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1 Introduction

Our aim in this work is to make a “double quantization” of studies of group actions
on von Neumann algebras in the setting of Ocneanu’s paragroup theory. Detailed
proofs will be given in [33].

Since the pioneering work [27] of V. F. R. Jones, the theory of subfactors has
made much progress both in the internal theory in operator algebras and in relations
to low-dimensional (quantum) topology, quantum groups, and theoretical physics.
In these interactions, a new and unexpected combinatorial structure has emerged in
the subfactor theory. So far, the most powerful machinery to study this structure is
Ocneanu’s paragroup theory [44], [46], [47].

One one hand, Ocneanu’s basic idea was to regard a general subfactor N ⊂ M
as a crossed product by an action of a “paragroup” on a factor N . In this sense, a
paragroup is a “quantized” object of an ordinary (finite) group. On the other hand,
several studies [9], [29], [32], [36], [38], [56], [57], [70], [71], [72] have been made on
group actions on subfactors. These are regarded as studies of actions of ordinary
groups on quantum objects. Thus we have the following table, and we will study the
missing entry in this work.

object action

subfactor classical quantum
Aut(M, N) quantum classical
? quantum quantum

Passing from a function algebra to a non-commutative operator algebra is often
called quantization, but note that the words quantum/quantization above have a
different meaning. In our setting here, a single factor and an ordinary group are
classical mathematical objects, and a paragroup represents the quantization.

We give a more concrete motivation for our study here. Orbifold construction in
the subfactor theory [13], [30], [75], [76] has been well-studied. Its basic idea, coming
from physics [11], [17], [18], [37], [59], is to make a “quotient” of a paragroup with a

1



certain symmetry. The most fundamental example is the Z2-symmetry of the A4n−3

subfactors.

�����

∗

∗

As in the above picture, the principal graph A4n−3 has a symmetry of order 2,
and this is really a symmetry of the paragroup. Then the quotient by the symmetry,
given by a certain fixed point algebra, produces a paragroup of type D2n. The fixed
point of the symmetry splits into two vertices by the “orbifold bifurcation”. (In the
case of A4n−1, the same construction gives back A4n−1, because the obstruction for
flatness kills D2n+1 as in [30]. This obstruction was further studied in [13] and later
identified with a conformal dimension in rational conformal field theory by F. Xu
[75].) In this construction, we use an automorphism of order 2 in Aut(M, N) and
make NZ2 ⊂ MZ2 , or N ×Z2 ⊂ M ×Z2. The automorphism appearing in this way is
actually the same automorphism appearing in the irreducible decompositions of the
descendent sectors or M-M bimodules, as shown in [9], [32], (or [16] more generally).
These automorphisms also played an important role in the work of M. Izumi [22],
[23]. A more complicated example of the orbifold construction is given below.
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The first paragroup, for a subfactor of H. Wenzl [69] with index value
sin2 3π/9

sin2 π/9
,

has a Z3-symmetry and the quotient is given by the next graph with the same index.
With this kind of construction, we get the following commuting square of type II1

factors with a finite group G, and the paragroups for N ⊂ M and N × G ⊂ M × G
are different.

N ⊂ M
∩ ∩

N × G ⊂ M × G
(1)

This difference suggests that the above commuting square itself has some inter-
esting combinatorial structure and we should study more general commuting squares.
For example, the notion of the co-standard graph of S. Popa [56], [57] is determined
by the tower N ′ ∩ (Mk × G) and this graph is an invariant of the above type of
commuting squares. So we are led to study of commuting squares of II1 factors. Our
assumption for the study is as follows.

Assumption 1.1 The four algebras M00, M01, M10, M11 are type II1 factors with the
following properties.

1. The square
M00 ⊂ M01

∩ ∩
M10 ⊂ M11

of AFD II1 factors is commuting and co-commuting in the sense of [61, Defini-
tion 3.4].
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2. [M11 : M00] < ∞.

3. The subfactor M00 ⊂ M11 has finite depth.

Condition (1) means a non-degenerate commuting square in the sense of S. Popa
[55].

