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Abstract. We show a certain one-parameter automorphism group of the in-

jective II1 factor R arising from the irrational rotation C∗-algebra Aθ is cocycle

conjugate to an infinite tensor product type action, hence, unique up to cocycle con-

jugacy. An SL(2,Z)-action on Aθ, a Rieffel projection in Aθ, and central sequence

technique in R are used.

§0 Introduction

In the irrational rotation C∗-algebra Aθ with uv = e2πiθvu, consider the following

one-parameter automorphism group αt: αt(u) = eiλtu, αt(v) = eiµtv. Here λ

and µ are non-zero real numbers with λ/µ /∈ Q. We extend this one-parameter

automorphism group to the weak closure R of Aθ with respect to the trace τ ,

which is the AFD (approximately finite dimensional) II1 factor. We will show

this one-parameter automorphism group is cocycle conjugate to an infinite tensor

product type one-parameter automorphism group with full Connes spectrum R if

and only if λ/µ is not in the GL(2,Q) orbit of θ. Then such a one-parameter

automorphism group is unique up to cocycle conjugacy by our previous result [12].

*Alfred P. Sloan Doctoral Dissertation Fellow
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Now we explain the motivation of investigating this one-parameter automor-

phism group. After Connes’ seminal work on the classification of single automor-

phisms of AFD II1 factor [7], there have been remarkable progress in the cocycle

conjugacy classification of discrete amenable group actions on AFD factors. But

these developments are restricted to the discrete case. Without question, the co-

cycle conjugacy problem of continuous group actions on AFD factors is one of the

major problems in the theory of von Neumann algebras. In fact, the completion of

the cocycle conjugacy classification of one-parameter automorphism groups on the

AFD II∞ factor would give more insight into the structure of the AFD III1 factor,

whose uniqueness was recently established by Connes [8] and Haagerup [9] — a deep

result of the subject whose proof is still considered difficult and mysterious beyond

the validity of the result. Note that Haagerup’s result can be formulated as follows:

One-parameter automorphism group α of the AFD type II∞ factor is unique up to

conjugacy if it satisfies tr · αt = e−ttr. In the previous papers [11],[12], we started

to challenge the problem, and obtained positive partial results, completion of the

classification in the cases that the Connes spectrum Γ(α) is not equal to R, and

that the action fixes a Cartan subalgebra of R elementwise. In the latter cases, the

condition Γ(α) = R implies uniqueness of α up to cocycle conjugacy. Note that

these cases include infinite tensor product type actions. In this paper, we consider

the above one-parameter automorphism group α of the AFD II1 factor R which is

far from the infinite tensor product type, i.e., our actions are ergodic and almost

periodic.

The results in [11],[12] are analogous to the classification of the AFD type III

factors. Thus one might expect that Γ(α) = R would imply the uniqueness of α up
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to cocycle conjugacy, as an analogue of the uniqueness of the AFD type III1 factor,

but this is not the case. For the type III factors, the condition S(M) = [0,∞)

implies T (M) = {0}. (See Connes [6].) But now Γ(α) = R for a one-parameter

automorphism group α of the AFD II1 factor R does not imply {t ∈ R |αt ∈

Int(R)} = {0}. Indeed, for the above one-parameter automorphism group α of

R, it is easy to see that we have Γ(α) = R because of λ/µ /∈ Q, but we have

{t ∈ R |αt ∈ Int(R)} = {0} if and only if λ/µ is not in GL(2,Q)-orbit of θ. (Here

GL(2,Q)-action is given by a fractional transformation.)

Thus when we try to prove the uniqueness for the case Γ(α) = R in more general

situations than in Kawahigashi [12], we have to use the condition {t ∈ R |αt ∈

Int(R)} = {0} in an essential way. (Note that {t ∈ R |αt ∈ Int(R)} = {0} does not

imply Γ(α) = R, either.) But at this point, we do not know the method of making

use of this condition in general situations. Thus we are led to investigate the above

action α in detail as the next step of [11],[12]. Because infinite tensor product type

one-parameter automorphism groups with the full Connes spectrum R are unique

up to cocycle conjugacy by Kawahigashi [12], we can consider an action of this

type as a model action, and we compare it with our action α. Our one-parameter

automorphism group α has a delicate and interesting property, because when we

change parameters λ, µ by a very small number, we get a periodic action or an action

with Γ(α) = R and {t ∈ R |αt ∈ Int(R)} �= {0}. Another interesting property is

that it is an ergodic action. The key to the uniqueness in our previous result [12]

was the existence of a Cartan subalgebra in the fixed point subalgebra. That is,

it is a good condition that a fixed point algebra is large, from this viewpoint, and

the ergodic actions are clearly the most difficult ones. (The point is our group
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R is, of course, non-compact.) Another important point of this action is that it

is almost periodic. That is, we can extend this action to a T2 action. Because

compact abelian group actions have been classified in Jones-Takesaki [10], it would

be natural to try to use this extension to our problem. But Proposition 4.7 in

Olesen-Pedersen-Takesaki [14] says that we cannot get a non-ergodic action from

an ergodic action by a cocycle perturbation on T2. What we would like to get

is now a model, an infinite tensor product type action, which has a large fixed

point algebra. This means that we have to get out of the “compact world” to

obtain a large fixed point algebra, though the action is extended to a compact

group. Indeed, the hardest step in our proof is fixing countably many projections

by successive cocycle perturbations. (Fixing a projection by cocycle perturbation

was stated as a problem in the introduction of Takesaki [16]. We solve this problem

for our ergodic actions.)

