Spectral Properties of Wigner Matrices

Benjamin Schlein, University of Bonn

Kyoto, October 2011

1. Introduction to Random Matrix Theory

Random matrices are $N \times N$ matrices, whose entries are random variables with a given probability law.

Goal of Random Matrix Theory: establish statistical properties of eigenvalues and eigenvectors of random matrices, in the limit $N \rightarrow \infty$.

This is typically a challenging task because relation between matrix entries and eigenvalues and eigenvectors is complicated.

We will focus here on hermitian and real symmetric ensembles.
Eigenvalues will always be real.

Gaussian Unitary Ensemble: consists of $N \times N$ hermitian matrices H, with probability density

$$
\mathrm{d} P(H)=\text { const } \cdot e^{-\frac{N}{2} \operatorname{Tr} H^{2}} \mathrm{~d} H
$$

with

$$
\mathrm{d} H=\prod_{i<j}^{N} \mathrm{dRe} h_{i j} \mathrm{dIm} h_{i j} \prod_{k=1}^{N} \mathrm{~d} h_{k k}
$$

Independence: writing $\operatorname{Tr} H^{2}=\sum_{i, j}\left|h_{i j}\right|^{2}$, we find

$$
\begin{aligned}
& d P(H) \sim \prod_{i<j} e^{-N\left|h_{i j}\right|^{2}} \mathrm{dRe} h_{i j} \mathrm{dIm} h_{i j} \prod_{j} e^{-\frac{N}{2} h_{j j}^{2}} \mathrm{~d} h_{j j} \\
& \Rightarrow \quad \text { Entries are independent Gaussian variables. }
\end{aligned}
$$

Unitary invariance: if H is a GUE matrix and U is unitary and fixed, then $U H U^{*}$ is also a GUE matrix.

Joint eigenvalue density: explicitly given by:

$$
p_{N}\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\mathrm{const} \cdot \prod_{i<j}^{N}\left(\lambda_{i}-\lambda_{j}\right)^{2} e^{-\frac{N}{2} \sum_{j=1}^{N} \lambda_{j}^{2}}
$$

Correlation functions: we are interested in

$$
p_{N}^{(k)}\left(\lambda_{1}, \ldots, \lambda_{k}\right)=\int \mathrm{d} \lambda_{k+1} \ldots \mathrm{~d} \lambda_{N} p_{N}\left(\lambda_{1}, \ldots, \lambda_{N}\right)
$$

Orthogonal polynomial: $\left\{\psi_{n}\right\}_{n \in \mathbb{N}}$ Hermite functions. Then

$$
\begin{aligned}
& \qquad p_{N}\left(\lambda_{1}, \ldots, \lambda_{N}\right)=C_{N} \operatorname{det}\left(\psi_{i-1}\left(\sqrt{N} \lambda_{j}\right)\right)_{1 \leq i, j \leq N}^{2} \quad \text { and } \\
& \qquad p_{N}^{(k)}\left(\lambda_{1}, \ldots, \lambda_{k}\right)=\frac{(N-k)!N^{k}}{N!} \operatorname{det}\left(\frac{K^{(N)}\left(\sqrt{N} \lambda_{i}, \sqrt{N} \lambda_{j}\right)}{\sqrt{N}}\right)_{1 \leq i, j \leq k} \\
& \text { with } K^{(N)}(x, y)=\sum_{k=0}^{N-1} \psi_{k}(x) \psi_{k}(y)=\frac{\psi_{N}(x) \psi_{N-1}(y)-\psi_{N}(y) \psi_{N-1}(x)}{(x-y)}
\end{aligned}
$$

One-point function $p_{N}^{(1)}(\lambda)$ is the density of states at λ.

As $N \rightarrow \infty$, we find

$$
p_{N}^{(1)}(\lambda)=\frac{K^{(N)}(\sqrt{N} \lambda, \sqrt{N} \lambda)}{\sqrt{N}} \longrightarrow \frac{1(|\lambda| \leq 2)}{2 \pi} \sqrt{1-\frac{\lambda^{2}}{4}}=: \rho_{\mathrm{Sc}}(\lambda)
$$

Local statistics: for $k \geq 2, p_{N}^{(k)}\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ describes eigenvalue correlations. Can only have a limit when $\lambda_{1}, \ldots, \lambda_{k}$ are in interval of size $\sim 1 / N$. In this case, find Wigner-Dyson distribution
$\frac{1}{\rho_{\mathrm{SC}}^{k}(E)} p_{N}^{(k)}\left(E+\frac{x_{1}}{N \rho_{\mathrm{sc}}(E)}, . ., E+\frac{x_{k}}{N \rho_{\mathrm{sc}}(E)}\right) \rightarrow \operatorname{det}\left(\frac{\sin \left(\pi\left(x_{i}-x_{j}\right)\right)}{\pi\left(x_{i}-x_{j}\right)}\right)_{i, j \leq k}$

GOE, GSE: similar formulas can be derived for Gaussian ensembles with different symmetries (orthogonal and symplectic ensembles).

Applications:

- Heavy Nuclei: random matrices have been introduced by Wigner to describe excitation spectra of heavy nuclei.
- Anderson Model: in the isolator phase, the eigenvalues of the Anderson Hamiltonian are Poisson distributed. In the metallic phase, the eigenvalues are expected to follow a Wigner-Dyson distribution.
- Quantum Chaos: integrable classical dynamics should lead to Poisson distribution of energy levels. For chaotic classical motion, the energy level are expected to follow GOE statistics.

Universality Conjecture (vague): the (local) statistics of energy levels of chaotic and disordered systems depend on the symmetries but are independent of further details of the system.

