ︷︷ ︸
N−2 times

⊗D2 ⊗ D2 ⊗ · · · ,

‖θ−1(x) − y‖2 ≤ 10
√

ε.

For the proof, we introduce the following action ρg of
∏∞

n=1 Z2 on R:

ρg = id2N−2 ⊗
∞⊗

n=1

Ad
(

1 0
0 (−1)gn

)
,

where id2N−2 means the trivial action on M2N−2(C), and g = (gn), gn = 0 or 1.

Fix g = (gn) ∈ ⊕∞
n=1 Z2 ⊂ ∏∞

n=1 Z2. Suppose that

gn =
{

1, for n = k1, . . . , km, 1 ≤ k1 ≤ · · · ≤ km,

0, otherwise.
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We use the notation J = (j1, . . . , jm) ∈ ∏m
n=1{1, 2} and define projections pJ , p̄J

by

pJ = ej1j1 (k1 + N − 2) · · · ejmjm(km + N − 2),

p̄J = e3−j1,3−j1(k1 + N − 2) · · · e3−jm,3−jm(km + N − 2).

We also set

eJ = ej1j1(k1 + N) · · · ejmjm(km + N),

wJ = e3−j1,j1(k1 + N) · · · e3−jm,jm(km + N),

σ(J) = (2j1 − 3) · · · (2jm − 3) ∈ {1,−1},

λJ = (2j1 − 3)3k1+N + · · · + (2jm − 3)3km+N .

Note that eJ = w∗
JwJ and αt(wJ ) = exp(2πiλJ t)wJ . We define PJ to be the pro-

jection onto the βt-eigenspace for the eigenvalue 2πλJ . The range of this projection

is generated by p̄JRpJ .

Lemma 2.2. In the context above, we have

‖(I − PJ )(θ−1(wJ ))‖2
2 =

1
2

∫ 1

0

‖[ut, wJ ]‖2
2 dt.

Proof. Let θ−1(wJ ) =
∑

λ bλ be the decomposition of θ−1(wJ) into βt-eigenspaces

with eigenvalues 2πλ. Because all the λ’s are integers and every λ can be expressed
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as a sum of finitely many ±3n’s in a unique way, we get

2‖(I − PJ )(θ−1(wJ))‖2
2

=2
∑

λ�=λJ

‖bλ‖2
2

=
∫ 1

0

‖
∑

λ

(exp(2πiλt)bλ − exp(2πiλJ t)bλ)‖2
2 dt

=
∫ 1

0

‖βt(θ−1(wJ )) − exp(2πiλJ t)θ−1(wJ)‖2
2 dt

=
∫ 1

0

‖ut · exp(2πiλJ t)wJ · u∗
t − exp(2πiλJ t)wJ‖2

2 dt

=
∫ 1

0

‖[ut, wJ ]‖2
2 dt.

Q.E.D.

Now we set

fJ = θ−1(w∗
JwJ) = θ−1(eJ ),

aJ = PJ(θ−1(wJ ))∗PJ (θ−1(wJ )).

We have pJaJpJ = aJ . Note that by Lemma 2.2,

(3)

‖fJ − aJ‖2

≤‖θ−1(w∗
J )(θ−1(wJ ) − PJ (θ−1(wJ )))‖2

+ ‖(θ−1(w∗
J ) − PJ(θ−1(wJ ))∗)PJ (θ−1(wJ ))‖2

≤
√

2
(∫ 1

0

‖[ut, wJ ]‖2
2 dt

)1/2

.
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Lemma 2.3. In the context above, we get

∑
σ(J)=−1

‖[a,wJ ]‖2
2 ≤ 4‖a‖2

2, a ∈ R.

Proof. We have

∑
σ(J)=−1

‖[a,wJ ]‖2
2

=
∑

σ(J)=−1

(‖awJ − wJa‖2
2 + ‖awJ + wJa‖2

2)

=2τ (
∑

σ(J)=−1

wJw∗
Ja∗a) + 2τ (

∑
σ(J)=−1

w∗
JwJaa∗)

≤4‖a‖2
2.

Q.E.D.

Lemma 2.4. In the context above, we get

‖
∑

σ(J)=−1

(fJ − aJ )‖2
2 ≤ 8ε2.
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Proof. We have

‖
∑

σ(J)=−1

(fJ − aJ )‖2
2

=τ (
∑

σ(J),σ(K)=−1

fJfK + aJaK − fJaK − aJfK)

=τ (
∑

σ(J)=−1

fJ ) + τ (
∑

σ(J)=−1

a2
J ) − 2τ (

∑
σ(J),σ(K)=−1

fKaJfK)

≤τ (
∑

σ(J)=−1

fJ ) + τ (
∑

σ(J)=−1

a2
J ) − 2τ (

∑
σ(J),σ(K)=−1

fKaJfK)

+ 2τ (
∑

σ(J),σ(K)=−1,J �=K

fKaJfK)

=τ (
∑

σ(J)=−1

(fJ + a2
J − 2fJaJfJ ))

=
∑

σ(J)=−1

‖fJ − aJ‖2
2

≤2
∑

σ(J)=−1

∫ 1

0

‖[ut, wJ ]‖2
2 dt,

by (3). By (1), there exists at such that

at ∈ M2(C) ⊗ · · · ⊗ M2(C)︸ ︷︷ ︸
N times

⊗C⊗ C⊗ · · · , ‖ut − at‖2 ≤ ε,

for each t. By Lemma 2.3, we get

‖
∑

σ(J)=−1

(fJ − aJ )‖2
2

≤2
∑

σ(J)=−1

∫ 1

0

‖[ut − at, wJ ]‖2
2 dt

≤8ε2.

