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Abstract

We define “a crossed product by a paragroup action on a subfactor” as a certain

commuting square of type II1 factors and give their complete classification in a

strongly amenable case (in the sense of S. Popa) in terms of a new combinatorial

object which generalizes Ocneanu’s paragroup.

In addition to the standard axioms of paragroups, we have the intertwining

Yang-Baxter equation as the new additional axiom. We will show that Rational

Conformal Field Theory in the sense of Moore-Seiberg and orbifold construction

in the sense of D. E. Evans, the author, and F. Xu produce paragroup actions on
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subfactors in the canonical form.

As applications, we show that the subfactor N ⊂ M of Goodman-de la Harpe-

Jones with index 3 +
√

3 is not conjugate to its dual M ⊂ M1 by showing the

fusion algebras of N -N bimodules and M -M bimodules are different, although the

principal graph and the dual principal graph are the same. This is the first example

of such a subfactor. We also determine the topological quantum field theory of this

subfactor. Finally, we make an analogue of the coset construction in RCFT for

subfactors in our settings.

1 Introduction

Our aim in this paper to introduce a notion of a “crossed product by a paragroup action on

a subfactor”, which is a certain commuting square of type II1 factors, and classify them

in terms of a combinatorial invariant generalizing Ocneanu’s paragroup [42]. Roughly

speaking, the standard axioms of paragroups together with a new axiom, the intertwin-

ing Yang-Baxter equation, characterize of our “canonical commuting cubes” which have

information enough to recover the original commuting squares by Popa’s deep theorem

[52].

We will discuss relations among our new settings, Rational Conformal Field Theory

(RCFT) in the sense of Moore-Seiberg [39], and 3-dimensional Topological Quantum

Field Theory (TQFT) in the sense of Atiyah [3]. Our new machinery also turns out to

be useful for studies of ordinary subfactors, and as applications, we will determine the

fusion rules and the TQFT of the subfactor of Goodman-de la Harpe-Jones [19] with

index 3 +
√

3, and initiate the coset construction for subfactors, which is an analogue of
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the coset construction in RCFT.

Since the pioneering work of V. F. R. Jones [26] on subfactors and his celebrated knot

invariant [27], the theory of operator algebras has experienced unexpected interactions

with low dimensional topology, quantum group theory, solvable lattice model theory,

and conformal field theory. From the operator algebraic viewpoint, these interactions

take place on combinatorial level of subfactor theory, and the best theory so far for the

combinatorial aspects of subfactors is Ocneanu’s paragroup theory [42]. Unfortunately

he has not published details of his fundamental theory, but through many efforts [14],

[29], [30], [32], [73] and Ocneanu’s several lectures [43], [44], [45], the basics of the theory

have been now fairly well-understood. Longo’s sector theory [37], [38], [22] also gives the

essentially same framework. In particular, the combinatorial part of the classification of

subfactors with index less than four, which was announced in [42] without a proof, has

been now proved in [5], [22], [23], [29], [62]. (Also see [21].) The case index equal to four

has been also completed in [24], [51]. For analytic aspects of the classification, S. Popa

solved the finite depth case first in [50], and later the strongly amenable case in [52] in

the ultimate form. (The earlier work on entropy [47] played an important role there.)

A work of de Boer-Goeree [9] clarified a relation between subfactors and RCFT, and

work on the orbifold construction [13], [29], [71], [72] revealed a further deep relation.

A relation between subfactors and 3-dimensional topology was clear from the be-

ginning [27]. E. Witten [70] proposed a general TQFT based on physical idea, and a

mathematically rigorous form was given by [57]. Another formulation [63] based on tri-

angulation of 3-manifolds [1] appeared, and it has turned out that the TQFT of Turaev-

Viro [63] with the quantum Uq(sl2) 6j-symbols of Kirillov-Reshetikhin [33] is a product

3



of the Reshetikhin-Turaev TQFT [57] and its conjugate. Ocneanu claimed a general 3-

dimensional TQFT of Turaev-Viro type arising from a subfactor of finite depth and a

converse construction in [45] and a detailed account was given in [14].

We first give a rather abstract motivation for our work in this paper. On one hand,

Ocneanu’s basic idea for the paragroup theory [42] was to regard a subfactor N ⊂ M

as a crossed product by an action of a paragroup on N . In this way, a paragroup is

regarded as a “quantization” of an ordinary group. (The name “paragroup” came from

this viewpoint.) A recent deep analytic result [55], [56] by S. Popa further strengthens

this viewpoint.

On the other hand, there have been studies of group actions on subfactors [10], [28],

[31], [34], [36], [53], [54], [67], [68], [69]. We regard “a paragroup action” on a factor as

an action of a quantum structure on a classical object, and regard a group action on a

subfactor as an action of a classical structure on a quantum object. (Of course, non-

commutative operator algebras are already quantization of classical spaces, but we are

talking about a different kind of quantization here and regard a single factor as a classical

object.) Thus we get the following table 1, which shows that there should be something

to be called a paragroup action on a subfactor.

In the theory of ordinary subfactors, what we have is a “crossed products of a para-

group action”, so in our setting, we also look for something to be called a “crossed products

of a paragroup action on a subfactor”. Then we realize that a certain commuting square
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action object

subfactors quantum classical

group actions on subfactors classical quantum

paragroup actions on subfactors quantum quantum

Table 1:

of type II1 factors

M00 ⊂ M01

∩ ∩

M10 ⊂ M11

should be a “crossed products of a paragroup action on a subfactor”. We regard M10 ⊂

M11 as a crossed product by a paragroup action on a subfactor M00 ⊂ M01 and also regard

M01 ⊂ M11 as a crossed product by a paragroup action on a subfactor M00 ⊂ M10.

Next we give more concrete motivations for our work. We initiated the orbifold con-

struction for subfactors in [13], [29] based on an idea in solvable lattice model theory

[17], [18], [35]. (A general similarity between solvable lattice models and paragroups

was clarified in [14]. See [4] for the general theory of solvable lattice models.) In this

method, we construct an action of a finite group G on a subfactor N ⊂ M and make a

simultaneous fixed point algebras NG ⊂ MG (or simultaneous crossed product algebras

N × G ⊂ M × G.) First this method in [29] was used to construct a subfactor of type

D2n from a subfactor of type A4n−3. Later this action on the subfactors of type A4n−3

was identified in [10], [32] with the Z2 actions appearing in descendent sectors in Izumi’s

work [22] and the general case was clarified by [71], [16]. Study of these actions can be
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regarded in a sense as a study of the commuting squares.

N ⊂ M

∩ ∩

N × G ⊂ M × G

(1)

For example, Popa’s notion of the co-standard graph [53], [54] can be naturally generalized

from this viewpoint. That is, we regard a general commuting square

M00 ⊂ M01

∩ ∩

M10 ⊂ M11

(with appropriate properties) as a “quantization” of the above commuting square (1).

We have another motivation as follows. S. Okamoto recently considered a problem

when the commuting square

M00 ⊂ M01

∩ ∩

M10 ⊂ M11

of approximately finite dimensional (AFD) type II1 factors with M00 ⊂ M11 having finite

index and finite depth is of the following type:

N ⊗ P ⊂ M ⊗ P

∩ ∩

N ⊗Q ⊂ M ⊗ Q

Here N ⊂ M and P ⊂ Q are subfactors of AFD type II1 factors with finite index and

finite depth. Unfortunately, his manuscript contained an error, and he could not fix it.

From our viewpoint, this problem can be regarded as a “splitting” of a paragroup action
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on a subfactor. That is, suppose that the subfactor N ⊂ M in the above commuting

square (1) has the relative McDuff property [6] (N ⊂ M) ∼= (N⊗R ⊂ M⊗R), where R is

a copy of the AFD type II1 factor. If the action α of G splits as id⊗σ on N⊗R ⊂ M ⊗R,

where σ is the model action of a finite group G on R [25], then the commuting square

becomes

N ⊗ R ⊂ M ⊗ R

∩ ∩

N ⊗ (R × G) ⊂ M ⊗ (R ×G)

For discrete amenable group actions on single McDuff factors, the right condition for

“splitting” is approximate innerness and central freeness as in [41], which is the deepest

result along the line [11]. In a subfactor setting, approximate innerness was studied in [36],

and central freeness was studied in [32], [53], [54], and S. Popa showed that for strongly

amenable subfactors, it is equivalent to his proper outerness [53], [54], which is the same

as strong outerness of Choda-Kosaki [10]. Thus we expect that the right condition for

Okamoto’s problem should be “approximate innerness” and “strong outerness” for an

appropriate sense. In Section 3, we will give a solution to this problem. Okamoto had

just a variant of the approximate innerness (in more algebraic terms), but examples in

Section 4 arising from RCFT show that such conditions are not sufficient to give splitting

of paragroup actions.

With all the above considerations, we now give the right framework of our theory. We

always work under the following assumption in this paper.

Assumption 1.1 The four algebras M00, M01, M10, M11 are type II1 factors with the

following properties.
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1. The square

M00 ⊂ M01

∩ ∩

M10 ⊂ M11

is commuting and co-commuting in the sense of [60, Definition 3.4].

2. [M11 : M00] < ∞.

3. The subfactor M00 ⊂ M11 is extremal and strongly amenable in the sense of [52].

We regard this commuting square as a “crossed product by a paragroup action on a

subfactor”. We may think that a paragroup acts on a subfactor M00 ⊂ M01 or a paragroup

acts on a subfactor M00 ⊂ M10. The situation is now symmetric.

Condition 1 is equivalent to the condition that the above is a commuting square and

[M11 : M10] = [M01 : M00] by [60, Corollary 7.1]. In this case, the commuting square is

non-degenerate in the sense of [52, 1.1.5].

In many concrete cases, we further assume that M00 ⊂ M11 is of finite depth and all

the type II1 factors are approximately finite dimensional (AFD). Note that it was proved

in [64] that if M00 ⊂ M01 and M01 ⊂ M11 have finite depth in the above situation, then

M00 ⊂ M11 also has finite depth. (For an easier proof, see Lemma 3.2 below.) Note that

in general, the finite depth conditions for N ⊂ P and P ⊂ M do not imply the finite

depth condition for N ⊂ M , while the converse direction is true in general [8]. So the

above result in [64] is regarded as a “right converse” of [8]. Commuting squares of type

II1 factors have been studied in [60], [59], [65], [64] in more abstract settings.
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Strong amenability in condition 3 is equivalent to the generating property (N ⊂ M) ∼=

(Nst ⊂ Mst) by a deep result of S. Popa [52, Theorem 5.1.1].

Also note that in general N ⊂ P and P ⊂ M are extremal if and only if N ⊂ M is

extremal ([52, 1.2.5 (iv)]).