The contents of the sections are as follows. We show existence of a solution

of a certain system of inequalities for Diophantine approximation in order to get

a desired automorphism of Aθ coming from an SL(2,Z) action. We also need a

well-behaved Rieffel projection and a well-behaved unitary in Aθ, and the choice

is made in §1. By these, we will make a central sequence of almost 2 × 2 matrix

units which are well-behaved with respect to the derivation in Aθ. (Note that we

cannot make a matrix unit in Aθ because the range of the trace of the projections

does not contain any rational number.) In §2, we prepare several lemmas for norm

estimates of a derivation in holomorphic functional calculus. We have to change

projections and unitaries from given ones to better ones while keeping estimates

of a derivation. In §3, we will show the splitting of a model action. That is, our
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action α is cocycle conjugate to the tensor product of α and a model. This is

done by central sequence technique. The key point is making almost matrix units

commute with each other while they only almost commute at first. We also have to

make a central sequence of true matrix units in R from almost matrix units in Aθ.

In §4, the main theorem, Theorem 16, and a corollary is given by showing that a

model action can absorb our action α as a factor of tensor product: a model action

is cocycle conjugate to the tensor product of a model action and α. The almost

periodicity is used for this statement to reduce the case to our previous result [12].

(The key to our result in [12] for almost periodic action with the irreducible fixed

point algebra was Ocneanu’s theorem [13].)

This work was started at Institut Mittag-Leffler, and completed at Institut des

Hautes Études Scientifiques. The author is thankful to the both institutes for their

hospitality. The author acknowledges with gratitude the financial support from the

Sloan Foundation, Institut Mittag-Leffler, Phi Beta Kappa Alumni in Southern Cal-

ifornia, and Hortense Fishbaugh Memorial Scholarship. He also expresses thanks to

Prof. A. Connes for suggestions, to Prof. M. Rieffel and the referee for simplification

of the proof of Lemma 1, and to Prof. M. Takesaki for constant encouragement and

helpful suggestions including several simplifications of the proofs.

§1 An SL(2,Z)-action on Aθ

We will have to solve a certain system of inequalities for Diophantine approxi-

mation for constructing well-behaved elements in a C∗-algebra Aθ. We show in this

section that it is possible to solve the system. This enables us to find a desirable

automorphism of Aθ arising from SL(2,Z)-action.
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We fix some notations. Let Aθ be the C∗-algebra generated by two unitaries

u, v with the relation uv = e2πiθvu, θ ∈ [0, 1] \ Q. Note that if an element x is in

Aθ, then it can be expressed as an �2-sum x =
∑

n,m∈Z an,munvm, an,m ∈ C. We

define a subalgebra A∞
θ of smooth elements by

A∞
θ = {

∑
n,m∈Z

an,munvm ∈ Aθ | ((|n|k + |m|k)an,m) ∈ �2(Z2) for any integer k ≥ 0}.

We write τ for the unique normalized trace on Aθ. We consider the derivation δ of

Aθ defined by δ(u) = iλu, δ(v) = iµv, where λ and µ are non-zero real numbers.

(This is the generator of a one-parameter automorphism group of Aθ.) We assume

λ/µ /∈ Q, and λ/µ is not in the GL(2,Q) orbit of θ. (A matrix A =
(

a b
c d

)
acts

on θ by Aθ = (aθ + b)/(cθ + d).) We identify the one-dimensional torus T with

R/Z and [0, 1[, and for x ∈ R we use the notation {x} = x mod Z ∈ T, and ‖x‖

for the distance between x and the nearest integer. The following Lemmas 1 and 2

are preliminaries for Lemma 3, which is the key lemma in this paper.

Lemma 1. Let the real numbers θ, λ, µ be as above. Let ε > 0, and I, J be open

intervals in T with the width 2ε. Then there exist integers a, b such that {aθ} ∈ I,

{bθ} ∈ J and |aλ + bµ| < ε.

Proof. Set

A = {(aθ, bθ, aλ + bµ) | a, b ∈ Z} ⊂ T2 ×R.

It is enough to show Ā = T2 × R. Suppose A is not dense. Then there exists

n,m ∈ Z and ν ∈ R such that (n,m, ν) �= (0, 0, 0) and

exp 2πi(naθ + mbθ + ν(aλ + bµ)) = 1, for a, b ∈ Z.
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Taking a = 0, b = 1 and a = 1, b = 0, we get mθ + µν = m′ and nθ + λν = n′

for some m′, n′ ∈ Z respectively. Because θ /∈ Q, we get ν �= 0, and λ/µ =

(n′ − nθ)/(m′ − mθ), which is a contradiction. Thus we are done. Q.E.D.

In the next step, we take the above a, b so that they are relatively prime.

Lemma 2. Let the real numbers θ, λ, µ be as above. Let ε > 0, and I, J be open

intervals in T with the width 2ε. Then there exist integers a, b such that (a, b) = 1,

{aθ} ∈ I, {bθ} ∈ J and |aλ + bµ| < ε.

Proof. We may assume the transfomation S on T2 defined by a translation by

(ε, ε/
√

2) is ergodic by replacing ε by a smaller number, if necessary. (Choose ε so

that ε /∈ {√2k/(
√

2n + m) | k, n,m ∈ Z, (n,m) �= (0, 0)}.)

Choose a positive integer N such that for every (x, y) ∈ T2 there exists j with

0 ≤ j ≤ N , ‖x − jε‖ < ε/2 and ‖y − jε/
√

2‖ < ε/2
√

2. This is possible because of

the ergodicity of S. Choose integers a′ and b′ by Lemma 1 so that

ε − ε/2N < {a′θ} < ε,

(ε − ε/2N)/
√

2 < {b′θ} < ε/
√

2,

0 < |a′λ + b′µ| < ε/2N.

Let k = (a′, b′). Because k �= 0 and (a′/k, b′/k) = 1, there exist integers c, d such

that a′d/k − b′c/k = 1. We may assume |cλ + dµ| < ε/2N by replacing c, d by

c + la′, d + lb′ respectively for an appropriate l, if necessary. Let I ′ and J ′ be the

open intervals in T which have the same centers as I and J respectively, and have

the width ε. Then by the definition of N , there exists a positive integer j ≤ N such
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that {cθ + jε} ∈ I ′ and {dθ + jε/
√

2} ∈ J ′. By the choice of a′ and b′, this implies

{cθ + ja′θ} ∈ I and {dθ + jb′θ} ∈ J . It suffices to set a = c + ja′ and b = d + jb′

because we have (a, b) = 1 by (a′/k)b−(b′/k)a = 1, and |aλ+bµ| < ε/2N +ε/2 ≤ ε.