Invariant Ensembles: $N \times N$ hermitian matrices H with probability density

$$
\mathrm{d} P(H)=\text { const } \cdot e^{-\frac{N}{2} \operatorname{Tr} V(H)} \mathrm{d} H, \quad \text { where } V(\lambda) \geq 0
$$

For $V(\lambda)=\lambda^{2}$, this is just GUE. Otherwise, ensemble still invariant w.r.t. unitary conjugation, but entries are not independent.

The joint probability density of the N eigenvalues is given by

$$
p\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\mathrm{const} \cdot \prod_{i<j}^{N}\left(\lambda_{i}-\lambda_{j}\right)^{2} e^{-\frac{N}{2} \sum_{j=1}^{N} V\left(\lambda_{j}\right)}
$$

Under appropriate conditions on V, universality for invariant ensembles was proven by Pastur-Shcherbina and by Deift et. al.:
$\frac{1}{\varrho^{k}(E)} p^{(k)}\left(E+\frac{x_{1}}{N \varrho(E)}, . ., E+\frac{x_{k}}{N \varrho(E)}\right) \rightarrow \operatorname{det}\left(\frac{\sin \left(\pi\left(x_{i}-x_{j}\right)\right)}{\pi\left(x_{i}-x_{j}\right)}\right)_{i, j \leq k}$

Question: is it possible to establish universality in situations where the joint probability density is not explicitly known?

2. Wigner Matrices and the Local Semicircle Law

Hermitian Wigner Matrices: $N \times N$ matrices $H=\left(h_{k j}\right)_{1 \leq k, j \leq N}$ such that $H^{*}=H$ and

$$
\begin{array}{ll}
h_{k j}=\frac{1}{\sqrt{N}}\left(x_{k j}+i y_{k j}\right) & \text { for all } 1 \leq k<j \leq N \\
h_{k k}=\frac{2}{\sqrt{N}} x_{k k} & \text { for all } 1 \leq k \leq N
\end{array}
$$

where $x_{k j}, y_{k j}$ and $x_{k k}(1 \leq k \leq N)$ are iid with

$$
\mathbb{E} x_{j k}=0, \quad \mathbb{E} x_{j k}^{2}=\frac{1}{2} \quad \text { and } \mathbb{E} e^{\alpha x_{i j}^{2}}<\infty \quad \text { for some } \alpha>0
$$

Remark: scaling so that eigenvalues remain bounded as $N \rightarrow \infty$.

$$
\begin{gathered}
\mathbb{E} \sum_{\alpha=1}^{N} \lambda_{\alpha}^{2}=\mathbb{E} \operatorname{Tr} H^{2}=\mathbb{E} \sum_{j, k=1}^{N}\left|h_{j k}\right|^{2}=N^{2} \mathbb{E}\left|h_{j k}\right|^{2} \\
\Rightarrow \quad \mathbb{E}\left|h_{j k}\right|^{2}=O\left(N^{-1}\right)
\end{gathered}
$$

Semicircle Law (Wigner, 1955): for any $\delta>0$,

$$
\lim _{\eta \rightarrow 0} \lim _{N \rightarrow \infty} \mathbb{P}\left(\left|\frac{\mathcal{N}\left[E-\frac{\eta}{2} ; E+\frac{\eta}{2}\right]}{N \eta}-\rho_{\mathrm{sc}}(E)\right| \geq \delta\right)=0
$$

where

$$
\begin{aligned}
\mathcal{N}[I] & =\text { number of eigenvalues in interval } I \\
\rho_{\mathrm{SC}}(E) & =\frac{1}{2 \pi} \sqrt{1-\frac{E^{2}}{4}}
\end{aligned}
$$

Remark 1: semicircle independent of distribution of entries.

Remark 2: Wigner result concerns DOS on macroscopic scales, in intervals containing order N eigenvalues.

Question: What about density of states on smaller scales?

Theorem [Erdős-S.-Yau, 2008]: Fix $|E|<2$. Then, for any $\delta>0$,

$$
\lim _{K \rightarrow \infty} \lim _{N \rightarrow \infty} \mathbb{P}\left(\left|\frac{\mathcal{N}\left[E-\frac{K}{2 N} ; E+\frac{K}{2 N}\right]}{K}-\rho_{\mathrm{SC}}(E)\right| \geq \delta\right)=0
$$

Semicircle law holds up to microscopic scales.

Intermediate scales: if $\eta(N) \rightarrow 0$ such that $N \eta(N) \rightarrow \infty$, we have

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left(\left|\frac{\mathcal{N}\left[E-\frac{\eta(N)}{2} ; E+\frac{\eta(N)}{2}\right]}{N \eta(N)}-\rho_{\mathrm{sc}}(E)\right| \geq \delta\right)=0
$$

Previous results by Khorunzhy, Bai-Miao-Tsay, and GuionnetZeitouni (up to scales $\eta(N) \simeq N^{-1 / 2}$).

Main ingredients of proof: upper bound on density and fixed point equation for Stieltjes transform.

