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Abstract

We formulate conformal field theory in the setting of algebraic quantum field
theory as Haag-Kastler nets of local observable algebras with diffeomorphism
covariance on the two-dimensional Minkowski space. We then obtain a decom-
position of a two-dimensional theory into two chiral theories. We give the first
classification result of such chiral theories with representation theoretic invari-
ants. That is, we use the central charge as the first invariant, and if it is less
than 1, we obtain a complete classification. Our classification list contains a new
net which does not seem to arise from the known constructions such as the coset
or orbifold constructions. We also present a classification of full two-dimensional
conformal theories. These are joint works with Roberto Longo.

1 Introduction

Our main results, together with R. Longo, are classification results for conformal field
theories, in the operator algebraic approach. We first briefly describe our basic frame-
work for quantum field theory and its relation to a more conventional approach based
on Wightman axioms using operator-valued distributions.

Our framework is called algebraic quantum field theory or local quantum physics,
and its standard textbook is [14] by R. Haag. We first explain our axiomatic setting on
the 4-dimensional Minkowski space, although we will later work on lower dimensional
spacetime. Recently, several attempts have been made on studies on curved spacetime
or even noncommutative spacetime, but we will not deal with such topics in this review.

In our setting, a physical system is described by a family of operator algebras A(O)
on a fixed Hilbert space H, where O is a bounded region in the Minkowski space. As
such a region O, we consider only double cones, which are of the form (x4 V)N (y+V_),
where 2,y € R* and

Vi ={2=(20,21,20,23) €ER*| 20 — 22 — 25 — 23 > 0,42, > 0}.

We assume that we have a von Neumann algebra 4(O) acting on H for each double
cone O and the following properties hold. (An algebra of bounded linear operators on



a Hilbert space is called a von Neumann algebra if it is closed under the *-operation
and weak-operator topology.)

1. (Isotony) For O; C Oq, we have A(O;) C A(Os).

2. (Locality) If O; and O, are spacelike separated, then elements in A(O;) and
A(O3) commute.

3. (Poincaré Covariance) There exists a unitary representation U of the universal
covering of the restricted Poincaré group satisfying A(gO) = U, A(O)Uj .

4. (Vacuum) We have a unit vector 2 € H, unique up to phase, satisfying U,§2 = Q
for all elements ¢ in the restricted Poincaré group and |J, A(O)Q is dense in H.

5. (Spectrum Condition) If we restrict the representation U to the translation sub-
group, its spectrum is contained in the closure of V.

The isotony axioms simply states that we have more observables for a larger region.
The locality axiom means that if we have two spacelike separated regions, then we have
no interactions between them even at a speed of light, so the two operators taken from
the two regions mutually commute. It is also called the Einstein causality. Covariance
means that a “spacetime symmetry” acts as a symmetry of the family of operator
algebras. We will later use a higher spacetime symmetry than restricted Poincaré
group. The vector €2 is called a vacuum vector and it gives a vacuum state. The
spectrum condition means stability.

If we denote the set of the elements that are spacelike separated with all the elements
of a region D by D%, then we have O++ = O for a double cone O. This is why we use
only double cones. For a general region D, we could define A(D) as the von Neumann
algebra generated by A(O) for all double cones O contained in D.

Since the set of double cones is directed with respect to inclusions, we often say
that the family A(O) is a net of von Neumann algebras. We also say a net of factors,
if each von Neumann algebra A(O) has a trivial center, which is often the case in the
lower dimensional spacetime as below, since such a von Neumann algebra is called a
factor. In many such cases, the local algebras are all isomorphic, so each local algebra
itself does not contain physical information about the system. A basic idea is that all
information about a certain physical system is contained in such a net A(O).

From a mathematical viewpoint, such a net of von Neumann algebras is simply a
family of operator algebras subject to certain set of axioms, so we can study classification
theory of such families of operator algebras up to an obvious notion of isomorphism. A
useful and important tool for such a study is a representation theory of a net of von
Neumann algebras.