Q.E.D.

Now we can prove the key lemma.

Lemma 3. Let the real numbers θ, λ, µ be as above. For any ε > 0 and ν ∈ R,

there exist integers a, b, c, d such that

‖aθ‖, ‖bθ‖, ‖cθ‖, ‖dθ‖ < ε,

ad − bc = 1,

|aλ + bµ|, |cλ + dµ − ν| < ε.

Proof. The proof is very similar to that of Lemma 2. We may assume again that

the transfomation S on T2 defined by a translation by (ε, ε/
√

2) is ergodic. Choose

a positive integer N such that for every (x, y) ∈ T2 there exists j with 0 ≤ j ≤ N ,

‖x − jε‖ < ε/2 and ‖y − jε/
√

2‖ < ε/2
√

2. Choose integers a and b by Lemma 2

so that

(a, b) = 1,

ε − ε/2N < {aθ} < ε,

(ε − ε/2N)/
√

2 < {bθ} < ε/
√

2,

0 < |aλ + bµ| < ε/2N.
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There exist integers c′, d′ such that ad′ − bc′ = 1. We may assume |c′λ + d′µ −

ν| < ε/2N by replacing c′, d′ by c′ + la, d′ + lb respectively for an appropriate l,

if necessary. Then by the definition of N , there exists a positive integer j ≤ N

such that ‖c′θ + jε‖ < ε/2 and ‖d′θ + jε/
√

2‖ < ε/2. By the choice of a and b,

this implies ‖c′θ + jaθ‖ < ε and ‖d′θ + jbθ‖ < ε. It suffices to set c = c′ + ja and

d = d′ + jb because we then have ad− bc = 1 and |cλ + dµ− ν| < ε/2N + ε/2 ≤ ε.

Q.E.D.

We introduce a new definition here.

Definition 4. Let A be a unital C∗-algebra with a normalized trace τ . For a

positive number ε, a pair of a projection e and a unitary w in A is called an ε-pair

if e and wew∗ are orthogonal, and τ (e + wew∗) ≥ 1 − ε.

Note that this gives us an “almost” 2×2 matrix unit in the sense that e, ew∗, we, wew∗

make a 2 × 2 matrix unit of (Aθ)e+wew∗ and τ (e + wew∗) ≥ 1 − ε.

Lemma 5. For any positive ε, there exists an ε-pair (e,w) in A∞
θ in the form

e =f(u) + g(u)v + v∗g(u),

w =vm,

where f and g are C∞-functions on T. Moreover, for a given positive integer m0,

m can be chosen so that m > m0.

Proof. We identify the unit circle in the complex plane, R/Z and the unit interval

[0, 1]. (The points 0 and 1 are identified.) By the functional calculus, we identify u

and the function e2πit of t on the unit interval. Then for a continuous function f(t)
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on the unit interval, we get the relation vfv∗(t) = f(t − θ). Take a positive integer

n such that (1 − ε)/2 < {nθ} < 1/2, and take ε′ > 0 such that {nθ} + ε′ < 1/2.

First we assume n = 1 for simplicity. Choose a Rieffel projection e as follows.

(See Theorem 1.1 in Rieffel [15].) Set e = f(t) + g(t)v + v∗g(t), where 0 ≤ f(t) ≤ 1

on the interval [0, ε′], f(t) = 1 − f(t − θ) on [θ, θ + ε′], f(t) = 1 on [ε′, θ], and

f(t) = 0 elsewhere, and g(t) = ((1 − f(t))f(t))1/2 on the interval [θ, θ + ε′], and

g(t) = 0 elsewhere. We can take f and g among C∞-functions here. We choose a

positive integer m > m0 such that 1/2 < {mθ} < 1− θ − ε′. Set w = vm. First we

show wew∗e = 0. Because wew∗ = f(t − mθ) + g(t −mθ)v + v∗g(t − mθ), we get,

by a direct computation,

wew∗e =f(t − mθ)f(t) + f(t − mθ)g(t)v + v∗f(t − θ − mθ)g(t)

+ g(t − mθ)f(t − θ)v + g(t −mθ)g(t − θ)v2 + g(t − mθ)g(t)

+ v∗g(t − mθ)f(t) + g(t − mθ + θ)g(t + θ) + v∗2g(t −mθ − θ)g(t).

Then all the nine terms on the right hand side turn out to be zero. We also have

τ (e + wew∗) = 2τ (e) = 2θ > 1 − ε.

In general cases n > 1, we can apply the same technique as in the proof of

Theorem 1.1 in Rieffel [15]. Q.E.D.

Next we consider an action of SL(2,Z) on Aθ. Let g =
(

a b
c d

)
∈ SL(2,Z). We

define the automorphism σg of Aθ by σg(u) = uavb and σg(v) = ucvd. (This action
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was considered in Brenken [5] and Watatani [17].) Note that this actually defines an

automorphism because we have (uavb)(ucvd) = e2πiθ(ucvd)(uavb) by ad − bc = 1.

We need easy lemmas for norm estimates for the SL(2,Z)-action. Let δ1, δ2

be the canonical derivations of Aθ defined by δ1(u) = iu, δ1(v) = 0 and δ2(u) =

0, δ2(v) = iv. For x =
∑

n,m∈Z an,munvm ∈ A∞
θ , we set ‖x‖1 =

∑
n,m∈Z |an,m|.

Note that this is bounded because x ∈ A∞
θ and also note that ‖x‖ ≤ ‖x‖1.

Lemma 6. Let the real numbers θ, λ, µ and the derivation δ be as above. For

x ∈ A∞
θ and g =

(
a b
c d

)
∈ SL(2,Z), we get

‖σ−1
g · δ · σg(x)‖1 ≤ max(|aλ + bµ|, |cλ + dµ|)(‖δ1(x)‖1 + ‖δ2(x)‖1).

