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1 Introduction

We have seen much fruitful interactions between 3-dimensional topology and operator
algebras since the stunning discovery of the Jones polynomial for links [19] arising
from his theory of subfactors [18] in theory of operator algebras. In this paper, we
review the current status of theory of “quantum” topological invariants of 3-manifolds
arising from operator algebras. The original discovery of topological invariants arising
from operator algebras was for knots and links, as above, rather than 3-manifolds,
but here we concentrate on invariants for 3-manifolds. On the way of studying such
topological invariants, we naturally go through topological invariants of knots and
links. From operator algebraic data, we construct not only topological invariants of
3-manifolds, but also topological quantum field theories of dimension 3, in the sense
of Atiyah [2], as the title of this paper shows, but for simplicity of expositions, we
consider mainly complex number-valued topological invariants of oriented compact
manifolds of dimension 3 without boundary.

All the constructions of such topological invariants we discuss here are given in
the following steps.

1. Obtain combinatorial data arising from representation theory of an operator
algebraic system.

2. Realize a manifold concretely using basic building blocks.

3. Multiply or add the complex numbers appearing in the data in Step 1, in a way
specified by how the basic building blocks are composed in Step 2, and compute
the resulting complex number.

∗The author was supported in part by JSPS Grants.
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Table 1: Topological invariants arising from operator algebras

Operator Algebras Representation Theory Combinatorial Construction

Subfactors Quantum 6j-symbols TVO invariants

Nets of factors on S1 Braided tensor categories RT invariants

4. Prove that the complex number in Step 3 is independent of how the basic build-
ing blocks are composed, as long as the homeomorphism class of the resulting
manifold is fixed.

In Step 1, the prototype of the representation theory for operator algebras is the
one for finite groups. That is, for a finite group G, we consider representatives of
unitary equivalences classes of irreducible unitary representations. This finite set has
an algebraic structure arising from the tensor product operation of representations,
and it produces combinatorial data such as fusion rules and 6j-symbols. In our
setting, we work on some form of representation theory of operator algebraic systems
analogous to this classical representation theory of finite groups.

Steps 2 and 3 already appear in the original definition of the Jones polynomial
[19], where each link is represented as a closure of a braid, the Jones polynomial is
defined from such a braid through certain representation theory, and then it is proved
that this polynomial is independent of a choice of a braid for a fixed link.

This strategy should work, in principle, in any dimension, but so far, most of the
interesting constructions arising from operator algebras are for dimension 3, so we
concentrate in this case in this survey.

There have been many constructions of such topological invariants for 3-dimensional
manifolds and two of them are particularly related to operator algebras. One is a
construction of Turaev-Viro [36] in a generalized form due to Ocneanu, and the other
is the one by Reshetikhin-Turaev [33]. For these two, the triple of operator algebraic
systems, representation theoretic data, and the topological invariants in each case is
listed as in Table 1.

Since both operator algebras and (topological) quantum field theory are of infinite
dimensional nature, one expects a direct and purely infinite dimensional construction
of the latter from the former, but such a construction has not been known yet. All the
constructions below go through representation theoretic combinatorial data who “live
in” finite dimensional spaces, so one could eliminate the initial infinite dimensionality
entirely, if one is interested in only new constructions and computations of topological
invariants of 3-dimensional manifolds. Still, the infinite dimensional framework of
operator algebras is useful, as we see below, even in such a case, because it gives a
conceptually convenient working place for various constructions and computations.

We also mention one reason we operator algebraists are interested in this type
of theory, even purely from a viewpoint of operator algebras. Classification theory
is a central topic in theory of operator algebras, and representation theory gives a
very important invariant for classification. Since a series of great works of A. Connes
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in 1970’s, it is believed that under some nice analytic condition, generally called
“amenability”, a certain representation theory should give a complete invariant of
operator algebraic systems, such as operator algebras themselves, group actions on
them, or certain families of operator algebras. For this reason, studies of representa-
tion theories in operator algebraic theory are quite important since old days of theory
of operator algebras. What is new after the emergence of the Jones theory is that
the representation theory now has a “quantum” nature, whatever it means.

