
Orbifold subfactors from Hecke algebras II
—Quantum doubles and braiding—

David E. Evans
School of Mathematics

University of Wales, Cardiff
PO Box 926, Senghenydd Road
Cardiff CF2 4YH, Wales, U.K.

Yasuyuki Kawahigashi
Department of Mathematical Sciences

University of Tokyo, Komaba, Tokyo, 153, JAPAN
e-mail: yasuyuki@ms.u-tokyo.ac.jp

Abstract

A. Ocneanu has observed that a mysterious orbifold phenomenon occurs in
the system of the M∞-M∞ bimodules of the asymptotic inclusion, a subfactor
analogue of the quantum double, of the Jones subfactor of type A2n+1.

We show that this is a general phenomenon and identify some of his orb-
ifolds with the ones in our sense as subfactors given as simultaneous fixed point
algebras by working on the Hecke algebra subfactors of type A of Wenzl. That
is, we work on their asymptotic inclusions and show that the M∞-M∞ bimod-
ules are described by certain orbifolds (with ghosts) for SU(3)3k. We actually
compute several examples of the (dual) principal graphs of the asymptotic in-
clusions.

As a corollary of the identification of Ocneanu’s orbifolds with ours, we
show that a non-degenerate braiding exists on the even vertices of D2n, n > 2.

1 Introduction

In the theory of subfactors initiated by V. F. R. Jones in [17], Ocneanu’s paragroup
theory [30] is fundamental in descriptions of the combinatorial structures arising
from subfactors. Ocneanu’s construction of the asymptotic inclusions, introduced
in [30], has recently caught much attention as a subfactor analogue of the quantum
double construction of Drinfel′d in [4]. (See [7], [10], [16], [21], [22], [26], [28], [41] on
asymptotic inclusions.)

As noted by Ocneanu, if we start with a subfactor N ⊂ M = N � G, where N is
a hyperfinite II1 factor with a free action of a finite group G on N , then the resulting
asymptotic inclusion M ∨(M ′∩M∞) ⊂ M∞ gives the tensor category of the quantum
double of G as that of the M∞-M∞ bimodules. (See [11, Section 12.8] and [24] for
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example.) Since a paragroup, arising from a subfactor, is a certain “quantization”
of an ordinary group, Ocneanu’s construction of the asymptotic inclusion can be
regarded as a subfactor analogue of the quantum double construction. (See [11,
Sections 12.6, 12.7, 13.5] for its relation to topological quantum field theory and
rational conformal field theory.) The asymptotic inclusion can be also regarded as
an analogue of the quantum double construction, since the tensor category of the
M∞-M∞ bimodules gives a natural braiding as an analogue of the R-matrix, as in
[36], [11, Sections 12.7].

The dual principal graphs of the asymptotic inclusions are hard to compute, in
general, while their principal graphs are easy to compute, as in [10], [11, Section
12.6], [31], [32], [33], as long as we know the fusion rule of the M-M bimodules of
the original subfactor N ⊂ M . From the above viewpoint of the quantum double, it
is the dual principal graph, or the system of its even vertices, strictly speaking, that
is more important of the two graphs. (In some sense, the principal graph represents
just a double “without quantum”. See [11, Section 12.6].) So it would be interesting
to have concrete descriptions of the dual principal graphs (or their even vertices) of
the asymptotic inclusions of concrete examples of subfactors, other than the ones of
the form N ⊂ M = N � G arising from genuine groups. Other “easy” examples
of subfactors of finite depth arising from actions of finite groups contain subgroup-
group subfactors N = R � H ⊂ M = R � G and Wassermann type subfactors
(C ⊗ R)K ⊂ (Mn(C) ⊗ R)K , where R is the hyperfinite II1 factor, H ⊂ G are finite
groups acting freely on R, and K acts on R =

⊗
k Mn(C) as a product type action.

These, however, do not give anything new in the tensor categories of their M∞-M∞
bimodules, because the M-M bimodules of these subfactors are given by the tensor
category of Ĝ and then they give the same M∞-M∞ bimodules as the subfactor
N = R � H ⊂ M = R � G, as seen from [11, Section 12.6]. In this sense, “classical”
subfactors do not give interesting asymptotic inclusions.

The easiest subfactors among “quantum” subfactors are the Jones subfactors N ⊂
M of type An, as introduced in [17]. They are described as N = 〈e2, e3, e4, . . .〉,
M = 〈e1, e2, e3, e4, . . .〉, where {ej}j≥1 is a sequence of projections satisfying the
following relations :

ejek = ekej, |j − k| �= 1,

ejej±1ej = (4 cos2 π

n + 1
)−1ej.

Then it is easy to see that the asymptotic inclusion M ∨ (M ′ ∩ M∞) ⊂ M∞ is given
as

M ∨ (M ′ ∩ M∞) = 〈. . . , e−2, e−1, e1, e2, . . .〉,
M∞ = 〈. . . , e−2, e−1, e0, e1, e2, . . .〉,

where {ej}j∈Z is a (double-sided) sequence of projections satisfying the same relations
as above. The Jones indices of these subfactors were first computed by M. Choda
in [2]. It is quite non-trivial to describe the dual principal graphs of these asymp-
totic inclusions, while the general theory mentioned above gives the principal graphs
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easily from the fusion rules. Ocneanu has announced a description of the M∞-M∞
bimodules in [36] and at several other conferences.

Let us apply the construction of the asymptotic inclusion to a finite dimensional
Hopf C∗-algebra already having a non-degenerate braiding, then the resulting tensor
category of the M∞-M∞ bimodules is just a “double” of the original category and
nothing interesting happens in this procedure. (This fact was first noticed by Ocneanu
in [36] and we will see this in more detail in Section 2.) One might suspect we have
something similar and not interesting for these asymptotic inclusions of the Jones
subfactors, because the Jones subfactors correspond to the quantum groups Uq(sl2)
in some sense. This, however, is not true. We have a more subtle and interesting
situation due to a certain degeneracy condition of the braiding in the sense of Ocneanu
[36].

The non-degeneracy condition of this kind was first introduced by Reshetikhin–
Turaev [39] in their construction of topological invariants of 3-manifolds realizing the
physical prediction of Witten [49]. From the topological viewpoint, this condition
is quite natural and it is this non-degeneracy that leads the Turaev–Viro invariant
[43] of a 3-manifold being the square of the absolute value of the Reshetikhin–Turaev
invariant as in [42]. (See also [36] for an operator algebraic account of this theorem
of Turaev.)

Ocneanu has observed that a certain orbifold construction, similar to the orb-
ifold construction in our sense in [8] as simultaneous crossed products, is invoked in
the process of the asymptotic inclusions of the Jones subfactors if the above non-
degeneracy condition fails. In this paper, we will generalize his construction to the
case of the Hecke algebra subfactors of Wenzl [48] and show that this is a general phe-
nomenon in the following sense. The asymptotic inclusion produces a non-degenerate
system of bimodules in the sense of Ocneanu [36]. From the viewpoint of [36], we
can say that our orbifold construction [8] removes the degeneracy. So if we apply the
construction of the asymptotic inclusion to a subfactor having a degenerate system
of bimodules, the orbifold construction is invoked automatically in order to remove
the degeneracy in the procedure of making the “double”. In this way, we get another
series of orbifold subfactors from Hecke akgebras of type A as a continuation of our
work in [8].