Proof. Let x =
∑

n,m∈Z an,munvm ∈ A∞
θ , an,m ∈ C. Because

σ−1
g · δ · σg(x) =

∑
n,m∈Z

an,m(n(aλ + bµ) + m(cλ + dµ))unvm,

we get

‖σ−1
g · δ · σg(x)‖1 ≤

∑
n,m∈Z

|an,m|(|n||aλ + bµ| + |m||cλ + dµ|)

≤ max(|aλ + bµ|, |cλ + dµ|)(‖δ1(x)‖1 + ‖δ2(x)‖1).

Q.E.D.
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Lemma 7. Let the real numbers θ, λ, µ and the derivation δ be as above. For

x, y ∈ A∞
θ and g =

(
a b
c d

)
∈ SL(2,Z), we get

‖[σg(x), y]‖1

≤ 2π max(‖aθ‖, ‖bθ‖, ‖cθ‖, ‖dθ‖)(‖δ1(x)‖1 + ‖δ2(x)‖1)(‖δ1(y)‖1 + ‖δ2(y)‖1).

Proof. Let x =
∑

n,m∈Z an,munvm ∈ A∞
θ , y =

∑
n,m∈Z bn,munvm ∈ A∞

θ , an,m, bn,m ∈

C. By direct computation, we get

‖[σg(x), y]‖1

≤
∑

n,m,n′,m′∈Z

|an,m||bn′,m′ |‖[(uavb)n(ucvd)m, un′
vm′

]‖1

≤
∑

n,m,n′,m′∈Z

|an,m||bn′,m′ ||1 − exp(2πiθ(−n′md − n′mb + m′mc + m′na))|

≤
∑

n,m,n′,m′∈Z

|an,m||bn′,m′ |2π‖(−n′md − n′mb + m′mc + m′na)θ‖

≤
∑

n,m,n′,m′∈Z

|an,m||bn′,m′ |2π(|n′||m|‖dθ‖ + |n′||m|‖bθ‖ + |m′||m|‖cθ‖ + |m′||n|‖aθ‖)

≤ 2π max(‖aθ‖, ‖bθ‖, ‖cθ‖, ‖dθ‖)
∑

n,m,n′ ,m′∈Z

|an,m||bn′,m′ |(|n| + |m|)(|n′| + |m′|)

≤ 2π max(‖aθ‖, ‖bθ‖, ‖cθ‖, ‖dθ‖)(‖δ1(x)‖1 + ‖δ2(x)‖1)(‖δ1(y)‖1 + ‖δ2(y)‖1).

Q.E.D.

The next lemma will give us an almost matrix unit which is well-behaved with

respect to the derivation and almost commutativity. This can be regarded as a

variant of the non-commutative Rohlin Theorem in the sense that it produces a

piece of a model action. (See §6.1 in Ocneanu [13].) This is also related to property

L′
λ. (See Araki [1].)
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Lemma 8. Let the real numbers θ, λ, µ and the derivation δ of Aθ be as above. Let

F ⊂ A∞
θ be a finite set, ν ∈ R and ε > 0. Then there exists an ε-pair (e,w) such

that

‖[e, y]‖, ‖[w, y]‖ ≤ ε, for every y ∈ F,

‖δ(e)‖,‖δ(w) − iνw‖ ≤ ε.

Proof. Choose a Rieffel projection e as in Lemma 5. Set

ε1 = ε/max(‖δ1(e)‖1 + ‖δ2(e)‖1, 1).

We choose w = vm by Lemma 5 so that m > (|ν| + ε1)/ε1. We also set

K = max
y∈F

(‖δ1(y)‖1 + ‖δ2(y)‖1, 1),

and

ε2 =
ε

2πK max(‖δ1(e)‖1 + ‖δ2(e)‖1, ‖δ1(w)‖1 + ‖δ2(w)‖1, 1)
.

Choose integers a, b, c, d by Lemma 3 so that

‖aθ‖, ‖bθ‖, ‖cθ‖, ‖dθ‖ < ε2,

ad − bc = 1,

|aλ + bµ|, |cλ + dµ − ν/m| < ε1/m,
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and let g =
(

a b
c d

)
∈ SL(2,Z). Note that |aλ + bµ| ≤ ε1 and |cλ + dµ| <

(ε1 + |ν|)/m ≤ ε1. We will show σg(e) and σg(w) satisfy the desired properties. By

Lemma 6, we have

‖δ(σg(e))‖ ≤ ε1(‖δ1(e)‖1 + ‖δ2(e)‖1) ≤ ε.

We also have

‖δ(σg(w)) − iνw‖ = |m(cλ + dµ) − ν| ≤ ε1 ≤ ε.

For commutators, we have, by Lemma 7,

‖[σg(e), y]‖ ≤ 2πε2(‖δ1(e)‖1 + ‖δ2(e)‖1)(‖δ1(y)‖1 + ‖δ2(y)‖1) ≤ ε,

and similarly ‖[σg(w), y]‖ ≤ ε for every y ∈ F . Thus we can replace e,w by

σg(e),σg(w) respectively. Q.E.D.

§2 Holomorphic functional calculus and norm estimates of a derivation

We need some preliminaries for norm estimates of a derivation for holomorphic

functional calculus and inner perturbation of a derivation. These will be used for

getting a unitary or a projection which commutes with given elements when we

have a unitary or projection which almost commutes with them. We have to keep

the estimate of a derivation for this change.

The first lemma is for inner perturbation of a derivation.
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Lemma 9. Let A be a C∗-algebra, and δ be the generator of a one-parameter

automorphism group on A. Let A∞ be a subalgebra of C∞-elements with respect

to δ. If an ε-pair (e,w) in A∞ satisfies ‖δ(e)‖ ≤ ε′, ‖δ(w) − iνw‖ ≤ ε′ for ε′ > 0

and ν ∈ R, and e,w ∈ B′, the commutant of B, for a subset B ⊂ A∞ with δ = 0

on B, then there exists a self-adjoint element h ∈ A∞ ∩ B′ such that ‖h‖ ≤ 100ε′,

(δ + ad(ih))(e) = 0 and (δ + ad(ih))(we) = iνwe.