We could generalize the third condition so that the subfactor M00 ⊂ M11 is
extremal and strongly amenable in the sense of [55], but we use the above assumption
for simplicity. See [33] for the full generality.

In the above setting, we regard the above commuting square in Assumption 1.1 as
a quantization of a commuting square (1). Thus the subfactor M10 ⊂ M11 is regarded
as a “crossed product by a paragroup action on M00 ⊂ M01”. Note that the situation
is now symmetric and we can also regard the subfactor M01 ⊂ M11 as a “crossed
product by a paragroup action on M00 ⊂ M10”.

We will show that such a commuting square is completely classified by combina-
torial objects generalizing Ocneanu’s paragroups and will give axiomatization of such
objects.

S. Okamoto tried to determine when the above commuting square is of the fol-
lowing type:

N ⊗ P ⊂ M ⊗ P
∩ ∩

N ⊗ Q ⊂ M ⊗ Q
(2)

From our viewpoint, this problem is regarded as a generalization of the Connes-
Jones-Ocneanu type splitting [10], [26], [43] of a “paragroup action” on a subfactor,
and we can get a characterization of the above type of commuting squares. But such
a commuting square is of rather trivial type, and it is not clear whether we really
have many different types of commuting squares. We will give several examples and
discuss their relations to Rational Conformal Field Theory (RCFT) and 3-dimensional
Topological Quantum Field Theory (TQFT).

At the end of the Introduction, we mention studies of intermediate subfactors
[7], [46, II.7], [66]. In our settings, the two factors M01 and M10 are intermediate
subfactors of M00 and M11, so the these studies look applicable, but our settings are
rather different from theirs. In the study of intermediate subfactors, one subfactor is
given, and we look for intermediate subfactors, but in our setting our initial object
is usually M00 ⊂ M01 and we are interested in what kind of commuting square we
can have for the fixed M00 ⊂ M01. Also, it is practically impossible to list all the
intermediate subfactors of M00 ⊂ M11 and determine which pair makes a commuting
square.

We finally note that the study of commuting squares of II1 factors was initiated
by Y. Watatani and his students [60], [61], [67], [68]. Our method gives classification
and construction of the objects they study.
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2 Survey of the paragroup theory

Before going into details of our new set of axioms, we start with the axiomatization
of Ocneanu’s paragroup theory, because we think that it will be helpful for under-
standing.

In this section, we mean by a subfactor an inclusion N ⊂ M of approximately
finite dimensional (AFD) factors of type II1 with finite Jones index and finite depth.
(Of course, we do not need the AFD condition for getting a paragroup, and the finite
depth condition could be weakened, but we just work in simpler cases.)

Ocneanu’s fundamental idea [44] to study a subfactor N ⊂ M was to look at the
bimodules naturally given by the inclusion, and have an analogue of a representation
theory (of compact groups). As emphasized by A. Connes, a bimodule over von
Neumann algebras are a correct analogue of a group representation. (See [52] for a
general theory of bimodules.) Then we have the following table of analogies. (We
also include entries for an essentially same method based on Longo’s sector theory
[22], [39], [40] for the subfactor theory of properly infinite factors [35].)

group representation bimodule sector

direct sum direct sum direct sum
tensor product relative tensor product composition
dimension (Jones index)1/2 statistical dimension
contragredient representation conjugate bimodule conjugate sector
Frobenius reciprocity Frobenius reciprocity Frobenius reciprocity
fundamental representation NMM ρ : M → N

With these in mind, we can give two (equivalent) axiomatizations [44], [47] of
higher relative commutants {N ′

j ∩ Mk}j,k. Because the higher relative commutants
completely recover the original subfactor in strongly amenable cases, which include
finite depth cases, by [55], it is enough to characterize the higher relative commutants
in combinatorial terms for classification of subfactors.

