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Operator Algebraic Approach to Quantum Field Theory,

particularly to Chiral Superconformal Field Theory.

.

. .
1 Local conformal nets and the vertex operator algebras

.

.
.

2 Jones theory of subfactors, modular tensor category and

α-induction

.

.

.

3 Modular invariants and classification theory

.

.

.

4 Supersymmetry and the Connes noncommutative

geometry

(with J. Böckenhauer, S. Carpi, D. E. Evans, R. Hillier,

R. Longo, M. Müger, U. Pennig, K.-H. Rehren, F. Xu,

1999– )
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Quantum Field Theory: (mathematical aspects)

Mathematical ingredients: Spacetime, its symmetry group,

quantum fields on the spacetime

−→ mathematical axiomatization: Wightman fields

(operator-valued distributions on the spacetime)

Wightman fields and test functions supported in a space time

region O gives observables in O

−→ von Neumann algebra A(O) of bounded linear operators.

(Closed in the ∗-operation and strong-operator topology)

Study a net {A(O)} of von Neumann algebras. (Algebraic

Quantum Field Theory — Haag, Araki, Kastler)
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Chiral Conformal Field Theory:

We study the (1 + 1)-dimensional Minkowski space with

higher symmetry, where we see much recent progress and

connections to many different topics in mathematics. We

restrict a quantum field theory to compactifications of the

light rays {t = x} and {t = −x}. One S1 is now our

spacetime.

Diff(S1): the orientation preserving diffeomorphism group of

S1. This is our spacetime symmetry group.

This setting is called a chiral conformal field theory. With an

operator algebraic axiomatization, we deal with families of

von Neumann algebras acting on the same Hilbert space.
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We now list our operator algebraic axioms for a chiral

conformal field theory.

We have a family {A(I)} of von Neumann algebras

parameterized by open non-empty non-dense connected sets

I ⊂ S1. (Such an I is called an interval.)

.

.

.

1 I1 ⊂ I2 ⇒ A(I1) ⊂ A(I2).

.

.

.

2 I1 ∩ I2 = ∅ ⇒ [A(I1), A(I2)] = 0. (locality)

.

.

.

3 Diff(S1)-covariance (conformal covariance)

.

.

.

4 Positive energy condition

.

.

.

5 Vacuum vector Ω

The locality axiom comes from the Einstein causality.

Such a family {A(I)} is called a local conformal net.
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In all explicitly known examples, each A(I) is always

isomorphic to the unique Araki-Woods factor of type III1.

⇒ Each A(I) carries no information, but it is the family

{A(I)} that contains information on QFT.

A vertex operator algebra is another mathematical

axiomatization of a chiral conformal field theory. The most

famous example is the Moonshine vertex operator algebra of

Frenkel-Lepowsky-Meurman.

Vertex operator algebras and local conformal nets are

expected to have a bijective correspondence (under some nice

extra assumptions).

We have a construction of the Moonshine local conformal net

(K-Longo 2006), whose automorphism group is the Monster.

Yasu Kawahigashi (Tokyo) SuperCFT and OA Roma, 24 September, 2010 5 / 20



Representation theory: Superselection sectors

We now consider a representation theory for a local

conformal net {A(I)}. Each A(I) acts on the initial Hilbert

space from the beginning, but consider a representation on

another Hilbert space (without a vacuum vector).

Each representation is given with an endomorphism of one

factor A(I0). The image of the endomorphism is a subfactor

of the factor A(I0), and it has the Jones index. Its square

root is defined to be the dimension of the representation π,

whose value is in [1,∞].

We compose the two endomorphisms. This gives a notion of

a tensor product. We have a braided tensor category.

(Doplicher-Haag-Roberts + Fredenhagen-Rehren-Schroer)
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Only finitely many irreducible representations: rationality

K-Longo-Müger (2001) gave an operator algebraic

characterization of such rationality for a local conformal net

{A(I)} as follows, and it is called complete rationality.
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Split the circle into I1, I2, I3, I4. Then complete rationality is

given by the finiteness of the Jones index for a subfactor

A(I1) ∨A(I3) ⊂ (A(I2) ∨A(I4))′

where ′ means the commutant.
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We have a classical notion of induction. Now introduce a

similar construction for local conformal nets.