The author thanks R. Longo, N. Sato, and H. Wenzl for comments on this
manuscript.

2 Turaev-Viro-Ocneanu invariants

Here we review the Turaev-Viro-Ocneanu invariants of 3-dimensional manifolds. The
book [11] is a basic reference.

Our operator algebra here is a so-called von Neumann algebra, which is an al-
gebra of bounded linear operators on a certain Hilbert space that is closed under
the ∗-operation and the strong operator topology. (Here we consider only infinite di-
mensional separable Hilbert spaces, though a general theory exists for other Hilbert
spaces.) Requiring closedness under the weak operator topology, we obtain the same
class of operator algebras. If we use a norm topology, we have a wider class of oper-
ator algebras called C∗-algebras. Although von Neumann algebras give a subclass of
C∗-algebras, it is not very useful, except for some elementary aspects of the theory, to
regard a von Neumann algebra as a C∗-algebra, because a von Neumann algebra is far
from being a “typical” C∗-algebra. For example, most of natural C∗-algebras are sep-
arable, as Banach spaces, but von Neumann algebras are never separable, unless they
are finite dimensional. We assume, as usual, that a von Neumann algebra contains
the identity operator, which is the unit of the algebra. A commutative C∗-algebra
having a unit is the algebra of all the continuous functions on a compact Hausdorff
space, and a commutative von Neumann algebra is the algebra of L∞-functions on
a measure space. This gives a reason for a basic idea that a general C∗-algebra is a
“noncommutative topological space” and a general von Neumann algebra is a “non-
commutative measure space”. A finite dimensional C∗- or von Neumann algebra is
isomorphic to a finite direct sum of full matrix algebras Mn(C). In this paper, we
deal with only simple von Neumann algebras in the sense that they have only trivial
two-sided closed ideals in the strong or weak operator topology. This simplicity is
equivalent to triviality of the center of the algebra, and we call such a von Neumann
algebra a factor, rather than a simple von Neumann algebra.

In the Murray-von Neumann classification, factors are classified into type I, type
II1, type II∞, and type III. Factors of type I are simply all the bounded linear op-
erators on some Hilbert space, and they are not interesting for the purpose of this
survey. We are interested in factors of type II1 in the following two sections and those
of type III in the last section. Although technical details on these factors are not
necessary for conceptual understanding of the theory, we give brief explanations on
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how to construct such factors.
We start with a countable group G. The (left) regular representation gives a uni-

tary representation of G on the Hilbert space �2(G). We consider the von Neumann
algebra generated by its image. If the group G is commutative, the resulting von
Neumann algebra is isomorphic to L∞(Ĝ). If the group G is “reasonably noncom-
mutative” in an appropriate sense, the resulting von Neumann algebra is a factor of
type II1. One example of such a group is that of all permutations of a countable set
that fix all but finite elements.

Another construction of a factor arises from an infinite tensor product of the
n × n-matrix algebra Mn(C). We can define such an infinite tensor product in an
appropriate sense, and then this infinite dimensional algebra has a natural repre-
sentation on a separable Hilbert space. The von Neumann algebra generated by its
image is a type II1 factor and these are all isomorphic, regardless n. This infinite
tensor product also has many other representations on Hilbert spaces and “most” of
them generate factors of type III.

The most natural starting point of a representation theory for factors is certainly
a study of all representations of a fixed factor on Hilbert spaces. (A factor is an
algebra of operators on a certain Hilber space by definition, but we consider rep-
resentations on other Hilbert spaces. In our setting, it is enough to consider only
representations on infinite dimensional separable Hilbert spaces.) We certainly have
a natural notion of unitary equivalence for representations of factors of type II1 or
III, but this notion is not particularly interesting, as follows. Such representations
are never irreducible, and for a fixed type II1 factor, we can classify representations
completely, up to unitary equivalence, with a single invariant, called a coupling con-
stant, due to Murray and von Neumann, having values in (0,∞]. (This invariant
produces the Jones index as below, and produces something deep in this sense, but
the classification of representations themselves is rather simple and classical.) For
factors of type III, the situations are even simpler; they are all unitarily equivalent
for a fixed type III factor.