The asymptotic inclusions of the Hecke algebra subfactors are described naturally
as follows. The original subfactor of Wenzl is described as N = 〈g2, g3, g4, . . .〉, M =
〈g1, g2, g3, g4, . . .〉, where {gj}j≥1 is a sequence of the Hecke generators satisfying the
relations of the Hecke algebras of type A as in [48]. The series of the commuting
squares giving this subfactor is not canonical in the sense of Popa, because this series
has a period larger than two. Still, one can identify the asymptotic inclusion of
this subfactor as follows, which is similar to the above description of the asymptotic
inclusions of the Jones subfactors :

M ∨ (M ′ ∩ M∞) = 〈. . . , g−2, g−1, g1, g2, . . .〉,
M∞ = 〈. . . , g−2, g−1, g0, g1, g2, . . .〉,

where {gj}j∈Z is a (double-sided) sequence of the Hecke generators satisfying the same
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relations. This subfactor was first constructed with a double sided sequence of the
Hecke generators by Erlijman [6]. Later it was identified with the asymptotic inclusion
of the Hecke algebra subfactor of Wenzl by Goto [15] and Erlijman [7] independently.
(Goto’s proof works in a quite general setting, while Erlijman directly works on the
Hecke algebras.) So the asymptotic inclusions of the Hecke algebra subfactors have
natural constructions in terms of generators and commuting squares parallel to the
case of the Jones subfactors of type An.

In Section 2, we explain Ocneanu’s basic properties of braiding on a system of
bimodules in his sense [36] and its relation to his tube algebras. We continue the
study of the tube algebras for the Hecke algebra subfactors of Wenzl [48] in Section
3. This gives the basic properties of the tube algebra and enables us to use Ocneanu’s
general machinery on asymptotic inclusions and tube algebras in [35] and [10]. The
dual principal graphs of the asymptotic inclusions of the Jones subfactors of type
An are described in Section 4. This covers the case announced by Ocneanu in [36].
These for the Hecke algebra subfactors with indices converging to 9 are dealt with in
Section 5. This Section describes our main results. In Section 6, we study a relation
between the orbifold phenomena Ocneanu has observed and the orbifold construction
in our sense [8] for the SU(2)2k case. In the last Section 7, we study the orbifold
construction with braiding in our setting and get a non-degenerate braiding on the
even vertices of D2n, n > 2.

This work was done at University of Wales, Swansea while the second author
visited there on the joint research program of the Royal Society and the Japan Society
for Promotion of Sciences. The second author thanks for the financial supports of
these Societies. The second author also acknowledges financial support from the
Inamori Foundation during this research. We thank Dr. Maxim Nazarov for his kind
explanation of the Littlewood–Richardson rule.

2 Braiding and a tube algebra — non-degenerate case —

We start with a finite braided system of bimodules M = {xi}i∈I in the sense of
Ocneanu [36]. (The original references for Ocneanu’s theory used in this paper are
[30], [31], [32], [33], [34], [35], [36]. See also [9], [10] and [11, Chapter 12].)

An important example of such a system is obtained from the WZW-models
SU(n)k with Ocneanu’s surface bimodule construction as in [33], [34], [35]. (See
also [10] or [11, Chapter 12].)

We may have such a system from a subfactor N ⊂ M with finite index and
finite depth. Note that even when we have an abstract system of bimodules, we
can realize the system as a system of bimodules arising from a single hyperfinite
(possibly reducible) subfactor N ⊂ M of type II1 finite index and finite depth. This
is possible by a minor variation of the construction in [1]. That is, instead of choosing
a primary field Φ in page 281 of [1], we choose ⊕i∈Ixi as the generator to construct a
paragroup. In this way, we get a (possibly reducible) subfactor N ⊂ M for which the
system of the M-M bimodules arising from the subfactor is given by M = {xi}i∈I .
(We have learnt this construction from S. Yamagami. See also [9, Section 4] or [11,
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Figure 1: A degenerate element x

Section 12.5].) So we may and do assume that our system M arises from a hyperfinite
subfactor N ⊂ M of type II1 with finite index and finite depth.

Define the global index [M] of the system by [M] =
∑

x∈M[x], where [x] denotes
the Jones index of the bimodule x. This is also the global index of the subfactor
N ⊂ M in the sense of Ocneanu [30]. We would like to study the system of the M∞-
M∞ bimodules corresponding to the asymptotic inclusion M ∨ (M ′ ∩ M∞) ⊂ M∞
arising from this subfactor N ⊂ M in the sense of Ocneanu [30]. The construction
of this system of the M∞-M∞ bimodules can be regarded as a subfactor analogue of
the quantum double construction of Drinfel′d in [4]. (This analogy has been noted
by Ocneanu. See [11, Chapter 12] for the basic theory of asymptotic inclusions and
this analogy.)

In order to study this system, we work on Ocneanu’s tube algebra Tube M and
study the center of the tube algebra in the sense of [33], [36]. (See also [11, Chapter
12] for tube algebras.)

Recall that an element x in the braided system M is called degenerate in the
sense of Ocneanu [36] if it satisfies the identity in Figure 1, where the dashed circle
denotes the summation over all the labels x ∈ M with coefficient [x]1/2/[M] as in
Figure 2. Such a dashed ring is called a killing ring in Ocneanu’s terminology. (This
has been already used in the topology literature e.g. [44].)

In this section, we suppose that the braiding on M is non-degenerate in the
sense that 0 is the only degenerate element. (We remark that 0 is always degenerate
by definition.) We note that we can use a graphical expression as in [19], [50] for
elements in the tube algebra Tube M because we have a braided system of bimodules.
(We need to orient edges, since bimodules are not now self-contragredient in general.
We also for simplicity as in [51] drop labels for intertwiners on triple points arising
from multiplicities in the fusion rules .) In the tube algebra, we define the Ocneanu
projection pa,b ∈ Tube M for a, b ∈ M as in Figure 3. In this picture, the left
half is a coefficient represented diagramatically as in [19], where the horizontal bar
represents a fraction, and the right half is an element in the tube algebra Tube M
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Figure 3: The Ocneanu projection pa,b

where the top and the bottom of the dashed line are identified in the tube picture.
The dashed line again denotes the killing ring. (If we use the convention of writing
an element in a tube algebra as in [10], the right half of the picture is interpreted as
in Figure 4. Here the two triangles denote intertwiners and the two trapezoids denote
intertwiners arising from braiding. The diagram represents the composition of these
four intertwiners, and gives an element in the tube algebra as in the definition of
the multiplication in the tube algebra. The dashed line does not need an orientation
because we take a summation over all the labels.)

We recall from [19, Section 12.3] that we can perform the graphical operation
called a handle slide against a killing ring without changing the number or operator
represented by the figure. We give an example of a handle slide in Figures 5, 6. In
this situation here, we assume that the link components on the right hand side are
killing rings. (We remark that we have to regard a diagram of a link as a framed link
diagram now.) Note that this handle slide is valid regardless of the non-degeneracy
condition. (See [19, Section 12.3].)

The following theorem is due to Ocneanu. He presented this theorem and a proof
in his talk in the Taniguchi Symposium in Japan in July, 1993. The proof here, except
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Figure 4: An element in the tube algebra

Figure 5: Before a handle slide

for the last paragraph, is his proof, which we include for the sake of completeness.

Theorem 2.1 The above element pa,b gives a system of mutually orthogonal minimal
central projections in the tube algebra with

∑
a,b∈M pa,b = 1.

Before the proof, note that this system of the minimal central projections describes
the system of the M∞-M∞ bimodules and that these bimodules give the even vertices
of the dual principal graph of the asymptotic inclusion, by Ocneanu’s theorem in [35]
(see [10, Theorem 4.3] or [11, Theorem 12.28]).
Proof: First we prove that pa,b’s give a system of mutually orthogonal projections.
It is clear that each pa,b is self-adjoint, so we will prove that pa,bpa′,b′ = δa,a′δb,b′pa,b

first. This proof is given as in Figure 7, where we compute pa,bpa′,b′ graphically. In the
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Figure 6: After a handle slide

first equality, we have used a handle slide. (The handle slide is against the left dashed
line, which is a link because its top and bottom are connected.) In the third equality,
the non-degeneracy assumption implies that the label d should be 0. We next prove
that each pa,b is central. It is enough to prove that pa,b/([a][b])1/2 commutes with
any element in the tube algebra. This proof is given again graphically. First we
compute the product of pa,b/([a][b])1/2 and a generic element in the tube algebra as
in Figure 8, where the top and the bottom of the generic element labeled with z are
identified again, where the top and the bottom of the generic element labeled with z
are identified again. We next compute the product in the reverse order as in Figure
9. Then the coefficients in Figures 8 and 9 turn out to be the same, so we have the
desired centrality.

