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Abstract. We show that the number of the conjugacy classes of the AFD type

II1 subfactors with the principal graph D
(1)
n is n − 2. This gives the last missing

number in the complete classification list of subfactors with index 4 by S. Popa.

This also disproves an announcement of A. Ocneanu that such a subfactor is unique

for each n. We give two different proofs. One is by an application of an idea of an

orbifold model in solvable lattice model theory to Ocneanu’s paragroup theory and

the other is by reduction to classification of dihedral group actions. The latter also

shows that the AFD type III1 subfactors with the principal graph D
(1)
n split as type

II1 subfactors tensored with the common AFD type III1 factor. We also discuss a

relation between these proofs and a construction of subfactors using Cuntz algebra

endomorphisms.
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Abstract. We show that the number of the conjugacy classes of the AFD type

II1 subfactors with the principal graph D
(1)
n is n − 2. This gives the last missing

number in the complete classification list of subfactors with index 4 by S. Popa.

This also disproves an announcement of A. Ocneanu that such a subfactor is unique

for each n. We give two different proofs. One is by an application of an idea of an

orbifold model in solvable lattice model theory to Ocneanu’s paragroup theory and

the other is by reduction to classification of dihedral group actions. The latter also

shows that the AFD type III1 subfactors with the principal graph D
(1)
n split as type

II1 subfactors tensored with the common AFD type III1 factor. We also discuss a

relation between these proofs and a construction of subfactors using Cuntz algebra

endomorphisms.

§0 Introduction

S. Popa announced a complete classification of subfactors of the AFD type II1

factor with the Jones index 4, but for the case of the principal graph D
(1)
n , the

extended Coxeter graph, his classification was given in terms of certain third co-

homology group elements, and the number of the conjugacy classes of subfactors
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for each graph D
(1)
n was unknown. We show that the number of these conjugacy

classes is n − 2 using Ocneanu’s flat connection, a key notion in his combinatorial

approach, and an analogue of an orbifold model in theory of solvable lattice mod-

els. Our result shows invalidity of an announcement by A. Ocneanu in the ICM-90

that there is a unique subfactor for each D
(1)
n . We also give another proof of this

classification based on classification of actions of the dihedral groups which also

works for type III subfactors.

The index theory of V. F. R. Jones for subfactors [J2] opened an entirely new

and exciting era for the theory of operator algebras. We have been witnessing more

and more surprising connections of subfactor theory to many fields in mathematics

and physics.

From the operator algebraic viewpoint, one of the most important problems in

the subfactor theory is classification of the approximately finite dimensional (AFD)

subfactors. Classification by higher relative commutants has been very successful

on this problem. In this approach, we have a so-called principal graph introduced as

an invariant for a subfactor by V. Jones. Ocneanu’s paragroup theory claims that

for subfactors with “finite depth” and finite index this graph and the “dual” graph

together with certain algebraic structure (“paragroup” which is given by a “flat

connection” on the graphs) give a combinatorial characterization of the commuting

squares of the tower of the higher relative commutants. (See [GHJ] for instance for

the definition and significance of the finite depth condition.)

To get a complete classification in this approach, one has to prove that the

tower of the relative commutants for a tunnel generated by iterated downward

basic constructions generate the original factor for an appropriate choice of tunnel.
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A. Ocneanu announced that this generating property is true for AFD type II1

subfactors with finite depth, finite index, and a trivial relative commutant in [O2],

but his proof has been unavailable. But S. Popa has given a proof for a stronger form

of this analytic statement without assuming a trivial relative commutant property

in [P1] and announced an ultimate result, necessary and sufficient conditions for

this generating property, in this direction in [P2]. Thus the rest of the problem (at

least for the finite depth case) in Ocneanu’s paragroup approach is a classification

of paragroups, which is of algebraic and combinatorial nature. (Popa’s canonical

commuting square in [P1] is equivalent to Ocneanu’s paragroup.)

In Popa’s approach, he announced a classification of AFD type II1 subfactors

with index 4 (including infinite depth subfactors) in [P2] using his striking char-

acterization of strongly amenable subfactors. Our subfactors with the principal

graph D
(1)
n have index 4 and these correspond to Corollaire 1 (v) in [P2]. Popa’s

classification says these subfactors are in one-to-one correspondence to elements in

H3(Gn,T) which vanish on the two generators of the both Z2 = Z/2Z, where Gn is

a certain group quotient of Z2 ∗Z2, but it was not clear at all how many conjugacy

classes of subfactors we have for each D
(1)
n . Because Popa gave the numbers of the

conjugacy classes of subfactors with index 4 for the other possible principal graphs,

our results here gives the last number left open in his list.

Ocneanu has made several announcements for classification of paragroups with

small index in [O2, O3, O4]. In particular, he announced in his talk at ICM-90 [O4]

that there is a unique AFD type II1 subfactor for each extended Coxeter graph D
(1)
n ,

n ≥ 5. Our results in this paper shows that this statement is invalid and the true
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number of the conjugacy classes of the AFD type II1 subfactors with the principal

graph D
(1)
n is n − 2.