We will give a complete classification of the above type of commuting squares of type

II1 factors in terms of combinatorial invariants, and give applications later.

In Section 2, we state the axioms for our new combinatorial system generalizing Oc-

neanu’s paragroup.

In Section 3, we give a bijective correspondence between the above type of commuting

squares and our system satisfying the axioms.

In Section 4, we show that RCFT gives non-trivial examples satisfying our axioms.

In Section 5, we apply our theory to study of subfactors of Goodman-de la Harpe-Jones

[19]. This shows that our theory is also useful for studies of ordinary subfactors.

In Section 6, we make the coset construction for subfactors as an analogue of the coset

construction in RCFT. This gives the last missing piece in comparison between paragroup

theory and RCFT.

In an early stage of the preparation of this work, conversations with D. Bisch, D. E.

Evans, V. F. R. Jones, S. Okamoto, S. Popa, and F. Xu were inspiring, and around the

end of the preparation, comments of U. Haagerup, M. Izumi, H. Kosaki, A. Ocneanu, T.

Sano, and Y. Watatani were useful. The author thanks for the help of these people.
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2 Combinatorial axioms for paragroup actions on

subfactors and triple sequence of string algebras

In this section, we list the combinatorial axiomatization for paragroup actions on

subfactors, which generalizes Ocneanu’s paragroup in [42]. Our object is a set

(G, τ, µ, ι, β1, β2, W ) of a connected unoriented graph G, a map τ from a subset of the

vertices of G onto itself, a real-valued function µ on the vertices of the graph G, a map ι

defined on a subset of edges of the graph G onto itself, positive numbers β1, β2, matrices

U1, U2, and a “connection” W on the graph G. We do not assume that the graph G is

finite, but assume that G is locally finite in the sense that the number of edges connected

to each vertex of G is finite.

The vertices of the graph G is a disjoint union of the eight sets ijGkl, where

(i, j, k, l) = (0, 0, 0, 0), (0, 0, 0, 1), (1, 1, 0, 0), (1, 1, 0, 1),

(0, 0, 1, 0), (0, 0, 1, 1), (1, 1, 1, 0), (1, 1, 1, 1).

We write i′,j′
i,j Gk′,l′

k,l for the graph whose vertices is the union i,jGk,l ∪ i′,j′Gk′,l′ and whose

edges are the edges of G connecting a vertex in i,jGk,l to a vertex in i′,j′Gk′,l′, where

(i′, j′, k′, l′, i, j, k, l) = (0, 0, 0, 0, 0, 0, 0, 1), (0, 0, 0, 1, 1, 1, 0, 1),

(0, 0, 0, 0, 1, 1, 0, 0), (1, 1, 0, 0, 1, 1, 0, 1),

(0, 0, 1, 0, 0, 0, 1, 1), (0, 0, 1, 1, 1, 1, 1, 1),

(0, 0, 1, 0, 1, 1, 1, 0), (1, 1, 1, 0, 1, 1, 1, 1),

(0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 1, 0, 0, 1, 1),
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(1, 1, 0, 0, 1, 1, 1, 0), (1, 1, 0, 1, 1, 1, 1, 1),

(0, 0, 0, 1, 0, 0, 0, 0), (1, 1, 0, 1, 0, 0, 0, 1),

(1, 1, 0, 0, 0, 0, 0, 0), (1, 1, 0, 1, 1, 1, 0, 0),

(0, 0, 1, 1, 0, 0, 1, 0), (1, 1, 1, 1, 0, 0, 1, 1),

(1, 1, 1, 0, 0, 0, 1, 0), (1, 1, 1, 1, 1, 1, 1, 0),

(0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 1, 1, 0, 0, 0, 1),

(1, 1, 1, 0, 1, 1, 0, 0), (1, 1, 1, 1, 1, 1, 0, 1).

(Thus i′j′
ij Gk′l′

kl = ij
i′j′Gkl

k′l′ and we have 12 different i′j′
ij Gk′l′

kl ’s.) Each graph i′j′
ij Gk′l′

kl may not

be connected, but we do require that 00
11G00

00 ,
00
11G01

01,
00
11G10

10 , and 00
11G11

11 be connected. Note

that the graph G looks like a cube whose eight vertices correspond to the eight sets of

vertices and whose 12 edges correspond to the 12 sets of edges.

There are two distinguished vertices ∗00 ∈ 00G00, ∗11 ∈ 11G11. The function µ assigns

a positive numbers ≥ 1 to each vertex of G and satisfies µ(∗00) = µ(∗11) = 1.

The first axiom corresponds to the Harmonicity Axiom [42, page 148]. For two vertices

x, y ∈ G, we write m(x, y) for the number of edges of G connecting x and y.

Axiom 1 (Harmonicity) We have the following identities.

β1µ(x) =
∑

y∈ijGk̄l

m(x, y)µ(y), for x ∈ ijGkl,

β2µ(x) =
∑

y∈ijGkl̄

m(x, y)µ(y), for x ∈ ijGkl,

β1β2µ(x) =
∑

y∈īj̄Gkl

m(x, y)µ(y), for x ∈ ijGkl,

where ī = 1, 0, for i = 0, 1, respectively.
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Figure 1:

Note that if the graph G is finite and each graph i′,j′
i,j Gk′,l′

k,l is connected, the numbers

β1, β2 and the function µ(·) are determined uniquely by the Perron-Frobenius theorem.

We require that τ is a map from 00G00 ∪ 00G11 ∪ 11G00 ∪ 11G11 onto itself with order 2.

The next axiom corresponds to the Initialization and Parity axioms in [42, page 150].

Axiom 2 (Contragredient map) We require

τ (∗00) = ∗00, τ (∗11) = ∗11,

τ (00G00) = 00G00, τ (11G11) = 11G11, τ (11G00) = 00G11,

and that

τ · 00
11G00

00 · τ = 00
00G00

01 · 00
00G01

11 = 00
00G00

10 · 00
00G10

11 ,

τ · 11
00G11

11 · τ = 11
11G11

01 · 11
11G01

00 = 10
11G11

11 · 11
11G10

00 .
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In the above formula, the identity τ · 00
11G00

00 · τ = 00
00G00

01 · 00
00G01

11 means that for x ∈ 00G00

and y ∈ 00G11, we get m(τ (x), τ (y)) =
∑

z∈00G01
m(x, z)m(z, y).

A cell (ξ1, ξ2, ξ3, ξ4) is a quadruple of edges of the graph G with s(ξ1) = a, r(ξ1) = b,

s(ξ2) = b, r(ξ2) = c, s(ξ3) = d, r(ξ3) = c, s(ξ4) = a, r(ξ4) = d, where a, b, c, d are four

vertices of G in mutually different ijGkl’s. The complex-valued map W is defined on the

set of cells, and called a connection. We also use the following symbolic notation for

W (ξ1, ξ2, ξ3, ξ4).

�

�

� �
� �

� �

ξ3

ξ1

ξ4 ξ2

a

d

b

c

We sometimes drop the labels for edges or vertices if no confusion arises. We also use the

convention that if (ξ1, ξ2, ξ3, ξ4) is not a cell, the above symbol denotes the number 0.

The bi-unitarity axiom on W in the paragroup setting in [42, page 151] is split into

the two parts as in [29, §1]. The first “half” corresponds to the following axiom in our

settings. We write v(ξ) for the set of two vertices of an edge ξ of the graph G.

Axiom 3 (Unitarity) Choose four edges ξ1, ξ2, ξ
′
1, ξ

′
2 of the graph G with v(ξ1) = {a, b},

v(ξ2) = {b, c}, v(ξ′1) = {a, b′}, v(ξ′2) = {b′, c} so that b and b′ belong to the same ijGkl.

Suppose that there exist edges ξ3, ξ4 of G such that ξ1, ξ2, ξ3, ξ4 makes a cell. Then we have

�

�

� �
� �

� �

ξ3

ξ1

ξ4 ξ2

a

d

b

c �

�

� �
� �

� �

ξ3

ξ′1

ξ4 ξ′2

a

d

b′

c

∑
c,ξ3,ξ4

= δb,b′δξ1,ξ′1δξ2,ξ′2.

We also have the following axiom which corresponds to the Inversion symmetry axiom
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and the Rotation symmetry axiom in [42, pages 150 – 151]. From our viewpoint, this

gives the other “half” of the Bi-unitarity axiom in [42, page 151]. This also corresponds

to the crossing symmetry in solvable lattice model theory. Note that our convention of

normalizing constant is different from the one in [42] and this is the reason the second

formula in the next axiom looks different from the Rotation symmetry in [42]. Our

convention is compatible with the ones in [13], [14], [23], [29], [30], [44].

Axiom 4 (Renormalization) For a cell (ξ1, ξ2, ξ3, ξ4), we have the following two iden-

tities.

�

�

� �
� �

� �

ξ3

ξ1

ξ4 ξ2

a

d

b

c �

�

� �
� �

� �

ξ2

ξ4

ξ1 ξ3

a

b

d

c

=

�

�

� �
� �

� �

ξ3

ξ1

ξ4 ξ2

a

d

b

c �

�

� �
� �

� �

ξ4

ξ2

ξ̃1 ξ̃3

b

a

c

d

=

√√√√µ(b)µ(d)

µ(a)µ(c)

Note that the above imply the following, which looks more familiar.

�

�

� �
� �

� �

ξ3

ξ1

ξ4 ξ2

a

d

b

c �

�

� �
� �

� �

ξ̃3

ξ̃1

ξ2 ξ4

b

c

a

d

=

√√√√µ(b)µ(d)

µ(a)µ(c) �

�

� �
� �

� �

ξ1

ξ3

ξ̃4 ξ̃2

d

a

c

b

=

√√√√µ(b)µ(d)

µ(a)µ(c)

We also use the following (standard) convention for the symbols.

�

�

�

�

�

�

�

�

� � � �
� � � �

� � � � � � � �

� � � � � � � �

d c a bc d b a

a b d cb a c d

= = =
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Note that here we dropped the labels for edges for simplicity.

Next we work on an analogue of a partition function as in [42], [44], [29]. We choose

one of ∗00 and ∗11 and write ∗ for it. We choose four sequences of edges (ξ1, ξ2, . . . , ξ2n),

(ξ′1, ξ
′
2, . . . , ξ

′
2n), (η1, η2, . . . , η2n), and (η′

1, η
′
2, . . . , η

′
2n), and next four sequence of vertices

(a0, a1, . . . , a2n), (a′
0, a

′
1, . . . , a

′
2n), (b0, b1, . . . , b2m), and (b′0, b

′
1, . . . , b

′
2m) with the following

properties.

1. v(ξ1) = {a0, a1}, v(ξ2) = {a1, a2}, . . . , v(ξ2n) = {a2n−1, a2n}.