The proof of
∑

a,b∈M pa,b = 1. is given graphically in Figure 10.
We finally have to show that each pa,b is a minimal central projection. By Oc-

neanu’s theorem mentioned above just before the proof, it is enough to show that the
corresponding M∞-M∞ bimodules are all irreducible. By the proof of Ocneanu’s theo-
rem in [35] (see [10, Theorem 4.3] or [11, Theorem 12.28]), we know that the M∞-M∞
bimodule corresponding to pa,b decomposes as

⊕
c∈M N c

abBc as an M ∨ (M ′ ∩ M∞)-
M∞ bimodule after restricting the left action to M ∨ (M ′ ∩ M∞), where Bc denotes
the M ∨ (M ′ ∩ M∞)-M∞ bimodule labeled with c. This shows that the Jones index
of the M∞-M∞ bimodule corresponding to pa,b is [a][b]. Thus if all the bimodules
corresponding to pa,b are irreducible, we get the global index equal to

∑
a,b∈M[a][b],

which is the correct global index. If one or more of the bimodules is reducible, we
would get a smaller global index, which is impossible. Thus we conclude that all the
bimodules are irreducible. Q.E.D.

We now recall that the principal graph of the asymptotic inclusion M ∨ (M ′ ∩
M∞) ⊂ M∞ is given by the fusion graph of the original system M by Ocneanu’s
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Figure 7: Orthogonality of pa,b

theorem in [35] (see [10, Theorem 4.1] or [11, Theorem 12.25]). That is, the set of
the odd vertices of the principal graph is labeled with M, the set of the even vertices
is labeled by pairs (a, b) with a, b ∈ M, and the number of the edges between the
odd vertex labeled with c and the even vertex labeled with (a, b) is given by N c

ab, the
multiplicity of c in the relative tensor product a ⊗M b. The connected component of
this graph containing the even vertices labeled with (∗, ∗) is called the fusion graph
of the system M. (See [31], [10, page 220], [11, Section 12.6].)
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Figure 8: Centrality of pa,b (1)

Combining these pieces of information, we get the following proposition.

Proposition 2.2 Let N ⊂ M be a hyperfinite type II1 subfactor with finite index
and finite depth. Suppose that the system of the M-M bimodules arising from this
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Figure 9: Centrality of pa,b (2)

subfactor has a non-degenerate braiding. Then the dual principal graph of the asymp-
totic inclusion M ∨ (M ′ ∩M∞) ⊂ M∞ is the fusion graph of the original system, the
same as the principal graph.

Proof: As above, we know that the even vertices of the dual principal graph is
labeled with pairs (a, b) for a, b ∈ M and the odd vertices with c ∈ M. It is thus
enough to show that the number of the edges connecting the vertices labeled with
(a, b) and c is indeed N c

ab. This follows from the above proof of Theorem 2.1.
Q.E.D.

3 Braiding for SU(n)k and a tube algebra

We now work on the WZW-model SU(n)k. Let N ⊂ M be the corresponding Wenzl
subfactor in [48] constructed as in [1, Section 4]. Note that the fusion rule algebra
for the WZW-model SU(n)k has a natural Z/nZ-grading and that the fusion rule
subalgebra given by the grade 0 elements corresponds to the fusion rule algebra of
the M-M bimodules arising from this subfactor N ⊂ M . (This correspondence also
follows from [1, Section 4].) We denote the grading of a primary field a in the model
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pa,b = 1

SU(n)k by gr(a) ∈ Z/nZ. Then this system is often degenerate in the sense of
the previous section. Our next aim is to study the asymptotic inclusions for these
degenerate cases. Some statements in this Section hold for a general RCFT in the
sense of [29] rather than for the WZW-models, so we make a general statement in
such a case.

First we have the following general proposition.

Proposition 3.1 Let M be a braided system of M-M bimodules. A bimodule x ∈ M
is degenerate if and only if the bimodule x satisfies the equality in Figure 11 for all
y ∈ M.

Proof: It is trivial that if we have the equality in Figure 11, then we have the
degeneracy condition in Figure 1.

For the converse direction, we use a graphical argument as in Figure 12, where
we have used a handle slide against a killing ring. Q.E.D.

We record the following straightforward Lemma just to fix the normalization
constants for an RCFT.

Lemma 3.2 The number represented by Figure 13 is Sxy/S00, where S denotes the
S-matrix of the RCFT.

Proof: This is standard. See [50] for example. Q.E.D.
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=

Figure 11: The degeneracy condition

x y x y x y x y

= = =

Figure 12: The converse direction

Let M be a subsystem of an RCFT. (A typical case will be the subsystem of all
grade 0 elements in a WZW-model SU(n)k.) We first have the following lemma.

Lemma 3.3 Let x be an element of the subsystem M. If we have S0y = Sxy for all
y ∈ M, then x is degenerate in M.

Proof: This follows from a graphical argument as in Figure 14. Q.E.D.

� �

x y

Figure 13: The Hopf link

13



∑
y

[y]1/2

[M]
=
∑
y

[y]1/2Sxy

[M]Sx0

=
∑
y

[y]1/2S0y

[M]S00

=

x x

x x

y

Figure 14: Degeneracy of x

� ���
x yx y

�=

Figure 15:

Lemma 3.4 Suppose that x is degenerate in M. Then for all y ∈ M, we have

Sxy

S00
=

Sx0

S00

Sy0

S00
. (1)

Proof: Suppose that the identity (1) fails for some y ∈ M. Then we have the
graphical relation of Figure 15. This, together with identity of Figure 16 given by the
handle slide, gives the identity of Figure 17, which is a contradiction. Q.E.D.

In the rest of this Section, we work on the WZW-model SU(n)k with n | k, because
it will turn out that this case is a typical degenerate case related to the orbifold
construction. Let M be the subsystem of the WZW-model SU(n)k consisting of
the elements with grading 0. (Note that if n and k are relatively prime, then M is
non-degenerate by [23, Section 2].) In this case, the subsystem {x ∈ M | S0x = S00}
of M is isomorphic to Z/nZ. (They are called simple currents. See [11, Section 8.8],
[12, pages 327, 365] for example.) We choose and fix an element σ in this subsystem
of M so that this subsystem is given as {0, σ, σ2, . . . , σn−1}.
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Figure 17:

Lemma 3.5 For σ as above and an arbitrary y ∈ M, we have S0y = Sσy.

Proof: This follows from a standard property of the S-matrix. See [12, (5.5.25)],
for example. Q.E.D.

This Lemma, together with Lemma 3.3, shows that any element in

{0, σ, σ2, . . . , σn−1}
is degenerate in M. We next show the converse as follows.
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Proposition 3.6 If x ∈ M is degenerate in M, then

x ∈ {0, σ, σ2, . . . , σn−1}.

Proof: For y ∈ M, let Γy be the matrix for the multiplication by y on the entire
fusion rule algebra of the model SU(n)k. That is, each entry (Γy)ab is given by N b

ay for
any primary field a, b in the model SU(n)k. We also define a vector v by v = (Syx)y

for any primary field y in the model SU(n)k. According to the grading of y, we
split the vector v into n pieces and write v = (v0, v1, . . . , vn−1), where vj denotes the
vector component corresponding to y with gr(y) = j. By the Verlinde identity [46],
[11, Section 8.6], we get

Γzvj =
Szx

S0x
vj+1,

where z ∈ M and j ∈ Z/nZ.
Lemma 3.4 implies that we have Szx �= 0 for any z ∈ M with grading 1. Then we

get

Szx

S0x
‖vj+1‖2

2 = (Γzvj, vj+1)

= (vj, Γz̄vj+1)

=
Sz̄x

S0x
‖vj‖2

2

=
Szx

S0x
‖vj‖2

2,

which implies ‖vj‖2 = ‖vj+1‖2. Since this is true for all j ∈ Z/nZ and the matrix
S is unitary, we get ‖vj‖2 = 1/

√
n for all j ∈ Z/nZ. Let w0 be the vector defined

by (w0)y = Syx for y ∈ M. Lemma 3.4 implies that w0 = v0 and thus S0x = S00.
This means that the Perron–Frobenius weight of the element x is 1 and thus x is in
{0, σ, σ2, . . . , σn−1}, which is the conclusion of the Proposition. Q.E.D.