Proof. Set e11 = e, e12 = ew∗, e21 = we, and e22 = wew∗. Note that these make a

matrix unit of Ae11+e22. Set ih0 = (iνe11 − iνe22)/2, and ih1 = [e11 + e22, δ(e11 +

e22)]. Then it is well known and easy to see that (δ +ad(ih0 + ih1))(e11 + e22) = 0.

Now we set

ih2 = e11(δ + ad(ih0 + ih1))(e11) + e21(δ + ad(ih0 + ih1))(e12).

It is well known that (δ + ad(ih0) + ad(ih1 + ih2))(ejk) = 0 for all j, k = 1, 2. (See

Remark 1.6.7 in Bratteli [4]. We can apply it because (δ + ad(ih0 + ih1))(e11 +

e22) = 0 though e11 + e22 �= 1 in general.) We can set h = h1 + h2. Because

‖h1‖ ≤ 2 · 2 · 4ε′ = 16ε′, we get

‖h2‖ ≤ ε′ + 2‖h1‖ + 2‖h1‖ + ‖δ(e12) + [ih0, e12]‖ ≤ 67ε′,

and ‖h‖ ≤ ‖h1‖+‖h2‖ ≤ 100ε′. It is easy to check h ∈ A∞∩B′, (δ+ad(ih))(e) = 0

and (δ + ad(ih))(we) = iνwe. Q.E.D.

The following three lemmas deal with unitaries and projections. We will change

almost unitaries and projections into true unitaries and projections with norm

estimates.
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Lemma 10. Let A be a C∗-algebra, and δ be the generator of a one-parameter

automorphism group on A. Let A∞ be a subalgebra of C∞-elements with respect

to δ. Suppose we have a unitary u ∈ A, and a subset B ⊂ A∞. If we have

0 < ε < 1/12, ε′ > 0, ν ∈ R, x ∈ A∞ ∩ B′, ‖x − u‖ ≤ ε, and ‖δ(x) − iνx‖ ≤ ε′,

then there exists a unitary v ∈ A∞ ∩B′ given by the polar decomposition of x with

‖v − x‖ ≤ 5ε and ‖δ(v) − iνv‖ ≤ 30ε′.

Proof. First note that ‖x‖ ≤ 1 + ε, and

‖x∗x − 1‖ ≤ ‖(x∗ − u∗)x‖ + ‖u∗(x − u)‖ ≤ ε(1 + ε) + ε ≤ 3ε.

Thus 1 − 3ε ≤ x∗x ≤ 1 + 3ε, which implies 1 − 3ε ≤ |x| ≤ 1 + 3ε and 1 − 4ε ≤

|x|−1 ≤ 1 + 4ε. Now set v = x|x|−1. Clearly this is a unitary in A∞ ∩B′. We have

‖v − x‖ ≤ ‖x(1 − |x|−1)‖ ≤ (1 + ε)4ε ≤ 5ε.

Let C be a circle with the center 1 and the radius 1/2 on the complex plane. By

holomorphic functional calculus, we get the equality

|x|−1 =
1

2πi

∫
C

z−1/2(z − x∗x)−1 dz.

Because δ is a closed derivation, by differentiating this under the integral sign, we

16



get

‖δ(|x|−1)‖ ≤ 1
2π

‖
∫

C

δ(z−1/2(z − x∗x)−1)dz‖

≤ 1
2π

‖
∫

C

z−1/2(z − x∗x)−1δ(x∗x)(z − x∗x)−1 dz‖

≤ 2π(1/2)
2π

√
2 · 42‖δ(x∗x)‖

≤ 8
√

2‖δ(x∗)x + x∗δ(x)‖

= 8
√

2‖(δ(x∗) + iνx∗)x + x∗(δ(x) − iνx)‖

≤ 16
√

2(1 + ε)ε′ ≤ 25ε′.

Finally, we get

‖δ(v) − iνv‖ ≤ ‖δ(x)|x|−1 + xδ(|x|−1) − iνx|x|−1‖

≤ ε′(1 + 4ε) + (1 + ε)25ε′ ≤ 2ε′ + 28ε′ = 30ε′.

Q.E.D.

Lemma 11. Let A,A∞, δ be as in Lemma 10. Let 0 < ε < 1/12, ε′ > 0 and

B ⊂ A∞. Let e, f be projections in A∞ ∩ B′ with ‖e − f‖ ≤ ε, ‖δ(e)‖ ≤ ε′,

and ‖δ(f)‖ ≤ ε′. Then there exists a unitary u in A∞ ∩ B′ such that ufu∗ = e,

‖u − 1‖ ≤ 5ε, and ‖δ(u)‖ ≤ 60ε′.

Proof. We use the method of Propositions 4.3.2 and 4.6.5 in Blackadar [3].

Set x = ((2e − 1)(2f − 1) + 1)/2. Then

‖1 − x‖ = ‖(2e − 1)(e − f)‖ ≤ ε < 1/12

17



and

‖δ(x)‖ ≤ ‖2δ(e)‖‖2f − 1‖/2 + ‖2e − 1‖‖2δ(f)‖/2 ≤ 2ε′.

Note that ex = ef = xf. Because x ∈ A∞ ∩ B′, we can apply Lemma 10 with

ν = 0, and set u = x|x|−1 ∈ A∞ ∩ B′. Then ‖u − 1‖ ≤ 5ε and ‖δ(u)‖ ≤ 60ε′. By

ex = xf, we get uf = eu. Q.E.D.

Lemma 12. Let A,A∞, δ be as in Lemma 10. Let 0 < ε < 1/48, ε′ > 0 and

B ⊂ A∞. Suppose x = x∗ ∈ pA∞p ∩ B′ for some projection p ∈ A∞, ‖δ(x)‖ ≤ ε′,

and ‖x − f‖ ≤ ε for some projection f ∈ A. Then there exists a projection e ∈

pA∞p ∩ B′ such that ‖x − e‖ ≤ 6ε and ‖δ(e)‖ ≤ 8ε′.