2. v(ξ′1) = {a′
0, a

′
1}, v(ξ′2) = {a′

1, a
′
2}, . . . , v(ξ′2n) = {a′

2n−1, a
′
2n}.

3. v(η1) = {b0, b1}, v(η2) = {b1, b2}, . . . , v(η2n) = {b2n−1, b2n}.

4. v(η′
1) = {b′0, b′1}, v(η′

2) = {b′1, b′2}, . . . , v(η′
2n) = {b′2n−1, b

′
2n}.

5. a0 = a2n = a′
0 = a′

2n = b0 = b2m = b′0 = b′2m = ∗.

6. In case of ∗ = ∗00, we require ξh, ξ
′
h ∈ 00

11G00
00, and in case of ∗ = ∗11, we require

ξh, ξ
′
h ∈ 00

11G11
11 . (1 ≤ h ≤ 2n.)

7. In case of ∗ = ∗00, we require bh, b
′
h ∈ 00Gkl for some k, l, and in case of ∗ = ∗11, we

require bh, b
′
h ∈ 11Gkl for some k, l. (0 ≤ h ≤ 2m.)

8. The edges ηh and η′
h belong to the same i′,j′

i,j Gk′,l′
k,l .

Then we have the following definition of the “partition function” as in the paragroup

case in [42, page 127], [44, II.2], [29, §1]. First, the dotted lines inside the following

diagram means the “filling” of the large rectangle with edges from the graph G and each
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choice of the edges is called a configuration. Figure 2 means the product of the 4nm

connection values of a chosen configuration.

� � �

� � �

�

�

�

�

�

�
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�

�

�

�

�

�

∗

∗

∗

∗
ξ1 ξ2 ξ2n

ξ′1 ξ′2 ξ′2n

η2m

η2

η1

η′
2m

η′
2

η′
1

a1 a2 a2n−1

a′
1 a′

2 a′
2n−1

b2m−1

b2

b1

b′2m−1

b′2

b′1

Figure 2:

Then Figure 3 means the value of the sum of the above values over all the possible

configurations, which is a direct analogue of a partition function in solvable lattice model

theory. (In [42], Ocneanu called this energy.)

With this convention, we write the following axiom. This corresponds to the identity

τ (∗∗G) = τ (∗∗H) in the Initialization axiom in [42, page 150], but has a more complicated

form because later we will not require the trivial relative commutant condition for the

subfactor.

Axiom 5 (Initialization) There is an injective map ι with ι4 = id defined on a subset

of edges of the graph G with the following property. For each x ∈ 11G00, set

I0,x = {e ∈ 00
11G00

00 | v(e) = {∗00, x}},
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Figure 3: partition function

I1,x = {e1 · e2 | e1 ∈ 11
11G01

11e2 ∈ 11
11G00

01∗11 ∈ v(e1), x ∈ v(e2), v(e1) ∩ v(e2) �= �©},

I2,x = {e ∈ 00
11G11

11 | v(e) = {∗11, τ (x)}},

I3,x = {e1 · e2 | e1 ∈ 00
00G00

10e2 ∈ 00
00G10

11∗00 ∈ v(e1), τ (x) ∈ v(e2), v(e1) ∩ v(e2) �= �©}.

Then ι(I0,x) = I1,x ι(I1,x) = I2,x ι(I2,x) = I3,x ι(I3,x) = I0,x. Furthermore there is a

complex constant c with modulus 1 such that the following identity holds for any x ∈ 00G11

and for any ξ ∈ 00
11G11

11 with s(ξ) = ∗00 and r(ξ) = x.

�

�

�

�

� �
� � �

� � �

ι3(ξ̃)

ι(ξ)

ι2(ξ) ξ̃

∗11

τ (x)

x

∗00

= c.

The next axiom is the most important one, the Flatness Axiom, which is an analogue

of [42, (PT), page 153].

Axiom 6 (Flatness) We have the identity as in Figure 4.
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= δξ1,ξ′1δξ2,ξ′2 · · · δξ2n,ξ′2n
δη1,η′

1
δη2,η′

2
· · · δη2m,η′

2m
.

Figure 4: Flatness

Next we need a new axiom which does not correspond to any axiom in the paragroup

case. First we choose six edges ξ1, ξ2, ξ3, ξ4, ξ5, ξ6 so that they make a hexagon in the graph

G as in Figure 5.

Then we have the following axiom.

Axiom 7 (Intertwining Yang-Baxter Equation) We have the following identity.

�
���

�
���

�
���

�
���

�

�

�

�
���

�
���

� �

� � �

� �

a7a1 a4

a2 a3

a6 a5

ξ1

ξ6

ξ7

ξ9

ξ3

ξ4

ξ2

ξ8

ξ5

∑
a7,ξ7,ξ8,ξ9

=
∑

a7,ξ7,ξ8,ξ9

�
���

�
���

�

� �
���

�
����

�
���

�
���

� �

� � �

� �

a7a1 a4

a2 a3

a6 a5

ξ1

ξ6

ξ7

ξ9

ξ3

ξ4

ξ2

ξ8

ξ5

where the both hand sides mean the sum of the products of three connection values over
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Figure 5:

all the possible choices of a7, ξ7, ξ8, ξ9 for any fixed choice of ξ1, ξ2, ξ3, ξ4, ξ5, ξ6 as above.

On the left hand side, the vertex a7 is chosen from the corner marked with ◦ in Figure 5,

and on the right hand side, it is chosen from the corner •.

In the above identity, we used the following convention as in Figure 6.

�
��

�
��

�
��

�
��

� �

�

�

�

�

� �
� �

� �

a

d

b

c =

d

a

c

b

�
��

�
��

�

�

� �

� � � �

�

�

� �

� �

a

d

b

c

=

d

a

c

b

�
��

�
��

�

�

� �

� �

� �
�

�

� �

� �

a

d

b

c

=

d

a

c

b

Figure 6:

(We again dropped the labels for edges.)

If the graph G is finite, which corresponds to the finite depth condition of subfactors,

the above system of axioms are enough for our purpose, but we would like to work on

19



subfactors of infinite depth with strong amenability later, so we need an extra axiom for

this strong amenability in the sense of [52].

First we construct a triple sequence of string algebras {Ajkl}j,k,l≥0 starting from ∗00

as follows. Choose the starting point ∗ to be ∗00 ∈ 00G00. Construct the three sequences

of string algebras {Aj00}j≥0, {A0k0}k≥0, {A00l}l≥0 starting from ∗ with the graphs 00
11G00

00,

00
00G00

10 ,
00
00G00

01 respectively. Then use the entire graph G and the connection W to get the

triple sequence as in [44, II.2], [29, §1]. That is, we use the following rule of changes of

bases as in [44, II.2], [29, §1].

� �

� �

� � � �
� � � � �

� � � � �

ξ4 ξ4 ξ2 ξ2

ξ3 ξ3

ξ1 ξ1

d

a

c d

a

c

b a

c

b

=
∑

b,ξ1,ξ2

Note that the first part of the sequence looks as in Figure 7.

Here arrows mean embeddings, and we look the graph from the same direction as in

Figure 1.

Furthermore, we fix the following identifications of edges. First for any edge ξ ∈ 00
11G00

00

connecting ∗00 and x ∈ 11G00, we identify it with a pair of edges ξ′ ∈ 11
11G01

11 and ξ′′ ∈ 11
11G00

01

with ι(ξ) = ξ′ · ξ′′. Second for any edge ξ ∈ 00
11G11

11 connecting ∗11 and x ∈ 00G11, we

identify it with a pair of edges ξ′ ∈ 00
00G00

10 and ξ′′ ∈ 00
00G10

11 with ι(ξ) = ξ′ · ξ′′. Then as in

[30, pages 134 – 135 ], we can extend the definition of the string algebras Ajkl to the case

j, k, l ∈ Z, k ≥ −j, l ≥ −j.

We define a normalized trace tr on ∪jklAjkl as follows. For a string (ξ+, ξ−) ∈ Ajkl,

we define tr((ξ+, ξ−)) = β−j−k
1 β−j−l

2 µ(r(ξ+)), the notation r(ξ+) denotes the endpoint of
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Figure 7:

the path ξ+ (and s(ξ+) denotes the starting point of ξ+). By Axiom 1 and the embedding

rule of the string algebra, this tr is well defined on ∪jklAjkl. The we define A∞kl to be the

von Neumann algebra obtained by the GNS-completion with respect to tr. We define the

vertical Jones projections ek ∈ A0,k+1,l and fl ∈ A0,k,l+1 as in [44, II.2], [29, §1]. That is,

ek is given by the following.

ek =
∑

|α|=n−1,|v|=|w|=1

µ(r(v))1/2µ(r(w))1/2

β1µ(r(α))
(α · v · ṽ, α · w · w̃),

α is any path from ∗ in the graph 00
00G00

10, and v, w are chosen so that the compositions are

possible in 00
00G00

10 , and | · | denote the length of a path. We also define the Jones projections

pj in Aj+1,0,0 similarly.

The following corresponds to [52, 1.4.2 (vii)] and is equivalent to factoriality of the

von Neumann algebras A∞,kl.

Axiom 8 (Ergodicity) For the vertices in 00Gij, the vector µ(·) is the unique µ-bounded
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eigenvector of 00
11Gij

ij (
00
11Gij

ij )
t corresponding to the eigenvalue β1β2, where i, j = 0, 1.

Note that if the graph G is finite, then this factoriality automatically holds as usual,

because the four graphs 00
11G00

00 ,
00
11G11

11 ,
00
11G01

01 , and 00
11G10

10 are connected.

The following corresponds to [52, Theorem 5.3.1 (vii)]. (Also see [44, page 35], where

Ocneanu defines his amenability in a slightly different way from [52].)

Axiom 9 (Amenability) We have the following.

EA′
∞,−1,−1∩A∞,∞,∞(p1) = EA′

∞,−2,−2∩A∞,∞,∞(p2) = β−2
1 β−2

2 .

Note that pj is the Jones projection for Aj−1,∞,∞ ⊂ Aj,∞,∞. This condition means

extremality of the model inclusion. See arguments preceding the main theorem in Section

3.

The operator EA′
∞,−1,−1∩A∞,∞,∞(p1) can be expressed as limj EA′

j,−1,−1∩A∞,∞,∞(p1) and

there is an explicit formula for EA′
j,−1,−1∩A∞,∞,∞ in [43], so in principle, the above amenabil-

ity axiom can be checked by computation.

We now define an equivalence relation between two systems satisfying the above ax-

ioms. This is an analogue of the definition in [42, page 154]. (Our convention is slightly

different from the one in [42].)