We now extend the definition of the Ocneanu projection pa,b in Figure 3. Suppose
that a, b are primary fields in the model SU(n)k with gr(a)+gr(b) = 0 ∈ Z/nZ. Then
the graphical formula in Figure 3 still defines an element in the tube algebra Tube M
for the subsystem M of the elements with 0 grading, because we have gr(c) = 0 for
any c appearing in Figure 3. Note that pa,b may not be a projection any more. We
call this element pa,b an Ocneanu element.

Lemma 3.7 For primary fields a, b as above, the element pa,b is central in the tube
algebra Tube M.

Proof: The same argument as in Figure 8 works. Q.E.D.

Lemma 3.8 For primary fields a, b as above, we have pa,b = pσa,σn−1b in the tube
algebra Tube M.
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Proof: First consider pσ,σn−1 . If c �= 0 in Figure 3, then the term corresponding
to c is 0. So we have a single term for this Ocneanu element. The degeneracy of σ,
proved in Lemmas 3.5 and 3.3, easily implies pσ,σn−1 = p0,0.

Next note that we have S(x1∗x2)S(x3) = S(x1)S(x2∗x3) for x1, x2, x3 ∈ HS1×S1 as
in [10, Theorem 5.1], [11, Theorem 12.29], where S means the action of the S-matrix
in PSL(2,Z). (This is a direct analogue of the Verlinde formula [46]. Actually, the
formula in Theorem 5.1 in [10] is slightly incorrect because normalizing coefficients
are missing there. Theorem 12.29 in [11] is correct.) By Lemma 3.7, we can apply
this identity to the Ocneanu elements. Then we have

pa,b = pa,b ∗ p0,0 = pa,b ∗ pσa,σn−1b = pσa,σn−1b.

Q.E.D.

Lemma 3.9 Let a, b, a′, b′ be primary fields in the model SU(n)k with gr(a)+gr(b) =
gr(a′) + gr(b′) = 0 ∈ Z/nZ. We suppose that (a′, b′) �= (σja, σn−jb) for all j ∈ Z/nZ.
Then we have pa,bpa′,b′ = 0.

Proof: We compute pa,bpa′,b′ as in Figure 7. The computation is the same up to
the third line of Figure 7. Then in the third line, the picture represents the value 0
for any choice of d. Thus we have pa,bpa′,b′ = 0. Q.E.D.

Note that we have a unique primary field f with σf = f , because n | k.

Lemma 3.10 If primary fields a, b as above satisfy (a, b) �= (f, f), then the element
pa,b is a projection in the tube algebra Tube M.

Let P = {pa,b | gr(a) + gr(b) = 0 ∈ Z/nZ, (a, b) �= (f, f)}. Then we have∑
p∈P p + pf,f/n = 1, which implies that pf,f/n is a central projection.

Proof: Suppose (a, b) �= (f, f). We compute p2
a,b as in Figure 7. Then in the third

line, we have only the terms with d in {0, σ, σ2, . . . , σn−1}. Since (a, b) �= (f, f), none
of these d, except for d = 0, give a non-zero value. For d = 0, we have the original
pa,b. This shows that pa,b is a projection.

Set P0 = {pa,b | gr(a) + gr(b) = 0 ∈ Z/nZ}. We compute
∑

p∈P0
p as in Figure

18. The second equality follows since the entire system of the primary fields in the
model SU(n)k is non-degenerate, which follows from unitarity of the S-matrix. (The
coefficient n comes from the ratio of the global indices of M and the entire system.)
This implies

∑
p∈P p + pf,f/n = 1. The last assertion on pf,f/n now follows from

Lemmas 3.9, 3.7, 3.10. Q.E.D.

Lemma 3.11 If primary fields a, b as above satisfy (a, b) �= (f, f), then the projection
pa,b in the tube algebra Tube M is minimal.
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∑
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p = n
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Figure 19: Element p
(c,d)
a,b

Proof: We define p
(c,d)
a,b as in Figure 19.

We compute p
(c,d)
a,b p

(d,e)
a,b graphically as in Figure 20, where we have used (a, b) �=

(f, f) in the second line. Let M(a, b) be the set of the primary fields c satisfying

p
(c,c)
a,b �= 0. If c, d ∈ M(a, b), then the computation in Figure 20 shows that p

(c,d)
a,b �= 0.

If c, d, e ∈ M(a, b), then the computation in Figure 20 also shows that p
(c,d)
a,b p

(d,e)
a,b �= 0.
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Figure 20: Product p
(c,d)
a,b p

(d,e)
a,b

We thus have a system of matrix units {λc,dp
(c,d)
a,b }c,d for pa,b(Tube M)pa,b, where λc,d

are some positive numbers. This shows that the algebra pa,b(Tube M)pa,b is a full
matrix algebra and thus the central projection pa,b is minimal in the center of the
tube algebra Tube M. Q.E.D.

Again by Ocneanu’s theorem in [35] (see [10, Theorem 4.3] or [11, Theorem 12.28]),
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we get irreducible M∞-M∞ bimodules corresponding to pa,b with (a, b) �= (f, f). Note
that we have corresponding bimodules even when gr(a), gr(b) �= 0. The principal
graphs of the asymptotic inclusions are determined only by the primary fields with
grading 0, but the dual principal graphs have vertices related to the primary fields
with other grading. The primary fields with non-zero grading are the ghosts of the
system M in the sense of Ocneanu [36].

We work on the irreducible decompositions of these M∞-M∞ bimodules after
restricting the left action to M∨(M ′∩M∞) as follows. This gives partial information
about the dual principal graph of the asymptotic inclusion.

Lemma 3.12 Let a, b be primary fields as above satisfying (a, b) �= (f, f) and Xa,b the
irreducible M∞-M∞ bimodule corresponding to the minimal central projection pa,b in
Tube M. If we restrict the left action to M∨(M ′∩M∞), we get a decomposition Xa,b =⊕

c∈M N c
abXc as a M∨(M ′∩M∞)-M∞ bimodule, where Xc is the M∨(M ′∩M∞)-M∞

bimodule corresponding to c ∈ M.

Proof: An argument similar to the one in the proof of Theorem 2.1 works.
Q.E.D.

We next work on the case (a, b) = (f, f). We still have an M∞-M∞ bimodule in
such a case, though this bimodule might not be irreducible, and we get the following
lemma in the same way.

Lemma 3.13 Let Xf,f be the M∞-M∞ bimodule corresponding to the central projec-
tion pf,f/n in Tube M. If we restrict the left action to M ∨ (M ′ ∩ M∞), we get a
decomposition Xf,f =

⊕
c∈M N c

ffXc as a M ∨ (M ′ ∩M∞)-M∞ bimodule, where Xc is
the M ∨ (M ′ ∩ M∞)-M∞ bimodule corresponding to c ∈ M.

Proof: An argument similar to the one in the proof of Theorem 2.1 again works.
Q.E.D.

We would like to get a full description of the dual principal graph, but the bi-
module Xf,f plays a quite subtle role. So we first make the following assumption and
later prove that this assumption holds in some cases.

Assumption 3.14 The M∞-M∞ bimodule Xf,f decomposes into n irreducible bi-
modules and each has the same dimension.

In this assumption, we mean the square root of the Jones index of the corre-
sponding subfactor of a bimodule by the “dimension” of a bimodule. A. Ocneanu has
observed this assumption holds for SU(2)2k and we will prove that this also holds for
SU(3)3k in a general framework. We conjecture that this assumption holds for any
SU(n)nk, but combinatorial complexity has prevented us from proving it, so far.

A simple computation easily gives the following lemma.

