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Abstract

We describe the structure of the inclusions of factors A(E) ⊂ A(E ′)′ asso-
ciated with multi-intervals E ⊂ R for a local irreducible net A of von Neumann
algebras on the real line satisfying the split property and Haag duality. In par-
ticular, if the net is conformal and the subfactor has finite index, the inclusion
associated with two separated intervals is isomorphic to the Longo-Rehren in-
clusion, which provides a quantum double construction of the tensor category of
superselection sectors of A. As a consequence, the index of A(E) ⊂ A(E ′)′ co-
incides with the global index associated with all irreducible sectors, the braiding
symmetry associated with all sectors is non-degenerate, namely the represen-
tations of A form a modular tensor category, and every sector is a direct sum
of sectors with finite dimension. The superselection structure is generated by
local data. The same results hold true if conformal invariance is replaced by
strong additivity and there exists a modular PCT symmetry.
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1 Introduction

This paper provides the solution to a natural problem in (rational) conformal quan-
tum field theory, the description of the structure of the inclusion of factors associated
to two or more separated intervals.

This problem has been considered in the past years, seemingly with different
motivations. The most detailed study of this inclusion so far has been done by Xu
[50] for the models given by loop group construction for SU(n)k [47]. In this case Xu
has computed the index and the dual principal graph of the inclusions. A suggestion
to study this inclusion has been made also in [43, Section 3]. Our analysis is model
independent, and will display new structures and a deeper understanding also in these
and other models.

Let A be a local irreducible conformal net of von Neumann algebras on R, i.e. an
inclusion preserving map

I �→ A(I)

from the (connected) open intervals of R to von Neumann algebras A(I) on a fixed
Hilbert space. One may define A(E) for an arbitrary set E ⊂ R as the von Neumann
algebra generated by all the A(I)’s as I varies in the intervals contained in E. By
locality A(E) and A(E ′) commute, where E ′ denotes the interior of R � E, and thus
one obtains an inclusion

A(E) ⊂ Â(E),

where Â(E) ≡ A(E ′)′. If Haag duality holds, as we shall assume1, this inclusion is
trivial if E is an interval, but it is in general non-trivial for a disconnected region E.
We will explain its structure if E is the union of n separated intervals, a situation
that can be reduced to the case n = 2, namely E = I1 ∪ I2, where I1 and I2 are
intervals with disjoint closure, as we set for the rest of this introduction.

One can easily realize that the inclusion A(E) ⊂ Â(E) is related to the superse-
lection structure of A, i.e. to the representation theory of A, as charge transporters
between endomorphisms localized in I1 and I2 naturally live in Â(E), but not in
A(E).

Assuming the index [Â(E) : A(E)] < ∞ and the split property2, namely that
A(I1) ∨ A(I2) is naturally isomorphic to A(I1) ⊗ A(I2), we shall show that indeed
A(E) ⊂ Â(E) contains all the information on the superselection rules.

We shall prove that in this case A is rational, namely there exist only finitely many
different irreducible sectors {[ρi]} with finite dimension and that A(E) ⊂ Â(E) is
isomorphic to the inclusion considered in [28] (we refer to this as the LR inclusion,
cf. Appendix A), which is canonically associated with A(I1), {[ρi]} (with the identi-

1As shown in [18], one may always extend A to the dual net Ad, which is conformal and satisfies
Haag duality.

2This general property is satisfied, in particular, if Tr(e−βL0 ) < ∞ for all β > 0, where L0 is the
conformal Hamiltonian, cf. [5, 8].

2



fication A(I2) 
 A(I1)
opp). In particular,

[Â(E) : A(E)] =
∑

i

d(ρi)
2,

the global index of the superselection sectors. In fact A will turn out to be rational in
an even stronger sense, namely there exist no sectors with infinite dimension, except
the ones that are trivially constructed as direct sums of finite-dimensional sectors.

Moreover, we shall exhibit an explicit way to generate the superselection sectors of
A from the local data in E: we consider the canonical endomorphism γE of Â(E) into
A(E) and its restriction λE = γE |A(E); then λE extends to a localized endomorphism
λ of A acting identically on A(I) for all intervals I disjoint from E. We have

λ =
⊕

i

ρiρ̄i, (1)

where the ρi’s are inequivalent irreducible endomorphisms of A localized in I1 with
conjugates ρ̄i localized in I2 and the classes {[ρi]}i exhaust all the irreducible sectors.

To understand this structure, consider the symmetric case I1 = I , I2 = −I . Then
A(−I) = j(A(I)), where j is the anti-linear PCT automorphism, hence we may
identify A(−I) with A(I)opp. Moreover the formula ρ̄i = j·ρi·j holds for the conjugate
sector [17], thus by the split property we may identify {A(E), ρiρ̄i|A(E)} with {A(I)⊗
A(I)opp, ρi ⊗ ρopp

i }. Now there is an isometry Vi that intertwines the identity and
ρiρ̄i and belongs to Â(E). We then have to show that Â(E) is generated by A(E)
and the Vi’s and that the Vi’s satisfies the (crossed product) relations characteristic
of the LR inclusion. This last point is verified by identifying Vi with the standard
implementation isometry as in [17], while the generating property follows by the index
computation that will follow by the “transportability” of the canonical endomorphism
above.

The superselection structure of A can then be recovered by formula (1) and the
split property. Note that the representation tensor category of A⊗Aopp generated by
{ρi⊗ρopp

i }i corresponds to the connected component of the identity in the fusion graph
for A, therefore the associated fusion rules and quantum 6j-symbols are encoded
in the isomorphism class of the inclusion A(E) ⊂ Â(E), that will be completely
determined by a crossed product construction.

A further important consequence is that the braiding symmetry associated with
all sectors is always non-degenerate, in other words the localizable representations
form a modular tensor category. As shown by Rehren [41], this implies the existence
and non-degeneracy of Verlinde’s matrices S and T , thus the existence of a uni-
tary representation of the modular group SL(2, Z), which plays a role in topological
quantum field theory.

It follows that the net B ⊃ A⊗Aopp obtained by the LR construction is a field
algebra for A⊗Aopp, namely B has no superselection sector (localizable in a bounded
interval) and there is a generating family of sectors of A⊗Aopp that are implemented
by isometries in B. Indeed B is a the crossed product of A⊗Aopp by the tensor
category of all its sectors.
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As shown by Masuda [30], Ocneanu’s asymptotic inclusion [35] and the Longo-
Rehren inclusion in [28] are, from the categorical viewpoint, essentially the same
constructions. The construction of the asymptotic inclusion gives a new subfactor
M∨ (M′ ∩M∞) ⊂ M∞ from a hyperfinite II1 subfactor N ⊂ M with finite index
and finite depth and it is a subfactor analogue of the quantum double construction
of Drinfel′d [11], as noted by Ocneanu. That is, the tensor category of the M∞-M∞
bimodules arising from the new subfactor is regarded a “quantum double” of the
original category of M-M (or N -N ) bimodules.

On the other hand, as shown in [33], the Longo-Rehren construction gives the
quantum double of the original tensor category of endomorphisms. (See also [12,
Chapter 12] for a general theory of asymptotic inclusions and their relations to topo-
logical quantum field theory.)

Our result thus shows that the inclusion arising from two separated intervals as
above gives the quantum double of the tensor category of all localized endomorphisms.
However, as the braiding symmetry is non-degenerate, the quantum double will be
isomorphic to the subcategory of the trivial doubling of the original tensor category
corresponding to the connected component of the identity in the fusion graph. Indeed,
in the conformal case, multi-interval inclusions are self-dual.

For our results conformal invariance is not necessary, although conformal nets
provide the most interesting situation where they can be applied. We may deal
with an arbitrary net on R, provided it is strongly additive (a property equivalent
to Haag duality on R if conformal invariance is assumed) and there exists a cyclic
and separating vector for the von Neumann algebras of half-lines (vacuum), such
that the corresponding modular conjugations act geometrically as PCT symmetries
(automatic in the conformal case). We will deal with this more general context.

Our paper is organized as follows. Then we consider representations. The second
section discusses general properties of multi-interval inclusions and in particular gives
motivations for the strong additivity assumption. The third section enters the core of
our analysis and contains a first inequality between the global index of the sectors and
the index of the 2-interval subfactor. In Section 4 we study the structure of sectors
associated with the LR net, an analysis mostly based on the braiding symmetry,
the work of Izumi [22] and the α-induction, which has been introduced in [28] and
further studied in [49, 2, 3]. Section 5 combines and develops the previous analysis
to obtain our main results for the 2-interval inclusion. These results are extended
to the case of n-interval inclusions in Section 6. We then we illustrate our results in
models and examples in Section 7. We collect in Appendix A the results the universal
crossed product description of the LR inclusion and of its multiple iterated occurring
in our analysis. We include a further appendix concerning the disintegration of locally
normal or localizable representations into irreducible ones, that is needed in the paper;
these results have however their own interest.

For basic facts concerning conformal nets of von Neumann algebras on R or S1,
the reader is referred to [17, 28], see also the Appendix B.
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2 General properties

In this section we shortly examine a few elementary properties for nets of von Neu-
mann algebras, partly to motivate our strong additivity assumption in the main body
of the paper, and partly to examine relations with dual nets. To get our main result,
the reader may however skip this part, except for Proposition 5, and get directly to
the next section, where we will restrict our study to completely rational nets.

In this section, A will be a local irreducible net of von Neumann algebras on S1,
namely, A is an inclusion preserving map

I 
 I �→ A(I)

from the set I of intervals (open, non-empty sets with contractible closure) of S1

to von Neumann algebras on a fixed Hilbert H space such that A(I1) and A(I2)
commute if I1 ∩ I2 = ∅ and

∨
I∈I A(I) = B(H), where ∨ denotes the von Neumann

algebra generated.
If E ⊂ S1 is any set, we put

A(E) ≡
∨

{A(I) : I ∈ I, I ⊂ E}

and set
Â(E) ≡ A(E ′)′

with E ′ ≡ S1 � E.3

We shall assume Haag duality on S1, which automatically holds if A is conformal
[4], namely,

A(I)′ = A(I ′), I ∈ I,

thus Â(I) = A(I), I ∈ I, but for a disconnected set E ⊂ S1,

A(E) ⊂ Â(E)

is in general a non-trivial inclusion.
We shall say that E ⊂ S1 is an n-interval if both E and E ′ are unions of n

intervals with disjoint closures, namely

E = I1 ∪ I2 ∪ · · · ∪ In, Ii ∈ I,

where Īi ∩ Īj = ∅ if i �= j. The set of all n-intervals will be denoted by In.
Recall that A is n-regular, if A(S1 � {p1, . . . pn}) = B(H) for any p1, . . . pn ∈ S1.
Notice that A is 2-regular if and only if the A(I)’s are factors, since we are

assuming Haag duality, and that A is 1-regular if for each point p ∈ S1⋂
n

A(In) = C (2)

if In ∈ I and
⋂

n In = {p}.
3The results in this section are also valid for nets of von Neumann algebras on R, if I denotes

the set of non-empty bounded open intervals of R and E′ = R � E for E ⊂ R.
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Proposition 1. The following are equivalent for a fixed n ∈ N:

(i) The inclusion A(E) ⊂ Â(E) is irreducible for E ∈ In.

(ii) The net A is 2n-regular.

Proof With E = I1 ∪ · · · ∪ In and p1, . . . , p2n the 2n boundary points of E, we have
A(E)′ ∩ Â(E) = C if and only if A(E) ∨ Â(E)′ = B(H), which holds if and only if
A(E) ∨A(E ′) = B(H), thus if and only if A(S1

� {p1, . . . , p2n}) = B(H), namely A
is 2n-regular. �

If A is strongly additive, namely,

A(I) = A(I � {p})

where I ∈ I and p is an interior point of I , then A is n-regular for all n ∈ N , thus
all A(E) ⊂ Â(E) are irreducible inclusions of factors, E ∈ In.

A partial converse holds.
If N ⊂ M are von Neumann algebras, we shall say that N ⊂ M has finite-index

if the Pimsner-Popa inequality [38] holds, namely there exists λ > 0 and a conditional
expectation E : M → N with E(x) ≥ λx, for all x ∈ M+, and denote the index by

[M : N ]E = λ−1

with λ the best constant for the inequality to hold and

[M : N ] = [M : N ]min = inf
E

[M : N ]E

denotes the minimal index, (see [20] for an overview).
Recall that A is split if there exists an intermediate type I factor between A(I1)

and A(I2) whenever I1, I2 are intervals and the closure Ī1 is contained in the interior
of I2. This implies (indeed it is equivalent to e.g. if the A(I)’s are factors) that
A(I1)∨A(I ′

2) is naturally isomorphic to the tensor product of von Neumann algebras
A(I1)⊗A(I ′

2) (cf.[10]) . For a conformal net, the split property holds if Tr(e−βL0) < ∞
for all β > 0, cf. [8].