One axiomatization [44] is based on Ocneanu’s notion of flat connection and the
other is based on certain type of (finite) tensor category with (quantum) 6j-symbols.
The both were claimed Ocneanu without details. See [14], [30], [31], [77]. for details.
We list the corresponding table of the two axiomatizations.

flat connection tensor category

multiplication table (dual) principal graph fusion algebra
numerical data connection 6j-symbol
∗-structure unitarity unitarity
symmetry renormalization rule tetrahedral symmetry
algebraic compatibility flatness pentagon relation
similarity IRF model RCFT/TQFT
Jones’ An subfactor ABF model WZW SU(2)k model

KR Uq(sl2) 6j-symbol
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In the above, the entries “similarity” mean the two sets of axioms are similar to
those of interaction-round-faces (IRF) models in the theory of exactly solvable models
[4], and those of rational conformal field theory (RCFT) [8], [41] and topological
quantum field theory (TQFT) [3], [65]. The entries “Jones’ An subfactor” mean that
the Jones subfactors correspond to the Andrews-Baxter-Forrester model [2] in the
flat connection approach and to the Wess-Zumino-Witten SU(2)k models [74] and
the Kirillov-Reshetikhin 6j-symbols for Uq(sl2) [34] in the tensor category approach.

Note that if we replace the finite depth condition of the subfactor by strong
amenability [55], we need two more axioms; ergodicity and amenability. Ergodicity
[55] is expressed as factoriality of the model algebras given by the string algebra
construction [44], [45], [46], and amenability is expressed by an extremality [50], [51]
of the model inclusion.

An outline of the method of getting the combinatorial data in the both ways of
axiomatization out of a subfactor is as follows. First we take a bimodule NL2(M)M ,
which will be simply denoted by NMM , as a basic object. Next we make a (finite)
relative tensor product · · ·⊗N M⊗M M⊗N M⊗M · · · of NMM and MMN and make an
irreducible decomposition. The finite index assumption implies that we have finitely
many irreducible bimodules for each tensor product and the finite depth assumption
means that we have finitely many irreducible bimodules for all the possible tensor
products. We represent each irreducible bimodule (of one of four kinds, N -N , N -
M , M-N , M-M) by a vertex. Next we draw edges between vertices. For an N -N
bimodule X and an N -M bimodule Y , the number of edges is given by the multiplicity
of Y in X ⊗N M , which is also equal to the dimension of the intertwiner space
Hom(NX ⊗N MM , NYM ). This number of edges is also equal to the multiplicity
of X in Y ⊗M M and the dimension of Hom(NY ⊗M MN , NXN ) by the Frobenius
reciprocity [47], [77] of bimodules. We also draw edges between N -N bimodules
and M-N bimodules, N -M bimodules and M-M bimodules, and M-N bimodules
and M-M bimodules. We assign a co-isometric intertwiner to each edge so that the
intertwiners make an orthonormal basis and the Frobenius dual to the reversed edge.

Each edge of the Bratteli diagram of N ′ ∩ Mk corresponds to an intertwiner as
above. A path in the Bratteli diagram then corresponds to composition of inter-
twiners. For example, suppose we have a path of length 4 represented by four edges
ξ1 ∈ Hom(NN ⊗N MM , NMM ), ξ2 ∈ Hom(NM ⊗ MMN , NXN ), ξ3 ∈ Hom(NX ⊗N

MM , NYM ), ξ4 ∈ Hom(NY ⊗ MMN , NZN ), respectively. Then the composite inter-
twiner represented by this path is

ξ4 · (ξ3 ⊗ id) · (ξ2 ⊗ id) · (ξ1 ⊗ id) ∈ Hom(NM ⊗N M ⊗M M ⊗N M ⊗M MN , NZN ).

We take another path from NNN to NZN with the same length 4 represented by
η1, η2, η3, η4. We assign to the pair

(ξ1 · ξ2 · ξ3 · ξ4, η1 · η2 · η3 · η4)

the composition

(η1 ⊗ id)∗ · (η2 ⊗ id)∗ · (η3 ⊗ id)∗ · η∗
4 · ξ4 · (ξ3 ⊗ id) · (ξ2 ⊗ id) · (ξ1 ⊗ id)

∈ End(NM ⊗N M ⊗M M ⊗N M ⊗M MN).
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Such a pair of paths is called a string. In this way, we assign a matrix unit in the
higher relative commutant to a string. We summarize this method as follows.

graphical object meaning

vertex bimodule
edge intertwiner
reversed edge Frobenius dual
path composition of intertwiners
string matrix unit in the higher relative commutant

In this way, we get a graphical description of the higher relative commutants
{N ′ ∩Mk}. For a full description of the higher relative commutants, we have to deal
with the double sequence as follows.