Upper bound: states that

$$
\mathbb{P}\left(\frac{\mathcal{N}\left[E-\frac{\eta}{2}, E+\frac{\eta}{2}\right]}{N \eta} \geq K\right) \lesssim e^{-c \sqrt{K N \eta}}
$$

if $\eta=\eta(N) \geq 1 / N$.
To show the upper bound we observe that

$$
\begin{aligned}
\mathcal{N}[E-\eta / 2, E+\eta / 2] & =\sum_{\alpha} 1\left(\left|\mu_{\alpha}-E\right| \leq \eta\right) \\
& \lesssim \sum_{\alpha} \frac{\eta^{2}}{\left(\mu_{\alpha}-E\right)^{2}+\eta^{2}}=\eta \operatorname{Im} \sum_{\alpha} \frac{1}{\mu_{\alpha}-E-i \eta}
\end{aligned}
$$

and hence

$$
\rho=\lesssim \frac{1}{N} \operatorname{Im} \operatorname{Tr} \frac{1}{H-E-i \eta}=\frac{1}{N} \operatorname{Im} \sum_{j=1}^{N} \frac{1}{H-E-i \eta}(j, j)
$$

Decomposing H as

$$
H=\left(\begin{array}{ll}
h_{11} & \mathbf{a}^{*} \\
\mathbf{a} & B
\end{array}\right)
$$

we find (Feshbach map)

$$
\frac{1}{H-z}(1,1)=\frac{1}{h_{11}-z-\mathbf{a} \cdot(B-z)^{-1} \mathbf{a}}=\frac{1}{h_{11}-z-\frac{1}{N} \sum_{\alpha} \frac{\xi_{\alpha}}{\lambda_{\alpha}-z}}
$$

with

$$
\xi_{\alpha}=N\left|\mathbf{a} \cdot \mathbf{u}_{\alpha}\right|^{2} \quad \Rightarrow \quad \mathbb{E} \xi_{\alpha}=1
$$

where λ_{α} and \mathbf{u}_{α} are eigenvalues and eigenvectors of B.

We conclude that, with high probability,

$$
\begin{aligned}
\operatorname{Im} \frac{1}{H-E-i \eta}(1,1) & \lesssim \frac{1}{\operatorname{Im} \frac{1}{N} \sum_{\alpha} \frac{\xi_{\alpha}}{\lambda_{\alpha}-E-i \eta}} \\
& \lesssim \frac{1}{\operatorname{Im} \frac{1}{N} \operatorname{Tr} \frac{1}{B-E-i \eta}} \lesssim \frac{1}{\rho_{\text {minor }}} \simeq \frac{1}{\rho}
\end{aligned}
$$

Fixed point equation: we consider the Stieltjes transform

$$
m_{N}(z)=\frac{1}{N} \operatorname{Tr} \frac{1}{H-z}, \quad m_{\mathrm{sc}}(z)=\int \mathrm{d} y \frac{\rho_{\mathrm{sc}}(y)}{y-z}
$$

Convergence of the density follows if we can prove that

$$
m_{N}(z) \rightarrow m_{\mathrm{sc}}(z), \quad \text { for } \operatorname{Im} z=\eta \geq K / N
$$

The Stieltjes transform m_{sc} solves the fixed point equation

$$
m_{\mathrm{sc}}(z)+\frac{1}{z+m_{\mathrm{sc}}(z)}=0
$$

It is enough to show that, with high probability,

$$
\left|m_{N}(z)+\frac{1}{z+m_{N}(z)}\right| \leq \delta
$$

To this end, we use again

$$
m_{N}(z)=\frac{1}{N} \sum_{j} \frac{1}{h_{j j}-z-\frac{1}{N} \sum_{\alpha} \frac{\xi_{\alpha}^{(j)}}{\lambda_{\alpha}^{(j)}-z}}
$$

3. Delocalization of Eigenvectors

Let $\mathbf{v}=\left(v_{1}, \ldots, v_{N}\right)$ be an ℓ_{2}-normalized vector in \mathbb{C}^{N}. Distinguish two extreme cases:

Complete localization: one large component, for example

$$
\mathbf{v}=(1,0, \ldots, 0) \quad \Rightarrow \quad\|\mathbf{v}\|_{p}=1, \text { for all } 2<p \leq \infty
$$

Complete delocalization: all components have same size,

$$
\mathbf{v}=\left(N^{-1 / 2}, \ldots, N^{-1 / 2}\right) \quad \Rightarrow \quad\|\mathbf{v}\|_{p}=N^{-\frac{1}{2}+\frac{1}{p}} \ll 1
$$

Theorem [Erdős-S.-Yau, 2008]:
Suppose $\mathbb{E} e^{\nu\left|x_{i j}\right|}<\infty$ for some $\nu>0$. Fix $\kappa>0,2<p \leq \infty$. Then
$\mathbb{P}\left(\exists \mathbf{v}: H \mathbf{v}=\mu \mathbf{v}, \mu \in[-2+\kappa, 2-\kappa],\|\mathbf{v}\|_{2}=1,\|\mathbf{v}\|_{p} \geq M N^{-\frac{1}{2}+\frac{1}{p}}\right)$

$$
\leq C e^{-c \sqrt{M}}
$$

for all M, N large enough.

Idea of proof: we write $\mathbf{v}=\left(v_{1}, \mathbf{w}\right)$. Hence $H \mathbf{v}=\mu \mathbf{v}$ implies

$$
\left(\begin{array}{cc}
h-\mu & \mathbf{a}^{*} \\
\mathbf{a} & B-\mu
\end{array}\right)\binom{v_{1}}{\mathbf{w}}=\binom{0}{0} \quad \Rightarrow \quad \mathbf{w}=v_{1}(\mu-B)^{-1} \mathbf{a}
$$

By normalization

$$
1=v_{1}^{2}+\mathbf{w}^{2} \quad \Rightarrow \quad\left|v_{1}\right|^{2}=\frac{1}{1+\frac{1}{N} \sum_{\alpha} \frac{\xi_{\alpha}}{\left(\mu-\lambda_{\alpha}\right)^{2}}} \quad\left(\xi_{\alpha}=N\left|\mathbf{a} \cdot \mathbf{u}_{\alpha}\right|^{2}\right)
$$

where λ_{α} and \mathbf{u}_{α} are the eigenvalues and the eigenvectors of B.

$$
\left|v_{1}\right|^{2} \leq \frac{1}{\frac{1}{N \eta^{2}} \sum_{\alpha:\left|\lambda_{\alpha}-\mu\right| \leq \eta} \xi_{\alpha}} \lesssim \frac{N \eta^{2}}{\left|\left\{\alpha:\left|\lambda_{\alpha}-\mu\right| \leq \eta\right\}\right|}
$$

Choosing $\eta=K / N$, for a sufficiently large $K>0$, we find

$$
\left|v_{1}\right|^{2} \leq \frac{K^{2}}{N} \frac{1}{\left|\left\{\alpha:\left|\lambda_{\alpha}-\mu\right| \leq K / N\right\}\right|} \leq c \frac{K}{N}
$$

with high probability, because, by the local semicircle law, there must be order K eigenvalues λ_{α} with $\left|\lambda_{\alpha}-\mu\right| \leq K / N$.