Let {A(I) ⊂ B(I)} be an inclusion of local conformal nets.

We extend an endomorphism of A(I) to a larger factor B(I),

using a braiding. (α±-induction: Longo-Rehren, Xu,

Ocneanu, Böckenhauer-Evans-K)

The intersection of endomorphisms arising from α+-induction

and those from α−-induction are exactly the representations

of {B(I)}.
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In the above setting, we automatically get a modular tensor

category as the representation category of a local conformal

net, and it produces a unitary representation π of SL(2,Z)

through its braiding. Its dimension is the number of

irreducible representations.

Böckenhauer-Evans-K (1999) have shown that the matrix

(Zλ,µ) defined by

Zλ,µ = dim Hom(α+
λ , α

−
µ )

is in the commutant of π (using Ocneanu’s graphical

calculus). Such a matrix Z is called a modular invariant.

In many important examples, modular invariants have been

explicitly classified by Cappelli-Itzykson-Zuber and Gannon.
Yasu Kawahigashi (Tokyo) SuperCFT and OA Roma, 24 September, 2010 9 / 20



Apply the above machinery to classify local conformal nets.

Any local conformal net {A(I)} comes with a projective

unitary representation of Diff(S1). This gives a unitary

representation of the Virasoro algebra defined as follows.

It is an infinite dimensional Lie algebra generated by

{Ln | n ∈ Z} and a single central element c, the central

charge, with the following relations:

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0.

An irreducible unitary representation maps c to a real

number, also called the central charge, in

{1− 6/m(m+ 1) | m = 3, 4, 5, . . . } ∪ [1,∞).

(Friedan-Qiu-Shenker + Goddard-Kent-Olive)
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Consider diffeomorphisms of S1 trivial on the complement of

an interval I. Their unitary images generate a von Neumann

subalgebra of A(I), which gives a Virasoro subnet {Virc(I)}
with the same central charge value.

For c < 1, Xu’s coset construction shows that Virasoro

subnets are completely rational.

The corresponding unitary representations of SL(2,Z) have

been well-known, and their modular invariants have been

classified by Cappelli-Itzykson-Zuber. They are labeled with

pairs of the A-D-E Dynkin diagrams whose Coxeter numbers

differ by 1.

Here we have different appearance of modular invariants.
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Classification of local conformal nets with c < 1

(K-Longo 2004):

We now apply the above theory to classify local conformal

nets with c < 1, since they are extensions of the Virasoro

nets with c < 1. Here is the classification list.

(1) Virasoro nets {Virc(I)} with c < 1.

(2) Their simple current extensions with index 2.

(3) Four exceptionals at c = 21/22, 25/26, 144/145,

154/155.

Three exceptionals in the above (3) are identified with coset

constructions, but the other one does not seem to be related

to any other known constructions. (Xu’s mirror extensions)
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We also have a formulation and a classification for a full

conformal field theory based on a 2-dimensional local

conformal net {B(I × J)} where I, J are intervals on S1.

That is, we completely classify all extensions of

{Virc(I)⊗ Virc(J)} for c < 1 (K-Longo 2004).

We also have a formulation of a boundary conformal field

theory on the 1 + 1-dimensional half Minkowski space

{(x, t) | x > 0} based on nets on the half space

(Longo-Rehren). Based on this framework, we also have a

complete classification of such nets on the half-space with

c < 1 (K-Longo-Pennig-Rehren 2007).

The Longo-Rehren subfactors play an important role.
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Geometric aspects of local conformal nets

Consider the Laplacian ∆ on an n-dimensional compact

oriented Riemannian manifold. Recall the Weyl formula:

Tr(e−t∆) ∼ 1

(4πt)n/2
(a0 + a1t+ · · · ),

where the coefficients have a geometric meaning.

The conformal Hamiltonian L0 of a local conformal net is the

generator of the rotation group of S1. For a nice local

conformal net, we have an expansion

log Tr(e−tL0) ∼ 1

t
(a0 + a1t+ · · · ),

where a0, a1, a2 are explicitly given. (K-Longo 2005)

This gives an analogy of the Laplacian ∆ of a manifold and

the conformal Hamiltonian L0 of a local conformal net.
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Noncommutative geometry:

Noncommutative operator algebras are regarded as function

algebras on noncommutative spaces.