·⊗N MM ·⊗M MN ·⊗N MM

End(NNN ) ⊂ End(NMM) ⊂ End(NMN) ⊂ · · ·
MMN⊗· ∩ ∩ ∩

End(MMN ) ⊂ End(MM ⊗N MM ) ⊂ End(MM ⊗N MN ) ⊂ · · ·
N MM⊗· ∩ ∩ ∩

End(NMN ) ⊂ End(NM ⊗N MM ) ⊂ End(NM ⊗N MN ) ⊂ · · ·
MMN⊗· ∩ ∩ ∩

...
...

...

By the above method, we get the Bratteli diagram for the above double sequence,
and we have several systems of matrix units described graphically. Because we have
different systems of the matrix units of the same algebra Nj ∩ Mk, we need to give
identification among several bases. This is done “locally” as follows. Make a square
with four vertices A, B, C, D and four edges ξ1, ξ2, ξ3, ξ4 from our graphical system.

�

�

� �
ξ2

ξ3

ξ1 ξ4

A

C

B

D

We will get a complex number from the above picture and the number will be
also denoted by this picture. Suppose that A, B, C, D are N -N , N -M , M-N , M-M
bimodules, respectively. Then we get the following diagram.

�

�
� �

ξ2

id⊗ξ3

ξ1⊗id ξ4

MM ⊗N A ⊗N MM

MC ⊗N MM

MM ⊗N BM

MDM
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With this diagram, we can make a composition ξ2 · (ξ1 ⊗ id) · (id ⊗ ξ3)
∗ · ξ∗4 ∈

End(MDM ) = C, which gives the desired number. The other kinds of bimodules are
treated similarly. We call this assignment of a number to each square a connection.
This is a map depending on specific choices of bimodules and intertwiners, and the
equivalence class of a connection is a well-defined invariant of a subfactor. This map
is, in a sense, a quantized version of the characteristic invariant [26]. The connection
is characterized by three axioms. The first one is easy and called unitarity.

�

�

� �
ξ3

ξ1

ξ4 ξ2

A

D

B

C �

�

� �
ξ3

ξ′1

ξ4 ξ′2

A

D

B ′

C

∑
C,ξ3,ξ4

= δB,B ′δξ1,ξ′1δξ2,ξ′2.

This just means that our co-isometries are chosen so that they make an orthonor-
mal basis.

Another axiom is the following, and this is a direct consequence of the Frobe-
nius reciprocity. In the operator algebraic framework, this condition corresponds
to the commuting square condition [53], [19] as in [45], [62]. This axiom is called
renormalization rule.

�

�

� �

�

�

� �

�

�

� �

�

�

� �

C

A

D

B

C

A

D

B

A

C

B

D

D

B

C

A

ξ2

ξ3

ξ1 ξ4

ξ2

ξ3

ξ1 ξ4

ξ3

ξ2

ξ̃1 ξ̃4

ξ̃2

ξ̃3

ξ4 ξ1

=

(
[B][C ]

[A][D]

)1/4

=

(
[B][C ]

[A][D]

)1/4

Here [A] means the square of the Jones index of the subfactor corresponding to the
bimodule. The vector [A]1/2 is the Perron-Frobenius eigenvector of the graphs with
the eigenvalue equal to the square root of the Jones index of the original subfactor.

The last main axiom is called flatness.
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�

�

�
∗

Bm

...

B2

B1

∗ A1 A2 · · · An ∗

B1

B2

...

Bm

∗An· · ·A2A1

= 1

ξ1 ξ2 ξn+1

ξ1 ξ2 ξn+1

η1

η2

ηm+1

η1

η2

ηm+1

Here a large diagram means a sum of the product of the connection values over
all the possible configurations for a fixed boundary as in [44], [46], [29]. See [29]
for the linear algebraic meaning of this axiom and [47] for a proof. This represents
associativity of the bimodule tensor product in a certain sense.