Proof. First we have

‖x2 − x‖ ≤ ‖(x − f + f)2 − (x − f) − f‖

≤ ‖(x − f)f + f(x − f) + (x − f)2 − (x − f)‖ ≤ ε2 + 2ε ≤ 3ε.

This implies Sp(x) ⊂ [−6ε, 6ε]∪ [1− 6ε, 1 + 6ε]. Let C be a circle with the center 1

and the radius 1/2 on the complex plane. By holomorphic functional calculus, we

can define a projection

e =
1

2πi

∫
C

(z − x)−1 dz ∈ pA∞p ∩ B′.

(Note that this is a functional calculus by a function ϕ with ϕ(0) = 0.) We know

‖e − x‖ ≤ 6ε, and by a similar computation to the proof of Lemma 10, we get

‖δ(e)‖ ≤ 2π(1/2)/(2π) · 42‖δ(x)‖ ≤ 8ε′. Q.E.D.
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§3 Splitting of a model action

We will show splitting of a product type action from our action α arising from

Aθ. The next lemma is the key to our inductive construction. We first take a well-

behaved projection and a unitary which almost commute with given almost matrix

units. Then by the Lemmas in §2, we can change these so that they actually

commute with given almost matrix units, while keeping estimates of a derivation.

Lemma 13. Let δ be the derivation of Aθ as above. Suppose we have a unital

finite dimensional ∗-subalgebra F in A∞
θ and a self-adjoint element h ∈ A∞

θ such

that (δ + ad(ih))(y) = 0 for every y ∈ F . Suppose ε > 0, ν ∈ R and a finite subset

B ⊂ A∞
θ are given. Set δ′ = δ + ad(ih). Then there exists an ε-pair (e,w) in A∞

θ

such that

[e, y], [w, y] = 0, for every y ∈ F,

‖[e, x]‖, ‖[w, x]‖ ≤ ε, for every x ∈ B,

‖δ′(e)‖,‖δ′(w) − iνw‖ ≤ ε.

Proof. Let G be a finite group of unitaries which generates the finite dimensional

algebra F . Let ε1 be a small enough positive number whose value will be specified

later. Choose an ε-pair (e0, w0) in A∞
θ by Lemma 8 so that

‖δ(e0)‖, ‖δ(w0) − iνw0‖ ≤ ε1,

‖[e0, ih]‖, ‖[w0, ih]‖ ≤ ε1,

‖[e0, U ]‖, ‖[w0, U ]‖ ≤ ε1, for every U ∈ G,

‖[e0, x]‖, ‖[w0, x]‖ ≤ ε1, for every x ∈ B.
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Note that we get ‖δ′(e0)‖, ‖δ′(w0) − iνw0‖ ≤ 2ε1. First we set

ẽ1 =
1
|G|

∑
U∈G

Ue0U
∗ ∈ A∞

θ ∩ F ′,

w̃1 =
1
|G|

∑
U∈G

Uw0U
∗ ∈ A∞

θ ∩ F ′.

Then, we have ‖e0 − ẽ1‖ ≤ ε1 and ‖w0 − w̃1‖ ≤ ε1. We also have estimates

‖δ′(w̃1) − iνw̃1‖ ≤ ε1 and ‖δ′(ẽ1)‖ ≤ ε1. Then by Lemma 12 and Lemma 10, we

get a projection e1 ∈ A∞
θ ∩ F ′ and a unitary w1 ∈ A∞

θ ∩ F ′ with

‖e1 − ẽ1‖ ≤ 6ε1,

‖δ′(e1)‖ ≤ 16ε1,

‖w1 − w̃1‖ ≤ 5ε1,

‖δ′(w1) − iνw1‖ ≤ 60ε1.

Now by e0w0e0w
∗
0 = 0, we get

‖e1w1e1w
∗
1‖

<‖(e1 − e0)w1e1w
∗
1‖ + ‖e0(w1 − w0)e1w

∗
1‖

+ ‖e0w0(e1 − e0)w∗
1‖ + ‖e0w0e0(w∗

1 − w∗
0)‖

≤(7 + 6 + 7 + 6)ε1 = 26ε1.

Setting

f̃1 = (1 − e1)w1e1w
∗
1(1 − e1) ∈ (1 − e1)A∞

θ (1 − e1) ∩ F ′,
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we have

‖w1e1w
∗
1 − f̃1‖ ≤ ‖ − e1(w1e1w

∗
1)(1− e1)‖ + ‖ − (w1e1w

∗
1)e1‖ ≤ 52ε1,

and

‖δ′(f̃1)‖ ≤ (16 + 60 + 16 + 60 + 16)ε1 = 168ε1.

By Lemma 12, there exists a projection f1 ∈ (1 − e1)A∞
θ (1 − e1) ∩ F ′ such that

‖f1 − f̃1‖ ≤ 6 · 52ε1 ≤ 400ε1,

‖δ′(f1)‖ ≤ 8 · 168ε1 ≤ 1400ε1.

Because

‖w1e1w
∗
1 − f1‖ ≤ 500ε1,

‖δ′(f1)‖ ≤ 1400ε1,

‖δ′(w1e1w
∗
1)‖ ≤ (60 + 16 + 60)ε1 ≤ 200ε1,

by Lemma 11, there exists a unitary w2 ∈ A∞
θ ∩ F ′ such that

‖δ′(w2)‖ ≤ 90000ε1,

‖w2 − 1‖ ≤ 2500ε1,

w2w1e1w
∗
1w

∗
2 = f1.
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Now finally set e = e1 and w = w2w1. These are in A∞
θ ∩ F ′, and we have now

ewew∗ = 0

‖e − e0‖ ≤ 7ε1,

‖w −w0‖ ≤ ‖w2(w1 − w0)‖ + ‖w2 − 1‖‖w0‖

≤ 6ε1 + 2500ε1 ≤ 2600ε1.