In geometry, we need manifolds rather than compact

Hausdorff spaces or measure spaces.

The Connes axiomatization of a noncommutative compact

Riemannian spin manifold: spectral triple (A,H,D).

.

.

.

1 A: ∗-subalgebra of B(H), the smooth algebra C∞(M).

.

.

.

2 H: a Hilbert space, the space of L2-spinors.

.

.

.

3 D: an (unbounded) self-adjoint operator with compact

resolvents, the Dirac operator.

.

.

.

4 We require [D,x] ∈ B(H) for all x ∈ A.
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The Dirac operator D is a “square root” of the Laplacian ∆.

Expect some square root of the conformal Hamiltonian L0

plays a similar role to the Dirac operator in noncommutative

geometry. Supersymmetry produces such a square root.

The N = 1 super Virasoro algebras (Neveu-Schwarz,

Ramond) are generated by the central charge c, the even

elements Ln, n ∈ Z, and the odd elements Gr, r ∈ Z or

r ∈ Z+ 1/2:

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0,

[Lm, Gr] =

(
m

2
− r

)
Gm+r,

[Gr, Gs] = 2Lr+s +
c

3

(
r2 − 1

4

)
δr+s,0.
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Our construction in superconformal field theory: We construct

a family (A(I),H,D) of θ-summable spectral triples

parameterized by intervals I ⊂ S1 from a representation of

the Ramond algebra. (Carpi-Hillier-K-Longo 2010)

One of the Ramond relations gives G2
0 = L0 − c/24. So G0

should play the role of the Dirac operator, which is a “square

root” of the Laplacian.

The representation space of the Ramond algebra is our

Hilbert space H for the spectral triples (without a vacuum

vector). The image of G0 is now the Dirac operator D,

common for all the spectral triples.

Then A(I) = {x ∈ A(I) | [D,x] ∈ B(H)} gives a net of

spectral triples {A(I),H,D} parameterized by I.
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N = 2 super Virasoro algebras (Ramond/N-S for a = 0, 1/2)

Generated by central element c, even elements Ln and Jn,

and odd elements G±n±a, n ∈ Z, with the following.

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0,

[Jm, Jn] =
c

3
mδm+n,0

[Ln, Jm] = −mJm+n,

[Ln, G
±
m±a] =

(
n

2
− (m± a)

)
G±m+n±a,

[Jn, G
±
m±a] = ±G±m+n±a,

[G+
n+a, G

−
m−a] = 2Lm+n + (n−m+ 2a)Jn+m +

c

3

(
(n+ a)2 − 1

4

)
δm+n,0.
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For the discrete values of the central charge c, that is c < 3

now, we label the irreducible representations of the even part

of the net with triples (j, k, l).

The chiral ring and the spectral flow are given by {(j, j, 0)}
and is by (0, 1, 1) respectively.

We classify all N = 1 superconformal nets with discrete

values of c, that is c < 3/2 now (Carpi-K-Longo 2008) and

also all N = 2 superconformal nets with c < 3

(Carpi-Hillier-K-Longo-Xu). In the N = 2 superconformal

case, we have a mixture of the coset construction and the

mirror extension, which give a new type of simple current

extensions with cyclic groups of large orders. This is a new

feature in this N = 2 superconformal case.
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Further studies:

Gepner model: Make a fifth tensor power of the N = 2 super

Virasoro net with c = 9/5. This should give a setting of the

Gepner model with mirror symmetry. The mirror symmetry

appears as an isomorphism of two N = 2 super Virasoro

algebras sending Jn to −Jn and G±m to G∓m.

We have given a formula for the Witten index in terms of the

Jones index (Carpi-K-Longo 2008). Further developments?

Computations of noncommutative geometric invariants such

as entire cyclic cohomology with Jaffe-Lesniewski-Osterwalder

cocycle: Possible connections to invariants in superconformal

field theory. (Recent progress by Carpi-Hillier)
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