Let (G, τ, µ, ι, β1, β2, W ) be a set satisfying the above axioms. A perturbation u of the

connection W is a set of unitary matrices (u(ξ, η))ξ,η associated to each pair of adjacent

vertices x, y of G, where ξ, η are edges of G connecting x and y. We require that u(ξ̃, η̃) =

u(ξ, η). The perturbed connection W# is defined by the following formula.
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� �
� �

� �

η3

η1

η4 η2

a

d

b

c

W#







�

�

� �
� �

� �

ξ3

ξ1

ξ4 ξ2

a

d

b

c

W





=

∑
ξ1,ξ2,ξ3,ξ4

u(η3, ξ3)u(η4, ξ4)u(η1, ξ1)u(η2, ξ2)

We assume that the Initialization Axiom is preserved. The systems (G, τ, µ, ι, β1, β2, W )

and (G, τ, µ, ι, β1, β2, W
#) are called equivalent. We simply write (G, τ, µ, ι, β1, β2, W ) for

denoting the equivalence class. Two systems (G, τ, µ, ι, β1, β2, W ) and (G ′, τ ′, µ′, ι′, β1, β2, W
′)

are called isomorphic is there is a perturbation W# of W and a graph isomorphism

θ : G → G ′ with µ′ · θ = µ, θ−1 · ι′ · θ = ι, θ−1 · τ ′ · θ = τ , and W ′ · θ = W#.

3 From commuting squares of type II1 factors to

combinatorial data and back

In this section, we construct combinatorial date satisfying the axioms in §1 from commut-

ing squares of type II1 factors with Assumption 1.1 and give the converse construction

based on bimodule approach. For basics of the bimodule theory over factors, see [14],

[45], [49], [73].

For simplicity of notations, we write ijXkl for a bimodule MijXMkl
, where i, j, k, l =

0, 1. We also write ⊗ij for the relative tensor ⊗Mij for bimodules and Eij for EMij . We

often regard von Neumann algebras as bimodules and in such cases we have to take L2-

completions with respect to the trace, but we often drop L2() for simplicity of notations.

For example, 00(M00)00 means the M00-M00 bimodule L2(M00).

Lemma 3.1 Under Assumption 1.1, we have natural isomorphisms M01 ⊗00 M10
∼= M11
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as M01-M10 bimodules, and M10 ⊗00 M01
∼= M11 as M10-M01 bimodules.

Proof: We define a map π : M01 ⊗00 M10 → M11 by π(x ⊗00 y) = xy for x ∈ M01, y ∈

M10. For x1, x2 ∈ M01 and y1, y2 ∈ M10, we get

(x1 ⊗00 y1, x2 ⊗00 y2) = (x1E00(y1y
∗
2), x2)

= tr(x∗
2x1E00(y1y

∗
2))

= tr(x∗
2x1y1y

∗
2)

= (π(x1 ⊗00 y1), π(x2 ⊗00 y2)),

where we used the commuting square condition E00 = E10 on M01. Thus π extends to

an isometry and it is surjective by [60, Corollary 7.1]. The other isomorphism is proved

similarly. Q.E.D.

Next we make basic constructions vertically and horizontally from the initial commut-

ing square, and get a double sequence of type II1 factors Mkl as in [60, Section 7]. Note

that the square

Mkl ⊂ Mk,l+1

∩ ∩

Mk+1,l ⊂ Mk+1,l+1

is again commuting and co-commuting. Then the increasing sequence

M00 ⊂ M11 ⊂ M22 ⊂ M33 ⊂ · · ·

is the Jones tower of the subfactor M00 ⊂ M11, and for this subfactor, we choose a tunnel

· · · ⊂ M−2,−2 ⊂ M−1,−1 ⊂ M00 ⊂ M11.
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Here we give a simple proof of a theorem in [64], which was mentioned in the Intro-

duction.

Lemma 3.2 Under Conditions 1, 2 of Assumption 1.1, the following are equivalent.

1. M00 ⊂ M11 has finite depth.

2. M00 ⊂ M01 and M00 ⊂ M10 have finite depth.

Proof: We have 00(Mnn)00 = 00(Mn0⊗00 M0n)00 by the above lemma. So 00(Mnn)00 has

only finitely many mutually non-isomorphic irreducible components if and only if both

of 00(Mn0)00 and 00(M0n)00 have only finitely many mutually non-isomorphic irreducible

components. Q.E.D.

Note that the above form looks slightly different from the theorem in [64], but both are

equivalent. For example, if M00 ⊂ M11 and M01 ⊂ M11 have finite depth, then M01 ⊂ M02

has finite depth, so by the above lemma, M01 ⊂ M12 has finite depth, then M−1,0 ⊂ M12

has finite depth, which implies that M00 ⊂ M11 has finite depth.

Next we construct a triple sequence (Xjkl) of bimodules inductively as follows. Let

X000 = 00(M00)00. If k, l are even, then set Xj,k,l+1 = Xjkl ⊗00 (M01)01 and Xj,k+1,l =

Xjkl ⊗00 (M10)10. If k is even and l is odd, then set Xj,k,l+1 = Xjkl ⊗01 (M01)00 and

Xj,k+1,l = Xjkl ⊗01 (M11)11. If k is odd and l is even, then set Xj,k,l+1 = Xjkl ⊗10 (M11)11

and Xj,k+1,l = Xjkl ⊗10 (M10)00. If k, l are odd, then set Xj,k,l+1 = Xjkl ⊗11 (M11)10 and

Xj,k+1,l = Xjkl ⊗11 (M11)01. If j is even, then set Xj+1,k,l = 11(M11) ⊗00 Xjkl, and if j is

odd, then set Xj+1,k,l = 00(M11) ⊗11 Xjkl. With natural isomorphisms

00(M01 ⊗01 M11)11
∼= 00(M11)11

∼= 00(M10 ⊗10 M11)11,
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01(M01 ⊗00 M10)10
∼= 01(M11)10

∼= 01(M11 ⊗11 M11)10,

10(M10 ⊗00 M01)01
∼= 10(M11)01

∼= 10(M11 ⊗11 M11)01,

11(M11 ⊗10 M10)00
∼= 11(M11)00

∼= 11(M11 ⊗01 M01)00,

we know that this construction is compatible. Thus Xjkl is an M[j][j]-M[k][l] bimodule,

where [j] denotes 0 [resp. 1] when j is even [resp. odd].

We set Bjkl = End(Xjkl), where End(Xjkl) means the set of bounded linear maps

on the Hilbert space Xjkl which commute with the left and right actions of the type

II1 factors. Note that this is isomorphic to M ′
−j,−j ∩ Mkl by [48] and thus finite dimen-

sional. If k, l are even, we regard Bjkl as a subalgebra of Bj,k,l+1 with the embedding

ξ ∈ End(Xjkl) �→ ξ ⊗00 id
00(M01)01 ∈ EndXj,k,l+1 and define the other embeddings simi-

larly. Because the embeddings are compatible, we get a triple increasing sequence of finite

dimensional algebras Bjkl. By looking at the isomorphism between each Bjkl and each

M ′
−j,−j ∩ Mkl and the embeddings of the both triple sequences, we can conclude that the

sequence (Bjkl) and the sequence of the higher relative commutants (M ′
−j,−j ∩ Mkl) are

isomorphic, as in the ordinary paragroup case. (For the ordinary paragroup case, see an

exposition [32], for example.)

We make irreducible decompositions of the bimodules X2j,2k,2l to get a set of (isomor-

phism classes) of all the M00-M00 bimodules arising in this way. Set this to be the vertex

set 00G00. Similarly, we make vertex sets 00G01, 00G10, 00G11, 11G00, 11G01, 11G10, and 11G11,

from the irreducible decompositions of the bimodules X2j,2k,2l+1, X2j,2k+1,2l, X2j,2k+1,2l+1,

X2j+1,2k,2l, X2j+1,2k,2l+1, X2j+1,2k+1,2l, and X2j+1,2k+1,2l+1 respectively. For an M00-M00

bimodule X ∈ 00G00 and an M11-M00 bimodule Y ∈ 11G00, we make edges in 00
11G00

00 so that
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their number is equal to the multiplicity of Y in 11(M11⊗00 X)00. Note that by the Frobe-

nius reciprocity in [45], [73], the number of edges is also equal to the multiplicity of X in

00(M11 ⊗11 Y )00. We similarly make edges for the other parts of G. Note that 00
11G00

00 and

00
11G11

11 are connected because these are the principal graph and the dual principal graph

of the subfactor M00 ⊂ M11. If this subfactor M00 ⊂ M11 is of finite depth, our graph G

is finite. In general, G may be infinite, but it is always locally finite because the index

[M11 : M00] is finite. We set ∗00 = 00(00M00)00 and ∗11 = 11(11M11)11 For a bimodule ijXkl

in the vertex set of G, we define the function µ by µ(ijXkl) =
√

dim ijX dim Xkl, where

i, j, k, l = 0, 1. Because we assume extremality of the subfactor M00 ⊂ M11, we have

µ(00X00) = dim 00X = dim X00, µ(00X01) = [M01 : M00]
−1/2 dim 00X, and other similar

equalities. From these, we get the Harmonicity Axiom.

For M00-M00 bimodules, M00-M11 bimodules, M11-M00 bimodules, and M11-M11 bi-

modules, we define τ (X) = X̄, the conjugate bimodule. Then it is clear that we have the

axiom on the contragredient map.

We have to define the connection next. For an M00-M00 bimodule X ∈ 00G00 and an

M11-M00 bimodule Y ∈ 11G00, suppose that the number of edges connecting X and Y is

n. Then we choose intertwiners ξ1, . . . , ξn ∈ Hom(11(M11 ⊗00 X)00, 11Y00) so that each is

co-isometry and the initial projections of ξj are mutually orthogonal. We have n edges

and give them orientations going from X to Y . We assign each intertwiner ξj to each

edge, and to the same edge with the reverse orientation, we assign its Frobenius dual

M11ξj ∈ Hom(00(M11 ⊗11 Y )00, 00X00). (See [45], [73] for the Frobenius dual.) We know

that M11ξj’s are co-isometries and their initial projections are mutually orthogonal. We

make similar assignment of co-isometry intertwiners to each edge of the graph G. Take
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the following square made from G,

�

�

� �
� �

� �

ξ3

ξ1

ξ4 ξ2

A

D

B

C

If A ∈ 00G00, B ∈ 00G01, C ∈ 11G01, and D ∈ 11G00, then we set W (ξ1, ξ2, ξ3, ξ4) =

ξ3(ξ4 ⊗ idM01)(idM11 ⊗ ξ∗1)ξ
∗
2 . If A ∈ 00G00, B ∈ 00G01, C ∈ 00G11, and D ∈ 00G10, then

we set W (ξ1, ξ2, ξ3, ξ4) = ξ3(ξ4 ⊗ idM11)(idA ⊗ π)(ξ∗11 ⊗ idM11)ξ
∗
2 , where π is a natural

isomorphism from 00(M01 ⊗01 M11)11 to 00(M10 ⊗10 M11)11. In the general case, the square

is one of the above two types, so we make a similar definition of W in each case. Then

the Unitarity Axiom holds by co-isometry condition of ξj.