Notice that if A is split and A(I) is a factor for I ∈ I, then A(E) is a factor for
E ∈ In for any n.

Proposition 2. Let A be split and 1-regular. If there exists a constant C > 0 such
that

[Â(E) : A(E)] < C ∀ E ∈ I2,

then
[A(I) : A(I � {p})] < C ∀I ∈ I, p ∈ I.
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Proof With I ∈ I2 and p ∈ I an interior point, let I1, I2 ∈ I be the connected
components of I � {p}, let I

(n)
2 ⊂ I2 be an increasing sequence of intervals with

one boundary point in common with I such that p /∈ I
(n)
2 and

⋃
n I

(n)
2 = I2. Then

En ≡ I1 ∪ I
(n)
2 ∈ I2 and we have

A(En) ↗ A(I � {p}),
Â(En) ↗ A(I),

where Nn ↗ N means N1 ⊂ N2 ⊂ · · · and N =
∨

Nn, while Nn ↘ N will mean
N1 ⊃ N2 ⊃ · · · and N =

⋂
Nn. The first relation is clear by definition. The second

relation follows because

Â(En)′ = A(E ′
n) = A(I ′) ∨A(Ln),

where E ′
n ∈ I2, En = I ′ ∪ Ln, and

⋂
Ln = {p}, therefore A(Ln) ↘ C. By the split

property A(I ′) ∨A(Ln) ∼= A(I ′) ⊗A(Ln), hence by eq. (2)

A(E ′
n) ↘ A(I ′),

thus
Â(En) ↗ A(I).

The rest of the proof is the consequence of the following general proposition. �

Proposition 3. a) Let

N1 ⊂ N2 ⊂ · · · ⊂ N
∩ ∩ ∩
M1 ⊂ M2 ⊂ · · · ⊂ M

be von Neumann algebras, N =
∨

Ni, M =
∨

Mi,

b) or let
N1 ⊃ N2 ⊃ · · · ⊃ N
∩ ∩ ∩
M1 ⊃ M2 ⊃ · · · ⊃ M

be von Neumann algebras, N =
⋂

Ni, M =
⋂

Mi.
Then

[M : N ] ≤ lim inf
i→∞

[Mi : Ni].

Proof It is sufficient to prove the result in the situation b) as the case a) will follow
after taking commutants. We may assume lim infi→∞[Mi : Ni] < ∞.

Let Ei : Mi → Ni be an expectation and λ > lim infi→∞[Mi, : Ni]Ei. Then there
exists i0 such that for all x ∈ M+

i , i ≥ i0,

Ei(x) ≥ λ−1x.
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Let E(0)
i = Ei|M, considered as a map from M to Ni, and let E be a weak limit point

of E(0)
i . Then

E(x) ≥ λ−1x, x ∈ M+,

and E(M) ⊂
⋂

i Ni = N , moreover E|N = id, because Ei|N = id. Thus E is an
expectation of M onto N and

[M : N ] ≤ [M : N ]E ≤ λ.

As Ei is arbitrary, we thus have [M : N ] ≤ lim infi→∞[Mi, : Ni]. �

Recall now that the dual net Ad of A is the net on the intervals of R defined by
Ad(I) ≡ A(R � I)′, where we have chosen a point ∞ ∈ S1 and identified S1 with
R ∪ {∞}.

Note that if A is conformal, then Haag duality automatically holds [18] and the
dual net Ad is also a conformal net which is moreover strongly additive; furthermore
A = Ad, if and only if A is strongly additive, if and only if Haag duality holds on R.

Corollary 4. In the hypothesis of Proposition 2, let Ad be the dual net on R, then

A(I) ⊂ Ad(I)

has finite index for all bounded intervals I of R.

Proof Denoting I1 = I ′, the complement of I in S1, the commutant of the inclusion
A(I) ⊂ Ad(I) is A(I1 � {∞}) ⊂ A(I1), and this has finite index. �

We have no example where A(I) ⊂ Ad(I) is non-trivial with finite index and A is
conformal; therefore the equality A(I) = Ad(I), i.e. strong additivity, might follow
from the assumptions in Corollary 2 in the conformal case.

Proposition 5. Let A be split and strongly additive, then

(a) The index [Â(E) : A(E)] is independent of E ∈ I2.

(b) The inclusion A(E) ⊂ Â(E) is irreducible for E ∈ I2.

Proof Statement (b) is immediate by Proposition 1.
Concerning (a), let E = I1 ∪ I2 and Ẽ = I1 ∪ Ĩ2 where Ĩ2 ⊃ I2 are intervals and

I0 ≡ Ĩ2 � I2. Assuming λ−1 ≡ [Â(Ẽ) : A(Ẽ)] < ∞, let EẼ be the corresponding
expectation with λ-bound. Of course EẼ is the identity on A(I0), hence

EẼ(Â(E)) ⊂ A(I0)
′ ∩ A(Ẽ) = A(E)

where last equality follows at once by the split property and strong additivity as
A(I0)

′ ∩A(Ĩ2) = A(I2).
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Therefore EẼ |Â(E)= EE showing

[Â(E) : A(E)] ≤ [Â(Ẽ) : A(Ẽ)],

where we omit the symbol “min” as the expectation is unique. Thus the index
decreases by decreasing the 2-interval. Taking commutants, it also increases, hence
it is constant. �

Corollary 6. Let A satisfy the assumption of Proposition 2 and let Ad be the dual
net on R of A. Then

[Âd(E) : Ad(E)] < ∞ ∀E ∈ I2.

Proof We fix the point ∞ and may assume E = I1∪I2 with ∞ ∈ I2. Set E ′ = I3∪I4

with I3 
 ∞. Then Ad(I3) = A(I3), Ad(I2) = A(I2) and we have

A(E) ⊂ Ad(I1) ∨A(I2)

= Ad(E) ⊂ Âd(E)

= (A(I3) ∨Ad(I4))
′ ⊂ (A(I3) ∨ A(I4))

′ = Â(E).

�

Anticipating results in the following, we have:

Corollary 7. Let A be a local irreducible conformal split net on S1. If [Â(E) :
A(E)] = Iglobal < ∞, E ∈ I2, then A is n-regular for all n ∈ N.

Proof If ρ is an irreducible endomorphism of A localized in an interval I , then ρ|A(I)

is irreducible [17]. Therefore, by Th. 9 (and comments there after) and Prop. 36, the
assumptions imply that if E ∈ I2 then A(E) ⊂ Â(E) is the LR inclusion associated
with the system of all irreducible sectors, which is irreducible. Then A(E) ⊂ Â(E)
is irreducible for all E ∈ In as we shall see in Sect. 6. By Prop. 1 this implies the
regularity for all n. �

In view of the above results, it is natural to deal with strongly additive nets, when
considering multi-interval inclusions of local algebras and thus to deal with nets of
factors on R, as we shall do in the following.

3 Completely rational nets

In this section we will introduce the notion of completely rational net, that will be
the main object of our study in this paper, and get a first analysis.
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In the following, we shall denote by I the set of bounded open non-empty intervals
of R, set I ′ = R � I and define A(E) =

∨
{A(I), I ⊂ E, I ∈ I} for E ⊂ R. We again

denote by In the set of unions of n elements of I with pairwise disjoint closures. 4

Definition 8. A local irreducible net A of von Neumann algebras on the intervals of
R is called completely rational if the following holds:

(a) Haag duality on R : A(I ′) = A(I)′, I ∈ I,

(b) A is strongly additive,

(c) A satisfies the split property,

(d) [Â(E) : A(E)] < ∞, if E ∈ I2,

Note that, if A is the restriction to R of a local conformal net on S1 (namely a
local net which is Möbius covariant with positive energy and cyclic vacuum vector)
then (a) is equivalent to (b), cf. [18].

We shall denote by µA = [Â(E) : A(E)] the index of the irreducible inclusion of
factors A(E) ⊂ Â(E) in case µA is independent of E ∈ I2, in particular if A is split,
by Proposition 5.

By a sector [ρ] of A we shall mean the equivalence class of a localized endomor-
phism ρ of A, that will always be assumed to be transportable i.e. localizable in each
bounded interval I (see also Appendix B). Unless otherwise specified, a localized
endomorphism ρ has finite dimension. If ρ is localized in the interval I , its restriction
ρ|A(I) is an endomorphism of A(I), thus it gives rise to a sector of the factor A(I)
(i.e. a normal unital endomorphism of A(I) modulo inner automorphisms of A(I)
[25]) and it will be clear from the context which sense will be attributed to the term
sector.

The reader unfamiliar with the sector strucure is referres to [25, 28, 17] and to
the Appendix B.

Let E = I1 ∪ I2 ∈ I2 and ρ and σ irreducible endomorphisms of A localized
respectively in I1 and in I2. Then ρσ restricts to an endomorphism of A(E), since
both ρ and σ restrict.

Denote by γE the canonical endomorphism of Â(E) into A(E) and λE ≡ γE|A(E).

Theorem 9. Let A be completely rational. With the above notations, ρσ|A(E) is
contained in λE if and only if σ is conjugate to ρ. In this case ρσ|A(E) ≺ λE with
multiplicity one.

Proof By [28] ρσ|A(E) ≺ λE if and only if there exists an isometry v ∈ Â(E) such
that

vx = ρσ(x)v ∀x ∈ A(E). (3)

4There will be no conflict with the notations in the previous section as the point ∞ does not
contribute to the local algebras and we may extend A to S1 setting A(I) ≡ A(I � {∞}), see
Appendix B.
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If equation (3) holds, then it holds for x ∈ A(I) for all I ∈ I by strong additivity,
hence σ = ρ̄.

Conversely, if σ = ρ̄, then there exists an isometry v ∈ A(I) such that vx = ρσ(x)v
for all x ∈ A(I), where I is the interval I ⊃ E given by I = I1 ∪ I2 ∪ Ī3 with I3 the
bounded connected component of E ′.

Since ρ and σ act trivially on A(I3), we have

v ∈ A(I3)
′ ∩A(I),

but
A(I3)

′ ∩A(I) = (A(I3) ∨A(I ′))′ = A(E ′)′ = Â(E),

therefore equation (3) holds true. As the ρ and σ are irreducible, the isometry v in
(3) unique up to a phase and this is equivalent to ρρ̄|A(E) ≺ λE with multiplicity one.

�

We remark that in the above theorem strong additivity is not necessary for ρρ̄ ≺
λE , as can be replaced by the factoriality of A(E), equivalently of Â(E); this holds
e.g. in the conformal case.

Moreover also the split property is unnecessary, it has not been used.
We shall say that the net A on R has a modular PCT symmetry, if there exists a

cyclic separating (vacuum) vector Ω for each A(I), if I is a half-line (Reeh-Schlieder
property), and the modular conjugation J of A(a,∞) with respect to Ω has the
geometric property

JA(I + a)J = A(−I + a), I ∈ I, a ∈ R. (4)

This is automatic if A is conformal, see [4, 15]. It easy to see that the modular PCT
property implies translation covariance, where the translation unitaries are products
of modular conjugations, but positivity of the energy does not necessarily holds.

Note that eq. (4) implies Haag duality for half-lines

A(−∞, a)′ = A(a,∞), a ∈ R .

Setting j ≡ AdJ , the conjugate sector exists and it is given by the formula [16]

ρ̄ = j · ρ · j.

Corollary 10. If A is completely rational with modular PCT, then A is rational,
namely there are only finitely many irreducible sectors [ρ0], [ρ1], . . . , [ρn] with finite
dimension and we have

n∑
i=0

d(ρi)
2 ≤ µA. (5)
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Proof It is sufficient to show this last inequality. By the split property, the endomor-
phisms ρiρ̄i|A(E) can be identified with the endomorphisms ρi ⊗ ρ̄i on A(I1)⊗A(I2),
hence they are mutually inequivalent.

By Theorem 9,

n⊕
i=1

ρiρ̄i|A(E) ≺ λE , (6)

hence
µA = [Â(E) : A(E)] = d(λE) ≥

∑
d(ρi)

2.

�

We now give a partial converse to Theorem 9.

Lemma 11. Let A be completely rational and let EE be the conditional expectation
Â(E) → A(E).

(a) If E ⊂ Ẽ and E, Ẽ ∈ I2, then

EẼ|Â(E) = EE .

(b) There exists a canonical endomorphism γẼ of Â(Ẽ) to A(Ẽ) such that γ|Â(E) is

a canonical endomorphism of Â(E) into A(E) and satisfies

γ|Â(E)′∩A(Ẽ) = id.

Proof (a) has been shown in the proof of Proposition 5.
(b) is an immediate variation of [16, Proposition 2.3] and [28, Theorem 3.2].

�

Theorem 12. Let A be completely rational. Given E ∈ I2, λE extends to a localized
(transportable) endomorphism λ of A such that λ|A(I) = id, if I ⊂ E ′, I ∈ I.
Moreover, d(λ) = d(λE) = µA.

In particular, if A is conformal, then λ is Möbius covariant with positive energy.