We also have some minor axioms such as the initialization axiom [44], but we
omit them here.

In the tensor category approach, we replace NMM and MMN in the above defini-
tion of the connection by general bimodules in the system. Then we have a complex
number for six bimodules and four intertwiners. This assignment of numbers is called
a (quantum) 6j-symbol. The 6j-symbols also have to satisfy three axioms. The first
two axioms, unitarity and the tetrahedral symmetry, are basically the same as the
above unitarity and renormalization rule. The other axiom expresses associativity of
the tensor products of bimodules in a more explicit way than the flatness axiom, and
is called the pentagon relation. This is essentially same as the pentagon relation in
ordinary representation theory. See [47], [14] for more details on a relation between
the flatness axiom and the pentagon relation.

At the end of this section, we discuss a relation between the two axiomatizations of
paragroups. The main difference of the two lies in the flatness axiom and the pentagon
relations. These are the most important conditions of our objects and also are the
most difficult conditions to verify in concrete cases. From the conceptual viewpoint,
the tensor category approach has a more transparent meaning, and the pentagon
relations look relatively easier to verify than the flatness axiom which involves a huge
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number of terms. (The number of terms in the summation of the flatness axiom
can be easily over billions even for fairly simple examples.) The tensor category
approach, however, has a serious drawback if we really want to make a concrete and
explicit computations of the connections or 6j-symbols. That is, we need much more
numerical data in the tensor category approach than in the flat connection approach.
We have easier equation, the pentagon relation, only because we have more data at
the beginning. Take more concrete examples. As announced by A. Ocneanu [44] and
verified by [22], [24], [30], [63], we have an A-D-E classification for subfactors with
index less than four, and we have An, D2n, E6, E8 as a possible principal graph. (The
E6 was first constructed by [5] earlier. Also see [15], [21], [25], [31, Appendix], [46]
for related results.) For the case An, we have explicit formulae for the 6j-symbols of
q-integers of Kirillov-Reshetikhin [34], but the explicit formulae for the case D2n, E6,
E8 have not been given, and it would be quite difficult to prove a realization of the
principal graph E8 by direct computations based on the tensor category approach.
In the flat connection approach, an advantage is that we can often explicitly write
down the connection formula for given graphs, if the graphs are relatively simple.

3 Paragroup actions on subfactors

Our aim is to generalize the construction of a paragroup out of a subfactor in the
previous section to the commuting squares of II1 factors. We assume Assumption 1.1.
A first observation is that we can make a basic construction of the commuting square
as in [61, Section 7] so that we have a double sequence {Mkl}k,l=1,2,3,... of commuting
squares of II1 factors. Next, if we choose a generating tunnel {M−j,−j}j=1,2,3,... for the
subfactor M00 ⊂ M11 by [54], [55], then it is easy to see

∨∞
j=0(M

′
−j,−j ∩ Mkl = Mkl

for all k, l ≥ 0. Thus we only have to characterize the triple sequence {M ′
−j,−j ∩

Mkl}j,k,l=0,1,2,....
Again we use a method based on bimodules. A basic observation is that we have

natural isomorphisms M01⊗00 M10
∼= M11 as M01-M10 bimodules, and M10⊗00 M01

∼=
M11 as M10-M01 bimodules. (This easily follows from [61, Corollary 7.1], and this
condition actually characterizes the commuting and co-commuting squares in the
sense of Sano-Watatani [61].) With these isomorphisms, we can start with M00 as an
M00-M00 bimodule and make a left tensor product by M11 as an M00-M11 bimodule or
an M11-M00 bimodule, and make a right tensor product by M01 an M00-M01 bimodule,
M11 an M10-M11 bimodule, M10 an M00-M10 bimodule, or M11 an M01-M11 bimodule.
In this way, we get eight kinds of bimodules. (We have four factors, so we can get
42 = 16 kinds of bimodules and they make a finite system of bimodules over four II1
factors in the sense of Ocneanu [47]. For our purpose here, however, it is enough to
handle eight kinds.)