The next axiom is the Renormalization axiom. If the square involving ξ1, ξ2, ξ3, ξ4 is of

the above first type, then this axiom is just standard Frobenius reciprocity as in [45], [73].

If it is of the second type, the equality is proved as follows. For simplicity, we assume

A ∈ 00G00, B ∈ 00G01, C ∈ 00G11, and D ∈ 00G10, as above. In this case, the following

square

�

�

� �
� �

� �

ξ̃3

ξ̃1

ξ2 ξ4

B

C

D

A

has a value ξM11
3 (ξ2 ⊗ idM11)(idB ⊗π′)(ξM01

1

∗⊗ idM10)ξ
∗
4 , where π′ is a natural isomorphism

from 01(M01 ⊗00 M10)10 to 01(M11 ⊗11 M11)10. We denote this value by W ′ and the value

of the original square by W . We prove the identity W ′ =

√√√√ µ(A)µ(C)

µ(B)µ(D)
W . as follows.

We choose a right basis {di}i for D10, a right basis {xj}j for C11, a right basis {1} for
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(M01)01, and a right basis {1} for (M11)11. Using the same notations as in [45], we make

the following computations.

W ′ dimD10

=
∑

i

(ξM11
3 (ξ2 ⊗ idM11(idB ⊗ π′)(ξM01

1

∗ ⊗ idM10)ξ
∗
4di, di)

=

√
dim A00 dim D10

dim B01 dim C11

∑
i

((idB ⊗ π′)(ξ̃1 ⊗ idM10)ξ
∗
4di, (ξ

∗
2 ⊗ idM11)ξ̃3di)

= lim
n

√
dimA00 dim D10

dimB01 dim C11

∑
i,k

((idB ⊗ π′)(ξ̃1 ⊗ idM10)a
(n)
i,k ⊗ z

(n)
i,k , (ξ∗2ξ3(di ⊗ 1) ⊗ 1)

= lim
n

√
dimA00 dim D10

dimB01 dim C11

∑
i,k

((idB ⊗ π′)(ξ1(a
(n)
i,k ⊗ 1) ⊗ 1 ⊗ z

(n)
i,k ), (ξ∗2ξ3(di ⊗ 1) ⊗ 1)

= lim
n

√
dimA00 dim D10

dimB01 dim C11

∑
i,k

(ξ2(ξ1(a
(n)
i,k ⊗ 1) ⊗ z

(n)
i,k ), ξ3(di ⊗ 1))

= lim
n

√
dimA00 dim D10

dimB01 dim C11

∑
i,k,j

(ξ2(ξ1(a
(n)
i,k ⊗ 1) ⊗ z

(n)
i,k ), cj(cj, ξ3(di ⊗ 1))◦)

= lim
n

√
dimA00 dim D10

dimB01 dim C11

∑
i,k,j

(ξ2(ξ1(a
(n)
i,k ⊗ 1) ⊗ z

(n)
i,k )(di ⊗ 1, ξ∗3(cj))

◦, cj)

=

√
dim A00 dim D10

dim B01 dim C11

∑
i,j

(ξ2(ξ1 ⊗ idM11)(idA ⊗ π∗)(ξ∗4 ⊗ idM11)(di ⊗ 1)(di ⊗ 1, ξ∗3(cj))
◦, cj)

=

√
dim A00 dim D10

dim B01 dim C11

∑
j

(ξ2(ξ1 ⊗ idM11)(idA ⊗ π∗)(ξ∗4 ⊗ idM11)ξ
∗
3(cj), cj)

=

√
dim A00 dim D10

dim B01 dim C11
dim C11W,

where ξ∗4di = limn
∑

k a
(n)
i,k ⊗ z

(n)
i,k , with a

(n)
i,k ∈ 00A00 and z

(n)
i,k ∈ 00(M10)10. This proves the

desired equality.

The anti-isomorphism between M ′
00 ∩ M11 and M ′

11 ∩ M22 and the conjugation of the

intertwiners give the Initialization axiom. We can choose c = 1.

The next axiom is flatness. For ordinary paragroups, this axiom follows from commu-
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tativity of the tensor product operations from the left and from the right as in [45]. The

same proof works in our setting.

The next axiom is the new one, the Intertwining Yang-Baxter Equation. In the formula

of the Axiom, the both hand sides are equal to the inner product of the two intertwiners

ξ3 · ξ2 · ξ1 and ξ4 · ξ5 · ξ6, so we get this equality. (When making the compositions, we

dropped “⊗id” for simplicity.)

If the subfactor M00 ⊂ M11 is of finite depth, the above is enough, but in general, we

still need two more axioms.

We can now make a triple sequence of the string algebras Ajkl as in Section 2 and the

sequence is identified with the sequence of the higher relative commutants (M ′
−j,−j ∩Mkl).

We need one lemma.

Lemma 3.3 Under Assumption 1.1, we choose a generating tunnel

· · · ⊂ M−2,−2 ⊂ M−1,−1 ⊂ M00 ⊂ M11

for the subfactor M00 ⊂ M11. Then
∨

k(M
′
−k,−k ∩ Mij) = Mij for i, j ≥ 0.

Proof: If i = j, we get the conclusion with the definition of the generating tunnel. Let

i = 0, j = 1. In the following commuting square,

∨
j(M

′
−j,−j ∩ M01) ⊂ M01

∩ ∩
∨

j(M
′
−j,−j ∩ M11) ⊂ M11

we have
∨

j(M
′
−j,−j ∩ M11) = M11, which implies

∨
j(M

′
−j,−j ∩ M01) = M01. The other

cases are proved similarly. Q.E.D.
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Now we discuss the two remaining axioms. We now have the flat connection W with

the intertwining Yang-Baxter equation, so we can make a triple sequence {Ajkl} of string

algebras as in Section 2 and this system is isomorphic to {M ′
−j,−j ∩ Mkl}. By the above

lemma,
∨

j Ajkl is a factor, which implies the Ergodicity Axiom.

Next we check the Amenability Axiom. With the above identification of the two

systems of {Ajkl} and {M ′
−j,−j ∩ Mkl}, our p1 ∈ M ′

−2,−2 ∩ M∞,∞ is the Jones projection

for the subfactor M ′
00 ∩ M∞,∞ ⊂ M ′

−1,−1 ∩ M∞,∞, where M∞,∞ is the type II1 factor

resulting as the GNS-completion of
∨

k Mkk. We represent all the Mkl on a single Hilbert

space L2(M00) as in [48] and use JM00 ·∗ JM00 on this Hilbert space. Because of the

extremality, this anti-isomorphism is trace-preserving, and thus it is enough to show

that E(M ′
11∩M∞,∞)′∩M∞,∞(Jp1J) ∈ C, where J means JM00 . The projection Jp1J is in

M22 and is the Jones projection for M00 ⊂ M11. By [52, Theorem 5.3.1 (iv)], we have

(M ′
11 ∩M∞,∞)′ ∩M∞,∞ = M11, thus we get EM11(Jp1J) = β−2

1 β−2
2 . The equality for p2 is

similarly proved.

Thus we have constructed the system satisfying Axioms 1 – 9. We call the system the

standard invariant of the commuting square. Note that the algebraic axioms do not need

the AFD condition of the type II1 factors.

We now give the converse construction. Next suppose we have a combinatorial system

(G, τ, µ, ι, β1, β2, W ) satisfying the axioms in Section 2. We will prove that this indeed

comes from a commuting square of type II1 factors satisfying Assumption 1.1.

From a given (G, τ, µ, ι, β1, β2, W ), we construct the triple sequence {Ajkl} of the string

algebras as in Section 1, and define Mkl = A∞,k,l for all k, l ∈ Z. By the Ergodicity

Axiom, these are AFD type II1 factors. By the commuting square condition coming from
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the Renormalization axiom, we know that The square

M00 ⊂ M01

∩ ∩

M10 ⊂ M11

satisfies the first two conditions of Assumption 1.1. Then by [48, Proposition 1.2 2◦], we

know that the double sequence {Mkl}k,l≥0 are obtained by the basic construction from

the above commuting square as at the beginning of this section and that

· · · ⊂ M−2,−2 ⊂ M−1,−1 ⊂ M00 ⊂ M11

is a tunnel. Note that EA′
∞,−j,−j∩A∞,∞,∞(pj) = β−2

1 β−2
2 for j ≥ 1 by the Amenability

Axiom.

We will prove that Ajkl = M ′
−j,−j ∩Mkl for j, k, l ≥ 0 by an argument of [44, page 35].

Note that elements in A∞,−n,−n and An,∞,∞ commute for n ≥ 0 by the Flatness Axiom

and [29, Theorem 2.1]. Without loss of generality, we may assume j = 0 and k = l. Take

x ∈ A′
∞,0,0 ∩ A∞,k,k and set xn = EAnkk

(x) ∈ A′
n00 ∩ Ankk for n ≥ 0. Then xn ∈ An,∞,∞ is

written as a finite sum
∑

i aipn−1bi, where ai, bi ∈ An−1,∞,∞. Then

‖x − xn‖2 ≥ ‖EA′
∞,−(n−1),−(n−1)

∩A∞,∞,∞(x − xn)‖2

= ‖x − ∑
i

aiEA′
∞,−(n−1),−(n−1)

∩A∞,∞,∞(pn−1)bi‖2

= ‖x − β−2
1 β−2

2

∑
i

aibi‖2

= ‖x − EAn−1,∞,∞(xn)‖2

= ‖x − xn−1‖2

Because limn ‖x − xn‖2 = 0, we get ‖x − xn‖2 = 0 for all n ≥ 0, and in particular

x = x0 ∈ A0,k,k.
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Then e1f1 ∈ A022 is the Jones projection for the subfactor M00 ⊂ M11, and it is also

the Jones projection for the subfactor A−2,∞,∞ ⊂ A−1,∞,∞ by the identification based on

the Initialization Axiom. (Note that Aj,∞,∞ is a factor by the Ergodicity Axiom.) We

now get EM ′
11∩M22

(e1f1) = EA−1,2,2(e1f1) = EA−1,∞,∞(e1f1) = β−2
1 β−2

2 , thus M11 ⊂ M22 is

extremal. By [52, Theorem 5.3.1 (ii)], we know that the subfactor M00 ⊂ M11 is strongly

amenable and the square

M00 ⊂ M01

∩ ∩

M10 ⊂ M11

satisfies all the conditions of Assumption 1.1. Now M ′
−j,−j ∩Mkl is given by Ajkl, thus we

get back the original system (G, τ, µ, ι, β1, β2, W ) by the above procedure in this Section.