A representation of a factor can be regarded as a (left) module over a factor,
trivially. It was Connes who realized first that the right setting for studying repre-
sentation theory of factors is to study bimodules, rather than modules. That is, we
consider two factors M and N , which could be equal, and study a Hilbert space H
which is a left M-module and a right N -module with the two actions commuting. We
call such H an M-N bimodule and write MHN . The situation where both M and N
are of type II1 is technically simpler. We have natural notions of irreducible decompo-
sition, dimensions having values in (0,∞] which are defined in terms of the coupling
constants, contragredient bimodules, and relative tensor products. For example, for
two bimodules MHN and NKP , we can define an M-P bimodule MH ⊗N KP and the
dimension is multiplicative. For a factor M , the algebra M itself trivially has the left
and right actions of M , so it has a bimodule structure, but this M is not a Hilbert
space. We have a natural method to put an inner product on M and complete it,
and in this way, we obtain an M-M bimodule. By an abuse of notation, we often
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write MMM for this bimodule, by ignoring the completion. This bimodule has dimen-
sion one, and plays a role of a trivial representation. In this way, our representation
theory is quite analogous to that of a compact group. Connes used a terminology
correspondences rather than bimodules. See [30] for a general theory on bimodules.

Jones initiated studies of inclusions of factors N ⊂ M in [18]. Such N is called
a subfactor of M . By an abuse of terminology, the inclusion N ⊂ M is often called
a subfactor. Technically simpler situations are that both M and N are of type II1.
Then we have an M-M bimodule MMM as above, and we restrict the left action
to the subalgebra N to obtain NMM . The dimension of this bimodule is called the
Jones index of the subfactor N ⊂ M and written as [M : N ]. (This terminology and
notation come from an analogy to a notion of an index of a subgroup.) Jones proved
in [18] an astonishing statement that this index takes values in {4 cos2(π/n) | n =
3, 4, 5 . . . }∪[4,∞] and all the values in this set are realized. This is in a sharp contrast
to the fact that the coupling constant of a type II1 factor M can take all values in
(0,∞]. Jones introduced the basic construction whose successive uses produce an
increasing sequence N ⊂ M ⊂ M1 ⊂ M2 ⊂ · · · and using this, he introduced the
higher relative commutants and the principal graph for subfactors. Although we do
not give their definitions here, we only mention that if the subfactor has index less
than 4, then the principal graph is one of the A-D-E Dynkin diagrams, as noted by
Jones. (See [11, Chapter 9] for precise definitions.)

It was Ocneanu [27] who realized that these invariants and further finer struc-
tures related to them can be captured by theory of bimodules and that they can
be characterized by a set of combinatorial axioms. We explain his theory here. See
[11, Chapter 9] for more details. We start with a type II1 subfactor N ⊂ M with
finite Jones index. (If we have a finite index and one of N and M is of type II1,
then the other is also of type II1 automatically.) Ocneanu’s idea was to develop a
representation theory for a pair N ⊂ M . We start with NMM and this plays a role
of the fundamental representation. We also have MMN and make relative tensor
products such as NM ⊗M M ⊗N MM . They are not irreducible in general, so we
make irreducible decompositions. We look at all unitary equivalence classes of N -N
bimodules arising in this way. In general, we expect to have infinitely many equiva-
lence classes, but it sometimes happens that we have only finitely many equivalence
classes. This is the situation we are interested in, and in such a case, we say that the
subfactor N ⊂ M has a finite depth. (The terminology “depth” comes from the way
of Jones to write higher relative commutants.) This finite depth condition is similar
to rationality condition in conformal field theory and quantum group theory. If we
have a finite depth, we also have only finitely many equivalence classes of irreducible
M-M bimodules arising in the above way. Note that a compact group has only
finitely many equivalence classes of irreducible unitary representations if and only if
the group is finite. We assume the finite depth condition and fix a finite set of repre-
sentatives of equivalence classes of irreducible N -N bimodules arising as above from
N ⊂ M . Note that it contains a trivial bimodule, that for each bimodule in the set,
its contragredient bimodule is equivalent to one in the set, and that a relative tensor
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product of two in the set decomposes into a finite direct sum of irreducible bimodules
each of which is equivalent to one in the set. We say such a finite set of bimodules is
a finite system of bimodules. Choose three, not necessarily distinct, irreducible N -N
bimodules A, B, C in the system. Then we can decompose A⊗N B⊗N C in two ways.
That is, we first decompose A ⊗N B in one, and we first decompose B ⊗N C in the
other. In this way, we obtain the “quantum” version of the classical 6j-symbols which
produce a complex number from six bimodules and four intertwiners. Such quantum
6j-symbols were known in the quantum group theory, and Ocneanu found that a
general system of bimodules produce similar 6j-symbols and that classical properties
such as the Frobenius reciprocity also holds in this setting. Associativity of the rel-
ative tensor product gives a so-called pentagonal relation as in the classical setting.
This finite system of bimodules and quantum 6j-symbols are the combinatorial data
arising from a representation theory of a subfactor N ⊂ M .