Q.E.D.
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Lemma 2.5. In the context of Claim 2.1, we have

‖ρg(θ−1(x)) − θ−1(x)‖2 ≤ 10
√

ε.

Proof. First we have

‖ρg(θ−1(x)) − θ−1(x)‖2
2

=4‖[
∑

σ(J)=−1

pJ , θ−1(x)]‖2
2

=4‖[
∑

σ(J)=−1

pJ − fJ , θ−1(x)]‖2
2

=16‖
∑

σ(J)=−1

pJ − fJ‖2
2

=16τ (
∑

σ(J),σ(K)=−1

(pJpK + fJfK − pJfK − fJpK))

=32τ (
∑

σ(J)=−1

fJ −
∑

σ(J),σ(K)=−1

pKfJpK)

=32τ (
∑

σ(J)=−1

(fJ − aJ ) −
∑

σ(J),σ(K)=−1

pK(fJ − aJ )pK)

≤32‖
∑

σ(J)=−1

(fJ − aJ ) −
∑

σ(J),σ(K)=−1

pK(fJ − aJ )pK‖2

≤32‖
∑

σ(J)=−1

(fJ − aJ )‖2.

Then by Lemma 2.4, we get

‖ρg(θ−1(x)) − θ−1(x)‖2
2 ≤ 64

√
2ε,

and hence

‖ρg(θ−1(x)) − θ−1(x)‖2 ≤ 10
√

ε.
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Q.E.D.

Now we can prove Assertion 2.1.

Proof of Assertion 2.1. By Lemma 2.5, we have

(4) ‖ρg(θ−1(x)) − θ−1(x)‖2 ≤ 10
√

ε,

for each g ∈ ⊕∞
n=1 Z2. Hence by continuity the estimate (4) is also valid for each

g ∈ ∏∞
n=1 Z2. Then set

y =
∫

∏∞
n=1 Z2

ρg(θ−1(x))dg,

where the integral is performed with respect to the Haar measure of
∏∞

n=1 Z2. Now

by (4), we get

‖y − θ−1(x)‖2 ≤ 10
√

ε,

which is (2). Q.E.D.

We introduce the following notation for the second step:

P = M2(C) ⊗ · · · ⊗ M2(C)︸ ︷︷ ︸
N times

⊗C ⊗C ⊗ · · · ⊂ R,

Q = M2(C) ⊗ · · · ⊗ M2(C)︸ ︷︷ ︸
N−2 times

⊗D2 ⊗ D2 ⊗ · · · ⊂ R,

M = M2(C) ⊗R, N = C ⊗Q, L = C⊗ P ,

A = C⊗ C⊗ · · · ⊗ C︸ ︷︷ ︸
N−2 times

⊗D2 ⊗ D2 ⊗ · · · ⊂ M.
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We also write L∞(X,µ), µ(X) = 1, for A. So far, we have proved P 10
√

ε⊂ Q in this

notation. We would like to embed P into Q by a perturbation to get a contradiction.

The main difficulty is that we have no control over the size of N here. But by the

technique of Christensen, [2], we can embed P into M2(C) ⊗ Q, which is enough

for our purpose.

Assertion 2.6. There is a non-trivial (non-unital) homomorphism Φ of P into N .

We will show Assertion 2.6 by arguments similar to Christensen’s in [2]. Note

that it follows from P 10
√

ε⊂ Q that L10
√

ε⊂ N in M. We make the basic construction (see

Jones [6], or, for that matter, Christensen [2]) for the pair N ⊂ M. Denote by E

the conditional expectation of M onto N , and write e for the projection in L2(M)

arising from E. Then an easy computation shows that the basic construction 〈M, e〉

is isomorphic to M4(C) ⊗ M2N−2(C) ⊗ L∞(X,µ) ⊗ L(
2(Z)) because L∞(X,µ) is

a Cartan subalgebra in

C⊗ C⊗ · · · ⊗ C︸ ︷︷ ︸
N−2 times

⊗M2(C) ⊗ M2(C) ⊗ · · · ∼= R.