We can then define a connection in a similar way as in the previous section. Now
we have a three-dimensional Bratteli diagram, so we have a graph connected like a
cube as in the following picture.
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00G00

11G00

00G01

11G01

00G10

11G10

00G11

11G11

00
00G00

01

00
00G10

11

11
11G00

01

11
10G11

11

00
11G00

00

00
11G10

10

00
11G01

01

00
11G11

11

00
00G00

10

11
11G00

10

00
00G01

11

11
11G01

11

Note that some graphs, e.g., 00
00G00

10 , may not be connected. Basically, we have the
same kind of axioms as in the ordinary paragroup case in the previous section, but we
have a new additional axiom. That is, we have a triple sequence of string algebras,
so we have several different kind of identification of bases, and the identifications
have to be compatible. This is expressed by the intertwining Yang-Baxter equation
as follows.

�

�

�

�

�

�

�

�

�
a7a1 a4

a2 a3

a6 a5

ξ1

ξ6

ξ7

ξ9

ξ3

ξ4

ξ2

ξ8

ξ5

∑
a7,ξ7,ξ8,ξ9

=
∑

a7,ξ7,ξ8,ξ9

�

�

�

�
�

��

�

�
a7a1 a4

a2 a3

a6 a5

ξ1

ξ6

ξ7

ξ9

ξ3

ξ4

ξ2

ξ8

ξ5

The both hand sides are sums of products of three connection values over all
the possible configurations for a fixed boundary of the hexagon. This equation first
appeared in [30] as a compatibility condition of embeddings of string algebras.

Thus we have one-dimension higher objects here than in the ordinary paragroup
case. We can summarize the correspondences as follows.

paragroup paragroup action on a subfactor

(dual) principal graph (dual) principal connection
(canonical) commuting square (canonical) commuting cube
double sequence of string algebras triple sequence of string algebras
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The Yang-Baxter equation was also used to prove certain flatness in[13], but in
general neither of the flatness axiom and the Yang-Baxter equation implies the other.

Summing up, we have the following theorem.

Theorem 3.1 The isomorphism classes of commuting squares of type II1 factors
satisfying Assumption 1.1 are in a bijective correspondence to the isomorphism classes
of combinatorial systems satisfying the axioms described above.

We call our system of connections with the above axioms the standard invariant.
See [33] for the exact forms of the axioms and a proof of the theorem.

4 Examples

We have established the general theory in the previous section, but we still do not
know what kind of “non-trivial” commuting squares we have; if all the commuting
squares satisfying Assumption 1.1 were like (1) or (2) in Section 1, then our general
machinery would be empty.

First recall that rational conformal field theory (RCFT) in the sense of Moore-
Seiberg [41] is a vast source of paragroups [8]. Our set of axioms is essentially the
set of the paragroup axioms plus the intertwining Yang-Baxter equation, and the
Yang-Baxter equation is in RCFT, so the method of [8] gives families of commuting
squares of II1 factors in the “canonical” form and it is easy to see that they are not
of form (1) or (2). The correspondence table between our axioms and those of RCFT
is summarized as follows.

paragroup action on a subfactor RCFT

unitarity unitarity
renormalization tetrahedral symmetry
flatness braiding-fusion relation
intertwining Yang-Baxter equation Yang-Baxter equation

The orbifold construction in the form of F. Xu [75] also works in our settings.
A more interesting example is given by the Goodman-de la Harpe-Jones subfactors

in [19, Section 4.5]. The principal graphs of these subfactors were computed by S.
Okamoto [49], and the graph for the smallest index case, 3 +

√
3, is given by G1 in

the following.