Turaev and Viro [36] constructed topological invariants of 3-dimensional manifolds
using the quantum 6j-symbols for the quantum group Uq(sl2) at roots of unity, and
Ocneanu realized that a generalized version of this construction works for general
quantum 6j-symbols arising from a subfactor of finite Jones index and finite depth as
above. The construction goes as follows for a fixed finite system of bimodules. (See
[11, Chapter 12] for more details.)

We first make a triangulation of a manifold. That is, we regard a manifold made
of gluing faces of finitely many tetrahedra so that we have an empty boundary and
compatible orientation. Then we label each of the six edges with bimodules in the
system and each of the four faces, triangles, with (co-)isometric intertwiners. When
all the tetrahedra are labeled in this way, the quantum 6j-symbol produce a complex
number for each labeled tetrahedron. This number is simply a composition of the
four intertwiners, up to normalization arising from dimensions of the four bimodules.
(The composed intertwiners give a complex number because of irreducibility of the
bimodules.) The well-definedness of this number comes from the so-called tetrahedral
symmetry of quantum 6j-symbols. Then we multiply all these numbers over all the
tetrahedra in the triangulation, and add these products over all isometric intertwiners
in an orthonormal basis for each face and over all labeling of edges with bimodules.
With an appropriate normalization arising from dimensions of the bimodules, the
resulting number is a topological invariant of the original 3-dimensional manifold. In
order to prove this topological invariance, one has to prove that the complex number
is independent of triangulations of a manifold. The relations of two triangulation of a
manifold have been known by Alexander. That is, one triangulation is obtained from
the other by successive applications of finitely many local changes of triangulations,
called Alexander moves. (This result of Alexander holds in any dimension.) Pachner
has proved that a different set of local moves also gives a similar theorem, and this
set is more convenient for our purpose. That is, it is enough for us to prove that the
above complex number is invariant under each of the Pachner moves. This invariance
follows from properties of the quantum 6j-symbols, such as the pentagon relation.
So we conclude that the above complex number gives a well-defined topological in-
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variant of 3-dimensional closed oriented manifolds. If we reverse the orientation,
the topological invariant becomes the complex conjugate of the original value. In
the original setting of Turaev-Viro [36] based on the quantum 6j-symbols of Uq(sl2),
the resulting invariants are real, so they do not detect orientations, but there is an
example of a subfactor which produces a non-real invariant for some manifold and
thus can detect orientations. (Actually, the original construction of Turaev-Viro [36]
works without orientability.) Also note that in our setting, each intertwiner space
has a Hilbert space structure and each dimension of a bimodule, which is sometimes
called a quantum dimension, is positive. Such a feature is called unitarity of quantum
6j-symbols, and this unitarity does not necessarily hold in a purely algebraic setting
of quantum 6j-symbols for quantum groups. We can apply the same construction by
using the system of the M-M bimodules instead of that of the N -N bimodules, but
the resulting invariant is the same.