Proof Let E = (a, b) ∪ (c, d) where a < b < c < d and Ẽ = (a′, b) ∪ (c, d′) where
a′ < a and d′ > d. By Lemma 11 we have a γẼ with λẼ |A(I) = id, if I ⊂ I, I ∈ Ẽ �E.

Analogously there is a canonical endomorphism γ : Â(Ẽ) → A(Ẽ) acting trivially
on A(E). We may write

γẼ = Ad u · γ
with u ∈ A(Ẽ), hence

λẼ = Adu · λ, λ = γ|A(Ẽ).

12



Since γ |A(a,b)= id, γ |A(c,d)= id, we have

λẼ = Adu on A(a, b),A(c, d).

Therefore, the formula
λ̃ = Adu

defines an endomorphism of A(a, d) acting trivially an A(b, c), with

λ̃|A((a,b)∪(c,d)) = λE .

We may also have chosen γ “localized” in (a′, a′′) ∪ (d′′, d′) with a′ < a′′ < a and
d < d′′ < d′ so that we may assume λ̃ to act trivially on A((a′′, b) ∨ (c, d′′)).

Letting a′, a′′ → −∞ and d′′, d′ → +∞, we construct, by an inductive limit of the
λ̃’s, an endomorphism λ of the quasi-local C∗-algebra

⋃
s>0 A(−s, s).

Clearly, λ is localized in (a, d), acts trivially on A(b, c) and is transportable.
Moreover, λ has finite index as the operators R, R̄ ∈ (i, λ2) in the standard solution
for the conjugate equation [25, 29]

R̄∗λ̄(R) = 1, R∗λ(R̄) = 1,

on Â(E) give the same relation on A(I) for any I ⊃ E, I ∈ I.
If A is conformal, then ρ is covariant with respect to translations and dilations

by [17]. As we may vary the point ∞, λ is covariant with respect to dilations and
translations with respect to different point at ∞, hence λ is Möbius covariant. �

Lemma 13. Let A be completely rational. Then there are at most �µA� mutually
different irreducible sectors of A (with finite or infinite dimension).

Proof Consider the family {[ρλ]} of all irreducible sectors and let N be the cardi-
nality of this family. With E = I1 ∪ I2 ∈ I2, we may assume that each ρλ is localized
in I1 and choose endomorphisms σλ equivalent to ρλ and localized in I2. Let then
uλ ∈ (ρλ, σλ) ⊂ Â(E) be a unitary intertwiner and E the conditional expectation
from Â(E) to A(E). Since

uλρλ(x) = σλ(x)uλ = xuλ , ∀x ∈ A(I1),

we have

u∗
λ′uλ ρλ(x) = ρλ′(x) u∗

λ′uλ , ∀x ∈ A(I1),

hence T = E(u∗
λ′uλ) ∈ A(E) intertwines ρλ|A(I1) and ρλ′|A(I1). The split property

allowing us to identify A(E) and A(I1) ⊗ A(I2), every state ϕ in A(I2)∗ gives rise
to a conditional expectation Eϕ : A(E) → A(I1). Then Eϕ(T ) ∈ (ρλ, ρλ′), and the
inequivalence of ρλ|A(I1), ρλ′|A(I1), see above, entails Eϕ(T ) = 0. Since this holds
for every ϕ ∈ A(I2)∗ we conclude

T = E(u∗
λ′uλ) = 0, λ′ �= λ.
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Let M be the Jones extension of A(E) ⊂ Â(E), e ∈ M the Jones projection im-
plementing E and let E1 : M → Â(E) be the dual conditional expectation. Then
eu∗

λ′uλe = 0 if λ′ �= λ and therefore the eλ ≡ uλeu
∗
λ are mutually orthogonal pro-

jections in M with E1(eλ) = µ−1
A . Since their (strong) sum p =

∑
λ eλ is again an

orthogonal projection we have p ≤ 1 and thus E1(p) ≤ E(1) = 1. This implies the
bound Nµ−1

A ≤ 1 and thus our claim. �

We shall say that a sector [ρ] is of type I if ∨I∈Iρ(A(I)) is a type I von Neumann
algebra, namely ρ is a type I representation of the quasi local C∗-algebra ∪s>oA(−s, s).

Corollary 14. If A is completely rational on a separable Hilbert space, then all factor
representations of A on separable Hilbert spaces are of type I.

Proof Assuming the contrary, by Corollary 59 we get an infinite family [ρλ] of
different irreducible sectors. This is in contradiction with the preceding proposition.

�

We end this section by recalling the following (see [10]).

Proposition 15. Let A be a completely rational net with modular PCT on a Hilbert
space H. Then H is separable.

Proof We chose a pair I ⊂ Ĩ of intervals and a type I factor N between A(I) and
A(Ĩ). The vacuum vector Ω is separating for A(Ĩ), hence for N . Thus N admits
a faithful normal state, hence it is countably decomposable. Being of type I, N is
countably generated. Being cyclic for A(I), Ω is also cyclic for N so H = NΩ is
separable. �

4 The structure of sectors for the (time = 0) LR

net

This section contains a study of the sector strucure for the net obtained by the LR
construction, by means of the braiding symmetry. It will be continued in the next
section by a different approach.

Let N be an infinite factor and {[ρi]} a rational system of sectors of N , namely the
[ρi]’s form a finite family of mutually different irreducible finite-dimensional sectors
of N which is closed under conjugation and taking the irreducible components of
compositions. The identity sector is usually labeled as ρ0. We call

M ⊃ N ⊗N opp

the LR inclusion, the canonical inclusion constructed in [28] where M is a factor,
N ⊗N opp ⊂ M is irreducible with finite index and

λ =
⊕

i

ρi ⊗ ρopp
i

14



for λ ∈ End(N ⊗ N opp) as the restriction of γ : M → N ⊗N opp. We shall give an
alternative characterization of this inclusion in Proposition 45.

The same construction works in slightly more generality, by replacing N opp with
a factor N1 and {ρopp

i }i by {ρj
i}i ⊂ End(N1) where ρ → ρj is an anti-linear invert-

ible tensor functor of the tensor category generated by {ρi}i to the tensor category
generated by {ρj

i}i. Extensions of our results to this case are obvious, but sometimes
useful, and will be considered possibly implicitly.

The following is due to Izumi [22]. Since it is easy to give a proof in our context,
we include a proof here.

Lemma 16. For every ρi, the (N ⊗ N opp)-M sector [ρi ⊗ id][γ] = [id ⊗ ρ̄opp
i ][γ] is

irreducible and each irreducible (N ⊗N opp)-M sector arising from N ⊗N opp ⊂ M
is of this form, where γ is regarded as an (N ⊗ N opp)-M sector. If [ρi] �= [ρj]
as A-A sectors, then [ρi ⊗ id][γ] �= [ρj ⊗ id][γ] as (N ⊗ N opp)-M sectors. We have
[ρi⊗ρopp

j ][γ] =
∑

k Nk
ij̄[ρk⊗ id][γ] as (N⊗N opp)-M sectors, where Nk

ij̄ is the structure

constant for {ρi}i.

Proof Set [σ] = [ρi ⊗ id][γ] and compute [σ][σ̄]. Since [γ̄] = [ι], where ι is the
inclusion map of N ⊗N opp into M regarded as a M-(N ⊗N opp) sector, and [γ][ι] =
[λ] =

∑
k[ρk⊗ρopp

k ], we have [σ][σ̄] =
∑

k[ρiρkρ̄i⊗ρopp
k ], and this contains the identity

only once. So [ρi ⊗ id][γ] is an irreducible (N ⊗ N opp)-M sector. We can similarly
prove that if [ρi] �= [ρj], then [ρi ⊗ id][γ] �= [ρj ⊗ id][γ].

We next set [σ′] = [id ⊗ ρ̄opp
i ][γ] as an (N ⊗ N opp)-M sector, which is also irre-

ducible. We compute

[σ][σ̄′] = [ρi ⊗ id][λ][id ⊗ ρopp
i ] =

∑
k

[ρiρk ⊗ ρopp
k ρopp

i ],

which contains the identity only once. So we have [ρi ⊗ id][γ] = [id ⊗ ρ̄opp
i ][γ].

The rest is now easy. �

Let us now assume we have a strongly additive, Haag dual, irreducible net of
factors A(I) on R with a rational system of irreducible sectors {[ρi]}i (with ρ0 = id),
namely {[ρi]}i is a family of finitely many different irreducible sectors of A with finite
dimension stable under conjugation and irreducible components of compositions.

One may construct [42, 28] a net of subfactors A⊗Aopp ⊂ B so that the corre-
sponding canonical endomorphism restricted on A⊗Aopp is given by

⊕
i ρi ⊗ ρopp

i .
We call this B the LR net. For Aopp, we use εopp(ρopp

k , ρopp
l ) = j(ε(ρk, ρl))

∗, where j
is the anti-isomorphism from A to Aopp. In order to distinguish two braidings, we
write ε+ and ε−.

In other words, the LR net here is obtained as the time zero fields from the
canonical two-dimensional net constructed in [28]: it is a local net, but if A is trans-
lation covariant with positive energy, B is translation covariant without the spectrum
condition (the translation on B are space translations).
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Then the net of inclusion A⊗Aopp(I) ⊂ B(I) is a net of subfactors in the sense
of [28, Section 3], that is, we have a vacuum vector with Reeh-Schlieder property and
consistent conditional expectations. We denote by γ the canonical endomorphism of
B into A⊗Aopp and its restriction to A⊗Aopp by λ. We may suppose that also λ
is localized in I . We shorten our notation by setting N ≡ A(I) and M = B(I). We
thus have λ(x) =

∑
i Vi(ρi ⊗ ρopp

i )(x)V ∗
i , where Vi’s are isometries in N ⊗N opp with∑

i ViV
∗

i = 1.
We follow [21] for the terminology of (N ⊗N opp)-M sectors, and so on, and study

the sector structure of the subfactor N ⊗N opp ⊂ M in this section. In other words
we study the sector structure of a single subfactor, not the structure of superselection
sectors of the net, though we will be interested in this structure for the net in the
next section. So the terminology sector is used for a subfactor, not for a net, in this
section. However the inclusion N ⊗N opp ⊂ M has extra structure inherited by the
inclusion of nets A⊗Aopp ⊂ B, that is there are the left and right unitary braid
symmetries and the extension and restriction maps. We first note that {[ρi ⊗ ρopp

j ]}ij

gives a system of irreducible A⊗Aopp-A⊗Aopp sectors.
This gives the description of the principal graph of N ⊗N opp ⊂ M as a corollary

as follows, which was first found by Ocneanu in [35] for his asymptotic inclusion.
Label even vertices with (i, j) for [ρi ⊗ ρopp

j̄
] and odd vertices with k for [ρk ⊗ id][γ]

and draw an edge with multiplicity Nk
ij between the even vertex (i, j) and the odd

vertex k. The connected component of this graph containing the vertex (0, 0) is the
principal graph of the subfactor N ⊗N opp ⊂ M.

Now we consider the α-induction introduced in [28] and further studied in [49, 2],
namely if σ is a localized endomorphism of A⊗Aopp, we set

α±
σ = γ−1 ·Ad(ε±(σ, λ)) · σ · γ. (7)

(The notation in [28] is σ ext ).
Recall that if σ is an endomorphism of A⊗Aopp localized in the interval I , then

α±
σ is an endomorphism of B localized in a positive/negative half-line containing I ,

yet, as shown in [2, I], α±
σ restricts to an endomorphism of M = B(I). We will denote

this restriction by the same symbol α±
σ .

Lemma 17. The M-M sectors [α+
ρi⊗id] are irreducible and mutually different.

Proof We compute 〈α+
ρi⊗id, α

+
ρj⊗id〉, the dimension of the intertwiner space between

α+
ρi⊗id and α+

ρj⊗id, by using [2, I, Theorem 3.9]. This number is then equal to

〈
⊕

k

ρkρi ⊗ ρopp
k , ρj ⊗ id〉 = δij.

This gives the conclusion. �

Lemma 18. As M-M sectors, we have [α+
ρi⊗id] = [α+

id⊗ρ
opp
i

].
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Proof By a similar argument to the proof of the above lemma, we know that
[α+

id⊗ρ
opp
i

] is also irreducible. [2, I, Theorem 3.9] gives

〈[α+
ρi⊗id], [α

+
id⊗ρopp

i
]〉 = 〈

⊕
k

ρkρi ⊗ ρopp
k , id ⊗ ρopp

i 〉 = 1,

which gives the conclusion. �

We then have the following corollary.

Corollary 19. The set of irreducible M-M sectors appearing in the decomposition
of α+

ρi⊗ρopp
j

for all i, j is {[α+
ρi⊗id]}i.

The next theorem is useful for studying the subfactors arising from disconnected
intervals for a conformal net. For the rest of this section we shall assume the braiding
to be non-degenerate.