Setting C = maxx∈B(‖x‖, 1), we get

‖[e, x]‖ ≤ ε1 + 2C · 7ε1 ≤ 15Cε1,

and ‖[w, x]‖ ≤ 5201Cε1, for every x ∈ B. We may assume ε < 1/48, and set

ε1 = ε/(100000C). Then we get

‖[e, x]‖ ≤ ε, for every x ∈ B,

‖[w, x]‖ ≤ ε, for every x ∈ B,

‖δ′(e)‖ ≤ 16ε1 ≤ ε,

‖δ′(w) − iνw‖ ≤ 60ε1 + 90000ε1 ≤ ε.

Because now e,w ∈ A∞
θ ∩ F ′, we are done. Q.E.D.

Now we can prove the splitting in two steps.
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Theorem 14. Let R be the weak closure of Aθ with respect to the trace τ , which is

the AFD II1 factor. Let α be the one-parameter automorphism group of R defined

by αt(u) = eiλtu and αt(v) = eiµtv. We assume λ/µ /∈ Q, and λ/µ is not in the

GL(2,Q) orbit of θ. Let βt be an infinite tensor product type action of R on R

with Γ(β) = R. Then αt is cocycle conjugate to αt ⊗ βt.

Proof. Let

{xp | p ≥ 1} = {
∑

cn,munvm |finite sum, cn,m ∈ Q + Qi}.

We set Cn = maxp≤n(‖xp‖, 3) and εn = min(1/(2n · 100), 1/(9C2
n · 4n)). Choose

a non-zero real number ν. By a repeated use of Lemma 13 for εn and Lemma 9,

we get an εn-pair (en, wn) and hn ∈ A∞
θ with the following properties: Setting

f11(n) = en, f12(n) = enw∗
n, f21(n) = wnen, and f22(n) = wnenw∗

n,

[fjk(n), fj′k′(n′)] = 0, for j, k, j′, k′ = 1, 2, n �= n′,

‖[fjk(n), xp ]‖ ≤ 3εn, for p = 1, . . . , n,

‖hn‖ ≤ 1
2n

,

(δ + ad(ih1 + · · · + ihn))(fjk(l)) = (j − k)iνfjk(l), for l = 1, . . . , n,

τ (f11(n) + f22(n)) ≥ 1 − 1
4n

.

(When we have fjk(1), . . . , fjk(n), let F be the finite dimensional subalgebra gen-

erated by 1 and fjk(1), . . . , fjk(n), j, k = 1, 2 and set

h = h1 + · · · + hn + (
ν

2
f11(1) − ν

2
f22(1)) + · · · + (

ν

2
f11(n)− ν

2
f22(n)).
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Then we get an εn+1-pair (en+1, wn+1) by Lemma 13.) Set h =
∑∞

n=1 hn ∈ Aθ,

and let

ut = Expr(
∫ t

0

;αs(ih)ds) =
∞∑

n=0

∫ t

0

· · ·
∫ tn−1

0

αtn(ih) · · ·αt1(ih)dtn . . . dt1.

(This is an expansional. See §2 of Araki [2].) We also set ᾱt = Adut · αt. Now our

almost 2 × 2 matrix units behave well with respect to the generator of ᾱ without

error terms.

So far, we have made a central sequence of mutually commuting almost 2 × 2

matrix units. We will make a central sequence of mutually commuting true 2 × 2

matrix units from them. Because our matrix units have to behave well with respect

to ᾱt, we need a careful choice. We make a matrix unit by composing small pieces

from countably many almost matrix units. For this purpose, we will make a double

sequence as follows. Choose a bijection ϕ from N2 to N such that ϕ(n, m) <

ϕ(n, m + 1) and n ≤ ϕ(n, 1). We set

ejk(n, 1) = fjk(ϕ(n, 1)),

ejk(n,m + 1) = (1 − e11(n, 1) − e22(n, 1) − · · · − e11(n,m) − e22(n,m))fjk(ϕ(n,m + 1))

ejk(n) =
∞∑

m=1

ejk(n,m).

Note that the right hand side formula of the definition of ejk(n) does not converge

in operator norm, but does converge in L2 norm. Thus our matrix units are not

any more in the C∗-algebra Aθ, but in the von Neumann algebra R. (Because the
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range of the trace of projections in Aθ does not contain any rational number, we

cannot make a matrix unit in Aθ.) If l ≤ n, we have

‖[xl, ejk(n)]‖2 ≤ ‖[xl, ejk(n, 1)]‖2 + ‖[xl,
∞∑

m=2

ejk(n,m)]‖2

≤ 3εϕ(n,1) + 2Cnε
1/2
ϕ(n,1) ≤ 3Cnε1/2

n ≤ 1
2n

.

Thus ejk(n)’s form a central sequence of mutually commuting 2 × 2 matrix units

in R. By Lemma 2.3.6 in Connes [7], we get a factorization ᾱt = α′
t ⊗ β

(ν)
t , where

β
(ν)
t =

∞⊗
n=1

Ad exp it

(−ν/2 0
0 ν/2

)
,

and α′
t is some action of R. Because β(ν) ⊗ β(ν) ∼= β(ν), we know αt is cocycle

conjugate to αt ⊗ β
(ν)
t . By repeating this procedure for another ν′ with ν′/ν /∈ Q,

we know that αt is cocycle conjugate to αt⊗β
(ν)
t ⊗β

(ν′)
t . We know that β

(ν)
t ⊗β

(ν′)
t

is cocycle conjugate to βt by Corollary 1.9 in Kawahigashi [12], thus we are done.

Q.E.D.

§4 Uniqueness up to cocycle conjugacy

In this section, we prove the main result. The next theorem says that a model

action can absorb a general almost periodic action. (See §7 of Olesen-Pedersen-

Takesaki [14] for related definitions.)

Theorem 15. Let R be the AFD II1 factor. Let α be an almost periodic one-

parameter automorphism group of R. Let βt be an infinite tensor product type
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action of R on R with Γ(β) = R. Then αt ⊗ βt is cocycle conjugate to the βt on

R.