Lemma 3.15 Assumption 3.14 gives the correct global index for the asymptotic in-
clusion.
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Consider the dual principal graph of the asymptotic inclusion. To each M∞-M∞
or M ∨ (M ′ ∩ M∞)-M∞ bimodule, we assign its dimension, as usual. This gives a
Perron–Frobenius weight. That is, for an M∨(M ′∩M∞)-M∞ bimodule corresponding
to c ∈ M, we get [c]1/2[M]1/2 and for an M∞-M∞ bimodule corresponding to pa,b

with arbitrary a, b in the model SU(n)k with (a, b) �= (f, f), we get [a]1/2[b]1/2. We
also note that the Perron–Frobenius eigenvalue for this weight is [M]1/2.

Lemma 3.16 These Perron–Frobenius weights on the M∨(M ′∩M∞)-M∞ bimodules
are compatible with Assumption 3.14.

Proof: For c ∈ M, we denote by Xc the corresponding M ∨ (M ′ ∩ M∞)-M∞
bimodule. We easily get [Xc] = [c][M]. We can also form a fusion graph using all
the primary fields in the model SU(n)k. From the Perron–Frobenius property of this
graph, we get

n[M][c]1/2 =
∑
a,b

N c
ab[a]1/2[b]1/2,

where a, b are arbitrary primary fields in the model SU(n)k. Let L be a set of
representatives of the equivalence classes on all the pairs of arbitrary primary fields
in the model SU(n)k excluding (f, f) for the equivalence relation (a, b) ∼ (σja, σn−ja)
with j ∈ Z/nZ. Then the right hand side of the equality is equal to

n


 ∑

(a,b)∈L

N c
ab[a]1/2[b]1/2 + N c

ff

[f ]

n


 ,

by Assumption 3.14. This gives

[M]1/2[c]1/2[M]1/2 =
∑

(a,b)∈L

N c
ab[a]1/2[b]1/2 + N c

ff

[f ]

n
,

which is the conclusion, because we have Lemmas 3.12, 3.13. Q.E.D.

4 Dual principal graphs of the asymptotic inclusions — SU(2)k case —

With the preliminaries of the previous section, we compute the dual principal graphs
of the asymptotic inclusions of the SU(2)2n subfactors, that is, the Jones subfactors
of type A2n+1 constructed in [17], with n > 1. These results were first claimed by
Ocneanu. We present a complete proof here, because we will generalize the results in
the next Section.

First label the primary fields in SU(2)2n with 0, 1, . . . , 2n as usual. Recall that
the fusion rule is given as

N l
jk =

{
1, if |j − k| ≤ l ≤ j + k, j + k + l ∈ 2Z, j + k + l ≤ 4n,
0, otherwise.
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Note that all the bimodules in M are labeled with even integers and they are all
self-contragredient. The M ∨ (M ′ ∩M∞)-M∞ bimodules arising from the asymptotic
inclusion are labeled with 0, 2, . . . , 2n and the M ∨ (M ′ ∩ M∞)-M ∨ (M ′ ∩ M∞)
bimodules are labeled with pairs of even integers 0, 2, . . . , 2n. This implies that all
the M ∨ (M ′∩M∞)-M ∨ (M ′∩M∞) bimodules arising from the asymptotic inclusion
are also self-contragredient.

On the even vertices of the dual principal graph, we do not know how the M∞-M∞
bimodule corresponding to pn,n/2 in Tube M decomposes into irreducible ones, but
the fusion rule as above shows that this bimodule contains exactly one copy of X0

when we restrict the left action to M∨(M ′∩M∞) by Lemma 3.13. Then Lemma 3.16
implies that the M∞-M∞ bimodule corresponding to pn,n/2 is not irreducible and it
contains at least one irreducible bimodule whose dimension is half the dimension of
this M∞-M∞ bimodule corresponding to pn,n/2. Then Lemma 3.15 implies that this
M∞-M∞ bimodule corresponding to pn,n/2 decomposes into exactly two irreducible
bimodules with equal Jones indices and thus Assumption 3.14 holds, because we
would have a smaller global index otherwise. We label these two bimodules with
(n, n)+ and (n, n)−. We will now determine the dual principal graph of the asymptotic
inclusion. By Lemma 3.12, it is enough to determine how the even vertices labeled
with (n, n)+ and (n, n)− are connected to the odd vertices. Since the odd vertex
labeled with 0 is connected to one of these two even vertices, we may assume that
(n, n)+ is connected to 0.

Lemma 4.1 The M∞-M∞ bimodules labeled with (n, n)± are self-contragredient.

Proof: First note that the other M∞-M∞ bimodules are self-contragredient by
Lemma 3.8.

We count the number of the paths of length 2 connecting the odd vertex 0 to
itself on the principal graph of the asymptotic inclusion, which is the fusion graph
of M, via the contragredient map, because the fusion graph is now connected. By
the fusion rule described above, we can go from 0 back to 0 on the principal graph
through (0, 0), (2, 2), . . . , (2n, 2n). This implies that the number of the paths is n+1.

We know that the number of paths of length 2 connecting the odd vertex 0 to itself
on the dual principal graph of the asymptotic inclusion via the contragredient map
is also equal to n − 1 by (bi)unitarity of the connection arising from the asymptotic
inclusion [30, page 130] (or [11, Section 10.3]).

The M∞-M∞ bimodules labeled with

(0, 0) = (2n, 2n), (1, 1) = (2n − 1, 2n − 1), . . . , (n − 1, n − 1) = (n + 1, n + 1)

give n paths from 0 back to 0 on the dual principal graph. (Here the equality as
in (0, 0) = (2n, 2n) means that the bimodule labeled with p0,0 is equal to that with
p2n,2n because of Lemma 3.8.) This means that we still have another path from 0
back to 0 on the dual principal graph through the even vertex labeled with (n, n)+.

This means that the M∞-M∞ bimodule labeled with (n, n)+, hence that with
(n, n)−, is contragredient to itself. Q.E.D.
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We next count the number of paths connecting the odd vertices 0 and 2 on the
principal graph of the asymptotic inclusion. (In this kind of counting in the rest of this
paper, by a “path” we mean a path of length 2 on the graph via the contragredient
map.) Again by the fusion rule, we can go from 0 to 2 on the principal graph through
(2, 2), (4, 4), . . . , (2n− 2, 2n− 2). This implies that the number of the paths is n− 1.

Again by unitarity, the number of the paths connecting the odd vertices 0 and 2
on the dual principal graph is also equal to n − 1. The even vertices labeled with
(1, 1), (2, 2), . . . , (n − 1, n − 1) are connected both to the odd vertices 0 and 2 by
Lemma 3.12. These already give the correct number of paths, so this fact means
that the even vertex (n, n)+ is not connected to the odd vertex 2. Then Lemma 3.13
implies that the even vertex (n, n)− is connected to the odd vertex 2.

Similarly, we can count the number of paths from 0 to 4, 6, . . . on the princi-
pal/dual principal graphs with the fusion rule. Then unitarity gives the following
description of the dual principal graph.

Theorem 4.2 Let N ⊂ M be the subfactor corresponding to SU(2)2n. Then the even
vertex (n, n)+ of the dual principal graph of the asymptotic inclusion is connected
to the odd vertices 0, 4, . . .. The even vertex (n, n)− of the dual principal graph is
connected to the odd vertices 2, 6, . . ..

As a corollary of the above description, we get the following, which was announced
by Ocneanu in [36, page 41]. Note that this Corollary gives the number of the even
vertices of the dual principal graph of the asymptotic inclusions. These are also the
dimensions of the Hilbert spaces HS1×S1 in the corresponding topological quantum
field theories.

Corollary 4.3 Let N ⊂ M be the subfactor corresponding to SU(2)k, that is, the
Jones subfactor of type Ak+1. Assume k > 2. Then the number of the irreducible
M∞-M∞ bimodules arising from the asymptotic inclusion is given as follows.

(
k + 1

2

)2

, if k is odd,

k2

4
+

k

2
+ 2, if k is even.