A basic tool to study a net of von Neumann algebras is its representation theory
formulated by Doplicher-Haag-Roberts (DHR) [7]. Each operator algebra A(O) acts on
a fixed Hilbert space from the beginning, but we can also consider a representation of a
family of operator algebras on a different Hilbert space where we do not have a vacuum
vector any more. A basic idea of Doplicher-Haag-Roberts is that if we assume a nice
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condition called the Haag duality and select a nice class of representations with their
criterion, then each such representation is realized, up to unitary equivalence, as a cer-
tain endomorphism of (the norm closure of) (J, .A(O). Such an endomorphism is often
called a DHR endomorphism. An important feature of endomorphisms is that they can
be composed. This composition gives an operation in the set of DHR endomorphisms
which plays a role of a tensor product. Through this operation (and others), math-
ematical structure of DHR endomorphisms becomes quite similar to that of unitary
representations of a compact group, and it gives a C*-tensor category.

We briefly mention a relation of the above approach to a more conventional one
based on the Wightman axioms. In the setting of the Wightman axioms, one considers
a family of operator-valued distributions {¢;(x)} on the Minkowski space. If we have
such a family at the beginning, then, roughly speaking, we apply smooth functions sup-
ported in O to these distributions, apply bounded functional calculus to the resulting
(unbounded) operators, and let A(O) be the von Neumann algebra generated by these
bounded operators. In this way, we should obtain a local net of von Neumann algebras.
If we start with a local net A(O) of von Neumann algebras, we should obtain operator
valued distributions {¢;(z)} through a certain limiting procedure in which bounded
regions O shrink to one point x. It is believed that the approach based on the Wight-
man axioms and the one based on local nets of von Neumann algebras are essentially
equivalent, and there have been many works which study under what conditions we
obtain one from the other, but the exact relations between the two approaches have
not been fully understood yet.

2 Full and chiral algebraic conformal quantum field theories

The above general framework in the previous section obviously works on a Minkowski
space of any dimension. We now specialize on the 2-dimensional Minkowski space M
and require higher symmetry than the general Poincaré covariance. This is our approach
to conformal field theory. Then through a chiral decomposition of a full algebraic
conformal quantum field theory, we obtain a chiral algebraic conformal quantum field
theory which is now described as a one-dimensional net of factors. After such a general
description, we will briefly mention a relation to vertex (operator) algebras, which give
another mathematical approach to chiral conformal field theories.

We now work on a two-dimensional Minkowski space M where we use ¢t and z for
the time and space coordinates, respectively. We have a von Neumann algebra 4(O)
on a fixed Hilbert space H for each double cone O in this Minkowski space M as above.
We set Ly = {t £ 2 = 0} and each double cone is a direct product I, x I_, where I,
are bounded intervals in Ly, respectively. We consider the Mobius group PSL(2,R)
which acts on R U {co} as linear fractional transformations. In this way, we obtain a
local action of the universal covering group PSL(2,R) on R. We impose the following
axioms for our net of von Neumann algebras A(O) on H and call such a net a Mé6bius
covariant net of von Neumann algebras. (See [18] for more details.)

1. (Isotony) For O; C Oq, we have A(O;) C A(Os).
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2. (Locality) If O; and O, are spacelike separated, then elements in A(O;) and
A(O3) commute.

3. (Mobius Covariance) There exists a unitary representation U of PSL(2,R) X
PSL(2,R) on H such that for every double cone O, we have A(gO) = U,A(O)
when g € W where W is a connected neighbourhood of the identity in PSL(2,R

PSL(2,R) satisfying gO C M for all g € W.

Ug
)X

4. (Vacuum) We have a unit vector 2 € H, unique up to phase, satisfying U,§2 = Q
for all elements g and |J, A(O) is dense in H.

5. (Positive energy) The one-parameter unitary subgroup of U corresponding to the
time translation has a positive generator.

We now further strengthen the axiom of Mobius covariance as follows. Let G be the
quotient of PSL(2,R) x PSL(2,R) modulo the relation (ra,,7_2,) = (id,id). Then it
turns out that our representation U as above gives a representation of this group G, due
to the spacelike locality. We then find that our net A4(O) extends to a local G-covariant
net on the Einstein cylinder £ = R x S', which is the cover of the 2-torus obtained by
lifting the time coordinate from S* to R. We also have several consequences from the
above set of axioms. See [18, Proposition 2.2], for example.