We have thus proved the following theorem.

Theorem 3.4 (Main Theorem) There is a bijective correspondence between isomor-

phism classes of commuting squares of type II1 factors satisfying Assumption 1.1 and

isomorphism classes of combinatorial systems (G, τ, µ, ι, β1, β2, W ) satisfying Axioms 1 –

9 in Section 1.

Roughly speaking, our classification deals with the objects which is one-dimensional

higher than ordinary paragroups for classification of subfactors. Thus we have the follow-

ing correspondence table.

With this theorem, we can give a solution to Okamoto’s problem which was mentioned

in the Introduction. Of course, one way to get a characterization is to compare our

standard invariant and that of the commuting square arising as a tensor product of two
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Subfactor Paragroup action on subfactor

(dual) principal graph (dual) principal connection

(canonical) commuting square (canonical) commuting cube

double sequence of string algebras triple sequence of string algebras

Table 2:

subfactors, but it is not easy to see what kind of conditions we have as a characterization

in this way. Another way of writing down a characterization is as follows.

Proposition 3.5 Suppose that the commuting square

M00 ⊂ M01

∩ ∩

M10 ⊂ M11

satisfies Assumption 1.1. This commuting square is isomorphic to the following type of

commuting square

N ⊗ P ⊂ M ⊗ P

∩ ∩

N ⊗Q ⊂ M ⊗ Q

if and only if the following three conditions are satisfied.

1. M ′
00 ∩ M0j ⊂ M ′

10 ∩ M0j for all j ≥ 0.

2. M ′
00 ∩ Mj0 ⊂ M ′

01 ∩ Mj0 for all j ≥ 0.

3. M ′
00 ∩ Mjk = (M ′

00 ∩ M0k) ⊗ (M ′
00 ∩ Mj0) for all j, k ≥ 0.
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Proof: By Condition 1, we get M ′
00 ∩ M0j ⊂ M ′

n,0 ∩ Mn,j for all even n ≥ 0, and by

comparing the dimension of the both hand sides, we have the equality. Similarly, we get

M ′
00 ∩ Mj0 ⊂ M ′

0,2n ∩ Mj,2n for all even n ≥ 0. Choose a generating tunnel

· · · ⊂ M−2,−2 ⊂ M−1,−1 ⊂ M00 ⊂ M11.

Then by Condition 3, the square

M ′
−n,−n ∩ M00 ⊂ M ′

−n,−n ∩ M01

∩ ∩

M ′
−n,−n ∩ M10 ⊂ M ′

−n,−n ∩ M11

is identical with

(M ′
−n,−n ∩ M−n,0) ⊗ (M ′

−n,−n ∩ M0,−n) ⊂ (M ′
−n,−n ∩ M−n,1) ⊗ (M ′

−n,−n ∩ M0,−n)

∩ ∩

(M ′
−n,−n ∩ M−n,0) ⊗ (M ′

−n,−n ∩ M1,−n) ⊂ (M ′
−n,−n ∩ M−n,1) ⊗ (M ′

−n,−n ∩ M1,−n)

and by the above, this is identical with

(M ′
0,−n ∩ M0,0) ⊗ (M ′

−n,0 ∩ M0,0) ⊂ (M ′
0,−n ∩ M0,1) ⊗ (M ′

−n,0 ∩ M0,0)

∩ ∩

(M ′
0,−n ∩ M0,0) ⊗ (M ′

−n,0 ∩ M1,0) ⊂ (M ′
0,−n ∩ M0,1) ⊗ (M ′

−n,0 ∩ M1,0)

for even n ≥ 0.

Because M00 ⊂ M01 and M00 ⊂ M10 are strongly amenable by [52], we get the conclu-

sion.

The “only if” part is trivial. Q.E.D.
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Check the above conditions in the case of the following commuting square.

N ⊂ M

∩ ∩

N × G ⊂ M × G

where G is a finite group giving outer actions on M,N . Then we reach an “interpre-

tation” of the above conditions as follows. The first two conditions are regarded as an

“algebraic analogue” of approximate innerness of the paragroup action. (More precisely,

these conditions are “triviality of the Loi invariant for paragroup actions”, as understood

from the special type of commuting squares like (1). One of these two does not imply

the other, so we need two conditions.) The third condition corresponds to the “strong

outerness” of the paragroup action, which is an algebraic counterpart of central freeness.

If the commuting square of type II1 factors is like (1), then it is enough to check the

third condition for j = 1, because of the vertical depth is 2. Also note that the condition

M ′
00 ∩ M11 = C in [59] is also a kind of strong outerness because both M00 ⊂ M01 and

M00 ⊂ M10 have depth 2 in [59]. Thus we can interprer the above theorem as saying that

“centrally free and approximately inner paragroup action splits”, which is an analogue of

a group action classification in [41]. (Also see [36], [53], [54].) A more detailed comparison

with [54] would be interesting.

We got a characterization in the above form, but this is not so interesting because

the above conditions, especially Condition 3, are very strong, and this kind of commuting

squares are rather trivial, so we can ask a question: Do we really have many examples of

commuting squares of type II1 factors satisfying Assumption 1.1 and having non-integer

indices which are not of the tensor product type? In the following sections, we will give
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many such examples and discuss their relations to RCFT and TQFT.

4 Rational conformal field theory and paragroup ac-

tions on subfactors

In [9], de Boer-Goeree constructed a paragroup from a Rational Conformal Field Theory

in the sense of Moore-Seiberg [39]. In particular, if we start with a Wess-Zumino-Witten

model with a level k, we get a corresponding paragroup. For example, the subfactors

of Jones of type An [26] and those of Wenzl [66] are now obtained as such subfactors

corresponding to SU(N). Flatness is the most important axiom for paragroups, and

the proof of flatness in [9, Section 4] is based on regular isotopy invariance of partition

functions associated to knotted graphs, but if one looks at the proof carefully, one notices

that it does not use the Yang-Baxter equation, i.e., invariance under Reidemeister move

III. We show that we can construct a system (G, τ, µ, ι, β1, β2, W ) satisfying Axioms 1 –

9 from an RCFT with essential use of the Yang-Baxter equation. In some “good” cases,

the Yang-Baxter equation implies flatness as pointed out in [13], but in general neither

of the Yang-Baxter equation and the flatness implies the other. So our construction here

shows the missing role of the Yang-Baxter equation in paragroup/subfactor theory and

this can be regarded as a result of a principle that “RCFT has a higher symmetry than

ordinary paragroups”.

We proceed so that our construction generalizes that in [9, Section 4]. Fix an RCFT.

Our notations are slightly different from those in [9] and compatible with those in [71].

Choose fields x, y from the RCFT. Tentatively, we set all the eight ijGkl’s to be the set of
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the primary fields in the RCFT. For a ∈ 00G00 and b ∈ 00G01, the number of edges in 00
00G00

01

connecting a, b is given by N b
xa, which is the multiplicity of b in xa. Similarly, for the

graphs 11
11G00

01 ,
00
00G10

11 ,
11
10G11

11 ,
00
00G00

10 ,
11
11G00

10 ,
00
00G01

11 ,
11
11G01

11 ,
00
11G00

00 ,
00
11G01

01 ,
00
11G10

10 , and 00
11G11

11 , we use

the multiplicities N b
xa, N b

xa, N b
xa, N b

ya, N b
ya, N b

ya, N b
ya,

∑
c N b

ycN
c
xa,

∑
c N b

ycN
c
xa,

∑
c N b

ycN
c
xa,

and
∑

c N b
ycN

c
xa respectively. Let G be the connected component containing 1 ∈ 00G00 of

the resulting graph. We set β1 = S0x/S00, and β2 = S0y/S00. We set ∗00 = 1 ∈ 00G00 and

∗11 = 1 ∈ 11G11. The contragredient map is defined by τ (a) = ǎ.

We define the connection as follows. If a ∈ 00G00, b ∈ 00G01, c ∈ 00G11, d ∈ 00G10, or

a ∈ 11G00, b ∈ 11G01, c ∈ 11G11, d ∈ 11G10, then we set as in Figure 8. Here if any of N b
ax,

�

�

� �
� �

� �
a

d

b

c

�
�a b

d c

x

y =

Figure 8:

N c
dx, Nd

ay, N c
by is bigger than 1, we actually need labeling for the edges, but we omit the

labeling for simplicity as in [9]. Similarly, if a ∈ 00G00, b ∈ 00G01, c ∈ 11G01, d ∈ 11G00, or

a ∈ 00G10, b ∈ 00G11, c ∈ 11G11, d ∈ 11G10, then we set as in Figure 9. If a ∈ 00G00, b ∈ 11G00,

c ∈ 11G10, d ∈ 00G10, or a ∈ 00G01, b ∈ 11G01, c ∈ 11G11, d ∈ 00G11, then we set as in Figure

10. Then we set the other values of the connection so that the Renormalization Axiom

holds. (Note that our convention of normalizing constants is different from that of [42],

so we do not need the coefficient of 4th roots which they have in [9] for the definition of

the connection.) We get the Unitarity Axiom by the unitarity of braiding matrix as in [9].
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The Initialization Axiom follows from natural identification of edges, and flatness follows

from the same argument as in [9] based on the regular isotopy invariance of the partition

functions associated to knotted graphs. The Intertwining Yang-Baxter Equation follows

from Figure 11.

�
�

�


�
�

�
�

�
�

�

�
��

=

�

�

�
�


�
�

�

�
�

�
�

�

y

z

x z̄

x

ȳ

x

ȳ

z̄ x

z

y

Figure 11: The Yang-Baxter equation

Here we set z = x, y. Because the graph G is finite, the other two axioms hold

automatically. This system is far from being that of a tensor product of two subfactors.

As a very simple example of this construction, take a Lie group SU(2) and set level k

to be n − 1. In this case, we have a flat connection on the graphs An as in [42], and it is

well-known that it satisfies the Yang-Baxter equation. (It follows from the flatness of the

Jones projections. Also compare the formula with the one in [2].) So we can construct

an action of a paragroup of type An on a subfactor of type An. It is easy to identify this

commuting square with the following. Take a subfactor N ⊂ M of type An, and make a

basic construction N ⊂ M ⊂ M1. Set ε =
√−1 exp(π

√−1)/2(n+1), β = 2cos(π/(n+1)),
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and u = ε + ε̄βe, then u is a unitary, and we get a commuting square

N ⊂ M

∩ ∩

uMu∗ ⊂ M1

(Also see [19, Example 4.2.10].)

Furthermore, the orbifold construction [13], [29] has been clarified by Xu [71], [72] in

the settings of RCFT. It is easy to see that the same construction works in our settings

here. That is, if the obstruction for flatness arising from a conformal dimension is trivial

as in [71, formulas (2), (3)], then the orbifold construction with an RCFT gives a system

satisfying our Axioms 1 – 9. This is because the Yang-Baxter equation is preserved in the

orbifold construction as in [13]. The axioms except for the flatness and the Intertwining

Yang-Baxter Equations are automatically satisfied as in [13].