We list some examples of the dual principal graphs. The first one is for SU(2)4,
which is the Jones subfactor of type A5. It is well known that this subfactor of index
3 is of the form R � S2 ⊂ R � S3, where S2 and S3 are the symmetric groups of
order 2 and 3 respectively and these groups act freely on the hyperfinite II1 factor
R. (See [30].) Thus the paragroup of the asymptotic inclusion is given by that of the
subfactor RS3×S3 ⊂ RS3 , where S3 is diagonally embedded into S3×S3 and the group
S3 acts freely on R, by Ocneanu’s theorem. (See [21, Lemma 2.15], [22, Appendix],
[11, Section 12.8].)

So the (dual) principal graphs of the asymptotic inclusion can be described with
Ocneanu’s theorem on subfactors of the form RG ⊂ RH , where G is a finite group
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Figure 21: Dual principal graphs for SU(2)4, A5
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Figure 22: Dual principal graphs for SU(2)6, A7

acting freely on a II1 factor R and H is a subgroup of G. (See [25] for this type of
computation.) Of course, this method gives the same result as in Figure 21.

A more complicated example of the dual principal graph of the asymptotic inclu-
sion is given in Figure 22.

In the graphs in Figures 21, 22, the vertices labeled with pairs of odd numbers
arise, while the original M-M bimodules are labeled with only even numbers. These
odd numbers correspond to the ghosts in the terminology of Ocneanu [36].

5 Dual principal graphs of the asymptotic inclusions — SU(3)k case —

Now we work on the asymptotic inclusions of the SU(3)3k-subfactors and give our
main results in this paper. We have to determine how the central projection pf,f/3
decomposes into minimal central projections in the tube algebra Tube M.

Lemmas 3.13 and 3.16 imply that pf,f/3 contains at least one minimal central
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projection p
(0)
f,f , the dimension of the corresponding irreducible M∞-M∞ bimodule of

which is one third of that of the M∞-M∞ bimodule corresponding to pf,f/3. This
argument also shows that the odd vertex of the dual principal graph labeled with
0 is connected to the even vertex labeled with p

(0)
f,f with exactly one edge and also

that the odd vertex 0 is not connected to the other even vertices arising from the
decomposition of pf,f/3.

Lemma 5.1 The irreducible M∞-M∞ bimodule corresponding to p
(0)
f,f is contragredi-

ent to itself.

Proof: We again count the number of the appropriate paths as in the proof of
Lemma 4.1.

We first count the number of the paths connecting the odd vertex 0 to itself on
the principal graph of the asymptotic inclusion. Let l be the number of the primary
fields in the WZW-model SU(3)3k. Then it is easy to see that the number of the
primary fields in M is (l +2)/3. By the fusion rule, the number of paths from 0 back
to 0 on the principal graph is (l + 2)/3.

It is also easy to see that the number of paths connecting the odd vertex 0 to
itself on the dual principal graph of the asymptotic inclusion without going through
the even vertices corresponding to some minimal central projection appearing in the
decomposition of pf,f/3 is (l − 1)/3.

These mean that we still have one more path from 0 back to 0 on the dual principal
graph, which must go through the even vertex corresponding to p

(0)
f,f . That is, the

M∞-M∞ bimodule corresponding to p
(0)
f,f is self-contragredient. Q.E.D.

Lemma 5.2 If c ∈ M satisfies N c
ff = 1, then the odd vertex of the dual principal

graph labeled with c is connected to the even vertex labeled with p
(0)
f,f with exactly one

edge.

Proof: We count the number of appropriate paths again.
The number of paths connecting the odd vertex 0 to itself on the principal graph

of the asymptotic inclusion is
∑

a∈M N c
aā, because the principal graph is the fusion

graph which is now connected.
Let l be the number of the edges connecting the odd vertex of the dual principal

graph labeled with c and the even vertex labeled with p
(0)
f,f . Lemma 3.12 implies that

l is 0 or 1, because N c
ff = 1. We next count the number of paths connecting the

odd vertex 0 to itself on the dual principal graph of the asymptotic inclusion. This
number is equal to (

∑
a N c

aā−N c
ff)/3+ l, where the summation is over all the primary

fields a of the WZW-model SU(3)3k.
Since the two numbers are equal, we get

∑
gr(a)=1,2

N c
aā = 2

∑
gr(a)=1

N c
aā = −1 + 3l,
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which implies that 3l − 1 is even. That is, we get l = 1. Q.E.D.

As in Section 3, we know that the subsystem {x ∈ M | S0x = S00} of M is given
as {0, σ, σ2}. The above Lemma gives the following.

Corollary 5.3 Each of the odd vertices of the dual principal graph labeled with
0, σ, σ2 is connected to the even vertex labeled with p

(0)
f,f with exactly one edge.

Proof: This follows from the above Lemma, because we have N c
ab = N

σ(c)
aσ(b) by [47].

Q.E.D.

We now need some lemmas for the fusion rule of the WZW-model SU(3)3k, which
has been obtained by Goodman–Wenzl in [14] as a quantum version of the classical
Littlewood–Richardson rule. Each primary field is represented by a Young diagram
and we denote a primary field by the corresponding Young diagram.

Lemma 5.4 We have the following fusion rule in the WZW-model SU(3)3k.

Nff = 1.

Proof: By [13], we can apply the fusion rule described in [14]. By the Young–Pieri
rule in [14, Proposition 2.6 (a)] and the classical Littlewood–Richardson rule (see [27,
Section 1.9], for example), we get the conclusion. Q.E.D.

Lemma 5.5 We have the following fusion rule in the WZW-model SU(3)3k.

Nff = 2.

Proof: This follows from Lemma 5.4 and

3 = ∅ + + 2 ,

because f 3 contains 6 copies of f . Q.E.D.

Lemma 5.6 We have the following identity in the WZW-model SU(3)3k.∑
gr(a)=0

Na
a 3 =

∑
gr(b)=1

N b
b 3.

Proof: Since the level is 3k, the numbers of the primary fields of grade 0, 1, 2 are
3k(k + 1)/2 + 1, 3k(k + 1)/2, 3k(k + 1)/2 respectively. Recall that the primary fields
are arrayed in a triangular picture for SU(3)k as in Figure 3.8.

We have three primary fields of grade 0 at the three corners of the triangle. The
contribution of these terms on the left hand side of the identity in this Lemma is 3.
(See [14], [27, Section 1.9], [47] again for the computations of the fusion rule.)
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We have 3(k− 1) primary fields of grade 0 on the three edges of the triangle with
three corners excluded. Each term gives a contribution of 3 on the left hand side of
the identity, so we get 9(k − 1) as the total contribution.

We next have 3k2/2 − 3k/2 + 1 primary fields of grade 0 inside the triangle.
Each term gives a contribution of 6 on the left hand side of the identity, so we get
9k2 − 9k + 6 as the total contribution.

The sum of these three contributions is 9k2 and this is the number on the left
hand side of the identity.

We similarly evaluate the right hand side of the identity.
We have 3k primary fields of grade 1 on the three edges of the triangle. Each

term gives a contribution of 3 on the right hand side of the identity, so we get 9k as
the total contribution.

We next have 3k2/2 − 3k/2 primary fields of grade 1 inside the triangle. Each
term gives a contribution of 6 on the right hand side of the identity, so we get 9k2−9k
as the total contribution.

The sum of these two contributions is 9k2, which is equal to the left hand side.
Q.E.D.

Lemma 5.7 We have the following identity in the WZW-model SU(3)3k.∑
gr(a)=0

Naā =
∑

gr(b)=1

Nbb̄ + 1.