A large class of subfactors are constructed with methods related to classical theory
of groups and Hopf algebras, and their “quantum” counterparts, that is, quantum
group theory and conformal field theory such as the Wess-Zumino-Witten models.
For such subfactors, we have various interesting studies from an operator algebraic
viewpoint, but if we are interested only in resulting topological invariants through the
above machinery, they do not produce really new invariants. It is, however, expected
that we have much wider varieties of subfactors in general. One “evidence” for such
expectation is study of Haagerup [15]. By purely combinatorial arguments, he found
a list of candidates of subfactors of finite depth in the index range (4, 3 +

√
2), and

it seems that most of these are indeed realized. None of them seem to be related
to conformal field theory or today’s theory of quantum groups so far. Haagerup
himself proved that the first one in the list is indeed realized, and Asaeda and he
further proved that another in the list is also realized in [1]. The nature of topological
invariants arising from these two subfactors is not understood yet, but we expect that
they contain some interesting information. Since the list of Haagerup is only for a
small range of the index values, we expect that we would have by far more examples of
“exotic” subfactors as mentioned above, but an explicit construction of even a single
example is highly difficult. We know almost nothing about topological meaning of
invariants arising from such subfactors. Izumi [17] has some more examples of such
interesting subfactors.

3 Reshetikhin-Turaev invariants

Another construction of topological invariants due to Reshetikhin-Turaev [36] requires
a “higher symmetry” for combinatorial data arising from a representation theory.
This higher symmetry is called a modularity of a tensor category. It is also called a
nondegenerate braiding.

Wenzl has a series of work [39, 37, 38, 40], partly with V. G. Turaev, on related
constructions, but here we concentrate on two methods producing a modular tensor
category from a general operator algebraic representation theory. One is within sub-
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Figure 1: Yang-Baxter equation

factor theory, due to Ocneanu, and presented in this section, and the other is due to
Longo, Müger and the author [22], explained in the next section.

We first give a brief explanation on braiding. In a representation theory of a
group, two tensor products π ⊗ σ and σ ⊗ π are obviously unitarily equivalent for
two representations π and σ, but for two N -N bimodules A, B, we have no reason to
expect that A ⊗N B and B ⊗N A are equivalent, and they are indeed not equivalent
in general. It is, however, possible that for all A and B in a finite system, we
have equivalence of A ⊗N B and B ⊗N A. If we can choose isomorphisms of these
two bimodules in a certain compatible way simultaneously for all bimodules in the
system, we say that the system has a braiding. See [32] for more details, where
an equivalent, but slightly different formulation using endomorphisms, rather than
bimodules, is presented.

The isomorphism between A⊗N B and B⊗N A can be graphically represented as
an overcrossing of two wires labeled with A and B, respectively. Then the assumption
on “compatibility” implies, for example, the Yang-Baxter equation, which represents
the Reidemeister move of type III as in Fig. 1, where each crossing represents an
isomorphism and each hand side is a composition of three such isomorphisms.

In representation theory of groups, the tensor product operation is trivially com-
mutative in the above sense. This is “too commutative” in the sense that we have
no distinction between an overcrossing and an undercrossing in the above graphical
representation, and this is not very useful for construction of topological invariants,
obviously. So, in order to obtain an interesting topological invariant, an overcrossing
and an undercrossing must be “sufficiently different”. Such a condition is called non-
degeneracy of the braiding. This condition can be also formulated in the language of
tensor categories, and then it is called a modularity of the tensor category. A non-
degenerate braiding, or a modular tensor category, produces a unitary representation
of the modular group SL(2,Z).

We first explain how to obtain such a nondegenerate braiding in subfactor theory.
We start with a subfactor N ⊂ M with finite Jones index and finite depth. Then
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Ocneanu has found a construction of a new subfactor from this subfactor, which is
called the asymptotic inclusion [27]. He realized that the system of bimodules for this
new subfactor has a nondegenerate braiding and it can be regarded as the “quantum
double” of the original system of N -N (or M-M) bimodules arising from the sub-
factor N ⊂ M . Note that the original system of N -N bimodules and that of M-M
bimodules are not isomorphic in general, but they have the same “quantum double”
system of bimodules. Popa has a more general construction of this type, called the
symmetric enveloping algebra [31]. Longo-Rehren [25] has found the essentially same
construction as the asymptotic inclusion in the setting of algebraic quantum field
theory. See [11, Chapter 12] for more details on the asymptotic inclusion and [16, 17]
for detailed analysis based on the Longo-Rehren approach.