4. Level Repulsion

Theorem [Erdős-S.-Yau, 2008]: Suppose $\mathbb{E} e^{\nu\left|x_{i j}\right|}<\infty$ for some $\nu>0$, fix $|E|<2$.

Fix $k \geq 1$, and assume that the probability density $h(x)=e^{-g(x)}$ of the matrix entries satisfies the bound

$$
|\widehat{h}(p)| \leq \frac{1}{\left(1+C p^{2}\right)^{\sigma / 2}}, \quad\left|\widehat{h g^{\prime \prime}}(p)\right| \leq \frac{1}{\left(1+C p^{2}\right)^{\sigma / 2}} \quad \text { for } \sigma \geq 5+k^{2}
$$

Then there exists a constant $C_{k}>0$ such that

$$
\mathbb{P}\left(\mathcal{N}\left[E-\frac{\varepsilon}{2 N} ; E+\frac{\varepsilon}{2 N}\right] \geq k\right) \leq C_{k} \varepsilon^{k^{2}}
$$

for all N large enough, and all $\varepsilon>0$.
Remark: for GUE, we have

$$
p\left(\mu_{1}, \ldots, \mu_{N}\right) \simeq \prod_{i<j}\left(\mu_{i}-\mu_{j}\right)^{2} \Rightarrow \mathbb{P}\left(\mathcal{N}_{\varepsilon} \geq k\right) \simeq \varepsilon^{k^{2}}
$$

5. Universality of hermitian Wigner Matrices

Universality: local eigenvalue statistics in the limit $N \rightarrow \infty$ is expected to depend only on symmetry, but to be independent of probability law of matrix entries.

Remark: universality at the edges of the spectrum was established by Soshnikov in 1999 using the moment method. Here I will consider universality in the bulk of the spectrum.

In 2001, Johansson established the validity of bulk universality for ensembles of hermitian Wigner matrices with a Gaussian component (result was later extended by Ben Arous-Péché).

Johansson's approach: consider matrices of the form

$$
H=H_{0}+t^{\frac{1}{2}} V
$$

where V is a GUE-matrix, and H_{0} is an arbitrary Wigner matrix.

The matrix H can be obtained by letting every entry of H_{0} evolve under a Brownian motion up to time t (more prec. t / N).

The distribution of the eigenvalues of the matrix evolves then according to Dyson's Brownian motion

$$
\mathrm{d} \lambda_{\alpha}=\frac{\mathrm{d} B_{\alpha}}{\sqrt{N}}+\frac{1}{N} \sum_{\beta \neq \alpha} \frac{1}{\lambda_{\alpha}-\lambda_{\beta}} \mathrm{d} t, \quad 1 \leq \alpha \leq N
$$

where $\left\{B_{\alpha}: 1 \leq \alpha \leq N\right\}$ is a collection of independent Brownian motion.

The joint probability distribution of the eigenvalues $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right)$ of H is

$$
p(\mathrm{x})=\int \mathrm{d} \mathbf{y} q_{t}(\mathrm{x} ; \mathbf{y}) p_{0}(\mathrm{y})
$$

where p_{0} is the distribution of the eigenvalues $\mathbf{y}=\left(y_{1}, \ldots, y_{N}\right)$ of H_{0} and

$$
q_{t}(\mathbf{x} ; \mathbf{y})=\frac{N^{N / 2}}{(2 \pi t)^{N / 2}} \frac{\Delta_{N}(\mathbf{x})}{\Delta_{N}(\mathbf{y})} \operatorname{det}\left(e^{-N\left(x_{j}-y_{k}\right)^{2} / 2 t}\right)_{j, k=1}^{N}
$$

with the Vandermonde determinant

$$
\Delta(\mathrm{x})=\prod_{i<j}^{N}\left(x_{i}-x_{j}\right)=\operatorname{det}\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
x_{1} & x_{2} & \ldots & x_{N} \\
\ldots & \ldots & \ldots & \ldots \\
x_{1}^{N} & x_{2}^{N} & \ldots & x_{N}^{N}
\end{array}\right)
$$

This can be proven using the Harish-Chandra/Itzykson-Zuber formula
$\int_{U(N)} e^{-\frac{N}{2 t} \operatorname{Tr}\left(U^{*} R(\mathbf{x}) U-H_{0}(\mathbf{y})\right)^{2}} \mathrm{~d} U=\frac{1}{\Delta(\mathbf{x}) \Delta(\mathbf{y})} \operatorname{det}\left(e^{-\frac{N}{2 t}\left(x_{j}-y_{i}\right)^{2}}\right)_{1 \leq i, j \leq N}$