5 Topological quantum field theory for the Goodman-

de la Harpe-Jones subfactors

In this section, we look for another paragroup action which does not come from RCFT

and discuss the construction of subfactors by Goodman-de la Harpe-Jones [19] based on

the Dynkin diagrams. Goodman-de la Harpe-Jones constructed some new subfactors in

[19, Section 4.5], and their subfactor with index 3 +
√

3 has caught special attentions,

because it is one of the few known subfactors with non-integer indices which do not come

from Wess-Zumino-Witten models and it has relatively small index. (Note that most

of the known subfactors come from Wess-Zumino-Witten models, their orbifolds, and
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group/Hopf algebra actions.) Okamoto computed its principal graph and showed that

the subfactor has finite depth in [46]. (Also see [30, Remark 2.2].) From the commuting

squares in [19, Section 4.5], we have a bi-unitary connection [61], [43], and the flatness

of the Jones projections implies the Intertwining Yang-Baxter Equation with the formula

(S′) in [58, page 405], as noted by Jones. So we can make a triple sequence of the string

algebras as in Section 2 from this connection. In the case of E6 and A11, our graph, which

gives the Bratteli diagrams of the commuting cube, looks like Figure 12.
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A11
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A11
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A11

E6

G1

G2

G2

G1

Figure 12:

Here the graphs G1, G2 are as in Figure 13.

Note that for the top face of the cube in Figure 12, we use the standard connection

for A11, for the bottom face of the cube, we use the standard connection for E6, and

for the four side faces, we use the connection appearing in the Goodman-de la Harpe-

Jones commuting square [19]. The explicit formula for the last connection is given in the

table in [58, page 418]. (Roche verified the Intertwining Yang-Baxter Equation by direct
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Figure 13:

computation, but it is a consequence of the flatness of the Jones projections as noted

above.) From the triple sequence of the string algebras, we get a commuting square

M00 ⊂ M01

∩ ∩

M10 ⊂ M11

(2)

satisfying Assumption 1.1. Here the subfactor M00 ⊂ M01 is of type A11, M10 ⊂ M11 is of

type E6, and M00 ⊂ M10 and M01 ⊂ M11 are the Goodman-de la Harpe-Jones subfactor

with index 3 +
√

3. (There are two flat connections on E6, so we have two commuting

squares as (2) corresponding to the two connections.) The flatness of the Jones projection

implies flatness with respect to the ∗, which is shared by A11, E6 and G1, as in [30, Remark

2.2], so we conclude that the original connection arising from the Goodman-de la Harpe-

Jones commuting square is the “principal connection” which is a part of our standard

invariant. The above graph G2 of Figure 13 cannot be a principal graph of any subfactor

because it is rejected by the “2 cos(π/n)-rule” [22, Theorem 6.1], but it does appear as a

part of the standard invariant of a paragroup action on a subfactor. Similar results holds

for the case E7 and E8, for which [12] makes several computations.

We can compute the fusion rule of the N -N bimodules of the Goodman-de la Harpe-

Jones subfactor N ⊂ M with index 3 +
√

3 with this observation on the principal con-
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nection. In the above graph, the even vertices of the A11 and those of G1 are identified,

and this identification means that these two systems of bimodules are the same. (It is

also possible to give more direct identification of these systems of bimodules based on

Ocneanu’s parallel transport [42].) That is, the fusion rule of the N -N bimodules for our

subfactor is the same as that of the subfactor of type A11. With the labeling of even

vertices as in Figure 14, we get the following multiplication Table 3.

� � � � � �

� � �

�
�
�
�
�
�
�

�
�

�
�

�
�
�

	
	

	
	

	
	

	

�
�
�
�
�
�
�

�
�

�
�

�
�
�



















�
�
�
�
�
�
�

�
�

�
�

�
�
�

∗1
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Figure 14:

× α β γ δ ε

α 1 + α + β + γ + δ α + γ + δ α + β + δ α + β + γ + δ + ε δ

β α + γ + δ 1 + β + δ α + γ + ε α + β + δ γ

γ α + β + δ α + γ + ε 1 + β + δ α + γ + δ β

δ α + β + γ + δ + ε α + β + δ α + γ + δ 1 + α + β + γ + δ α

ε δ γ β α 1

Table 3: Multiplications of the N -N bimodules

D. Bisch [7] tried to compute this fusion rule just from the principal graph, but he had
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five possibilities, and could not determine the right one. Our computation shows that the

fifth table in [7] is the correct table for the N -N bimodules.

Our commuting cube, however, does not satisfy the Initialization Axiom, so we cannot

compute the “dual principal connection” directly, which is the same situation as the

method in [46] did not give the dual principal graphs. Our next aim is to compute the

Bratteli diagram for this “dual principal connection”.

First as pointed out in [30] (and independently noted by U. Haagerup), the dual

principal graph of the Goodman-de la Harpe-Jones subfactor N ⊂ M with index 3 +
√

3

is the same as the principal graph G1. Because the proof was not presented in [30], we

give a sketch here. The Bratteli diagram for the higher relative commutants N ′ ∩ Mk

is as in Figure 15. Then the odd levels of this tower must coincide with the odd levels

of the other higher relative commutants M ′ ∩ Mk, because they are identified with the

anti-isomorphisms J ·∗ J . This fact forces for the dual principal graph to be the same as

principal graph.

We look for the graphs 11
11G00

10 ,
11
10G11

11 ,
11
11G01

11 , and 11
11G00

01 . The above observation shows that

a connected component of the graph 11
10G11

11 is E6, and a connected component of the graph

11
11G01

11 is G1. Because the number of vertices in 00G11 is three, the number of vertices in 11G00

is also three and two of them have the same weight µ(·) by the contragredient map. Any

connected component of the graph 11
11G00

01 has the Perron-Frobenius eigenvalue 2 cos(π/12),

so each connected component must be one of A11, D7, and E6. The above observation on

11G00 shows that 11
11G00

01 is connected and equal to E6, and it implies that 11
11G01

11 is connected

and equal to G1. It then implies that 11
10G11

11 has two connected components and the other

is another copy of E6, and this uniquely determines 11
11G00

10 . The graphs we got are as in
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2 3 1 1 1

5 6 1

5 11 6 6 7 1

16 30 8

Figure 15: The Bratteli diagram for N ′ ∩ Mk
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Figure 16.

a b c
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Figure 16: The Bratteli diagrams for the dual principal connection

This is a non-trivial example where a disconnected graph appears as a part of the

standard invariant. It shows that the three even vertices of E6 are identified with three

of the six even vertices of G1, which is now the dual principal graph of N ⊂ M . This

shows that the fusion algebra of the M-M bimodules for our subfactor N ⊂ M contains a

sub-fusion algebra which is isomorphic to the fusion algebra of even vertices of E6, which

was computed in [22]. This determines the fusion algebra of M-M bimodules. With the

same labeling of even vertices of G1 as in Figure 14, we get the following multiplication
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Table 4.

× α β γ δ ε

α 1 + α + β + γ + δ α + γ + δ α + β + δ α + β + γ + δ + ε δ

β α + γ + δ 1 + 2β + ε α + δ α + γ + δ β

γ α + β + δ α + δ 1 + 2γ + ε α + β + δ γ

δ α + β + γ + δ + ε α + γ + δ α + β + δ 1 + α + β + γ + δ α

ε δ β γ α 1

Table 4: Multiplications of the M-M bimodules

This is the first table among the five in [7]. This means that the fusion algebras

for N -N bimodules and M-M bimodules of the Goodman-de la Harpe-Jones subfactor

N ⊂ M with index 3+
√

3 are different, though the principal graph and the dual principal

graph are the same. This subfactor is the first example of such kind. A recent work of

U. Haagerup [20] shows that this example has the smallest index among such subfactors.

(Note that different finite groups with the same order give different fusion algebras on the

same principal graphs, but these two cannot be a principal graph and a dual principal

graph of one subfactor.) In particular, the subfactor N ⊂ M is not conjugate to its dual

M ⊂ M1. (M. Izumi computed the flat connection of this subfactor, and it also follows

from his computation that N ⊂ M and M ⊂ M1 are not conjugate. It, however, seems

difficult to see the difference of the fusion rules from the flat connection.)

Furthermore, a 3-dimensional topological quantum field theory (TQFT) of Turaev-

Viro type [63] based on triangulations arising from subfactors [45], [14] is computed with
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6j-symbols of only N -N bimodules (or M-M bimodules). So the TQFT for the Goodman-

de la Harpe-Jones subfactor with index 3 +
√

3 is the same as that for the subfactor of

type A11. Similar results hold for the subfactors in [19] arising from the Dynkin diagrams

E7 and E8.

The TQFT’s arising from subfactors of type E6 use the sub-fusion algebras of the

fusion algebra of the M-M bimodules of the Goodman-de la Harpe-Jones subfactor with

index 3 +
√

3 which gives the same TQFT as the N -N bimodules of the same subfactor

and as the A11 TQFT. In this sense, the E6 TQFT’s use just a partial information of

the A11 TQFT, but it does not necessarily mean that the E6 TQFT’s are less interesting.

Indeed, Ocneanu said to the author that the E6 TQFT’s do detect orientations of certain

lens spaces by a computation of Niţică and Török [40], while it is easy to see that the

A11 TQFT does not detect an orientation of any 3-manifold. Also note that there are

two subfactors of type E6, and they correspond to two vertices β, γ of the dual principal

graph of the Goodman-de la Harpe-Jones subfactor.

If we make the same construction for the Dn diagrams, we again have a graph Dn as

a part of the standard invariant. The graphs D2n+1 are impossible as a principal graph

[42], [22], [29], [62], but it does appear as a part of the standard invariant of a paragroup

action on a subfactor.

Furthermore, we obtained the following type of commuting square in the computation

of the flat part of the non-flat connections on E7 [15]. (See [16] for relations with CFT.)

�

�

� �
E7

E7D10

D10
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We again have the Intertwining Yang-Baxter Equation from the flatness of the Jones

projections, thus we can repeat the construction of the triple sequence of string algebras.

Then the computation in [15] shows that the above connection is really a “principal

connection” of our commuting square of type II1 factors. This shows that the graph E7

also appear as a part of the standard invariant of a paragroup action on a subfactor.

6 Coset construction for subfactors

Finally we discuss an analogue of the coset construction of RCFT in a subfactor theory.