Let Diff(R) be the group of the orientation preserving diffeomorphisms which are
smooth at infinity. Then this group naturally acts on £ as a diffeomorphic action. Let
Conf(€) be the group of global, orientation preserving conformal diffeomorphisms of
E. This group is generated by Diff(R) x Diff(R) and G. If a Mobius covariant net A
further satisifies the following axiom, we say that the net A is a local conformal net.
This is the class we study.

(Diffeomorphism covariance) The unitary representation U of G extends to a pro-
jective unitary representation of Conf(&) such that the extended net on £ is covariant.
Furthermore, we have U, XU; = X for g € Diff(R) x Diff(R), if X € A(O) and g acts
on O as identity.

This gives our framework for conformal quantum field theory. We study a net A(O)
as a family of von Neumann algebras satisfying the above set of axioms. Such a family
here is also called a full algebraic conformal quantum field theory. The DHR theory
works in this setting perfectly.

Suppose we have a local conformal net A as above. Then for each bounded interval
IC Ly, weset A (1) =(),;A( x J). In this way, we have a family of von Neumann
algebras A, parameterized by bounded intervals I. We regard these von Neumann
algebras as subalgebras of B(H,), where H, is the closure of | J; A4 (7). This family
extends to a family A4 (7), where [ is any open, nondense, nonempty, and connected
set of S* = R U {oc}. (Such I is simply called an interval in S'.) This family A, ()
satisfies the following conditions. We may take these as axioms for such a family. (See
[13] for more details.)

1. (Isotony) For I} C I5, we have A, (I;) C A4 ([).
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2. (Locality) If I; and I, are disjoint, then elements in A (/;) and A, (/2) commute.

3. (Diffeomorphism Covariance) There exists a projective unitary representation U
of Diff(S') on H such that for every interval I, we have Ay (gI) = U, A (I)U;.
Furthermore, we have U, XU = X for g € Diff(S"), if X € A(I) and g acts on I
as identity.

4. (Vacuum) We have a unit vector € H, unique up to phase, satisfying U,§2 = Q
for all elements ¢ in the Mobius group PSL(2,R) and |J; A4 (1) is dense in H.

5. (Positive energy) The one-parameter unitary subgroup of U corresponding to the
rotation on S! has a positive generator.

A family A, satisfying the above set of axioms is called a chiral algebraic conformal
quantum field theory. We can similarly define A_. We then have an embedding A (/)®
A_(J) € A(I x J). The DHR theory works fine for a chiral algebraic conformal
quantum field theory. Now, for two DHR endomorphisms p, o, we have a unitary
equivalence for po and op, but we have a canonical unitary €(p, o) implementing this
unitary equivalence and this family e of unitaries contains non-trivial information. This
family ¢ is called a braiding. See [9], for example, for details.

Our classification method for full algebraic conformal quantum field theories A(O)
consists of two steps. In the first step, we classify the chiral algebraic conformal quantum
field theories A.. In the second step, we classify the embedding A, (1) ® A_(J) C
A(I x J), which is a non-trivial subfactor, usually.

3 Complete rationality and classification

Our basic idea for classification is that if we have a certain nice condition, generally
called “amenability”, a simple set of invariants related to representation theory should
give a complete classification. We have given a general idea along this line in [16],
so here we only briefly explain the condition called complete rationality, which was
introduced in [19] and plays a role of amenability in classification theory.

Here we state complete rationality for a chiral algebraic conformal quantum field
theory A(I), I C S'. We also have a version for a full algebraic conformal quantum
field theory and we refer the reader to [18] for the definition in such a setting. Consider
a chiral algebraic conformal quantum field theory A. Split S! into 2n intervals, and
label them Iy, Is, ..., I3, in the counterclockwise order. Let pu, be the Jones index of
the subfactor A(l1) V A(I3) V-V A(lzp—1) C (A(l2) V. A(Ly) V ---V A(l2,))". (Note
that we have this inclusion because of locality.) This number is independent of the way
to split the circle. We remark that we automatically have p; = 1, which is called the
Haag duality. Complete rationality consists of the following three conditions.

1. (Strong additivity) Remove one point from an interval I and label the resulting
two intervals as Iy, Is. Then we have A(1) = A(l;) vV A(l2).