The k-point correlation function of p is therefore given by

$$
p^{(k)}\left(x_{1}, \ldots, x_{k}\right)=\int q_{t}^{(k)}\left(x_{1}, \ldots, x_{k} ; \mathbf{y}\right) p_{0}(\mathbf{y}) \mathrm{d} \mathbf{y}
$$

where

$$
\begin{aligned}
q_{t}^{(k)}\left(x_{1}, \ldots, x_{k} ; \mathbf{y}\right) & =\int q_{t}(\mathbf{x} ; \mathbf{y}) \mathrm{d} x_{k+1} \ldots \mathrm{~d} x_{N} \\
& =\frac{(N-k)!}{N!} \operatorname{det}\left(K_{t, N}\left(x_{i}, x_{j} ; \mathbf{y}\right)\right)_{1 \leq i, j \leq k}
\end{aligned}
$$

with

$$
\begin{aligned}
& K_{t, N}(u, v ; \mathbf{y})=\frac{N}{(2 \pi i)^{2}(v-u) t} \\
& \times \int_{\gamma} \mathrm{d} z \int_{\Gamma} \mathrm{d} w\left(e^{-N(v-u)(w-r) / t}-1\right) \prod_{j=1}^{N} \frac{w-y_{j}}{z-y_{j}} \\
& \times \frac{1}{w-r}\left(w-r+z-u-\frac{t}{N} \sum_{j} \frac{y_{j}-r}{\left(w-y_{j}\right)\left(z-y_{j}\right)}\right) e^{N\left(w^{2}-2 v w-z^{2}+2 u z\right) / 2 t}
\end{aligned}
$$

where γ is the union of two horizontal lines and Γ is a vertical line in the \mathbb{C}-plane, and $r \in \mathbb{R}$ is arbitrary.

Convergence of k-point correlation follows from

$$
\frac{1}{N \varrho(u)} K_{t, N}\left(u+\frac{x_{1}}{N \varrho(u)}, u+\frac{x_{2}}{N \varrho(u)} ; \mathbf{y}\right) \rightarrow \frac{\sin \pi\left(x_{2}-x_{1}\right)}{\pi\left(x_{2}-x_{1}\right)} \quad \text { for a.e. } \mathbf{y}
$$

To prove convergence of $K_{t, N}$ to sine-kernel Johansson uses

$$
\begin{aligned}
& \frac{1}{N \varrho(u)} K_{t, N}\left(u, u+\frac{\tau}{N \varrho} ; \mathbf{y}\right) \\
& \quad=N \int_{\gamma} \frac{\mathrm{d} z}{2 \pi i} \int_{\Gamma} \frac{\mathrm{d} w}{2 \pi i} h_{N}(w) g_{N}(z, w) e^{N\left(f_{N}(w)-f_{N}(z)\right)}
\end{aligned}
$$

with

$$
\begin{aligned}
f_{N}(z) & =\frac{1}{2 t}\left(z^{2}-2 u z\right)+\frac{1}{N} \sum_{j} \log \left(z-y_{j}\right) \\
g_{N}(z, w) & =\frac{1}{t(w-r)}[w-r+z-u]-\frac{1}{N(w-r)} \sum_{j} \frac{y_{j}-r}{\left(w-y_{j}\right)\left(z-y_{j}\right)} \\
h_{N}(w) & =\frac{1}{\tau}\left(e^{-\tau(w-r) / t \varrho}-1\right)
\end{aligned}
$$

and performs a detailed asymptotic saddle analysis.

Beyond Johansson: what happens if $t=t(N) \rightarrow 0$? Consider

$$
t=N^{-1+\varepsilon}
$$

Similar integral representation but asymptotic analysis is more delicate and requires microscopic convergence to the semicircle.

Theorem [Erdős-Péché-Ramirez-S.-Yau]: Let $p_{N}^{(k)}$ be the k-point eigenvalue correlation function for the ensemble $H=$ $H_{0}+t^{1 / 2} V$, where H_{0} is an arbitrary Wigner matrix, V is an independent GUE matrix, and $t \geq N^{-1+\varepsilon}$. Then

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \frac{1}{\rho_{\mathrm{SC}}^{k}(E)} p_{N}^{(k)}\left(E+\frac{x_{1}}{N \rho_{\mathrm{SC}}(E)}\right. & \left., \ldots, E+\frac{x_{k}}{N \rho_{\mathrm{SC}}(E)}\right) \\
& =\operatorname{det}\left(\frac{\sin \left(\pi\left(x_{i}-x_{j}\right)\right)}{\left(\pi\left(x_{i}-x_{j}\right)\right)}\right)_{i, j=1}^{k}
\end{aligned}
$$

Time reversal to remove Gaussian part: let $h(x)$ be the density of the matrix elements of H_{0}.

The matrix elements of $H=H_{0}+t^{\frac{1}{2}} V$ have density

$$
h_{t}(x)=\left(e^{t L} h\right)(x), \quad \text { with } \quad L=\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}
$$

Then

$$
\int \frac{\left|h_{t}(x)-h(x)\right|^{2}}{h(x)} d x \leq C t^{2}
$$

Letting $F=h^{\otimes N^{2}}$ and $F_{t}=\left(e^{t L} h\right)^{\otimes N^{2}}$ we find

$$
\int \frac{\left|F_{t}-F\right|^{2}}{F} d x_{1} \ldots d x_{N^{2}} \leq C N^{2} t^{2}
$$

It is only small for $t \ll N^{-1}$.

Hence $t=N^{-1+\varepsilon}$ is still not enough.