In [9, Section 10], de Boer-Goeree has a correspondence table between four constructions

in subfactor theory and RCFT. The orbifold construction is one of them, and it has been

studied in detail in [13], [16], [29], [30], [31], [71], [72]. The tensor product construction

is not so interesting in subfactor theory, and the “extended algebras” is a construction of

N × G ⊂ M × G from N ⊂ M . If we want to get a subfactor N × G ⊂ M × G with

finite depth from a subfactor N ⊂ M with finite depth, this is essentially same as the

orbifold construction, so it is again not so interesting. The last one of the four is the coset

construction, which gives S ′ ∩ N ⊂ S ′ ∩ M from a subfactor N ⊂ M and S ⊂ N .

We regard this as a purely operator algebraic problem to construct a new subfactor

S ′ ∩ N ⊂ S ′ ∩ M from a given subfactor N ⊂ M for an appropriate choice of S ⊂ N .

To get factors S ′ ∩ N and S ′ ∩M , the subalgebra S must be a factor. If S is of finite

dimension, there is nothing interesting, so we must assume that S is a subfactor of N . If

[N : S] < ∞, S ′ ∩ N is finite dimensional, so we must assume [N : S] = ∞. Thus our

problem can be also stated as follows.
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For a given subfactor N ⊂ M , what kind of subfactors S ′ ∩ N ⊂ S ′ ∩ M do we get,

where S is a subfactor of N with infinite index such that S ′ ∩ N and S ′ ∩ M are factors?

This can be regarded as a classification problem for S (for a fixed N ⊂ M), too, and then

the paragroup of S ′ ∩ N ⊂ S ′ ∩ M is an invariant for S.

Note that by the commuting square condition, we get [S ′ ∩ M : S ′ ∩ N ] ≤ [M : N ],

and we expect that natural constructions would give an equality here. (The equality

does not hold in general. Take a subfactor P ⊂ Q with P ′ ∩ Q = C, and then set

S = P ⊗C ⊂ N = P ⊗P ⊂ M = Q⊗P . Of course, such a construction is not interesting

for us.)

First we note the following proposition.

Proposition 6.1 Let N ⊂ M be a subfactor with finite index and S be a subfactor of N

such that S ′ ∩N and S ′ ∩ M are type II1 factors with [S ′ ∩M : S ′ ∩N ] = [M : N ]. Then

it is possible to choose a tunnel

· · · ⊂ N2 ⊂ N1 ⊂ N ⊂ M

so that Nj ⊃ S and

· · · ⊂ S ′ ∩ N2 ⊂ S ′ ∩ N1 ⊂ S ′ ∩ N ⊂ S ′ ∩ M

is a tunnel for S ′ ∩N ⊂ S ′ ∩M . We have N ′
j ∩N ⊂ (S ′ ∩Nj)

′ ∩ (S ′ ∩N) and N ′
j ∩M ⊂

(S ′ ∩ Nj)
′ ∩ (S ′ ∩ M).

Proof: First choose a projection e0 ∈ S ′ ∩ M with ES′∩N(e0) = [S ′ ∩ M : S ′ ∩ N ]−1 =

[M : N ]−1. By the commuting square condition, EN (e0) = [M : N ]−1, so N1 = N ∩ {e0}′

gives a downward basic construction N1 ⊂ N ⊂ M . Because e0 ∈ S ′∩M , we get N1 ⊃ S.
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Because S ′ ∩ N1 = (S ′ ∩ N) ∩ {e0}′, we also know that S ′ ∩ N1 ⊂ S ′ ∩ N ⊂ S ′ ∩ M is a

downward basic construction. By repeating this argument, we get a desired tunnel. The

last two inclusions are then trivial. Q.E.D.

We call a construction of S ′∩N ⊂ S ′∩M from N ⊂ M as above the coset construction.

The above proposition shows that the coset construction does not decrease the higher

relative commutants.

The next proposition gives a basis of the coset construction in our settings.

Lemma 6.2 Suppose that the following square satisfies Assumption 1.1

M00 ⊂ M01

∩ ∩

M10 ⊂ M11

We make a double sequence {Mkl}k,l≥0 of type II1 factors with basic constructions and

further assume the condition M ′
00 ∩ M0l ⊂ M ′

10 ∩ M1l for l ≥ 0.

We define M∞,l as the GNS-completion of
∨

k Mkl with respect to the trace. Then

M∞,0 ⊂ M∞,1 ⊂ M∞,2 ⊂ M∞,3 ⊂ · · ·

is the Jones tower, and we get two equalities M ′
∞,0∩M ′

∞,l = M ′
00∩M ′

0l and M ′
∞,1∩M ′

∞,l =

M ′
01 ∩ M ′

0l for l ≥ 1, which imply that the subfactors M00 ⊂ M01 and M∞,0 ⊂ M∞,1 are

conjugate.

Proof: The Jones projections for the towers

Mk0 ⊂ Mk1 ⊂ Mk2 ⊂ Mk3 ⊂ · · ·
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are common for all k. From this fact and the commuting square condition, it is easy to

see that

M∞,0 ⊂ M∞,1 ⊂ M∞,2 ⊂ M∞,3 ⊂ · · ·

is the Jones tower. Any element in M ′
00 ∩ M0l commutes with any element in Mk0 by

M ′
00 ∩ M0l ⊂ M ′

10 ∩ M1l, so we get the inclusion M ′
00 ∩ M ′

0l ⊂ M ′
∞,0 ∩ M ′

∞,l.

Take any x ∈ M ′
∞,0∩M ′

∞,l. Set xk = EMkl
(x) ∈ M ′

k0∩Mkl. The inclusion M ′
00∩M0l ⊂

M ′
2k,0 ⊂ M2k,l implies M ′

00 ∩ M0l = M ′
2k,0 ⊂ M2k,l because these two higher relative

commutants are isomorphic and finite dimensional. So x2k ∈ M ′
2k,0 ∩ M2k,l = M ′

00 ∩ M0l

implies x0 = EM0l
(x2k) = x2k, and then x = limk x2k = x0 ∈ M ′

00 ∩ M0l, which is the

converse inclusion.

Next M ′
01 ∩ M0l ⊂ M ′

00 ∩ M0l implies M ′
01 ∩ M0l ⊂ M ′

01 ∩ M ′
10 ∩ M1l, which in turn

implies M ′
01 ∩M0l ⊂ M ′

11 ∩M1l by [60, Corollary 7.1]. Then the same argument as above

shows M ′
∞,1 ∩ M ′

∞,l = M ′
01 ∩ M ′

0l.

The subfactors M00 ⊂ M01 and M∞,0 ⊂ M∞,1 are conjugate by strong amenability.

Q.E.D.

Lemma 6.3 Suppose that the following square satisfies Assumption 1.1

M00 ⊂ M01

∩ ∩

M10 ⊂ M11

We make a double sequence {Mkl}k,l≥0 of type II1 factors and further assume the

condition M ′
00 ∩ Mk0 = M ′

01 ∩ Mk1 for k ≥ 0. Set S = M ′
10 ∩ M∞,0 =

∨
k≥1(M

′
10 ∩ Mk0).

Then S ′ ∩ M∞,0 = M10 and S ′ ∩ M∞,1 = M11.
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Proof: If x ∈ M ′
10 ∩Mk0, then x ∈ M ′

00 ∩Mk0 = M ′
01 ∩Mk1, so x ∈ M ′

10 ∩M ′
01 ∩Mk1 =

M ′
11 ∩ Mk1.

If x ∈ M ′
11 ∩Mk1, then x ∈ M ′

01 ∩Mk1 = M ′
00 ∩Mk0, so x ∈ M ′

10 ∩Mk0. Thus we have

proved M ′
10 ∩ Mk0 = M ′

11 ∩ Mk1, and S = M ′
11 ∩ M∞,1 =

∨
k≥1(M

′
11 ∩ Mk1).

Then the conclusion is a consequence of the strong amenability by [52, Theorem 5.3.1

(iv)]. Q.E.D.

The above two lemmas show the following theorem immediately which gives a relation

between the coset construction and a paragroup action on subfactors.

Theorem 6.4 Suppose that the following square satisfies Assumption 1.1

M00 ⊂ M01

∩ ∩

M10 ⊂ M11

We make a double sequence {Mkl}k,l≥0 of type II1 factors and further assume the

following two conditions.

(I) M ′
00 ∩ M0l ⊂ M ′

10 ∩ M1l for l ≥ 0.

(II) M ′
00 ∩ Mk0 = M ′

01 ∩ Mk1 for k ≥ 0.

Then there exists a subfactor S of M00 such that S ′ ∩ M00 ⊂ S ′ ∩ M01 is conjugate to

M10 ⊂ M11.

We have the following example of the Theorem 6.4.

Example 6.5 Take the commuting square (2) constructed from the triple sequence of

the string algebras {Ajkl}. Because the subfactor A00 ⊂ A01 is of type A11, Condition
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(I) of Theorem 6.4 is automatically satisfied. Next as in [30, pages 134 – 135 ], we can

construct {A−1,k,l} for k ≥ 0, l ≥ 1, then the flatness of the Jones projection and the

compactness argument [44, II.6] imply M ′
00 ∩ Mk0 = A0k0 = A−1,k,1 = M ′

01 ∩ Mk1, which

is Condition (II) of the Theorem. Thus we know that each of the two subfactors of type

E6 can be constructed from the subfactor of type A11 with the coset construction.

Similarly, each of the two subfactors of type E8 can be constructed from the subfactor

of type A29 with the coset construction. (We can make a similar construction for A17, but

then the resulting subfactor is of type D10, not E7. [15])

We have another example of the coset construction.

Example 6.6 Choose a connected, simply connected, compact simple Lie group G with

non-trivial center. Let G be a non-trivial subgroup of the center Z(G). Suppose that the

level k of the Wess-Zumino-Witten model associated with G satisfies conditions (2), (3)

in [71] so that the obstruction for flatness arising from the conformal dimension vanishes.

In this case, we have an action α of the finite group G on the subfactor N ⊂ M obtained

from a WZW-model Gk as in [9]. Make the following commuting square.

M00 = N ⊂ M01 = M

∩ ∩

M10 = N ×α G ⊂ M11 = M ×α G

Because the action α has the trivial Loi invariant by [16, Section 6], we know that Condi-

tion (I) of Theorem 6.4 is satisfied. Condition (II) is also satisfied because the both vertical

inclusions are crossed products by the same group. Thus the subfactor N×αG ⊂ M×αG,

which is conjugate to the orbifold subfactor Nα ⊂ Mα, is obtained from N ⊂ M with the
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coset construction.

Thus our orbifold construction in [29], [13], [71] can be regarded also as the coset

construction. This also means that our “crossed products by a paragroup action on a

subfactor” can be interpreted as an orbifold construction for a paragroup action. From

this viewpoint, Condition (I) of Theorem 6.4 is regarded as representing “approximate

innerness” of the paragroup action.
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