Suppose we have a nondegenerate braiding. It is also known that such a braiding
can arise from quantum groups or conformal field theory. Reshetikhin-Turaev [33]
has constructed a topological invariant of 3-dimensional manifold from such a system.
First we draw a picture of a link on a plane. This has various overcrossings and
undercrossings. We label each connected component with an irreducible bimodule
in the system, then each crossing gives an isomorphism arising from the braiding.
Then this labeled picture produces a complex number as a composition of these
isomorphisms. This is an invariant of “colored links”, where coloring means labeling of
each component with an irreducible bimodule. Actually, this number is not invariant
under the Reidemeister move of type I, and it is invariant under only the Reidemeister
moves of type II and type III, so this is not a topological invariant of colored links, but
it gives a “regular isotopy” invariant of colored links, for which invariance under the
Reidemeister moves of type II and type III is sufficient. Then we sum these complex
numbers over all possible colorings, with appropriate normalizing weights arising from
dimensions of the bimodules. In this way, we obtain a complex number from a planar
picture of a link. There is a method to construct a 3-dimensional oriented closed
manifold from such a planar picture of a link, called the Dehn surgery. Roughly
speaking, we embed a link in the 3-sphere, and remove a tubular neighbourhood,
consisting of a disjoint union of solid tori, from the 3-sphere, and then put back
the solid tori in a different way. Different links can produce the same 3-dimensional
manifolds, but again, it is known that in such a case, the two links can be transformed
from one to the other with successive applications of local moves. Such moves are
called Kirby moves. Reshetikhin and Turaev have proved that nondegeneracy of
the braiding implies invariance of the above complex number, the weighted sum of
colored link invariants, under Kirby moves, thus we obtain a topological invariant of
3-dimensional manifolds in this way. Reshetikhin and Turaev considered an example
arising from the quantum groups Uq(sl2) at roots of unity, but the general machinery
applies to any nondegenerate braiding. See the book [35] for more details on this
construction.

So, starting with a subfactor with finite Jones index and finite depth, we have two
topological invariants of 3-dimensional manifolds. One is the Turaev-Viro-Ocneanu
invariant arising from the system of N -N bimodules. The other is the Reshetikhin-

9



Turaev invariant of the “quantum double” system of the original system of N -N
bimodules. It is quite natural to investigate the relation between these two invariants.
Sato, Wakui and the author proved in [23] that these two invariants coincide. Ocneanu
[29] has also announced such coincidence and it seems to us that his method is
different from ours. Sato and Wakui [34] also made explicit computations of this
invariant for various concrete examples of subfactors and manifolds, based on Izumi’s
explicit computations of the representations of the modular group arising from some
subfactors, including the “exotic” one due to Haagerup, in [17].

Another computation of topological invariants arising from subfactors is based
on α-induction [25, 41, 3, 4, 5]. This method, in particular, produces subfactors
with principal graphs D2n, E6, and E8, and the corresponding Turaev-Viro-Ocneanu
invariants can be computed once we have a description of the “quantum doubles”
by [23], and these quantum doubles were computed in [6]. (Also see [29].) This α-
induction is also related to theory of modular invariants [7]. See [3, 4, 5, 20, 21] for
more on this topic.