We would like to write

$$
h=e^{t L} v_{t} \quad \text { with } \quad v_{t}=e^{-t L} h
$$

But the heat equation cannot be reversed.
$\Rightarrow \quad$ approximate inversion of heat semigroup
Define $v_{t}=(1-t L) h$. Then

$$
h_{t}=e^{t L} v_{t} \simeq h+t^{2} L^{2} h \quad\left(\text { while } \quad e^{t L} h \simeq h+t L h\right)
$$

Therefore

$$
\int \frac{\left|h_{t}-h\right|^{2}}{h} d x \leq C t^{4}
$$

Hence, if $F=h^{\otimes N^{2}}$ and $F_{t}=h_{t}^{\otimes N^{2}}$, we find

$$
\int \frac{\left|F_{t}-F\right|^{2}}{F} d x_{1} \ldots d x_{N^{2}} \leq C N^{2} t^{4} \ll 1 \quad \text { for } t=N^{-1+\varepsilon}
$$

Theorem [Erdös-Péché-Ramirez-S.-Yau]: Suppose H is a hermitian Wigner matrix, whose entries have law $g=e^{-h}$, for $h \in C^{6}(\mathbb{R})$. Then,

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \frac{1}{\rho_{\mathrm{SC}}^{2}(E)} p_{N}^{(2)}\left(E+\frac{x_{1}}{N \rho_{\mathrm{SC}}(E)}\right. & \left., E+\frac{x_{2}}{N \rho_{\mathrm{SC}}(E)}\right) \\
& =1-\frac{\sin ^{2}\left(\pi\left(x_{1}-x_{2}\right)\right)}{\left(\pi\left(x_{1}-x_{2}\right)\right)^{2}}
\end{aligned}
$$

The result extends to higher correlation functions, assuming more regularity on h.

Tao-Vu approach: let H and H^{\prime} be two Wigner matrices whose entries have distribution x, y; assume that typical distance between eigenvalues is order one $(x, y \simeq \sqrt{N})$.

Assume that

$$
\mathbb{E} x^{m}=\mathbb{E} y^{m} \quad \text { for } \quad 1 \leq m \leq 4
$$

Fix $k \geq 1$ and consider a nice function $G: \mathbb{R}^{k} \rightarrow \mathbb{R}$. Then

$$
\left|\mathbb{E} G\left(\lambda_{\alpha_{1}}(H), \ldots, \lambda_{\alpha_{k}}(H)\right)-\mathbb{E} G\left(\lambda_{\alpha_{1}}(H), \ldots, \lambda_{\alpha_{k}}(H)\right)\right| \rightarrow 0
$$

as $N \rightarrow \infty$.
Idea of proof: change one entry at the time.

$$
\begin{aligned}
& H(z)=\text { matrix obtained from } H \text { replacing }(i, j) \text {-entry with } z \\
& \left.F(z)=G\left(\lambda_{\alpha}(H(z))\right) \quad \text { (we take } k=1\right)
\end{aligned}
$$

$$
\begin{aligned}
& F(x)=F(0)+x F^{\prime}(0)+\cdots+\frac{x^{5}}{5!} F^{(v)}(0)+. . \\
& F(y)=F(0)+y F^{\prime}(0)+\cdots+\frac{y^{5}}{5!} F^{(v)}(0)+. .
\end{aligned}
$$

Therefore

$$
|\mathbb{E} F(x)-\mathbb{E} F(y)| \leq \mathbb{E}|x|^{5} F^{(v)}(0)
$$

Observe

$$
\mathbb{E}|x|^{5} \simeq N^{5 / 2} \quad \text { but } \quad F^{(m)}(0) \simeq N^{-m}
$$

In fact

$$
F^{\prime}(0)=G^{\prime}\left(\lambda_{\alpha}(H)\right) \cdot \frac{\partial \lambda_{\alpha}}{\partial h_{i j}}=G^{\prime}\left(\lambda_{\alpha}(H)\right) \cdot \mathbf{v}_{\alpha}(i) \mathbf{v}_{\alpha}(j) \simeq N^{-1}
$$

Hence

$$
|\mathbb{E} F(x)-\mathbb{E} F(y)| \leq C N^{-5 / 2}
$$

Repeating this argument N^{2} times, we can replace all entries of H; the total error is $O\left(N^{-1 / 2}\right)$.

Universality (Tao-Vu): for given H, find Johansson matrix

$$
H_{t}=e^{-t / 2} H_{0}+\left(1-e^{-t}\right)^{1 / 2} V
$$

such that H and H_{t} have four matching moments.

This is only possible if entries are supported on at least 3 points.

Universality (Erdős-Ramirez-S.-Tao-Vu-Yau): compare H with the evolved matrix

$$
H_{t}=e^{-t / 2} H+\left(1-e^{-t}\right)^{1 / 2} V
$$

with $t=N^{-1+\delta}$.
Moments do not match, but they are very close.

6. Universality for Non-Hermitian Ensembles

The local relaxation flow: Dyson Brownian Motion describes evolution of eigenvalues. Equilibrium measure is GUE measure

$$
\mu(\mathrm{x}) \mathrm{d} \mathbf{x}=\frac{e^{-\mathcal{H}(\mathrm{x})}}{Z} \mathrm{~d} \mathbf{x}, \quad \mathcal{H}(\mathrm{x})=N\left[\sum_{j=1}^{N} \frac{x_{j}^{2}}{2}-\frac{2}{N} \sum_{i<j} \log \left|x_{j}-x_{i}\right|\right]
$$

The evolution of an initial probability density function $f \mu$ w.r.t DBM is described by the heat equation

$$
\partial_{t} f_{t}=L f_{t}
$$

with the generator

$$
L=\sum_{i=1}^{N} \frac{1}{2 N} \partial_{i}^{2}+2 \sum_{i=1}^{N}\left(-\frac{1}{4} x_{i}+\frac{1}{2 N} \sum_{j \neq i} \frac{1}{x_{i}-x_{j}}\right) \partial_{i}
$$

Relaxation time of Dyson's Brownian motion given by

$$
\frac{1}{2 N} \nabla^{2} \mathcal{H} \geq O(1) \quad \Rightarrow \quad \text { relaxation on times } O(1)
$$

Idea: introduce new flow with shorter relaxation time. Define

$$
\begin{aligned}
\widetilde{\mathcal{H}}(\mathrm{x}) & =N\left[\sum_{j=1}^{N}\left(\frac{x_{j}^{2}}{2}+\frac{1}{2 R^{2}}\left(x_{j}-\gamma_{j}\right)^{2}\right)-\frac{2}{N} \sum_{i<j} \log \left|x_{j}-x_{i}\right|\right] \\
& =\mathcal{H}(\mathrm{x})+\frac{N}{2 R^{2}} \sum_{j=1}^{N}\left(x_{j}-\gamma_{j}\right)^{2}
\end{aligned}
$$

where γ_{j} is position of the j-th eigenvalue w.r.t. semicircle law, and $R=N^{-\varepsilon} \ll 1$.