G1 G2

From the connection viewpoint, this construction gives a flat connection without
the initialization axiom, and the above G2 is a part of the connection data, but G2
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cannot be a principal graph of any subfactor. (Also see [31, Remark 2.2].) From
this connection and ordinary connections on A11 and E6 [44], we get a system of
connections with the intertwining Yang-Baxter equation and thus get a commuting
square of II1 factors. (The intertwining Yang-Baxter equation in this case follows
from the flatness of the Jones projections, as pointed out by Jones.) In the notations
of Assumption 1.1, the subfactor M00 ⊂ M01 is of type A11, the subfactor M10 ⊂ M11

is of type E6, and both subfactors M00 ⊂ M10 and M01 ⊂ M11 are the Goodman-de
la Harpe-Jones subfactor with index 3 +

√
3. In this case, the above graph G2 does

appear as a part of the “standard invariant”. We note that the graphs D2n+1 and E7

also appear as a part of standard invariant of some commuting squares of II1 factors.
The same construction works for E7 and E8 instead of E6. Also, a similar construc-

tion gives a commuting square such that the subfactors M00 ⊂ M01 and M10 ⊂ M11

is of type E8 and the subfactors M00 ⊂ M10 and M01 ⊂ M11 are of A4, but the
commuting square is not of form (2). This gives a concrete interpretation of the fact
that “E8 has an A4 symmetry” stated in [22, page 969].

Another interesting construction is given out of the above example. In de Boer-
Goeree [8], they gave a correspondence table between paragroups and RCFT. The
orbifold construction is one of them, and it has been well-studied. Another interesting
entry is the coset construction. From a purely operator algebraic viewpoint, this
construction gives a subfactor S ′ ∩ N ⊂ S ′ ∩ M from a subfactor N ⊂ M and
a subalgebra S of N . We show that the above commuting square involving the
Goodman-de la Harpe Jones subfactor with index 3+

√
3 gives an interesting example

of the coset construction in this sense. We make basic constructions vertically, and
take limits vertically (as the GNS-completion of the unions) as follows.

N = M∞,0 M∞,1 = M⊂
A11

...
...

∩

∩

∩

∩

∩

∩

∩

∩

⊂

⊂

⊂

⊂

M30

M20

M10

M00

M31

M21

M11

M01

E6

A11

E6

A11

3 +
√

3 3 +
√

3

Set S =
∨

k≥1(M
′
10 ∩Mk0. Then it is easy to see S ′∩N = M10 and S ′∩M = M11.

Thus we get a subfactor S ′ ∩ N ⊂ S ′ ∩ M of type E6 out of a subfactor N ⊂ M of

13



type A11. In short, we can say that the E6 subfactors are constructed from the A11

subfactor with the coset construction. The same method works for E8, too.
At the end of this section, we discuss commuting squares arising from a group

action on a subfactor. As in ordinary subfactor cases where many problems of group
actions on single factors are reduced problems of subfactors, our theory gives a method
to classify certain group actions on subfactors. For example, (not-necessarily-outer)
actions of finite groups on subfactors (with finite depth) are among them. (Recall
that an aperiodic automorphism, in an appropriate sense, of a subfactor with finite
depth is automatically properly outer [57] [strongly outer [9]], so they are classified
by Loi’s invariant [38] by a deep classification theorem of S. Popa [57]. So we are now
mainly interested in finite group actions.) But unfortunately, it is quite complicated
to regard non-outer actions of finite groups as paragroup actions via locally trivial
subfactors. It is the same situation as in the single factor case. The connection of
a locally trivial subfactor is determined by the characteristic invariant [26] of the
action, but it is not easy to list all the possible invariant arising from a fixed group in
the connection approach. In our settings, a main difficulty in listing all the possible
standard invariants for a fixed group lies in the fact that we have several disconnected
graphs.

5 Topological quantum field theory

After the astonishing discovery of the Jones polynomial as an invariant of links [28],
“quantum” aspects of three dimensional topology and their relations have been exten-
sively studied. Witten’s program [73] to realize topological quantum field theories in
the sense of Atiyah [3] based on physical ideas has been very influential. Reshetikhin
and Turaev [58] gave a mathematically rigorous version of Witten’s topological quan-
tum field theory based on surgery and the Jones polynomial, and Turaev and Viro
gave another formulation of topological quantum field theory based on triangulations
and the Kirillov-Reshetikhin quantum 6j-symbols by refining a classical theorem of
Alexander [1]. (See [64] for a relation between the two approaches. Also see Oc-
neanu’s article in this volume [48].) Ocneanu [47] has realized that the Turaev-Viro
machinery works for general subfactors with finite depth and that the axioms of
quantum 6j-symbols for the Turaev-Viro TQFT and those for the paragroups are
essentially same. (See [14] for the exact statement of the equivalence and a proof.)