4 Algebraic quantum field theory

Another occurrence of nondegenerate braiding in theory of operator algebras is in
algebraic quantum field theory [14], which has its own long history. This theory is
an approach to quantum field theory based on operator algebras. That is, in each
bounded region on a spacetime, we assign a von Neumann algebra on a fixed Hilbert
space. We think that each such von Neumann algebra is generated by observable
physical quantities in the bounded region in the spacetime. In this way, we think
that this family of von Neumann algebras parametrized by bounded regions gives a
mathematical description of a physical theory. We often restrict bounded regions to
those of a special form. We impose a physically natural set of axioms on this family of
von Neumann algebras and make a mathematical study of such axiomatized systems.
A spacetime of any dimension is allowed in this axiomatized approach, and the four
dimensional case was studied originally for an obvious physical reason. These studies
of Doplicher-Haag-Roberts [8] and Doplicher-Roberts [9, 10] have been quite success-
ful. Recently, it has been realized that this theory in lower dimensional spacetime has
quite interesting mathematical structures. Two-dimensional case has caught much
attention in connection to conformal field theory and one-dimensional case also natu-
rally appears in a “chiral” decomposition of a two-dimensional theory. Mathematical
structures of one-dimensional theory was studied in [12]. In one-dimensional case,
our “spacetime” is simply R and a bounded region is simply a bounded interval. It
is often convenient to compactify the space R to obtain S1 and consider “intervals”
contained in S1. In this setting, our mathematical structure is a family of von Neu-
mann algebras on a fixed Hilbert space parameterized by intervals in S1. We impose
a set of axioms. For example, one axiom requires that we have a larger von Neumann
algebra for a larger interval. Another axiom requires “covariance” of the theory with
respect to a projective unitary representation of a certain group of the “spacetime
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symmetry”. We also have an axiom on “locality” which says if two regions are space-
like separated, then the corresponding von Neumann algebras mutually commute.
Another requires existence of a “vacuum” vector in the Hilbert space. Positivity of
energy in the sense that a certain self-adjoint operator is positive is also assumed.
See [13, 22] for a precise description of the set of axioms. (Actually the main results
in [22] hold under a weaker set of axioms, but we do not go into details here.) Under
the usual set of axioms, each von Neumann algebra for an interval becomes a factor
of type III, so we call such a family a net of factors. Now the index set of intervals on
the circle S1 is not directed with respect to inclusions, since the entire circle is not
allowed as an interval, so it is not appropriate to call such a family a net, but this
terminology has been commonly used.

This family is our operator algebraic system and we consider a representation of
such a family of von Neumann algebras. Such an idea is due to Doplicher-Haag-
Roberts [8] and is called the DHR theory. We have a natural notion of irreducibility,
dimensions, and tensor products for such representations. Note that we do not have
an obvious definition of tensor products for two representations of such a net of
factors. The key idea was that the tensor product operation is realized through
compositions of endomorphisms. Also the dimension in the usual sense is always
infinite. So it was highly nontrivial to obtain sensible definitions of the tensor product
and the dimension. This work is much older than the subfactor theory in the previous
section, and its similarity to subfactor theory was soon recognized in [24] in a precise
form.

In this way, we have a representation theory for a net of factors. A tensor product
operation is “too commutative” for higher dimensional spacetime, but in dimensions
one and two, it has an appropriate level of commutativity, and naturally produces
a braiding. (See [12] for example.) So we have two problems for getting a modular
tensor category from such a representation of a net of factors on S1. One is whether we
have only finitely many equivalence classes of irreducible representations or not. The
other is whether the braiding is nondegenerate or not. In [22], Longo, Müger and the
author have found a nice operator algebraic condition that implies positive answers
to these two problems and we introduced the terminology “complete rationality” for
this notion. One of the key conditions for this notion is finiteness of a certain Jones
index. Note that in subfactor theory in the previous section, our “family of operator
algebras” has only two factors N and M , and its representation theory produced a
tensor category, without a braiding in general. Now our “family of operator algebras”
is a net of factors and has continuously many factors with more structures, and its
representation theory produces a braided tensor category.

Xu has proved in [42] that the SU(N)k-nets corresponding to the WZW-models
SU(N)k are completely rational. Xu worked on coset models in the setting of nets
of factors on S1 in [43], and obtained several interesting examples. He then studied
in [44] about topological invariants arising from these nets, which seems to be quite
interesting topologically. He also worked on orbifold models in this context in [45].
Finally, we also note that complete rationality is also important in classification
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theory of nets of factors as in [20, 21].
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[6] J. Böckenhauer, D. E. Evans, Y. Kawahigashi: Publ. RIMS, Kyoto Univ. 37,
1–35 (2001)

[7] A. Cappelli, C. Itzykson, J.-B. Zuber: Commun. Math. Phys. 113, 1–26 (1987)