Introduce new equilibrium measure $\omega(\mathrm{x})=e^{-\widetilde{H}(\mathrm{x})} / \tilde{Z}$ and new evolution

$$
\partial_{t} g_{t}=\tilde{L} g_{t} \quad \text { with } \quad \tilde{L}=L-\frac{1}{R^{2}} \sum_{j=1}^{N}\left(x_{j}-\gamma_{j}\right)
$$

Observe that

$$
\frac{\nabla^{2} \widetilde{\mathcal{H}}(\mathrm{x})}{N} \geq C R^{-2} \geq N^{2 \varepsilon} \gg 1 \quad \Rightarrow \quad \text { relaxation on short times }
$$

Hence, if $\mathcal{G}_{i, n}(\mathrm{x})=G\left(N\left(x_{i}-x_{i+1}\right), \ldots, N\left(x_{i+n-1}-x_{i+n}\right)\right)$, we find

$$
\left|\int \frac{1}{N} \sum_{i \in J} \mathcal{G}_{i, n} \mathrm{~d} \omega-\int \frac{1}{N} \sum_{i \in J} \mathcal{G}_{i, n} g \mathrm{~d} \omega\right| \leq C_{n}\left(\frac{D_{\omega}(\sqrt{g}) R^{2}}{N}\right)^{1 / 2}
$$

with the Dirichlet form

$$
D_{\omega}(h)=\frac{1}{N} \sum_{j=1}^{N} \int\left|\partial_{x_{j}} h\right|^{2} \mathrm{~d} \omega
$$

On other hand, if difference between generators is small, we expect $f_{t} \mu \simeq \omega=\psi \mu$. In fact, for $t \gg R^{2}$, we find that

$$
D_{\omega}\left(\sqrt{f_{t} / \psi}\right) \leq C N \wedge \quad \text { where } \quad \wedge=\mathbb{E}_{t} \sum_{j}\left|x_{j}-\gamma_{j}\right|^{2}
$$

From microscopic semicircle law, we find $\Lambda \leq N^{-\varepsilon}$.

This implies universality for ensembles of the form $H_{0}+t^{1 / 2} V$, if $t \geq N^{-\varepsilon}$, for arbitrary symmetry.

Time-reversal argument implies universality for all matrices whose entries have enough regularity.

Combining with the result of Tao-Vu, we find universality for arbitrary ensembles.

Theorem [Erdős-S.-Yau (2009), Erdős-Yau-Yin (2010)]:
$\operatorname{Fix}\left|E_{0}\right|<2, k \in \mathbb{N}, \delta>0$. Then

$$
\begin{aligned}
& \int_{E_{0}-\delta}^{E_{0}+\delta} d E \int d x_{1}, \ldots d x_{k} O\left(x_{1}, \ldots, x_{k}\right) \\
& \times\left[p^{(k)}\left(E+\frac{x_{1}}{N \varrho(E)}, . ., E+\frac{x_{k}}{N \varrho(E)}\right)\right. \\
& \left.\quad-p_{\text {Gauss }}^{(k)}\left(E+\frac{x_{1}}{N \varrho(E)}, . ., E+\frac{x_{k}}{N \varrho(E)}\right)\right] \rightarrow 0
\end{aligned}
$$

as $N \rightarrow \infty$.

7. Averaged density of states on arbitrarily small scales

Density of states (DOS) on intervals of size ε / N :

$$
\frac{1}{\varepsilon} \mathcal{N}\left[E-\frac{\varepsilon}{2 N} ; E+\frac{\varepsilon}{2 N}\right]=\frac{1}{\varepsilon} \sum_{\alpha=1}^{N} 1\left(N\left|\lambda_{\alpha}-E\right| \leq \varepsilon / 2\right)
$$

For $\varepsilon \lesssim 1$, convergence in probability cannot hold.
Averaged DOS:

$$
\frac{1}{\varepsilon} \mathbb{E} \mathcal{N}\left[E-\frac{\varepsilon}{2 N} ; E+\frac{\varepsilon}{2 N}\right]=\frac{1}{\varepsilon} \int \mathrm{~d} x \mathbf{1}(|x| \leq \varepsilon / 2) p_{N}^{(1)}\left(E+\frac{x}{N}\right)
$$

Universality implies that, as $N \rightarrow \infty$,

$$
\frac{1}{\varepsilon} \mathbb{E} \mathcal{N}\left[E-\frac{\varepsilon}{2 N} ; E+\frac{\varepsilon}{2 N}\right] \rightarrow \rho_{\mathrm{Sc}}(E)
$$

for fixed $\varepsilon>0$.

Question Does averaged DOS converge to semicircle on smaller intervals?