Proof. Denote by R0 the AFD II1 factor on which α acts. Because Spd(α) is

countable, we set {λk | k ≥ 1} = Spd(α). Consider the AFD II1 factor R1 and a

free action on it of a countable direct sum of copies of Z. Let R2 = R1�⊕∞
k=1Z ∼= R

be the crossed product by this action, and let uk’s, k ≥ 1, be the implementing

unitaries of this crossed product algebra. By Theorem 2.1 in Kawahigashi [12], we

may assume β on R2 is of the following form:

βt(x) = x, for x ∈ R1,

βt(uk) = e−iλktuk.

Because (Rβ
2 )′ ∩ R2 = C, we get

((R0⊗̄R2)α⊗β)′ ∩R0⊗̄R2 ⊂ R0⊗̄(R2 ∩ (Rβ
2 )′) = R0⊗̄C.

But we know that x ⊗ uk ∈ (R0⊗̄R2)α⊗β if x ∈ Rα
0 (λk). Thus by the almost

periodicity of α, we get

((R0⊗̄R2)α⊗β)′ ∩R0⊗̄R2 ⊂ (R0⊗̄C) ∩ (
⋃
k≥1

Rα
0 (λk) ⊗ uk)′ = C.

Because α ⊗ β and β are both almost periodic actions, we can apply Theorem 2.1

in Kawahigashi [12] to conclude α ⊗ β is cocycle conjugate to β. Q.E.D.

Note that we can apply this theorem to our action α arising from Aθ. We do

not need the assumption that λ/µ is not in the GL(2,Q) orbit of θ here. Thus this

theorem is valid even if αt is inner for some t �= 0. The next is the main theorem.
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Theorem 16. Let R be the weak closure of Aθ with respect to the trace τ , which

is the AFD II1 factor. Let α be the one-parameter automorphism of R defined by

αt(u) = eiλtu and αt(v) = eiµtv. We assume λ/µ /∈ Q, and λ/µ is not in the

GL(2,Q) orbit of θ. Then αt is cocycle conjugate to an infinite tensor product type

action β of R on R with Γ(β) = R, which is unique up to cocycle conjugacy.

Proof. Immediate by Theorems 14 and 15. Q.E.D.

For the relative commutant, we get the following. (See Proposition 3.2 in

Kawahigashi [12].)

Corollary 17. For the action α in Theorem 16, we have the trivial relative com-

mutant property: R′ ∩ (R �α R) = CI.

Proof. This is immediate by Theorem 16 and Proposition 3.2 in Kawahigashi [12].

It is also possible to give a direct proof of this statement by a similar computation

to the proof of Lemma 1. Q.E.D.

§5 A remark on C∞ projections

Set

T = {τ (p) | p is a C∞ projection with respect to δ}.

We know that (Z+θZ)∩[0, 1] ⊆ T ⊆ [0, 1]. And the fact that T is dense in [0, 1] was

the key in §3. In this sense, it is a desirable property that T is a large set in [0, 1].

It is a problem how large this set T is for a general one-parameter automorphism

group. Here we will show T = [0, 1] for our one-parameter automorphism group.

It is enough to show h =
∑∞

n=1 hn in the proof of Theorem 14 is C∞ with respect
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to our δ. Because each hn is in A∞
θ , the only problem is the validity of termwise

differentiation. We claim hn in the proof of Theorem 14 can be chosen so that

(∗) ‖hn‖, ‖δ(hn)‖, . . . , ‖δn(hn)‖ ≤ 1
2n

.

It is easy to see this implies we can apply δ to h term by term for arbitrarily many

times. We provide the outline of the proof of this claim in four steps.

Step 1. Suppose h1, . . . , hn−1 are given, and we set

h′ =h1 + · · · + hn−1+

(
ν

2
f11(1)− ν

2
f22(1)) + · · · + (

ν

2
f11(n − 1) − ν

2
f22(n − 1))

as in the proof of Theorem 14. We choose e,w with the additional conditions:

(∗∗)

‖δ(e)‖, . . . , ‖δn+1(e)‖ ≤ ε,

‖δ(w) − iνw‖, . . . , ‖δn(δ(w) − iνw)‖ ≤ ε,

‖[h′, e]‖, ‖[δ(h′), e]‖, . . . , ‖[δn(h′), e]‖ ≤ ε,

‖[h′, w]‖, ‖[δ(h′), w]‖, . . . , ‖[δn(h′), w]‖ ≤ ε,

where ε is some small positive number whose value will be specified later. This is

possible by the essentially same proof as that of Lemma 8.

Step 2. Set δ′ = δ + ad(ih′). Then by Step 1, we get

(∗∗∗)
‖δ′(e)‖, . . . , ‖δ′n+1(e)‖ ≤ Cε,

‖δ′(w) − iνw‖, . . . , ‖δ′n(δ′(w) − iνw)‖ ≤ Cε,
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for some positive number C . We change e,w as in the proof of Lemma 13 so that

these commute with the given n − 1 almost matrix units. Because holomorphic

functional calculus can be carried out with estimates of higher derivatives, we get

the same type of estimate as (∗∗∗) for a different positive number from C , which

we denote by the same symbol C . (The proof is essentially same as that of Lemma

13.)

Step 3. For a new pair (e,w), we still have the same type of estimates as (∗∗), if

we replace ε on the right hand sides by Cε for another different positive number C .

Step 4. Our hn is defined by the formula in the proof of Lemma 9 for δ′. Then

each of hn, . . . , δn(hn) can be expressed by a finite sum, each term of which contains

one of the following:

δ(e), . . . , δn+1(e),

δ(w) − iνw, . . . , δn(δ(w) − iνw),

[h′, e], [δ(h′), e], . . . , [δn(h′), e],

[h′, w], [δ(h′), w], . . . , [δn(h′), w].

Thus we have estimates

‖hn‖, ‖δ(hn)‖, . . . , ‖δn(hn)‖ ≤ Cε,

for another positive number C . Thus if we choose ε small enough at the beginning,

the estimates (∗) can be achieved.
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