2. (Split property) Consider two intervals Iy, I, with I; N I = (). Then the von
Neumann algebra A(1;) V A(I5) is naturally isomorphic to A(l;) ® A(I5).

3. (Finiteness of the u-index) We have uy < 00.
The main results in [19] give the following two conditions under complete rationality.

1. We have only finitely many equivalence classes of irreducible DHR endomorphisms
of the net A.

2. The braiding naturally gives a unitary representations of SL(2,7) whose dimen-
sion is the number of the equivalence classes in (1).

This shows that the category of the DHR endomorphisms of the net A gives a
modular tensor category, which plays an important role in theory of quantum invariants
of 3-manifolds as in [31].

We next explain the first numerical invariant of a local conformal net, a central
charge, of A. Let A be a local conformal net. (Here we do not need complete rational-
ity.) Then we have a projective unitary representation of Diff (S'). Recall that the Vira-
soro algebra is the infinite dimensional Lie algebra generated by elements {L,, | n € Z}
and ¢ with relations

(L, L) = (m —n) Ly + 1—62(m3 — M) 0m,—n,
and [L,, c| = 0. This is unique, non-trivial one-dimensional central extension of the Lie
algebra of Diff(S1). We now obtain a representation of the Virasoro algebra and then
the central element ¢ is mapped to a scalar. This value is the central charge of the net
A and is also denoted by c. It has been shown by Friedan-Qiu-Shenker [11] that this
central charge value is in

{1-6/m(m+1)|m=2,3,4,...} U[l,00)

and the values {1 — 6/m(m + 1) | m = 2,3,4,...} have been realized by Goddard-
Kent-Olive [12]. (The values in [1,00) are easier to realize.) Jones has proved in his
theory of index for subfactors [15] that the index value is in the set {4cos® 7/m | m =
3,4,5...}U[4,00] and all the values in this set can be realized. It is obvious that we
have a formal similarity between the two cases. A relation between the Jones theory
of subfactors and algebraic quantum field theory was found in [21]. Our classification
results give further deeper relations between the two. (See [8] for a general theory of
subfactors and related topics.)

In classification theory of subfactors, Ocneanu [26] has found a paragroup, which
gives a combinatorial invariant for a subfactor through its representation theory. If
the Jones index value is less than 4, the subfactor is of finite depth automatically, and
this finite depth case is a special case of the amenable case which Popa’s classification
theorem [28] covers. We have shown in [17] that if the central charge value is less than
1, then the net of factors is automatically completely rational.
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Wassermann’s construction of the SU(n), nets based on loop group representations
gives the first examples of chiral algebraic conformal quantum field theories and they
are completely rational. The finiteness of the p-index for these nets was proved by
Xu [34]. Xu also studied the coset and orbifold constructions in the setting of chiral
algebraic conformal quantum field theory in [35, 36]. They give completely rational
nets by [36, 23].

We briefly note that we have some formal similarity between our complete rationality
and a condition in theory of vertex operator algebras, which is another mathematical
approach to a chiral conformal field theory. They have a condition called Cs-finiteness
introduced by Zhu [38], which is formally analogous to the above finiteness of the p-
index. See [10] for more details on vertex operator algebras. On a vertex operator
algebra V', we have binary operations a,)b, a,b € V, parameterized by integers n.
The finiteness of the codimension dim V/V(_5V is called the Cy-finiteness condition.
A vertex operator algebra V' is said to be rational if every V-module is completely
reducible, and this condition implies that V' has only finitely many inequivalent simple
modules. Zhu has proved that if we have the Cs-finiteness condition, then the modular
group SL(2,7Z) acts on the space of characters of all the mutually inequivalent simple
V-modules. This finiteness of the codimension and the above finiteness of the p-index
have some formal common similarity as follows.

1. The p-index is also a certain multiplicative codimension.

2. Both the codimension dimV/V(_;)V and the index p can be defined for any
positive integer k.

3. The above codimension and the index are trivial for k£ = 1.

4. If the above codimension and the index are finite for £ = 2, then they are also
finite for all positive integers k, and we obtain a unitary actions of the modular
group SL(2,Z) on certain natural finite dimensional spaces.