Theorem [Maltsev-S., 2010]: Let h be the prob. density function of the entries of the hermitian Wigner matrix H. Let

$$
\int\left[\left|\frac{h^{\prime}(s)}{h(s)}\right|^{2}+\left|\frac{h^{\prime \prime}(s)}{h(s)}\right|^{2}\right] h(s) d s<\infty
$$

Then we have, as $N \rightarrow \infty$,

$$
\frac{1}{\varepsilon} \mathbb{E} \mathcal{N}\left[E-\frac{\varepsilon}{2 N} ; E+\frac{\varepsilon}{2 N}\right] \rightarrow \rho_{\mathrm{sC}}(E)
$$

uniformly in $\varepsilon>0$.
In other words,

$$
\lim _{N \rightarrow \infty} \liminf _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \mathbb{E} \mathcal{N}\left[E-\frac{\varepsilon}{2 N} ; E+\frac{\varepsilon}{2 N}\right]=\rho_{\mathrm{sc}}(E)
$$

and

$$
\lim _{N \rightarrow \infty} \limsup _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \mathbb{E} \mathcal{N}\left[E-\frac{\varepsilon}{2 N} ; E+\frac{\varepsilon}{2 N}\right]=\rho_{\mathrm{sc}}(E)
$$

Upper bound on average DOS (Erdős - S. - Yau, 2008): we use

$$
\mathcal{N}\left[E-\frac{\varepsilon}{2 N} ; E+\frac{\varepsilon}{2 N}\right] \lesssim \frac{\varepsilon}{N} \operatorname{Im} \operatorname{Tr} \frac{1}{H-E-i \frac{\varepsilon}{N}}
$$

and the representation

$$
\frac{1}{H-z}(1,1)=\frac{1}{h_{11}-z-\left\langle\mathbf{a},(B-z)^{-1} \mathbf{a}\right\rangle}=\frac{1}{h_{11}-z-\frac{1}{N} \sum_{\alpha} \frac{\xi_{\alpha}}{\lambda_{\alpha}-z}}
$$

where

$$
\xi_{\alpha}=N\left|\mathbf{u}_{\alpha} \cdot \mathbf{a}\right|^{2} \quad \Rightarrow \quad \mathbb{E} \xi_{\alpha}=1
$$

We conclude that

$$
\begin{aligned}
\mathbb{E} \mathcal{N}\left[E-\frac{\varepsilon}{2 N} ;\right. & \left.E+\frac{\varepsilon}{2 N}\right] \\
& \lesssim \varepsilon \mathbb{E} \frac{1}{\left(\left(h_{11}-E-\sum_{\alpha} d_{\alpha} \xi_{\alpha}\right)^{2}+\left(\frac{\varepsilon}{N}+\sum_{\alpha} c_{\alpha} \xi_{\alpha}\right)^{2}\right)^{1 / 2}}
\end{aligned}
$$

with

$$
c_{\alpha}=\frac{\varepsilon}{N^{2}\left(\lambda_{\alpha}-E\right)^{2}+\varepsilon^{2}}, \quad d_{\alpha}=\frac{N\left(\lambda_{\alpha}-E\right)}{N^{2}\left(\lambda_{\alpha}-E\right)^{2}+\varepsilon^{2}}
$$

Convergence to semicircle: define the Stieltjes transform

$$
m_{N}(z)=\frac{1}{N} \operatorname{Tr} \frac{1}{H-z}=\frac{1}{N} \sum_{\alpha} \frac{1}{\mu_{\alpha}-z}
$$

The DOS on scales ε / N is related with the imaginary part

$$
\operatorname{Im} m_{N}\left(E+i \frac{\varepsilon}{N}\right)=\sum_{\alpha} \frac{\varepsilon}{N^{2}\left(\mu_{\alpha}-E\right)^{2}+\varepsilon^{2}}
$$

To prove convergence to semicircle, it is enough to show

$$
\frac{1}{\pi} \mathbb{E} \operatorname{Im} m_{N}\left(E+i \frac{\varepsilon}{N}\right) \rightarrow \rho_{\mathrm{sC}}(E)
$$

uniformly in $\varepsilon>0$.
To this end we show the upper bound on the derivative

$$
\left|\frac{\mathrm{d}}{\mathrm{~d} E} \mathbb{E} \operatorname{Im} m_{N}\left(E+i \frac{\varepsilon}{N}\right)\right| \leq C N
$$

uniformly in $\varepsilon>0$.

The upper bound on the derivative implies that, for small but fixed $\kappa>0$,

$$
\frac{1}{\pi} \mathbb{E} \operatorname{Im} m_{N}\left(E+i \frac{\varepsilon}{N}\right)
$$

$$
\simeq \frac{N}{\pi \kappa} \int_{E-\frac{\kappa}{2 N}}^{E+\frac{\kappa}{2 N}} \mathrm{~d} E^{\prime} \mathbb{E} \operatorname{Im} m_{N}\left(E^{\prime}+i \frac{\varepsilon}{N}\right)
$$

$$
=\frac{1}{\pi \kappa} \mathbb{E} \sum_{\alpha}\left[\operatorname{arctg}\left(\frac{N\left(\mu_{\alpha}-E-\frac{\kappa}{2 N}\right)}{\varepsilon}\right)-\operatorname{arctg}\left(\frac{N\left(\mu_{\alpha}-E+\frac{\kappa}{2 N}\right)}{\varepsilon}\right)\right]
$$

$$
\simeq \frac{1}{\kappa} \mathbb{E} \mathcal{N}\left[E-\frac{\kappa}{2 N} ; E+\frac{\kappa}{2 N}\right]
$$

Hence, letting first $N \rightarrow \infty$, and then $\kappa \rightarrow 0$,

$$
\frac{1}{\pi} \mathbb{E} \operatorname{Im} m_{N}\left(E+i \frac{\varepsilon}{N}\right) \simeq \mathbb{E} \frac{1}{\kappa} \mathcal{N}\left[E-\frac{\kappa}{2 N} ; E+\frac{\kappa}{2 N}\right] \rightarrow \rho_{\mathrm{sc}}(E)
$$