Theorem 20. Assume the braiding to be non-degenerate and suppose an irreducible
M-M sector [β] appears in decompositions of both α+

ρi⊗ρopp
j

and α−
ρk⊗ρopp

l
for some

i, j, k, l. Then [β] is the identity of M.

Proof α+ and α− map sectors localized in bounded intervals to soliton sectors
localized in right unbounded and left unbounded half-lines, respectively. Hence [β]
is localized in a bounded interval. By the above corollary, we may assume that
[β] = [α+

ρi⊗id] for some i, hence ρi ⊗ id must have trivial monodromy with λ, i.e.,
ε(ρi ⊗ id, λ)ε(λ, ρi ⊗ id) = 1, which in turn gives ε(ρi, ρk)ε(ρk, ρi) = 1 for all k. The
non-degeneracy assumption gives [ρi] = [id] as desired. �

We now define an endomorphism of M by βij = α+
ρi⊗idα

−
id⊗ρ

opp
j

. More explicitly,

we have βij = γ−1 · Ad(U+−
ij ) · (ρi ⊗ ρopp

j ) · γ, where

U+−
ij =

∑
k

Vk(ε
+(ρi, ρk) ⊗ ε−,opp(ρopp

j , ρopp
k ))(ρi ⊗ ρopp

j )(V ∗
k ).

Note that if we define similarly

U++
ij =

∑
k

Vk(ε
+(ρi, ρk) ⊗ ε+,opp(ρopp

j , ρopp
k ))(ρi ⊗ ρopp

j )(V ∗
k ),

we then have α+
ρi⊗ρ

opp
j

= γ−1 · Ad(U++
ij ) · (ρi ⊗ ρopp

j ) · γ. By [2],1 Prop. 18, we have

[βij] = [α+
ρi⊗id][α

−
id⊗ρ

opp
j

] = [α−
ρj⊗id][α

+
ρi⊗id] = [α−

id⊗ρ
opp
j

][α+
ρi⊗id]

as M-M sectors.
The following proposition is originally due to Izumi [22] (with a different proof)

and first due to Ocneanu [37] in the setting of the asymptotic inclusion. (Also see
[13].)
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Proposition 21. Each [βij] is an irreducible M-M sector and these are mutually
different for different pairs of i, j. Each irreducible M-M sector arising from N ⊗
N opp ⊂ M is of this form.

Proof We compute

〈βij, βkl〉 = 〈α+
ρi⊗idα

−
id⊗ρopp

j
, α+

ρk⊗idα
−
id⊗ρopp

l
〉 = 〈α+

ρ̄kρi⊗id, α
−
id⊗ρopp

l ρ̄opp
j

〉.

The only sector which can be contained in [α+
ρ̄kρi⊗id] and [α−

id⊗ρopp
l ρ̄opp

j
] is the identity

by the above proposition. So the above number is δikδjl. Since the square sums of
the statistical dimensions for {ρi ⊗ ρopp

j }ij and {βij}ij are the same, it completes the
proof. �

Note that here we have used the definition in [28] for the map ρi ⊗ ρopp
j �→ βij,

and a general theory of this map has been studied in [2] under the name α-induction.
But in [2], they assumed a certain condition, called chiral locality in the terminology
of [3], and some results in [2] depend on this assumption, while the definition itself
makes sense without it. Our mixed use of braidings ε+ and ε− here violates this
chiral locality condition, so we can use the results in [2] here only when they are
independent of the chiral locality assumption. For example, it is easy to see that the
analogue of [2, I, Theorem 3.9] does not hold for our map here.

With the above proposition, we have the following description of the dual principal
graph of N⊗N opp ⊂ M as a corollary, which is originally due to Ocneanu [37]. (Also
see [13].) Label even vertices with (i, j) for [βij̄] and odd vertices with k for [ρk⊗ id][γ]
and draw an edge with multiplicity Nk

ij between the even vertex (i, j) and the odd
vertex k. The connected component of this graph containing the vertex (0, 0) is the
dual principal graph of the subfactor N ⊗ N opp ⊂ M, which is the same as the
principal graph.

We next study the tensor category of the M-M sectors.

Lemma 22. Let V,W be intertwiners from ρiρk to ρm and from ρjρl to ρn, respec-
tively, in N . Then V ⊗ W ∗opp ∈ N ⊗N opp in an intertwiner from βijβkl to βmn.

Proof By a direct computation. �

Then we easily get the following from the above lemma. (The quantum 6j-symbols
for subfactors have been introduced in [36] as a generalization for classical 6j-symbols.
See [12, Chapter 12] for details.)

Theorem 23. In the above setting, the tensor categories of (N ⊗N opp)-(N ⊗N opp)
sectors and M-M sectors with quantum 6j-symbols are isomorphic.
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5 Relations with the quantum double

This section contains our main results.
Here below we will consider an inclusion A ⊂ B of nets of factors. We shall say

that A ⊂ B has finite index if there is a consistent family of conditional expectations
EI : B(I) → A(I), I ∈ I and [B(I) : A(I)]EI

< ∞ does not depend on I ∈ I. The
independence of the index of the interval I automatically holds if there is a vector
(vacuum) with Reeh-Schlieder property and EI preserves the vacuum state (standard
nets, see [28]). The index will be simply denoted by [B : A].

Proposition 24. Let A ⊂ B be a finite-index inclusion of nets of factors as above.
If A and B are completely rational then

µA = I2µB

with I = [B : A].

Proof If N1,N2 are factors, we shall use the symbol

N1

α

⊥ N2

to indicate that N1 ⊂ N ′
2 and [N ′

2 : N1] = α.
Let E = I1 ∪ I2 ∈ I2; we will show that

B(E)
µB
⊥ B(E ′)

I2 ∪ ∪ I2

A(E)
I2µA
⊥ A(E ′)

where A(E) ⊂ B(E) has index I2 because A(E) ∼= A(I1) ⊗ A(I2), B(E) ∼= B(I1) ⊗
B(I2) and [B(Ii) : A(Ii)] = I.

In the diagram, the commutants are taken in the Hilbert space HB of B, hence

B(E)
µB
⊥ B(E ′) is obvious.

We now show that on HB

A(E)
I2µA
⊥ A(E ′).

Let γ : B → A be a canonical endomorphism with λ = γ|A localized in an interval
I0; then the net I �→ A(I) on HB (I ⊃ I0) is unitarily equivalent to the net

I �→ λ(A(I)) on HA

and we may assume I0 ⊂ I1.
Then the correspondence associated with

A(E)-A(E ′) on HB ,
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namely HB with the natural commuting actions of A(E) and A(E ′), is unitarily
equivalent to the one associated with

λ(A(E))-λ(A(E′)) on HA ,

namely HA with the commuting actions of A(E) and A(E ′) obtained by composing
their defining actions with the map X → λ(X). But

λ(A(E)) = λ(A(I1) ∨A(I2)) = λ(A(I1)) ∨A(I2)

and λ(A(E′)) = A(E ′) hence the A(E)-A(E ′) correspondence on HB is unitarily
equivalent to

(λ(A(I1)) ∨ A(I2))-A(E ′) on HA

and its index is

[Â(E) : λ(A(I1)) ∨ A(I2)] = [Â(E) : A(E)][A(E) : λ(A(I1)) ∨A(I2)] = µAI2.

It follows from the diagram that

I2µA = µBI2 · I2,

thus, I2µB = µA. �

The following Proposition may be generalized to the case of a finite-index inclusion
A ⊂ B as above.

Proposition 25. Let A be completely rational with modular PCT and B ⊃ A⊗Aopp

be the LR net. Then also B is completely rational with modular PCT.

Proof Let E = I1 ∪ I2 and I3 the bounded connected component of E ′. Set C ≡
A ⊗ Aopp. Then the conditional expectation EI : B(I) → C(I) associated with the
interval I , where I is the interior of Ī1 ∪ Ī2 ∪ Ī3, maps B(E) onto Ĉ(E), because
EI(B(E)) ⊂ C(I3)

′ ∩ C(I) = Ĉ(E), thus

E ≡ E0 · EI |B(E) (8)

is a finite-index expectation of B(E) onto C(E), where E0 is the expectation of Ĉ(E)
onto C(E). Therefore µB < ∞ follows by a diagram similar to the one in (5) (with
A⊗Aopp instead of A), as we know a priori that the vertical inclusions have a finite
index, while the bottom horizontal inclusion has finite index by the argument given
there.

Then the strong additivity of B follows easily, and so its modular PCT property,
but we omit the arguments that are not essential here (if A is conformal case this
follows directly because then also B is conformal).
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We now show the split property of B. For notational convenience we treat the
case of two separated intervals, rather than that of an interval and the complement
of a larger interval. It will be enough to show that the above expectation (8) satisfies

E(b1b2) = E(b1)E(b2) , bi ∈ C(Ii) ,

and E(B(Ii)) ⊂ C(Ii), as we may then compose a normal product state ϕ1 ⊗ ϕ2 of
C(I1) ∨ C(I2) 
 C(I1) ⊗ C(I2) with E to get a normal product state of B(I1) ∨ B(I2).

Let R
(h)
i ∈ B(Ih), h = 1, 2, be elements satisfying the relations (15) so that B(Ih)

is generated by C(Ih) and {R(h)
i }i. With bh ∈ B(Ih) we then have

b(h) =
∑

i

a
(h)
i R

(h)
i , a

(h)
i ∈ C(Ih) ,

hence

b(1)b(2) =
∑
i,j

a
(1)
i a

(2)
j R

(1)
i R

(2)
j ,

so we have to show that E(R
(1)
i R

(2)
j ) = 0 unless i = j = 0. Now R

(1)
i = uiR

(2)
i for

some unitary ui ∈ Ĉ(E) and

EI(R
(2)
i R

(2)
j ) = EI(

∑
k

Ck
ij

(2)
R

(2)
k ) = C0

ij
(2)

= δījC
0
ij

(2)
,

(see Appendix A for the definition of the Ck
ij), hence

E(R
(1)
i R

(2)
j ) = E(uiR

(2)
i R

(2)
j ) = E0(uiEI(R

(2)
i R

(2)
j )) = E0(uiC

0
īi

(2)
) = E0(ui)C

0
īi

(2)
,

which is 0 if i �= 0 because E0(ui) ∈ C(E) is an intertwiner between irreducible
endomorphisms localized in I1 and I2, while E0(u0) = E0(1) = 1. �

We get the following corollary, where the last part will follow from Proposition 36
later.

Corollary 26. Let A be completely rational and

A⊗Aopp ⊂ B

be the LR inclusion. Then
µ2
A = I2

globalµB

where Iglobal =
∑

d(ρi)
2.

In particular, µB = 1 if and only if A(E) ⊂ Â(E) is isomorphic to the LR
inclusion.

Proof By Propositions 24, 25 and 36. �
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Lemma 27. Let A1, A2 be irreducible, Haag dual nets on separable Hilbert spaces.
Assume that each sector of A1 is of type I. If ρ is an irreducible localized endomor-
phism of A1 ⊗A2, then

ρ 
 ρ1 ⊗ ρ2

with ρi irreducible localized endomorphisms of Ai.

Proof Let π be a DHR representation of A1 ⊗A2 (see Appendix B) on a separable
Hilbert space H. Then π(A1) and π(A2) generate the von Neumann algebra B(H),
where Ai denotes the quasi-local C∗-algebra associated by Ai. Hence π(A1)

′′ and
π(A2)

′′ are factors.
Let πi ≡ π|Ai, where we identify A1 with A1 ⊗ C and A2 with C ⊗A2, then πi is

easily seen to be localizable in bounded intervals (namely if I1 ∈ I, the restriction of
π1 to the C∗-algebra generated by {Ai(I) : I ∈ I ′

1, I ∈ I} extends to a normal repre-
sentation of Ai(I

′
1)). Therefore πi is unitarily equivalent to a localized endomorphism

of Ai. As π1 is a factor representation, by assumption π(A1)
′′ is a type I factor and

so is π(A2)
′′. We then have a decomposition

π = π1 ⊗ π2 .

This concludes the proof. �

Corollary 28. Let A be a completely rational net on a separable Hilbert space. The
only irreducible finite dimensional sectors of A⊗Aopp are

[ρi ⊗ ρopp
j ]

with [ρi], [ρj] irreducible sectors of A.

Proof Immediate by Lemma 14 and the above Lemma. �

Lemma 29. Let A be completely rational and B ⊃ A ⊗ Aopp the LR net. If σ is
an irreducible localized endomorphism of B and σ ≺ α+

ρ , σ ≺ α−
ρ′ for some localized

endomorphism ρ, ρ′ of A⊗Aopp, then σ is localized in a bounded interval.

Proof The thesis follows because σ ≺ α+
ρ is localized in a right half-line and σ ≺ α−

ρ

in a left half-line. �

The following lemma extends Theorem 20.

Lemma 30. Let A be a completely rational net, {[ρi]}i the system of all irreducible
sectors with finite dimension, and B ⊃ A ⊗ Aopp the LR net. The following are
equivalent:

(i) The braiding of the net A is non-degenerate.
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(ii) B has no non-trivial localized endomorphism (localized in a bounded interval,
finite index).