[8] S. Doplicher, R. Haag, J. E. Roberts: I Commun. Math. Phys. 23, 199–230
(1971) II 35, 49–85 (1974)

[9] S. Doplicher, J. E. Roberts: Ann. Math. 130, 75–119 (1989)

[10] S. Doplicher, J. E. Roberts: Invent. Math. 98, 157–218 (1989)

[11] D. E. Evans, Y. Kawahigashi: Quantum symmetries on operator algebras, (Ox-
ford University Press, Ofxord, 1998)

[12] K. Fredenhagen, K.-H. Rehren, B. Schroer: I. Commun. Math. Phys. 125, 201–
226 (1989) II. Rev. Math. Phys. Special issue, 113–157 (1992)

[13] D. Guido, R. Longo: Commun. Math. Phys. 181, 11–35 (1996)

[14] R. Haag: Local Quantum Physics, (Springer-Verlag, Berlin-Heidelberg-New
York, 1996)

[15] U. Haagerup: Principal graphs of subfactors in the index range 4 < 3 +
√

2. In:
Subfactors, ed by H. Araki, et al. (World Scientific, 1994) pp 1–38

[16] M. Izumi: Commun. Math. Phys. 213, 127–179 (2000)

[17] M. Izumi: Rev. Math. Phys. 13, 603–674 (2001)

[18] V. F. R. Jones: Invent. Math. 72, 1–25 (1983)

12



[19] V. F. R. Jones: Bull. Amer. Math. Soc. 12, 103–112 (1985)

[20] Y. Kawahigashi, R. Longo: math-ph/0201015, to appear in Ann. Math.

[21] Y. Kawahigashi, R. Longo: math-ph/0304022, to appear in Commun. Math.
Phys.
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[26] M. Müger: math.CT/0111205

[27] A. Ocneanu: Quantized group, string algebras and Galois theory for algebras.
In Operator algebras and applications, Vol. 2, ed D. E. Evans and M. Takesaki,
(Cambridge University Press, Cambridge, 1988) pp 119–172

[28] A. Ocneanu: Chirality for operator algebras. In: Subfactors, ed by H. Araki, et
al. (World Scientific, 1994) pp 39–63

[29] A. Ocneanu: Operator algebras, topology and subgroups of quantum symmetry –
construction of subgroups of quantum groups – (written by S. Goto and N. Sato).
In: Taniguchi Conference in Mathematics Nara ’98 Adv. Stud. Pure Math. 31,
(Math. Soc. Japan, 2000) pp 235–263

[30] S. Popa: Correspondences, preprint 1986

[31] S. Popa: Math. Res. Lett. 1, 409–425 (1994)

[32] K.-H. Rehren: Braid group statistics and their superselection rules. In: The alge-
braic theory of superselection sectors, Palermo, 1989, World Scientific Publishing
(1990) pp 333–355

[33] N. Reshetikhin, V. G. Turaev: Invent. Math. 103, 547–597 (1991)

[34] N. Sato and M. Wakui: math.OA/0208242, to appear in J. Knot Theory Ramif.

[35] V. G. Turaev, Quantum Invariants of Knots and 3-manifolds, (Walter de
Gruyter, 1994)

[36] V. G. Turaev, O. Ya Viro: Topology 31, 865–902 (1992)

[37] V. G. Turaev, H. Wenzl: Internat. J. Math. 4, 323–358 (1993)

13



[38] V. G. Turaev, H. Wenzl: Math. Ann. 309, 411–461 (1997)

[39] H. Wenzl: Invent. Math. 114, 235–275 (1993)

[40] H. Wenzl: J. Amer. Math. Soc. 11, 261–282 (1998)

[41] F. Xu: Commun. Math. Phys. 192, 347–403 (1998)

[42] F. Xu: Commun. Contemp. Math. 2, 307–347 (2000)

[43] F. Xu: Commun. Math. Phys. 211, 1–44 (2000)

[44] F. Xu: math.GT/9907077

[45] F. Xu: Proc. Nat. Acad. Sci. U.S.A. 97, 14069–14073 (2000)

14