However, the action of SL(2,Z) in the setting of vertex operator algebras is on the
space of characters while its action in the setting of representation categories of a net
of factors is on the intertwiner spaces, and we do not have any direct relation between
the two situations. It would be very interesting to clarify this formal analogy.

4 a-induction, modular invariants, and classification

Here we explain our classification method for completely rational nets on S! with central
charge less than 1.

Suppose we have a chiral algebraic conformal quantum field theory A(I), I C S*,
with central charge ¢ < 1. Then the projective representation U of the diffeomorphism
group gives a subnet as follows. For an interval I C S', we define B(I) be the von
Neumann algebra generated by U,, where ¢ is a diffeomorphism which acts trivially
outside of /. It is easy to see that this B([) is a subalgebra of A(I) by the Haag duality



and B gives a subnet in the sense of [23]. (Note that the vacuum vector is not cyclic
for B.) We use a notation Vir.(I) for this subnet and call it a Virasoro subnet with
central charge c¢. This net is among the coset constructions due to Xu [35], which relies
on A. Wassermann’s construction of SU(2)-nets [32]. (See [5] for more on the Virasoro
nets.) We have shown in [17] that the subfactor Vir.(I) C A(I) has a trivial relative
commutant and finite index, which is a quite nontrivial fact.

For a net of subfactors Vir, C A, we have a machinery of a-induction, which is
analogous to a machinery of induction and restriction for representations of groups.
For a DHR endomorphism A of the smaller net Vir., we obtain an endomorphism af\E
of the larger net A. This is “almost” a DHR endomorphism, but not completely. This
operation is regarded as an extension of an endomorphism and depends on a choice +
of the braiding on the system of DHR endomorphisms of the smaller net. This method
was defined by Longo-Rehren [24] and many interesting properties and examples were
studied by Xu [33] and Béckenhauer-Evans [1]. Ocneanu [27] had a graphical method
based on a quite different motivation, and it was unified with the theory of a-induction
by us in [2, 3, 4]. One of the main results in [2] is that if we define a matrix Z
by Zy, = dim Hom(aj\“,a;) for irreducible DHR endomorphisms A, i of the smaller
net, then this matrix is in the commutant of the unitary representation of SL(2,7)
arising from the braiding on the system of DHR endomorphisms of the smaller net.
Obviously, each entry of Z is a nonnegative integer and we have Zyy = 1 for the
vacuum representation denoted by 0. Such a matrix Z is called a modular invariant (of
the unitary representation of SL(2,Z)).

It is easy to see that for a given unitary representation of SL(2,7Z), we have only
finitely many modular invariants, and this finite number is often quite small in concrete
examples. For the Virasoro net Vir,, the corresponding modular invariants have been
completely classified by Cappelli-Itzykson-Zuber [6] and they are labeled with pairs of
A-D-FE Dynkin diagrams with difference of the Coxeter numbers being 1. Also it is fairly
easy to see in our current context that we have only so-called type I modular invariants
in the classification of [6] where we have only A,, Ds,, Es, Es diagrams. In this way,
starting with a chiral algebraic conformal quantum field theory A with central charge
less than 1, we obtain a type I modular invariant matrix Z in the classification list of [6]
labeled with pairs of the A,-Ds,-Egss Dynkin diagrams with difference of the Coxeter
numbers being 1. Our main result in [17] with R. Longo is that this correspondence
gives a complete classification of chiral algebraic conformal quantum field theories. Note
that we have no reason, a priori, to believe or expect that this correspondence from a
conformal field theory to a matrix in a certain list is injective or surjective, but we have
proved both injectivity and surjectivity of this correspondence.

Our classification list is as follows.

1. Virasoro nets with central charge ¢ =1 —6/m(m + 1).
2. Their simple current extensions of index 2.

3. The exceptional net labeled with (Eg, A12).



4. The exceptional net labeled with (Eg, Asp).
5. The exceptional net labeled with (Ajg, Es).

6. The exceptional net labeled with (Ass, Es).

The first two of the above exceptional ones are realized as the coset constructions
for SU(2)11 € SO(5); ® SU(2); and SU(2)29 C (G2)1 ® SU(2);. They were first
considered by Bockenhauer-Evans [1, II, Subsection 5.2] as possible candidates realizing
the corresponding modular invariants in the Cappelli-Itzykson-Zuber list, but they were
unable to show that these coset constructions indeed produce the desired modular
invariants. With our complete classification, it is easy to identify these cosets with the
above two in our list.