Proof We use now an argument in [7]. Let σ be a non-trivial irreducible localized
endomorphism of B localized in an interval, with d(σ) < ∞.

By Frobenius reciprocity

σ ≺ α+
σrest ,

σ ≺ α−
σrest ,

where σrest = γ ·σ|A⊗Aopp and γ : B → A⊗Aopp is a canonical endomorphism. Hence
if ρk ⊗ id ≺ σrest is an irreducible sector with [α+

ρk⊗id] = [σ], then by [28], Prop. 3.9,
the monodromy of ρk ⊗ id with γ|A⊗Aopp =

∑
ρi ⊗ ρopp

i must be trivial, namely ρk is
a non-trivial sector with degenerate braiding.

The converse is true, namely if ρk is a non-trivial degenerate sector, then α+
ρk⊗id

is a non-trivial sector of B localized in a bounded interval. �

Lemma 31. Let A be a completely rational net with modular PCT and let {[ρi]}i be
the system of all finite dimensional sectors of A. If E = I1 ∪ I2 ∈ I2, then

λE =
⊕

i

ρiρ̄i|A(E),

where λE = γE |A(E), the ρi’s are localized in I1 and the ρ̄i’s are localized in I2

Proof Let j = AdJ , where J is the modular conjugation of A(0,∞). Given I ∈ I
we may identify A(I)opp with j(A(I)) = A(−I). We define a net Ã on R setting

Ã(I) ≡ A(I)⊗A(I)opp = A(I)⊗A(−I), I ∈ I.

With I = (a, b) with 0 < a < b and E = I ∪−I , let γE : Â(E) → A(E) be the canon-
ical endomorphism and λE ≡ γE|A(E). We identify now λE with an endomorphism of

ηI of Ã(I) and want to show that ηI extends to a localized endomorphism of Ã.
The proof is similar to the one of Theorem 12. With d > c > b, by Lemma 11 there

is an extension η of η(a,b) to Ã(a, d) with η|Ã(b,d) = id and a canonical endomorphism

η(a,d) acting trivially on A(a, c) with a unitary u ∈ Ã(a, d) such that

η = Adu · η(a,d).

Therefore Adu|Ã(−∞,c) is an extension of η(a,b) to Ã(−∞, c) which acts trivially on

Ã(−∞, a) and on Ã(b, c). Letting c → ∞ we obtain the desired extension of η(a,b) to

Ã, that we still denote by η.
Now, by Lemma 27 for Ã, every irreducible subsector of η will be equivalent

to ρh ⊗ (j · ρk · j) for some h, k, hence each irreducible subsector of λE must be
equivalent to ρh · ρ̄k|A(E) where ρh is localized in (a, b) and ρk is localized in (−b,−a).
By Theorem 9 this is possible if and only if h = k. �

23



Corollary 32. Let A be completely rational with modular PCT. The following are
equivalent.

(i) The net A has no non-trivial sector with finite dimension.

(ii) The net A has no non-trivial sector (with finite or infinite dimension).

(iii) µA = 1, namely A(E)′ = A(E ′) for all E ∈ I2.

Proof (i) ⇒ (ii): It will be enough to show that every sector (possibly with infinite
dimension) ρ of A contains the identity sector. Given E = I1 ∪ I2 with I1, I2 ∈ I,
we may suppose that ρ is localized in I1 and choose a sector ρ′ equivalent to ρ and
localized in I2. If u is a unitary with Adu · ρ = ρ′, then u ∈ Â(E), hence u ∈ A(E)
by assumptions. Now A(E) 
 A(I1)⊗A(I2) by the split property, hence there exists
a conditional expectation E : A(E) → A(I1) with E(u) �= 0, thus E(u) is a non-zero
intertwiner between ρ and the identity.

(ii) ⇒ (iii) follows by Lemma 31.
(iii) ⇒ (i) follows by Th. 9 (or by Lemma 31). �

The condition µA = 1 is however compatible with the existence of soliton sectors.
Note also that the condition that A(E) ⊂ Â(E) has depth ≤ 2 (equivalently Â(E)

is the crossed product of A(E) by a finite-dimensional Hopf algebra) is equivalent to
the innerness of the sector λ extending λE (because λE is implemented by a Hilbert
space of isometries in Â(E) [26]), hence it is equivalent to the the property that all
irreducible sectors of A have dimension 1 by Lemma 31.

The following is the main result of this paper.

Theorem 33. Let A be completely rational with modular PCT. Then

µA = Iglobal ≡
∑

d(ρi)
2

and A(E) ⊂ Â(E) is isomorphic to the LR inclusion associated with A(I1) ⊗A(I2)
and all the finite-dimensional irreducible sectors [ρi] of A.

Proof Â(E) ⊃ A(E) contains the LR inclusion by the following Proposition 36.
Since µA = Iglobal by Lemma 31 it has to coincide with the LR inclusion. �

Corollary 34. Let A be completely rational and conformal. The inclusions A(E) ⊂
Â(E) are all isomorphic for E ∈ I2.

Proof If I ∈ I and the ρi’s are localized in I , for any given I1 ∈ I there is a Möbius
transformation giving rise to an isomorphism of A(I) with A(I1) carrying the ρi’s
to endomorphisms localized in I1. Therefore the isomorphism class of {A(E), λE}
is independent of E ∈ I2. Hence the LR inclusions based on that are isomorphic.

�
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Indeed, by using the uniqueness of the III1 injective factor [6, 19] and the classi-
fication of its finite depth subfactors [40] we have the following.

Corollary 35. Let A be completely rational and conformal. The isomorphism class
of the inclusion A(E) ⊂ Â(E), E ∈ I2, dependes only on the tensor category of the
sectors of A, not on its model realization.

Proof If A is non-trivial and I is an interval, the A(I) is a III1 factor and, as the
split property hols, A(I) is injective (see e.g. [27]). Thus A(I) is the unique injective
III1 factor [19].

By Popa’s theorem [40], if N is a III1 injective factor and T ⊂ End(N ) a rational
tensor category isomorphic to the tensor category of sectors of A (as abstract tensor
categories), then there exists an isomorphism of N with A(I) implementing the
equivalence between the two tensor categories.

Since the LR inclusion N ⊗N opp ⊂ M clearly depends, up to isomorphism, only
on N and the tensor category T ⊂ End(N ), it is then isomorphic to A(E) ⊂ Â(E).

�

We now show that, even in the infinite index case, the two-interval inclusion
always contains the LR inclusion associated with any rational system of irreducible
sectors.

Proposition 36. Let A be completely rational with modular PCT j and E = I∪−I ∈
I2 a symmetric 2-interval and {[ρi]} a rational system of irreducible sectors of A
with finite dimension, with the ρi’s localized in I. Let Ri ∈ (id, ρ̄iρi) be non-zero
intertwiners, where ρ̄i = j · ρi · j.

If M is the von Neumann subalgebra of Â(E) generated by A(E) and {Ri}i, then
M ⊃ A(E) is isomorphic to the LR inclusion associated with {[ρi]}i, in particular

[M : A(E)] =
∑

i

d(ρi)
2.

More generally this holds true if the assumption of complete rationality is relaxed with
possibly [Â(E) : A(E)] = ∞.

Proof Denoting by N the factor A(0,∞), we may assume Ī ⊂ (0,∞) and consider
the ρi as endomorphisms of N . Let then Vi be the isometry standard implementation
of ρi as in [17]. Since JViJ = Vi, we have

ρiρ̄i(X)Vi = ViX

for all X ∈ N ∨N ′, hence for all local operators X by strong additivity.
Since ρi is irreducible, (id, ρiρ̄i) is one-dimensional, thus Ri is a multiple of Vi and

we may assume Ri =
√

d(ρi)Vi, thus

R∗
i Ri = d(ρi). (9)
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Now ViVj is the standard implementation of ρiρj on N hence by [17, Proposition
A.4], we have

RiRj =
∑

k

Ck
ijRk, (10)

where Ck
ij is the canonical intertwiner between ρkρ̄k and ρiρj ρ̄iρ̄j given by

Ck
ij =

∑
h

whj(wh) 

∑

h

wh ⊗ j(wh), (11)

where the wh’s form an orthonormal basis of isometries in (ρk, ρiρj).
Setting ρ0 = id, we also have

R∗
i = d(ρi)C

0∗
īi Rī. (12)

Indeed the above equality holds up to sign by the j-invariance of both members [17,
Lemma A.3], but the − sign does not occur because both members have positive
expectation values on the vacuum vector.

Now by the split property A(E) = A(I) ∨A(−I) 
 A(I)⊗A(−I) and A(−I) =
j(A(I)) can be identified with A(I)opp, therefore M is isomorphic to the algebra gen-
erated by A(I)⊗A(I)opp and multiple of isometries Ri satisfying the above relations.
Moreover, there exists a conditional expectation from M to A(I)⊗A(I)opp.

Corollary 46 then gives the desired isomorphism between A(E) ⊂ M and the LR
inclusion. (The Longo-Rehren inclusion in [31], as well as in [28], is dual to the one
in this paper, but it does not matter here. Notice further that, in the conformal case,
the 2-interval inclusion A(E) ⊂ Â(E) is manifestly self-dual.)

The above proof works also in the case case µA = ∞ thanks to Prop. 45. �

Corollary 37. Let A be completely rational with modular PCT. Then the braiding
of the tensor category of all sectors of A is non-degenerate.

Proof With the notations in Corollary 26 we have µ2
A = I2

globalµB. On the other
hand I2

global = Iglobal(A⊗Aopp), hence

Iglobal(A⊗Aopp) = µ2
A = I2

globalµB

therefore µB = 1. By Corollary 32 we B has no non-trivial sector localized in a
bounded interval and this is equivalent to the non-degeneracy of the braiding by
Lemma 30. �

That µA = Iglobal implies the non-degeneracy of the braiding has been noticed in
[32, Corollary 4.3].

An immediate consequence of Corollary 37 follows from the work [41], where a
model independent construction of Verlinde’s matrices S and T has been performed,
provided the braiding symmetry is non-degenerate, thus providing a corresponding
representation of the modular group SL(2, Z). Hence we have:
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Corollary 38. The Verlinde’s matrices T and S constructed in [41] are non-degene-
rate, hence there exists an associated representation of the modular group SL(2, Z).

Corollary 39. Let A be completely rational with modular PCT. Every sector of A
is a direct sum of finite dimensional sectors.

Proof Assuming the contrary, by Proposition 59 we have an irreducible sector [ρ]
with infinite dimension. Let E = I1 ∪ I2 ∈ I2 with ρ localized in I1 and ρ′ equivalent
to ρ and localized in I2. Let u be a unitary in (ρ, ρ′). Then u ∈ Â(E), hence it has
a unique expansion

u =
∑

i

xiRi, xi ∈ A(E),

where Ri are as in Proposition 36. As xu = uρ(x), x ∈ A(I1), we have

x
∑

i

xiRi =
∑

i

xiRiρ(x) =
∑

i

xi(ρi · ρ̄i)(ρ(x))Ri =
∑

i

xiρi(ρ(x))Ri ∀x ∈ A(I1),

thus xxi = xiρi(ρ(x)) for all i. As there is a xi �= 0, by the split property there is a
non-zero intertwiner between ρi · ρ and the identity. As ρi and ρ are irreducible, this
implies that ρ is finite dimensional, contradicting our assumption. �

Corollary 40. Let A be conformal and completely rational. Then every representa-
tion on a separable Hilbert space is Möbius covariant with positive energy.

Proof By the preceding result every such representation is a direct sum of irre-
ducible sectors with finite dimension. According to [16] every finite dimensional
sector is covariant with positive energy, thus also a direct sum of such sectors. �

6 n-Interval Inclusions

In this section we extend the results on the 2-interval subfactors to arbitrary multi-
interval subfactors. Let A be a local, irreducible net on S1. We assume A to be
completely rational with modular PCT, so that our previous analysis applies. Al-
ternatively A may be assumed to be conformal with µA = [Â(E) : A(E)] finite and
independent of the 2-interval E; this setting will be needed to derive Cor. 7.

If E ∈ In we set
µn = [Â(E) : A(E)] .

With this notation µA = µ2. We also consider the situation occurring in representa-
tions different from the vacuum representation: if ρ is a localizable representation of A
(i. e. a DHR representation, that, on S1, are just the locally normal representations),
we set µρ

n = [ρ(A(E ′))′ : ρ(A(E))].
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Lemma 41. µρ
n = µρ

1 µn , ∀n ∈ N.