Proof: Let α be . We next count the number of the paths from the odd vertex 0
to the odd vertex labeled with α on both the principal and the dual principal graphs.
The number

∑
gr(a)=0 Nα

aā gives the number of the paths on the principal graph.
Let l be the number of the edges connecting the odd vertex α and the even vertex

labeled with p
(0)
f,f on the dual principal graph. By Lemmas 3.13 and 5.4, we know that

l is 0 or 1. Lemmas 3.12, 3.13, and 5.4 imply that the number of the paths connecting
0 and α on the dual principal graph is (

∑
b Nα

bb̄
− 1)/3 + l, where the summation is

over all the primary fields b in the model SU(3)3k.
Since the two numbers of the paths are equal, we get

2
∑

gr(a)=0

Nα
aā =

∑
gr(b)=1,2

Nα
bb̄ − 1 + 3l = 2

∑
gr(b)=1

Nα
bb̄ − 1 + 3l.

This implies l = 1 because the both sides are even numbers. We then get the
conclusion. Q.E.D.

Lemma 5.8 We have the following identity in the WZW-model SU(3)3k.∑
gr(a)=0

Naā =
∑

gr(b)=1

Nbb̄ − 1.
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Proof: Recall that we have

3 = ∅ + + 2 . (2)

Lemma 5.6 and Frobenius reciprocity imply

∑
gr(a)=0

N
3

aā =
∑

gr(b)=1

N
3

bb̄ . (3)

We also have the easy identity,

∑
gr(a)=0

N∅

aā =
∑

gr(b)=0

N∅

bb̄
+ 1, (4)

since the both sides are equal to 3k(k + 1)/2 + 1.
Identities (2), (3), (4) and Lemma 5.7 imply the conclusion. Q.E.D.

Lemma 5.9 The odd vertex of the dual principal graph labeled with is not con-
nected to the even vertex labeled with p

(0)
f,f .

Proof: We count the number of appropriate paths again.
The number of paths connecting the odd vertex 0 to on the principal graph

of the asymptotic inclusion is
∑

gr(a)=0 Naā because the principal graph is the fusion
graph.

Let l be the number of edges connecting the odd vertex of the dual principal graph
labeled with to the even vertex labeled with p

(0)
f,f .

The number of paths connecting the odd vertex 0 to on the dual principal
graph of the asymptotic inclusion is

(∑
b N

bb̄
− Nff

)
/3 + l. Lemmas 5.5, 5.8 show

l = 0. Q.E.D.

We finally prove the main theorem in this Section as follows.

Theorem 5.10 For the subfactor N ⊂ M arising from the WZW-model SU(3)3k,
Assumption 3.14 holds.

Proof: Since we have Lemmas 3.13, 5.5, we have one of the following two cases.

1. We have a minimal central projection p
(1)
ff majorized by pff/3 such that the

odd vertex labeled with is connected to the even vertex labeled with p
(1)
ff on

the dual principal graph of the asymptotic inclusion by exactly two edges.

2. We have two minimal central projections p
(1)
ff , p

(2)
ff majorized by pff/3 such that

the odd vertex labeled with is connected to each of the even vertices labeled
with p

(1)
ff , p

(2)
ff on the dual principal graph of the asymptotic inclusion by exactly

one edge.
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Suppose that we have Case 1. Lemma 3.16 shows that the dimension of the bimodule
corresponding to p

(1)
ff is equal to that of the bimodule corresponding to p

(0)
ff . Lemma

3.15 implies that the central projection p
(2)
ff = pff/3 − p

(0)
ff − p

(1)
ff is minimal and the

dimension of the bimodule corresponding to p
(2)
ff is also equal to that of the bimodule

corresponding to p
(0)
ff .

Next suppose that we have Case 2. Lemma 3.16 implies that the sum of the
dimensions of the bimodules corresponding to p

(1)
ff , p

(2)
ff is equal to twice of that of the

bimodule corresponding to p
(0)
ff . This shows pff/3 = p

(0)
ff + p

(1)
ff + p

(2)
ff . Then Lemma

3.15 then implies that these two dimensions have to be equal.
In any case, we have a decomposition pff/3 = p

(0)
ff + p

(1)
ff + p

(2)
ff into minimal

central projections and each of the three minimal central projection has the same
corresponding dimension. This completes the proof. Q.E.D.

This Theorem implies the following by a simple computation. This Corollary
is a generalized version of Corollary 4.3. Again note that this Corollary gives the
number of even vertices of the dual principal graph of the asymptotic inclusions and
that these are also the dimensions of the Hilbert spaces HS1×S1 in the corresponding
topological quantum field theories for the original subfactors.

Corollary 5.11 Let N ⊂ M be the subfactor corresponding to SU(3)k with k > 2.
Then the number of the irreducible M∞-M∞ bimodules arising from the asymptotic
inclusion is given as follows.

(k + 1)2(k + 2)2

36
, if k �≡ 0 mod 3,

k4 + 6k3 + 13k2 + 12k + 108

36
, if k ≡ 0 mod 3.

As examples, we work out the dual principal graphs for small k such as k = 3, 6
in the rest of this Section.

First, we label the primary fields of SU(3)3 as in Figure 23.
Then the principal graph of the asymptotic inclusion of the subfactor correspond-

ing to SU(3)3 is given as the fusion graph as in the upper half of Figure 24. For the
dual principal graph, we know the graph except for the edges connected to the three
vertices (99)0, (99)1, (99)2. From the Perron–Frobenius property, we can determine
these edges as in the bottom half of Figure 24. These edges are marked thick.

Since the subfactor corresponding to SU(3)3 has index 4 and is described as
R � A3 ⊂ R � A4, where A3 and A4 are the alternating groups of order 3 and 4
respectively and these groups act freely on the hyperfinite II1 factor R, the paragroup
of the asymptotic inclusion is given by that of the subfactor RA4×A4 ⊂ RA4 , where A4

is diagonally embedded into A4×A4 and the group A4 acts freely on R, by Ocneanu’s
theorem again. (See [21, Lemma 2.15], [22, Appendix], [11, Section 12.8].)

So the (dual) principal graphs of the asymptotic inclusion can be described with
Ocneanu’s theorem again. (See [25].) Of course, this method gives the same result
as in Figure 24.
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Figure 23: Primary fields for SU(3)3
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Figure 24: (dual) principal graphs for SU(3)3

The next example is SU(3)6. In this case, the system M has 10 primary fields
and thus the principal graph of the asymptotic inclusion has 100 even vertices, and
the dual principal graph has 90 even vertices. Since these graphs are too complicated,
we draw only the edges concerned with the three even vertices p

(0)
ff , p

(1)
ff , p

(2)
ff . Then

the Perron–Frobenius property and counting of paths with unitarity gives the graph
as in Figure 25. In this Figure, the symbol (lm) denotes the Young diagram with l
boxes in the first row and m boxes in the second row.
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Figure 25: Part of the dual principal graphs for SU(3)6

6 Orbifold subfactors

In Sections 4, 5, we have observed that the even vertices of the dual principal graphs
of the asymptotic inclusions are given by merging/splitting of the vertices with sym-
metries on pairs of the original labels. In the SU(2)k case, Ocneanu has noticed that
this situation is similar to the orbifold construction for subfactors studied by us in
[8], [20]. (See also [15], [51].) However, the dual principal graphs we have studied in
Sections 4, 5 are not orbifold graphs in the sense of [8], [20], [51], because we have
merging/splitting of the vertices only for the even vertices. In this Section, we study
a relation of this orbifold phenomena of Ocneanu to the orbifold construction in our
sense.

Let N ⊂ M be the Jones subfactor of type A4n−3. That is, it is the hyperfinite
type II1 subfactor corresponding to SU(2)4n−4. To avoid disconnectedness of the
fusion graph, we assume that n > 2. (If n = 2, we get a subfactor arising from a free
action of a group S3, so everything can be studied with classical methods on group
actions.) As in [20], we get the orbifold subfactor P = N �σ Z/2Z ⊂ Q = M �σ Z/2Z
of type D2n, where σ gives a non-strongly-outer action of Z/2Z on the subfactor
N ⊂ M in the sense of [3]. (See also [15].)