(Note that the basic construction for C ⊂ M2(C) is M4(C).) We can define a

centre-valued trace T on 〈M, e〉 by the formula

T (xe) = (tr2N−2 ⊗ idA)E(x), for x ∈ M,

where tr2N−2 is the normalized trace on M2N−2(C). Under the above isomorphism,

〈M, e〉 ∼= M4(C) ⊗ M2N−2(C) ⊗ L∞(X,µ) ⊗ L(
2(Z)),
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and T corresponds to Tr4 ⊗ tr2N−2 ⊗ idL∞(X) ⊗Tr, where Tr4 is the unnormalized

trace on M4(C), and Tr is the usual trace on L(L2(Z)). Then T (e) is the constant

function 1 in L∞(X,µ).

Lemma 2.7. In the context above, there exists a projection f ∈ L′ ∩ 〈L, e〉 such

that ∫
X

T ((e − f)2)dµ ≤
√

200ε

(1 − (200ε)1/4)2
<

1
4
.

Proof. For any u ∈ U(L), we get, by the same argument as after the formula (8)

on p. 21 in Christensen [2],

T ((e − u∗eu)2) = 2EA((u − E(u))∗(u − E(u))),

where EA is a conditional expectation of M onto A. Thus by the argument on

p. 22 and Lemma 2.1 of [2], we obtain f as desired. (Christensen’s ϕ corresponds

to our
∫
X T (x)dx.) Q.E.D.

Proof of Assertion 2.6. We first follow the proof of Theorem 4.7 in Christensen [2].

Let ejk, 1 ≤ j, k ≤ 2, be the matrix units in

M2(C) ⊗ C ⊗C · · · ⊂ M ⊂ 〈M, e〉.

Define pjk to be the range projection of ejke. Then by Christensen’s argument,

these are mutually orthogonal, and equivalent to e. Setting p = p11 + p22 ∈ 〈M, e〉,

T (p) is the constant 2 in L∞(X,µ). Christensen’s argument also shows that

(5)
∣∣∣∣
∫

X

(T (f) − T (e))dµ

∣∣∣∣ =
∣∣∣∣
∫

X

T (f)dµ − 1
∣∣∣∣ <

1
4
.
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Suppose that T (f) = 0 on Y ⊆ X. Then by Lemma 7, we get µ(Y ) =
∫

Y
T ((e −

f)2)dµ < 1/4. If T (f) > T (p) = 2 on X \ Y , we would have
∫
X

T (f)dµ ≥

2(1 − µ(Y )) > 3/2, contradicting (5). Thus we have a subset Z of X such that

µ(Z) > 0 and 0 < T (f) ≤ T (p) on Z. This implies that fχZ ≺ pχZ , i.e., there

exists a projection q = qχZ ∈ 〈M, e〉 such that fχZ ∼ qχZ ≤ pχZ . Choose

v ∈ 〈M, e〉 so that v∗v = qχZ and vv∗ = fχZ , and define a map

x �−→ v∗xv ∈ 〈M, e〉p ∼= 〈M, e〉e ⊗ M2(C) ∼= N ⊗M2(C),

for x ∈ L ∼= P . (See Proposition 3.1.5 in Jones [6].) The above map defines a

non-trivial homomorphism Φ from P to N ⊗ M2(C) because f ∈ L. Q.E.D.

Now finally we obtain a contradiction as follows. Our Φ is a map from

M2N (C) into M2N−1(C)⊗L∞(Z). Consider the centre-valued trace T ′ = tr2N−1 ⊗

idL∞(Z) on M2N−1(C)⊗L∞(Z). Choose minimal projections q1, . . . , q2N in M2N (C)

with q1+· · ·+q2N = 1. Then T ′(Φ(q1)) = · · · = T ′(Φ(q2N )) and, hence, T ′(Φ(q1)) ≤

1/2N in L∞(Z), which is impossible in T ′(M2N−1(C)⊗L∞(Z)). Thus we conclude

that αt and βt = α9t are not cocycle conjugate. This also implies αt and α3t are not

cocycle conjugate because otherwise we would have αt � α3t � α9t, a contradiction.

(The symbol � means cocycle conjugacy.)

Remark 2.8. The proof of Theorem 4.7 in [2] contains a small mistake. The

statement (L0 ∪ r)′′ = (L0 ∪ p)′′ in line 20 on page 25 is invalid. Thus the map

constructed in the proof is a homomorphism from M to (L0 ∪ p)′′r ∼= (L0 ∪ p)′′p ⊗

M4(C) ∼= N ⊗M4(C), not N ⊗M2(C). But if we use r = r11 +r22 as above instead

of r = r11 + r12 + r21 + r22 in [2], we still have ϕ(q) < 2 = ϕ(r), and therefore by
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the same argument, we get a homomorphism from M to (L0 ∪ p)′′r ∼= N ⊗ M2(C).

Hence the conclusion of Theorem 4.7 is valid, and our proof is not affected.

Theorem 2.9. There exists a countably infinite family of one-parameter auto-

morphism groups of the AFD type II1 factor R, all members of which are stably

conjugate, but no two members of which are cocycle conjugate.

Proof. Consider

α
(k)
t =

∞⊗
n=1

Ad
(

exp 2πit

(
3n+k/2 0

0 −3n+k/2

))
,

for each k ≥ 0. The above argument gives the conclusion. Q.E.D.
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