Proof Let E = I1 ∪ I2 ∪ · · · ∪ In ∈ In. We may suppose that ρ is an endomorphism
of A localized in I1. Since ρ acts trivially on E ′, we have ρ(A(E ′))′ = A(E ′)′ = Â(E),
thus the inclusion ρ(A(E)) ⊂ ρ(A(E ′))′ is a composition

ρ(A(E)) ⊂ A(E) ⊂ ρ(A(E ′))′ = Â(E) ;

by the split property ρ(A(E)) ⊂ A(E) is isomorphic to ρ(A(I1))⊗A(I2 ∪ · · · ∪ In) ⊂
A(I1) ⊗ Â(I2 ∪ · · · ∪ In), therefore

µρ
n = [Â(E) : A(E)] · [A(I1) : ρ(A(I1)] .

�

Lemma 42. µρ
n = d(ρ)2 µn−1

2 , ∀n ∈ N.

Proof By the index-statistics theorem [25] we have µρ
1 = d(ρ)2, hence, by Lemma

41, we only need to show that µn = µn−1
2 . We proceed inductively. If n = 1 the claim

is trivially true. Assume the claim for a given n and let En = I1 ∪ · · · ∪ In ∈ In and
En+1 = I1 ∪ · · · ∪ In ∪ In+1 ∈ In+1. Then

A(En+1) = A(En) ∨A(In+1) ⊂ Â(En) ∨A(In+1) ⊂ Â(En+1) ,

thus, by the split property, µn+1 = µn · [Â(En+1) : Â(En) ∨ A(In+1)] and, by the
inductive assumption, we have to show that Â(En) ∨A(In+1) ⊂ Â(En+1) is equal to
µ2. But the commutant of this latter inclusion A(I ′

n+1)∩A(E ′
n) ⊂ A(E ′

n+1) has index
is µ2 because, by the split property, turns out to be isomorphic to A(I�∪Ir)⊗A(L) ⊃
Â(I�∪Ir)⊗A(L), namely to a 2-interval inclusion tensored by a common factor, where
I� and Ir are the two intervals of E ′

n+1 contiguous to In+1 and L is the remaining
(n − 1)-subinterval of E ′

n+1. �

Theorem 43. Let A be a local, irreducible completely rational net with modular
PCT. Let E = ∪n

i=1Ii ∈ In and λ(n) = γ(n)|A(E) where γ(n) is a canonical endo-
morphism from Â(E) into A(E). Then

λ(n) ∼=
⊕

i1,... ,in

N0
i1...in

ρi1ρi2 · · · ρin , (13)

where {[ρi]}i are all the irreducible sectors with finite statistics, ρik being localized in
Ik. N0

i1...in is the multiplicity of the identical endomorphism in the product ρi1 . . . ρin.
The same results hold true if complete rationality is replaced by conformal in-

variance and assuming [Â(E) : A(E)] = Iglobal < ∞ independently of the 2-interval
E.
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Proof Let I be an interval which contains ∪iIi and let ρik , k = 1, . . . , n, be ir-
reducible endomorphisms localized in Ik, respectively. Then the intertwiner space
between ρi1ρi2 · · · ρin, considered as an endomorphism of A(I), and the identity has
dimension N0

i1...in
. We are using here the equivalence between local and global inter-

twiners, that holds either by strong additivity of by conformal invariance [17]. These
intertwiners are multiples of isometries in Â(E). Thus, by the argument leading to
Th. 9, ρi1ρi2 · · · ρin |A(E) is contained in λ(n) with multiplicity N0

i1...in . We have thus
proved the inclusion � in (13). Now the dimension of the endomorphism on the right
hand side of (13) has been computed in [50]. For the sake of selfcontainedness we
repeat the argument:∑

i1,... ,in

N0
i1...in

d(ρ1) · · · d(ρn) =
∑

i1,... ,in−1

(∑
in

N in
i1...in−1

d(ρin)

)
d(ρi1) · · · d(ρin−1)

=
∑

i1,... ,in−1

(
d(ρ1) · · · d(ρin−1)

)2
=

(∑
i

d(ρ2
i )

)n−1

, (14)

where we have used Frobenius reciprocity N0
i1...in

= N in
i1...in−1

, the fact d(ρ) = d(ρ) and
the identity

∑
i〈ρi, ρ〉d(ρi) = d(ρ). On the other hand, we have

d(λ(n)) = [Â(E) : A(E)] = µn−1
A = In−1

global = (
∑

i

d(ρi)
2)n−1,

where the first equality is obvious, the second is given by Lemma 42 and the last one
follows from the results of the preceding section. Thus the endomorphisms on both
sides of (13) have the same dimension, hence they are equivalent.

The last claim in the statement follows by the same arguments and the equivalence
between local and global intertwiners. �

Corollary 44. Let A be as in Th. 43. If E ∈ In, then A(E) ⊂ Â(E) is isomorphic
to the n-th iterated LR inclusion associated with N ≡ A(I), I ∈ I, and the system
of all sectors of A (considered as sectors of N ).

In particular, for a fixed n ∈ N, the isomorphism class of A(E) ⊂ Â(E) depends
only on the superselection structure of A and not on E ∈ In.

Proof Let E = I1∪· · ·∪ In ∈ In with Ē ⊂ (0,∞) and n = 2k. It follows by Lemma
42 and the split property that

[Â(E ∪−E) : Â(E) ∨ Â(−E)] = Iglobal .

On the other hand, if the ρi’s are localized in I1, then the algebra generated by Â(E)∨
Â(−E) and the standard implementation isometries Vi of ρi|Â(E) is the associated LR

inclusion, analogously as in Th. 33, and is contained in Â(E ∪−E), hence coincides
with that by the equality of the indices.

The corollary then follows in the case n = 2k by induction, once we note that at
each step the extension α+

ρi⊗id from Â(E) ∨ Â(−E) to Â(E ∪−E) is ρi|Â(E∪−E).
The same is then true for an arbitrary n by taking relative commutants. �
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7 Examples and further comments

Our results may be first illustrated by considering the case of an inclusion of com-
pletely rational, local conformal irreducible nets A ⊂ B, where A = BG is the
fixed-point of B with respect to the action of a finite group G and µB = 1. Then
[B : A] = |G|, thus by Prop. 24, Iglobal(A) = µA = |G|2. Now A has the DHR [9]

irreducible sectors [ρπ] associated with π ∈ Ĝ and∑
π∈Ĝ

d(ρπ)2 = |G|,

therefore A has extra irreducible sectors [σi] with∑
i

d(σi)
2 = |G|2 − |G|.

For example, in the case of Ising model, we have A = B�2 as above (but with B twisted
local, yet this does not alter our discussion), thus µA = 4 and thus

∑
d(ρi)

2 = 4, so
the standard three sectors are the only irreducible sectors.

On the other hand, in the situation studied in [34], the superselection category of
A is equivalent to the representation category of a twisted quantum double Dω(G)
with ω ∈ H3(G, T). Since Dω(G) is semisimple we again have∑

σ∈�Dω(G)

d(σ)2 = dim Dω(G) = |G|2 = µA.

One may compare this with the situation occurring on a higher dimensional space-
time. There the strong additivity property may be replaced by the requirement that
A(O′ ∩ Õ)′ ∩ A(Õ) = A(O) if O ⊂ Õ are double cones. If E ≡ O1 ∪ O2, where O1

and O2 are double cones with space-like separated closure, the split property gives a
natural isomorphism of A(O1) ∨ A(O2) with A(O1) ⊗A(O2) and

[A(E ′)′ : A(E)] = Iglobal =
∑
π∈Ĝ

d(ρπ)2 = |G|,

where G is the gauge group and the ρπ’s are the DHR sectors [9] (there is no extra
sectors). The reason for this difference is that on S1 the complement of a 2-interval is
still a 2-interval, thus the inclusion A(E) ⊂ Â(E) is self-dual, while on the Minkowski
spacetime the spacelike complement of O1 ∪ O2 is a connected region producing no
charge transfer inclusion.

The index µA in the models given by the loop group construction for SU(n)k

has been computed in [50]. Our results apply in particular to these nets and the
2-interval inclusion is the LR inclusion associated with the corresponding irreducible
sectors {[ρi]}i.
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We note that in this case the 2-interval inclusion is not the asymptotic inclusion of
the corresponding Jones-Wenzl subfactor [24, 48], even up to tensoring by a common
injective III1 factor. Consider SU(2)k as an example. The net has k + 1 sectors and
if we choose the standard generator, we get a corresponding subfactor of Jones with
principal graph Ak+1, up to tensoring a common injective factor of type III1, as in [47].
If we apply the construction of the asymptotic inclusion to this subfactor, we get a
“quantum double” of only the sectors corresponding to the even vertices of Ak+1. We
get the same result, if we apply the LR construction to the system of N -N sectors (or
M-M sectors). But the construction of a subfactor from 4 intervals gives a “quantum
double” of the system of all the sectors, both even and odd. If we want to get this
system from the asymptotic inclusion or the Longo-Rehren inclusion, we have to
use also bimodules/sectors corresponding to the odd vertices of the (dual) principal
graph. In order to get this LR inclusion from the construction of the asymptotic
inclusion, we need to proceed as follows. Let {[ρi]}i be the set of all the sectors for
the net arising from the loop group construction for SU(n)k as above. Then for a
fixed interval I ⊂ S1, we consider (

⊕
i ρi)(A(I)) ⊂ A(I) which has finite index and

finite depth. Take a hyperfinite II1 subfactor P ⊂ Q with the same higher relative
commutants as (

⊕
i ρi)(A(I)) ⊂ A(I). Then the tensor categories of the sectors with

quantum 6j-symbols of Q ∨ (Q′ ∩ Q∞) ⊂ Q∞ and A(E) ⊂ Â(E) are isomorphic.
For this reason, the index of the asymptotic inclusion of the Jones subfactor with
principal graph Ak+1 is half of that of the subfactor arising from 4 intervals and the
net for SU(2)k. For SU(n)k, this ratio of the two indices is n.

Finally we notice that there are models like the SO(2N)1 WZW models, see
[1] or [34], where all irreducible sectors have dimension one, yet the superselection
category C is modular in agreement with our results. In these cases the fusion graph
is disconnected, therefore the equivalent categories of M−M and of N ⊗ N opp −
N ⊗N opp sectors are proper subcategories of the categories C × Copp 
 D(C), where
D(C) is the quantum double of C.

We close this section with a few questions. Does there exist a net with only
trivial sectors and non-trivial 2-interval inclusions (thus µA = ∞)? Does complete
rationality imply strong additivity? Is the LR inclusion the only extension of N⊗N opp

with the given canonical endomorphism
⊕

i ρi ⊗ ρopp
i ?

A The crossed product structure of the LR inclu-

sion

Let N be an infinite factor and {[ρi]}i a rational system of irreducible sectors of N .
The LR inclusion [28] is a canonical inclusion N ⊗N opp ⊂ M associated with N and
{[ρi]}i such that

λ 

⊕

i

ρi ⊗ ρopp
i ,
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where λ is the restriction to N ⊗ N opp of the canonical endomorphism of M into
N ⊗N opp.

In [28] such an inclusion is obtained by a canonical choice of the intertwiners
T ∈ (id, λ) and S ∈ (λ, λ2) that characterize the canonical endomorphism [26] (Q-
system). We now show the universality property of this inclusion and its crossed
product structure, that will provide a different realization of it. By LR inclusion we
will mean the upward LR inclusion.

We shall consider the free ∗-algebra M0 generated by N ⊗N opp and elements Ri

satisfying the relations
Rix = (ρi ⊗ ρopp

i )(x)Ri, x ∈ N ⊗N opp ,
R∗

i Ri = d(ρi) ,
RiRj =

∑
k Ck

ijRk ,
R∗

i = d(ρi)C
0∗
īi Rī ,

(15)

where Ck
ij is the canonical intertwiner between ρk ⊗ ρopp

k and ρiρj ⊗ ρopp
i ρopp

j given by

Ck
ij =

∑
h wh ⊗ j(wh), with j the antilinear isomorphism of N with N opp, and the

wh’s form an orthonormal basis of isometries in (ρk, ρiρj).
We equip M0 with the maximal C∗ semi-norm associated to the representations

of M0 whose restriction to N ⊗ N opp are normal and denote by M the quotient
of M0 modulo the ideal formed by the elements that are null with respect to this
seminorm and refer to M as the free reduced pre-C∗-algebra generated by N ⊗N opp

and the Ri’s.

Proposition 45. Let N be an infinite factor with separable predual and {[ρi]}i a
rational system of finite-dimensional irreducible sectors of N .

Let M be the free reduced pre-C∗-algebra generated by N ⊗N opp and elements Ri

satisfying the relations (15) as above.
Then M is a factor and N ⊗ N opp ⊂ M is isomorphic to the LR inclusion

associated with N and {[ρi]}i.
In particular every element X ∈ M has a unique expansion

X =
∑

i

xiRi, xi ∈ N ⊗N opp.

In other words: if N ⊗N opp acts normally on a Hilbert space H and Ri ∈ B(H)
are elements satisfying the relations (15), then the sub-algebra M of B(H) generated
by N ⊗ N opp and the Ri’s is a factor and N ⊗N opp ⊂ M is isomorphic to the LR
inclusion.