Let α be the dual action of σ on P ⊂ Q. Then we have N = Pα and M = Qα,
of course. Then the asymptotic inclusion M ∨ (M ′ ∩ M∞) ⊂ M∞ is described as
Qα ∨ (Q′ ∩ Q∞)α ⊂ Qα

∞. Putting R = (Q ∨ (Q′ ∩ Q∞))α, we get Qα ∨ (Q′ ∩ Q∞)α ⊂
R ⊂ Qα

∞ and [R : Qα ∨ (Q′ ∩Q∞)α] = 2. This intermediate subfactor corresponds to
the intermediate subfactor (Mω)σ of the central sequence subfactor Nω ∩ M ′ ⊂ Mω

described in [21, Section 3], [22, Section 4] in the correspondence of Ocneanu [31, page
42], [22, Theorem 4.1]. (Here ω is a free ultrafilter over N. See also [11, Theorem
15.32].)

We use the notation [[M : N ]] for the global index of N ⊂ M as in [40]. We easily
get

[[M∞ : M ∨ (M ′ ∩ M∞)]]/4 = [[Q∞ : Q ∨ (Q′ ∩ Q∞)]]

from the description of the principal graph as the fusion graph. Note that R ⊂ Qα
∞ is

given as the simultaneous fixed point algebras of Q∨ (Q′ ∩Q∞) ⊂ Q∞ by the action
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α. By looking at α, we can conclude that we have one of the following three cases.

1. [[M∞ : R]] = [[M∞ : M ∨ (M ′ ∩ M∞)]]/4.

2. [[M∞ : R]] = [[M∞ : M ∨ (M ′ ∩ M∞)]]/2.

3. [[M∞ : R]] = [[M∞ : M ∨ (M ′ ∩ M∞)]]/8.

That is, if the action is strongly outer in the sense of [3] and has a trivial Loi invariant,
then we get Case 1, if the action is strongly outer and has a non-trivial Loi invariant,
then we have Case 2, and if the action is not strongly outer, then we have Case 3. Since
the fusion rule algebra of the M∞-M∞ bimodules arising from R ⊂ M∞ is a fusion
rule subalgebra of those arising from M ∨ (M ′ ∩ M∞) ⊂ M∞ (see [40, Lemma 2.4],
for example), we look for a fusion rule subalgebra of that of the M∞-M∞ bimodules
arising from the asymptotic inclusion of N ⊂ M .

We first study fusion rule subalgebras of the WZW-model SU(2)2k.

Lemma 6.1 Let N be a closed subsystem of primary fields under fusion of the WZW-
model SU(2)2k labeled as {0, 1, 2, . . . , 2k}. Then N is one of the following; {0},
{0, 2k}, {0, 2, 4, . . . , 2k}, {0, 1, 2, . . . , 2k}

Proof: It is clear that these four indeed give subsystems.
Suppose that N �= {0}. Let l be the smallest non-zero label appearing in N . If l =

1, l = 2, or l = 2k, then we clearly have N = {0, 1, 2, . . . , 2k}, N = {0, 2, 4, . . . , 2k},
N = {0, 2k}, respectively. If 2 < l < 2k, then we would have N2

ll = 1, which implies
2 ∈ N and thus a contradiction. Q.E.D.

Lemma 6.2 Let N be the system of M∞-M∞ bimodules arising from the asymptotic
inclusion of the subfactor N ⊂ M of type A4n−3. Let γ be the global index of this
system. Suppose we have a subsystem N0 of N with global index equal to one of γ/2,
γ/4, γ/8. Then N0 is a subsystem of the M∞-M∞ bimodules labeled with pairs of
even numbers as in Section 4 and its global index is γ/2.

Proof: It is clear that the subsystem of the M∞-M∞ bimodules labeled with pairs
of even numbers has global index γ/2.

Suppose that N0 contains a bimodule labeled with a pair of odd numbers. By
taking an appropriate tensor power of this bimodule, we have (2, 2) in this system
N0.

We set X be the set of labels of pairs of integers appearing in N0 and set Y =
{l | (0, l) ∈ X}. Then Y gives a subsystem of the original WZW-model SU(2)4n−4.
By Lemma 6.1, we have four cases for Y . The assumption on the global index forces
Y = {0, 2, 4, . . . , 4n − 4} and [N0] = γ/2. Then we have the conclusion. Q.E.D.

Let β be the M∞-M∞ bimodule labeled with (0, 4n − 4) = (4n − 4, 0). It is clear
that this bimodule has dimension 1. We can apply the orbifold construction for tensor
categories as in [52] and get the following Lemma.

32



Lemma 6.3 Let N ⊂ M , P ⊂ Q be as above. Let N0 be the system of M∞-M∞
bimodules arising from R ⊂ Qα

∞ = M∞. Let N1 be the system of Q∞-Q∞ bimodules
arising from the asymptotic inclusion of the subfactor P ⊂ Q of type D2n. Then the
system N1 is given as the orbifold construction of N0 with β as above.

Proof: Let N be the system of M∞-M∞ bimodules arising from the asymptotic
inclusion of the subfactor N ⊂ M of type A4n−3.

Lemma 6.2 implies that [N1] = [N0]/2, which gives the conclusion. Q.E.D.

Theorem 6.4 Let N ⊂ M be the Jones subfactor of type A4n−3 with n > 2. Let
N0 be the subsystem of M∞-M∞ bimodules arising from the asymptotic inclusion
M ∨ (M ′ ∩ M∞) ⊂ M∞ labeled with pairs of even integers as in Section 4.

Let σ be the outer, non-strongly-outer automorphism of order 2 of N ⊂ M . The
system N0 is isomorphic to the system of (M⊗M)σ⊗σ-(M ⊗M)σ⊗σ bimodules arising
from the orbifold subfactor (N ⊗ N)σ⊗σ ⊂ (M ⊗ M)σ⊗σ.

Proof: This follows from Lemma 6.3. Q.E.D.

The meaning of the above Theorem is as follows. When we apply the “quan-
tum double” construction to a degenerate system, it is not enough to take a simple
“double” to because of degeneracy. Pairs labeled with ghosts appear so that the
non-degeneracy is recovered, but then we have too many bimodules and the global
index, giving the size of the system, becomes too large. Then the orbifold construc-
tion removes this redundancy and the correct global index is realized. The bimodules
labeled with pairs of ghosts disappear when we remove an intermediate subfactor of
index 2, which is the order of the orbifold construction.

7 Orbifold construction for braiding

Theorem 7.1 The system of the M-M bimodules arising from a subfactor N ⊂ M
of type D2n, n > 2, has a non-degenerate braiding.

Proof: The system of the Q∞-Q∞ bimodules has a non-degenerate braiding by
Ocneanu’s general theory. (See [11, Section 12.7], for example.)

Lemma 6.3 implies that the system given by the orbifold construction on the sys-
tem (0, 0), (0, 2), . . . , (0, 4n− 4) = β with β is a subsystem of the Q∞-Q∞ bimodules.
We thus get a braiding naturally. The non-degeneracy is also easy to see, because if
have degeneracy, then the degenerate subsystem would give a finite abelian group by
[5], which is impossible by n > 2. Q.E.D.

Corollary 7.2 The dual principal graph of the asymptotic inclusion of the hyperfinite
II1 subfactor N ⊂ M with principal graph D2n is the fusion graph of the system of
M-M bimodules.

Proof: This follows from Theorem 7.1 and Proposition 2.2. Q.E.D.
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Remark 7.3 Ocneanu has constructed a braiding on the even vertices of D2n with
an entirely different method in [37]. His theory in [37] also shows that his braiding
and ours must be the same.

Turaev and Wenzl [45] have worked on a similar construction to our orbifold
construction in categories of tangles. In their approach to the Reshetikhin–Turaev
type topological quantum field theory [39], they need a certain non-degeneracy and
make some construction similar to our orbifold construction to remove the degeneracy.
It seems that their construction, in particular, gives a braiding on the even vertices
of D2n and we expect that their braiding is also same as ours, but the actual relation
is not clear.

The basic idea is that the orbifold construction can be performed when we have
some kind of degeneracy and this degeneracy is removed by the orbifold construction.
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