Recently, Koster [20] identified the third exceptional net in the above list , (A1, Fs),
with the two cosets SU(9)2 C (Es)2 and (Es)s C (Es)2 ® (Es)1, assuming that the local
conformal nets (Es )y have the expected WZW-fusion rules. The last one, (Asg, Fg), does
not seem to be a coset nor an orbifold, and it appears to be a genuine new example.

Carpi [5] and Xu [37] recently obtained certain classification results of chiral alge-
braic conformal quantum field theories with central charge equal to 1, independently.

5 Classification of 2-dimensional theories and 2-cohomology

We now explain how to obtain a classification of full algebraic conformal quantum field
theories with central charge less than 1, using the results in the previous section. This
is our joint work with R. Longo [18]. As we mentioned before, our strategy is to study a
subfactor A, (I)®.A_(J) C A(I x J), where A(I x J) is a given full algebraic conformal
quantum field theory with central charge 1. By the classification list in the previous
section, we have a complete information on the chiral ones A..

We now assume the so-called parity symmetry condition for a full algebraic confor-
mal quantum field theory A, which in particular implies that A, and .A_ are isomorphic
and they contain the same Vir.. Then the dual canonical endomorphism for the sub-
factor Vir(I) ® Vir(J) C A(I x J) gives a decomposition P, , Zy,A ® p, where A, pu
are irreducible DHR endomorphisms of Vir.. In a more general setting, the following
was conjectured by Rehren and proved by Miiger [25].

Theorem 5.1. Under the above conditions, the following are equivalent.
1. The net A has only the trivial representation theory.
2. The p-index of the net A is 1.
3. The matriz Z above 1s a modular invariant.

In this way, we obtain a modular invariant Z for Vir, in the classification list of
Cappelli-Itzykson-Zuber [6] from a full algebraic conformal quantum field theory A
with parity symmetry and trivial representation theory. Then we can prove as in [18]



that a full algebraic conformal quantum field theory A with parity symmetry has only
the trivial representation theory if and only if it is maximal with respect to extensions.
Thus we obtain a modular invariant in [6] from full algebraic conformal quantum field
theory A with parity symmetry and maximality. Our main result in [18] with R. Longo
shows that this gives a bijective correspondence. Note that the modular invariants in
[6] are labeled with pairs of A-D-E Dynkin diagrams with difference of the Coxeter
numbers being 1 as before, but we now do not have a restriction to so-called type I
modular invariants, so the Dynkin diagrams Ds,; and E; do appear.

Surjectivity of this correspondence is not difficult by Rehren’s result [30], together
with our previous analysis in [3, 17].

To prove injectivity of this correspondence, we need to study the subfactor A, (1) ®
A_(J) C A(I x J), where we have a natural identification of A, (I) and A_(J) and
the dual canonical endomorphism decomposes in the form of @ A ® A, where A is in a
system of irreducible endomorphisms. In subfactor theory, such a subfactor was first
studied by Ocneanu [26] under the name of the asymptotic inclusion and it plays a
role of the quantum double construction. (See [8] and also [4] for more details.) Popa
[29] gave a quite general construction and named it a symmetric enveloping algebra.
Here we use a formulation of Longo-Rehren [24] where they gave a specific system of
()-system in the sense of Longo [22].

Based on [24], we studied this type of subfactors in [18] and found that the Q-
system of a general subfactor of this type has a “twist” arising from a 2-cocycle of
the tensor category of the endomorphisms. This notion of a 2-cocycle for a tensor
category is a generalization of a 2-cocycle for a finite group, so it does not vanish
in general, but we have proved in [18] it always vanishes for the tensor categories of
the representation categories of chiral algebraic conformal quantum field theories with
central charge less than 1. This 2-cohomology vanishing gives the desired injectivity of
the above correspondence from a full algebraic conformal quantum field theory to the
modular invariants in [6].

With extra combinatorial work along the same line, we can drop the triviality con-
dition of the representation theory and classify full algebraic conformal quantum field
theories with parity symmetry and central charge less than 1 completely as in [18].
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