Proof Clearly all elements of M have the form

X =
∑

i

xiRi, xi ∈ N ⊗N opp, (16)

and we may suppose that M acts on a Hilbert space so that N and N opp are weakly
closed.
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We now construct an conditional expectation E : M → N⊗N opp. Setting ρ0 = id,
the expectation E may be defined by

E(X) = x0 (17)

for X given by (16), once we show that this is well-defined. To this end we will apply
the averaging argument in [23].

Let J be the set of all x0 ∈ N ⊗N opp such that there exist xi ∈ N ⊗N opp, i > 0,
with

∑
i≥0 xiRi = 0. Clearly J is a two-sided ideal of N ⊗ N opp, hence J = 0 (as

we want to show) or J = N ⊗N opp (we may suppose N to be of type III). Suppose
J �= 0 and let X = 1 +

∑
i>0 xiRi = 0, thus

X = 1 +
∑
i>0

uxiRiu
∗ = 1 +

∑
i>0

uxiρi ⊗ ρopp
i (u∗)Ri = 0

for all unitaries u ∈ N⊗N opp. Letting u run in the unitary group of a simple injective
subfactor R of N ⊗N opp and taking a mean over this group, we have

X = 1 +
∑
i>0

yiRi = 0,

where yi ∈ N ⊗N opp intertwines id and ρi ⊗ ρopp
i on R, thus on all N ⊗N opp by the

simplicity of R. Since ρi ⊗ ρopp
i is irreducible, yi = 0, i > 0, and we have 1 = 0, a

contradiction.
Notice now that

RiR
∗
i = d(ρi)RiC

0∗
īi Rī = d(ρi)ρi ⊗ ρopp

i (C0∗
īi )RiRī =

∑
k

d(ρi)ρi ⊗ ρopp
i (C0∗

īi )Ck
īiRk,

thus, by the conjugate equation in [25], we have

E(RiR
∗
i ) = d(ρi)ρi ⊗ ρopp

i (C0∗
īi )C0

īi =
1

d(ρi)
,

so every X ∈ M has the unique expansion

X =
∑

i

xiRi, xi = d(ρi)E(XR∗
i ) . (18)

Denoting by M1 ⊃ N ⊗N opp the LR inclusion associated with N and {[ρi]}i, M1

is generated by N ⊗ N opp and elements R′
i, with an expectation E ′, satisfying the

relations as in (15) and (18) [31, Section 5], hence the linear map

Φ : X ≡
∑

i

xiRi ∈ M → Φ(X) ≡
∑

i

xiR
′
i ∈ M1 (19)

is clearly a homorphism of M onto M1, which is the identity on N ⊗ N opp. Φ is
clearly one-to-one by the uniqueness of the expansion (18) both in M and in M1.

�
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Note that the above Proposition gives an alternative construction of the LR in-
clusion, which is similar to Popa’s construction of the symmetric enveloping algebra
[39], as follows. Let N act standardly on L2(N ) and Vi be the standard isometry
implementing ρi. The ∗-algebra A generated by N and N ′ is naturally isomorphic
to the algebraic tensor product N � N opp and the operators Ri ≡

√
d(ρi)Vi satisfy

the relations (15) by [17, Appendix A]. By the above argument there exists a condi-
tional expectation E : B → A, where B is the ∗-algebra generated by A and the Vi’s.
Taking a normal state ϕ of N , the state ϕ̃ ≡ ϕ � ϕopp · E of B gives by the GNS
representation the LR inclusion πϕ̃(A)′′ ⊂ πϕ̃(B)′′ (Prop. 45).

Corollary 46. Let N be an infinite factor with separable predual and {[ρi]}i a ratio-
nal system of finite-dimensional irreducible sectors of N .

Let M be a von Neumann algebra with M ⊃ N ⊗ N opp and Ri ∈ M elements
satisfying the relations (15). If M is generated by N ⊗ N opp and the Ri’s, then
N ⊗N opp ⊂ M is isomorphic to the LR inclusion associated with {[ρi]}i.

In particular (N ⊗N opp)′ ∩M = C and there exists a normal conditional expec-
tation from M to N ⊗N opp.

Proof The proof is immediate, the isomorphism is obtained as in (19):

X ∈ M →
∑

i

d(ρi)E(XR∗
i )R

′
i ,

(notations analogous to the ones in (19). �

In the following we shall iterate the LR construction, in order to describe the
structure of multi-interval subfactors.

With N an infinite factor as above and {[ρi]}i a system of irreducible sectors with
unitary braiding symmetry, let α+ be the induction map from sectors ρi ⊗ ρopp

j of
N ⊗ N opp to sectors of the LR extension M1 ≡ M defined by formula (7). Then
{α+

ρi⊗id}i is a system of irreducible sectors of M with braiding symmetry and we may
construct the corresponding LR inclusion M1 ⊗Mopp

1 ⊂ M2, where the opposite of
α+

ρi⊗id is α+
ρ̄i⊗id. We may then iterate the procedure to obtain a tower M1 ⊂ M2 ⊂

M2k ⊂ · · · and thus an inclusion

Nn ⊂ Mn , n = 2k ,

where Nn ≡ N ⊗N opp ⊗N ⊗ · · ·N ⊗N opp (2k tensor factors). By construction this
inclusion has index In−1

global and we refer to it as the n-th iterated LR inclusion.

Proposition 47. Let n = 2k. The n-th iterated LR inclusion Nn ⊂ Mn is irre-
ducible. If γ(n) : Mn → Nn is the canonical endomorphism, its restriction λ(n) =
γ(n)|Nn is given by

λ(n) 

⊕

i1,i2,...,in

N0
i1i2...in

ρi1 ⊗ ρopp
i2

⊗ · · · ⊗ ρopp
in

, (20)

where N0
i1i2...in ≡ 〈id, ρi1 ρ̄i2 · · · ρ̄in〉.
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Proof By a computation similar to the one in Sect. 6, λ(n) defined by formula (20)
has dimension

d(λ(n)) = In−1
global ,

therefore the formula λ(n) = γ(n)|Nn will follow by showing that ρi1 ⊗ ρopp
i2

⊗ · · · ⊗
ρopp

in ≺ γ(n)|Nn with multiplicity N0
i1i2...in and this will also imply the irreducibility of

Nn ⊂ Mn because then λ(n) � id with multiplicity one.
But ρi1 ⊗ ρopp

i2
⊗ · · · ⊗ ρopp

in
is unitarily equivalent to ρi1 ρ̄i2 · · · ρ̄in ⊗ id⊗ · · · ⊗ id in

Mn, by applying iteratively Lemma 18, hence we have the conclusion. �

Let now m < n = 2k be an integer and set Nm be the alternate tensor product of
k copies of N and N opp

Nm ≡ N ⊗N opp ⊗N ⊗ · · ·N ⊗ N opp , m factors.

We then define the m-th iterated LR inclusion

Nm ⊂ Mm ,

where Mm is defined as the relative commutant in Mn of the remaining n−m copies
of N and N opp, i.e. Mm = (N ′

m ∩Nn)′∩Mn. Note that Nm ⊂ Mm is an irreducible
inclusion of factors because N ′

m ∩Mm ⊂ N ′
n ∩Mn = C.

Arguing similarly as above we then have:

Proposition 48. Proposition 47 holds true for all positive integer n (in formula (20)
ρopp

in
is ρin if n is odd).

Proof Let n = 2k. Let {V �
i1...in : � = 1, 2, . . . Ni1...in} be a basis of isometries in the

space of elements in Mn that intertwine ρi1 ⊗ ρopp
i2

· · · ⊗ ρopp
in

on Nn. Arguing as in
Prop. 45 we see that any element X ∈ Mn has a unique expansion

X =
∑
i1...in

∑
�

x�
i1...in

V �
i1...in

, x�
i1...in

∈ Mn .

Using this expansion it is easy to check that for m < n the factor Mm defined above
is generate by Nm and the V �

i1...in
’s with im+1 = im+2 = · · · = in = 0. The rest then

follows easily. �

B Nets on R and on S1 and their representations.

In our paper we deal with nets on R, rather than nets on S1, for various reasons:
because this is the natural language for our arguments, because our results are valid
for nets that are not necessarily conformal and, finally, because even if our analysis
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were restricted to conformal nets on S1, our proofs would require the analysis more
general nets on R (the t = 0 LR net is not conformal).

In the next Section C we will however need to deal with nets on S1 and their rep-
resentations, and then conclude consequences for nets on R. Although the relations
between nets on R and on S1 and their representations is straightforward, we will
describe explicitely this point here for the convenience of the reader. However, for
simplicity, we consider only the case of strongly additive, Haag dual nets.

Nets on S1. Let A be a net of von Neumann algebras on S1 on a separable Hilbert
space satisfying Haag duality. We also assume the local von Neumann algebras A(I)
to be properly infinite, which is automatically true if is the split property holds, or if
A is conformal (except, of course, for the trivial net A(I) ≡ C).

A representation π of A is, by definition, a map I ∈ I → πI that associates to each
interval I ∈ I of S1 a representation, on a fixed Hilbert space, of the von Neumann
algebra A(I) such that πĨ|A(I) = πI if I ⊂ Ĩ. We shall say that π is locally normal if
πI is normal for all I ∈ I and that π is localizable if πI is unitary equivalent to id|A(I)

for all I ∈ I. As the A(I)’s are properly infinite the two notions coincide if π acts on
a separable Hilbert space. Moreover every representation of A on a separable Hilbert
space is automatically locally normal [45], thus localizable.

Denote by C∗(A) the universal C∗-algebra [14] associated with A (see also [16]).
For each I ∈ I there is a canonical embedding ιI : A(I) → C∗(A) and ιĨ |A(I) = ιI if

I ⊂ Ĩ ; we identify A(I) with ιI(A(I)) if no confusion arises. There is a one-to-one
correspondence between representations of the C∗-algebra C∗(A) and representations
of the net A, given by π → {I → πI ≡ π · ιI}. Locally normal representations of the
net A correspond, of course, to locally normal representations of C∗(A). We shall
always assume our representations to act on a separable Hilbert space, thus local
normality is automatic.

As Haag duality holds, a localizable representation π of C∗(A) is unitarily equiv-
alent to a representation of the form σ0 · ρ, where σ0 is the representation of C∗(A)
corresponding of the identity representation of A (we shall however not need this
result).

Nets on R. Given a net A of von Neumann algebras on S1 satisfying Haag duality
we may associate a net A0 of Neumann algebras on R = S1 � {∞} (identification by
Cayley transform) by setting

A0(I) = A(I) ,

for all bounded intervals I of R. We call A0 the restriction of A to R. Clearly, if A
is strongly additive, then A0 is also strongly additive and satisfies Haag duality on R

in the form

A(I)′ = A(R � I) , (21)

where I ⊂ R is either an interval or an half-line (a,∞) or (−∞, a), a ∈ R.
Here, if E ⊂ R has non-empty interior, we denote by A0(E) the C∗-algebra

generated by the von Neumann algebras A0(I)’s as I runs in the intervals contained
in the region E and set A0(E) = A0(E)′′.
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Conversely, let now A0 be a strongly additive net of properly infinite von Neumann
algebras A0(I) on the (bounded, non-trivial) intervals of R satisfying Haag duality
(21).

We may compactify R to S1 = R∪{∞} and extend A0 to a net A on the intervals
of S1 by defining

A(I) ≡ A0(S
1

� I)′ (22)

if I is an interval whose closure contains the point ∞. Clearly, A is the unique Haag
dual net on S1 whose restriction to R is A0; we thus call A the extension of A0 to
S1.

We state explicitely this one-to-one in the following.

Lemma 49. Let A be a net on S1 satisfying Haag duality and strong additivity.
Then its restriction A0 to R satifies strong additivity and Haag duality on R.

Conversely if A0 is a Haag dual (21), strongly additive net on R, then its extension
A to S1 is strongly additive and Haag dual.

Moreover A0 satisfies the split property on R if and only if A satisfies the split
property on S1.

Proof The proof is immediate. The statement concerning the split property follows
because an inclusion of von Neumann algebras N ⊂ M is split iff the commutant
inclusion M′ ⊂ N ′ is split. �

We now consider the relation between representations of a net A, satisfying Haag
duality and strong additivity on S1 as in Lemma 49 and its restriction A0 on R.

A DHR representation π0 of A0 is, by definition, a representation π0 of A0(R)
such that π0|�0(��I) is unitarily equivalent to id|�0(��I) for every bounded non-trivial
interval I of R, cf. [9].

Clearly a localizable representation π of A determines a DHR representation π0

of A0; indeed π0 is consistently defined on ∪a>0A(−a, a) by

π0(X) = πI(X), X ∈ A(I) ,

where I ≡ (−a, a), hence on all A(R) by continuity. We call π0 the restriction of π
to A0.

Conversely, as we shall see, every DHR representation π0 of A0(R) determines
uniquely a localizable representation π of A.