In this section, we discuss TQFT’s arising from subfactors as an application of
our method here.

The known constructions of finite depth subfactors are listed as follows.

1. RCFT (Wess-Zumino-Witten models)

2. orbifold construction

3. group actions (or Hopf algebra actions)

4. others

14



We have E6, E8, the Goodman-de la Harpe-Jones subfactors, the Haagerup sub-
factor [20] among the others. In the case of RCFT, the TQFT has been extensively
studied by several people without working on subfactors, so we do not deal with
them here. (But strictly speaking, our TQFT is slightly different from the one usu-
ally considered by topologists because we have “grading” of bimodules. See [14] for
this difference.) The TQFT for the orbifold subfactors is not known explicitly, but
it is hard to imagine that they are dramatically different from the ones arising from
RCFT. The case of group actions is less exotic. (See [12] for example.) Thus we
are led to study “the other” subfactors. We will discuss the E6 subfactors and the
Goodman-de la Harpe-Jones subfactor with index 3 +

√
3 here.

First, a purely combinatorial argument [31] shows that the dual principal graph
of the Goodman-de la Harpe-Jones subfactor with index 3 +

√
3 is the same as the

principal graph Okamoto [49] computed. With this, we can work on the axioms on
the standard invariant for paragroup actions on subfactors, and we can determine
several other graphs by combinatorial arguments.

Then we find that the system of N -N bimodules of the Goodman-de la Harpe-
Jones subfactor with index 3+

√
3 is exactly same as the one for the A11 subfactor and

that the system of M-M bimodules of the Goodman-de la Harpe-Jones subfactor with
index 3 +

√
3 contains that of the E6 subfactor as a “fusion subalgebra”. (We have

the two subfactors for E6, and the corresponding two fusion algebras are embedded
into a single fusion algebra differently.) It is expressed graphically as follows.

A11

N -N bimodules

N -N bimodules

M-M bimodules

The G-H-J subfactor

E6

E6

�
� same systems

	




dual systems

� fusion subalgebra

� fusion subalgebra

(anticonjugate)
�

�

D. Bisch [7] has tried to compute the fusion algebra of the Goodman-de la Harpe-
Jones subfactor with index 3 +

√
3 just from the principal graph, but had five possi-

bilities and could not determine which the right multiplication table is. Our method
here shows that the fusion algebra of the N -N bimodules gives the fifth table in [7]
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and that of the M-M bimodules gives the first table in [7]. In particular, this subfac-
tor N ⊂ M is not conjugate to its dual M ⊂ M1 although these two subfactors have
the same principal graphs. (M. Izumi computed the flat connection of this subfactor,
and his method also shows this non-conjugacy result, but it is difficult to see the dif-
ference of the two fusion algebras directly from the flat connection.) Furthermore, a
recent result of Haagerup [20] shows that this subfactor has the smallest index among
subfactors such that the principal and the dual principal graphs are the same but the
two fusion algebras are different.

This shows that our TQFT for the Goodman-de la Harpe-Jones subfactor with
index 3 +

√
3 is exactly same as that for the A11 subfactor, which is certainly dis-

appointing. The same method works for the other Goodman-de la Harpe-Jones sub-
factors, and we have no new TQFT. The two systems of N -N bimodules and M-M
bimodules of a single subfactor give the same TQFT as in [14], so we can say that the
E6 TQFT’s are based on partial systems of the A11 TQFT. But it does not necessarily
mean that the E6 TQFT’s are less interesting than the A11 TQFT. Computations
of Niţică and Török [42] show that the E6 TQFT’s do detect orientations of certain
lens spaces while it is easy to see that the A11 TQFT does not detect an orientation
of any 3-manifold.

The case of the Haagerup subfactor with index (5+
√

13)/2 [20] gives a candidate
of a really interesting new TQFT, but unfortunately, almost nothing is known on this
TQFT.
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