A localized endomorphism ρ of A0 is, by definition, an endomorphism of A0(R)
such that ρ|�0(I ′) = id|�0(I ′) for some interval I ⊂ R; one then says that ρ is localized
in I . ρ is transportable if for each interval I1 there is an endomorphism ρ1 localized
in I1 and (unitarily) equivalent to ρ (as representations of A0(R)). By Haag duality
then ρ1 = Adu ·ρ, where the unitary u belongs to A0(Ĩ), if Ĩ is any interval containing
both I and I1. In this paper (as is often the case) transportability is assumed in the
definition of localized endomorphism.
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By a classical simple argument [9], a DHR representation π0 of A0(R) is unitarily
equivalent to a (transportable) endomorphism ρ of A0(R) localized in each given
interval I ; it is enough to put

ρ(X) ≡ Uπ0(X)U∗, X ∈ A0(R) ,

where U is a unitary intertwiner between π0|�0(��I) and id|�0(��I).

Proposition 50. Let A be a strongly additive, Haag dual net on S1 and A0 be its
restriction to R, as in Lemma 49.

If π is a localizable representation of A, its restriction π0 to A0 is a DHR repre-
sentation of A0.

Conversely, if π0 is a DHR representation of A0, there exists a (obviously unique)
localizable representation π of A whose restriction to A0 is π0.

Proof By the above discussion, we only show that if π0 is a DHR representation of
A0, there exists a localizable representation π of A such that πI = π0|A(I) if I is a
bounded interval of R.

Indeed, if the closure of I contains the point ∞, we can define πI as the normal
extension of π0|�0(I�{∞}), once we show the necessary normality property. Now the
normality of π0|�0(I�{∞}) does not depend on the unitary equivalence class of π0, thus
we may replace π0 by a DHR endomorphism ρ of A0 localized in interval I1 ⊂ R with
I1 ∩ I = ∅. But then ρ|�0(I�{∞}) is the identity, hence normal. �

By definition, the sectors of A (resp. of A0) are the unitary equivalence classes of
localizable representations of A (resp. of DHR representations of A0). By the above
discussions, the two classes are in one-to-one correspondence.

On the other hand localizable representations of A corresponds to localizable
representations of C∗(A) and DHR representations of A0 are equivalent to DHR
localized endomorphisms of A0, hence we have the following.

Corollary 51. Let A0 be a strongly additive, Haag dual as in (21), net on R and A
be its extension to S1. The restriction map π → π0 gives rise to a natural one-to-one
correspondence between unitary equivalence classes of localizable representations of
C∗(A) and unitary equivalence classes of DHR localized endomorphisms of A0.

In particular π(C∗(A))′′ = π0(A0(R))′′, so π is of type I iff π0 is of type I.

Proof It remains to check the last part of the statement. As C∗(A) is generated
(as C∗-algebra) by the von Neumann algebras A(I) as I runs in the intervals of S1,
one has π(C∗(A))′′ = ∨IπI(A(I)), thus clearly π(C∗(A))′′ ⊃ π0(A0(R))′′.

On the other hand if I is an interval of S1, by local normality and strong additivity
we have πI(A(I)) = πI(A(I � {∞})) ⊂ π0(A0(R))′′, hence π(C∗(A))′′ ⊂ π0(A0(R))′′.

�

The naturality in the above corollary means that the tensor categories of lo-
calizable representations of C∗(A) and of DHR localized endomorphisms of A0 are
equivalent, but we do not need this form of the above statement.

38



C Disintegration of locally normal representations

and of sectors.

Takesaki and Winnink [44] have shown that a locally normal state decomposes into
locally normal states, if the split property holds. We shall show here analogous
results for localizable representations (sectors). Our arguments work, however, along
the same lines to show that locally normal representations decompose into locally
normal representations, also on higher dimensional manifolds.

We begin with a simple Lemma.

Lemma 52. Let M be a von Neumann algebra, L ⊂ M a σ-weakly dense C∗-
subalgebra and J ⊂ L a right ideal of L.

If π is a representation of L on a Hilbert space H such that π|J is σ-weakly
continuous and π(J)H = H, then π is σ-weakly continuous, thus it extends uniquely
to a normal representation of M.

Proof It is sufficient to show that π is σ-weakly continuous on the unit ball of L,
see e.g. [45]. Let then {ai}i be a bounded net of elements ai ∈ L such that ai → 0
σ-weakly. If t ∈ B(H) is a σ-weak limit point of {π(ai)}i, we have to show that t = 0.
By considering a subnet, if necessary, we may assume π(ai) → t. Given h ∈ J , we
have aih ∈ J and aih → 0, thus π(aih) → 0 because π|J is σ-weakly continuous,
therefore

tπ(h) = lim
i

π(ai)π(h) = lim
i

π(aih) = 0,

and this entails t = 0 because h is arbitrary and π(J)H is dense in H. �

We shall use the well-known fact that the C∗-algebra of compact operators on a
separable Hilbert space H has only one non-degenerate (i.e. not containing the zero
representation) representation, up to multiplicity, hence a unique normal extension
to B(H).

Corollary 53. Let N be a type I factor with separable predual, K ⊂ N the ideal of
compact operator relative to N and L a C∗-algebra with K ⊂ L ⊂ M.

If π is a representation of L such that π|K is non-degenerate, then π is σ-weakly
continuous, thus it extends uniquely to a normal representation of N .

Proof Immediate because any non-degenerate representation of K is σ-weakly con-
tinuous and K is σ-weakly dense in N . �

Let A be a net of von Neumann algebras on S1 over a separable Hilbert space
satisfying the split property and Haag duality.

If I, Ĩ are intervals, we write I ⊂⊂ Ĩ if the closure of I is contained in the interior
of Ĩ . For each pair of intervals I ⊂⊂ Ĩ we choose an intermediate type I factor
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N (I, Ĩ) between A(I) and A(Ĩ) and let K(I, Ĩ) be the compact operators of N (I, Ĩ)
(there is a canonical choice for N (I, Ĩ) [10], but this does not play a role here). We
denote by I� the set of intervals with rational endpoints and by A the C∗-subalgebra
of C∗(A) generated by all K(I, Ĩ) as I ⊂⊂ Ĩ run in I�. Clearly A is norm separable.

If I1 ⊂⊂ Ĩ1 ⊂ I2 ⊂⊂ Ĩ2 then clearly N (I1, Ĩ1) ⊂ N (I2, Ĩ2), but K(I1, Ĩ1) is not
included in K(I2, Ĩ2). For this reason we define the C∗-algebras associated to pairs
of intervals I ⊂⊂ Ĩ

L(I, Ĩ) ≡ N (I, Ĩ) ∩ A .

As N (I, Ĩ) is the multiplier algebra of K(I, Ĩ), L(I, Ĩ) consists of elements of A that
are multipliers of K(I, Ĩ).

By definition K(I, Ĩ) ⊂ L(I, Ĩ) ⊂ N (I, Ĩ) and A is the C∗-subalgebra of C∗(A)
generated by all L(I, Ĩ) as I ⊂⊂ Ĩ run in I�.

Lemma 54. If I1 ⊂⊂ Ĩ1 ⊂ I2 ⊂⊂ Ĩ2 are intervals then

L(I1, Ĩ1) ⊂ L(I2, Ĩ2) .

Proof L(I1, Ĩ1) ⊂ N (I1, Ĩ1) ⊂ N (I2, Ĩ2), thus

L(I1, Ĩ1) ⊂ N (I2, Ĩ2) ∩ A = L(I2, Ĩ2) .

�

Proposition 55. Let π be a locally normal representation of C∗(A). Then π|� is
a representation of A and π|K(I,Ĩ) is non-degenerate for every of pair of intervals

I ⊂⊂ Ĩ.
Conversely, if σ is a representation of A such that σ|K(I,Ĩ) is non-degenerate for

all intervals I, Ĩ ∈ I�, I ⊂⊂ Ĩ, there exists a unique locally normal representation σ̃
of C∗(A) that extends σ.

Moreover equivalent representations C∗(A) correspond to equivalent representa-
tions of A.

Proof The only non-trivial part is that σ extends to a locally normal representation
σ̃ of C∗(A). If I ⊂⊂ Ĩ are intervals in I�, we denote by σ̃I,Ĩ the unique normal

extension of σ|
�(I,Ĩ) to N (I, Ĩ) given by Corollary 53.

Given an interval I , we choose I1, Ĩ1 ∈ I�, I1 ⊂⊂ Ĩ1 such that I ⊂⊂ I1 and set

σ̃I ≡ σ̃I1,Ĩ1
|A(I) ,

We have to show that σ̃I is well-defined, then I → σ̃I is clearly a representation of
A.
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Indeed, let I2, Ĩ2 ∈ I� with I2 ⊂⊂ Ĩ2 be another pair such that I ⊂⊂ I2. We
can choose I3, Ĩ3 ∈ I� such that I ⊂⊂ I3 ⊂⊂ Ĩ3 ⊂⊂ I1 ∩ I2. Then by Lemma 54
L(I3, Ĩ3) ⊂ L(Ii, Ĩi), i = 1, 2, and therefore

σ̃I3,Ĩ3
= σ̃I1,Ĩ1

|N (I3,Ĩ3)
= σ̃I2,Ĩ2

|N (I3,Ĩ3) .

This concludes the proof. �

Proposition 56. Let π be a locally normal representation of C∗(A) on a separable
Hilbert space and denote by π� be the restriction of π to A. If

π� =

∫ ⊕

X

πλdµ(λ)

is a decomposition into irreducible representations πλ (which always exists), then πλ

extends to a locally normal representation π̃λ of C∗(A) for almost all λ.

Proof By Proposition 55, it is sufficient to show that there exists a null set E ⊂ X
such that πλ|K(I,Ĩ) is non-degenerate for λ /∈ E and all I, Ĩ ∈ I� with I ⊂⊂ Ĩ. This

is clear for a fixed pair I, Ĩ of the family, because πK(I,Ĩ) is non-degenerate. Then the

statement follows since the considered family of K(I, Ĩ)’s is countable. �

Proposition 57. With the notations in the Proposition 56, if π(C∗(A))′′ is a factor
not of type I, then for each λ ∈ X the set Xλ ≡ {λ′ ∈ X,πλ′ 
 πλ} has measure zero.

Proof The set Xλ is measurable by Lemma 60 below. We have µ(X � Xλ) > 0, as
otherwise π would be quasi-equivalent to πλ, hence π(A)′′ would be a type I factor.
If µ(Xλ) > 0, then π� would be the direct sum of two inequivalent representations

π� =

∫ ⊕

Xλ

πλdµ(λ) ⊕
∫ ⊕

X�Xλ

πλdµ(λ)

which is not possible since π(A)′′ is a factor. �

Corollary 58. If there exists a localizable representation π of C∗(A) with π(C∗(A))′′

a factor not of type I, then there exist uncountably many inequivalent irreducible
localizable representations of C∗(A).

Proof If the representation π is factorial not of type I, then the family of the πλ’s in
the above proposition contains an uncountable set of mutually inequivalent irreducible
localizable representations as desired. �

Corollary 59. Let A0 be a strongly additive, split net of von Neumann algebras on
the intervals of R which is Haag dual as in (21). If there exists a DHR localized endo-
morphism ρ of A0 with ρ(A0(R))′′ a factor not of type I, then there exist uncountably
many inequivalent irreducible DHR localized endomorphisms of A0.
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Proof Immediate by Corollary 58 and Corollary 51. �

Before concluding this appendix we have to prove a Lemma that has been used.
Let A be any separable C∗-algebra and σ a representation of A. Choose a sequence
of elements a� ∈ A dense in the unit ball A1, a sequence ϕi ∈ A∗ dense in the Banach
space of normal linear functionals (σ(A)′′)∗ associated with σ. A linear functional
ϕ ∈ A∗ is then normal with respect to σ if and only if

∀k ∈ N, ∃i ∈ N : |ϕ(a�) − ϕi(a�)| ≤
1

k
, ∀� ∈ N. (23)

We thus have the following.

Lemma 60. Let A be a separable C∗-algebra, π a representation of A on a separable
Hilbert space and π =

∫ ⊕
X

πλdµ(λ) a direct integral decomposition into a.e. irreducible
representations πλ of A. For any irreducible representation σ of A, the set Xσ ≡
{λ, πλ 
 σ} is measurable.

Proof Let ξ =
∫ ⊕

X
ξ(λ)dµ(λ) be a vector with ξ(λ) �= 0, for all λ ∈ X, and consider

the functional of A given by ϕλ = (πλ(·)ξ(λ), ξ(λ)).
As both σ and πλ are irreducible, we have σ 
 πλ if and only if ϕλ is normal with

respect to σ. With the previous notations, we then have by eq. (23)

Xσ =
⋂
k

⋃
i

⋂
�

Xik�

where

Xik� = {λ ∈ X : |ϕλ(a�) − ϕi(a�)| ≤
1

k
}.

As Xik� is measurable, also Xσ is measurable. �
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