Ocneanu notices analogy between paragroup structure and solvable lattice model

theory of Andrews, Baxter, and Forrester [ABF]. (For solvable lattice model the-

ory, see [B], [DJMO] for instance. A spectral parameter in solvable lattice model

theory disappears in our paragroup context.) In this paper, we work on paragroup

classification problem for the graphs D
(1)
n with use of an idea of orbifold models

in solvable lattice model theory [Kt, FG]. Usefulness of “orbifolds” was noticed in

[Ka] at first and also used in [EK].

The second author worked in the case for index less than 4 in [Ka], and the

first author worked for the same case in [I1, I2] using a different method based on

Longo’s theory [L1, L2]. This paper is a natural continuation of these papers.

The contents of each section are as follows. In §1, we classify connections of the

graph D
(1)
n up to perturbation and get a one-parameter family of connections. This

means that we have a one-parameter family of commuting squares for D
(1)
n . In the

next section, we work on cell systems between D
(1)
n and A

(1)
2n−5. We can regard D

(1)
n

is an orbifold of A
(1)
2n−5. This shows we can reduce our flatness problem to a problem

on the graphs A
(1)
2n−5. Then we classify flat connections on D

(1)
n in §3 by working

on the graphs A
(1)
2n−5. This means that only certain finite numbers of commuting

squares in the one-parameter family give canonical commuting squares in the sense

of Popa. In §4, we explain the relation between our computations here and subfac-

tor construction by the first author based on Cuntz algebra endomorphisms. We

encountered a counter example to Ocneanu’s announcement in this way at first. In

§5, we show that a subfactor of an arbitrary factor with the principal graph D
(1)
n
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can be realized as the simultaneous fixed point algebras of an action of a dihedral

group and subfactor classification is reduced to classification of these actions. This

is a generalization of a construction by Goodman-de la Harpe-Jones [GHJ, 4.7].

This method gives another proof of our main result and a classification result for

AFD type III1 subfactors.

The book [GHJ] is a basic reference on the index theory and its relation to

Coxeter graphs, and our basic references for Ocneanu’s paragroup theory are [O2,

O3, Ka]. In particular, [O2] contains a very good exposition on background of his

method and [Ka, §1] contains a quick review on it.

We are thankful to Professor D. Bisch for helpful communications, to Professor

D. Evans for explaining us the notion of orbifold models, to Professor A. Ocneanu

for helpful comments on our work, to Dr. M. Okado for helpful conversations on

solvable lattice models, to Professor M. Takesaki for helpful conversations on §5,

and especially to Professor S. Popa for a long comment on the first draft of this

paper.

§1 One-parameter family of connections on D
(1)
n

First we classify biunitary connections on the extended Coxeter graphs D
(1)
n ,

n ≥ 5. We label vertices of the graph D
(1)
n as follows.

D(1)
n :

b0\
b′0

/ b1—b2 · · · bn−4—bn−3
/bn−2

\
b′n−2

Note that D
(1)
n has n + 1 vertices. First we classify a biunitary connection on

D
(1)
n by starting from the vertex b0 as in [O3, IV.2]. (See [O3, I.3] or [O2, page 151]
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for the definition of biunitarity. Note that our notations here are slightly different

from those in [O2] and the same as those in [O3], [Ka].) In general situations, we

have two graphs G and H as in [O2, Appendix A] or [O3, Chapter I]. But in our

case, the both graphs are D
(1)
n . (If the principal graph of a subfactor is D(1), then

the “dual” graph must be D
(1)
n , too, and we can identify these two. See [O2, page

139] or [I1, Lemma 3.1] for this type of argument.) Thus we identify the two graphs

by fixing an isomorphism between the two. By this remark, it will be enough to

check flatness for a single graph D
(1)
n .

We start from the vertex b0. By unitarity for a 1 × 1-matrix, we get

∣∣∣∣∣∣∣∣
b0 −−−−→ b1� �
b1 −−−−→ b2

∣∣∣∣∣∣∣∣ = 1.

(Unitarity here corresponds to the first inversion relation in solvable lattice model

theory.) By a gauge choice freedom, we may set

b0 −−−−→ b1� �
b1 −−−−→ b2

= 1.

(See [O2, page 154] or [O3, I.2, IV.2] for gauge choice. In [O2], change of gauges is

called a perturbation of a connection. Because all the edges in our case are single

edges, this gauge choice means an assignment of a complex number with modules

1 to each edge. Note that the two graphs G and H are the same D
(1)
n now, but
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for this assignment, we regard the two graphs are different.) Next we apply the

following renormalization rule.

a −−−−→ b� �
c −−−−→ d

=

√
µ(b)µ(c)
µ(a)µ(d)

b −−−−→ a� �
d −−−−→ c

=

√
µ(b)µ(c)
µ(a)µ(d)

c −−−−→ d� �
a −−−−→ b

,

where µ(·) denotes each entry of the Perron-Frobenius eigenvector of the incidence

matrix of the graph. (See [O2, page 151] or [O3, I.3] for this renormalization rule.

This condition together with unitarity is equivalent to the well-known commuting

square condition for the tower of relative commutants. This condition corresponds

to the crossing symmetry in solvable lattice model theory.) In our case, the vector

µ is given by the following picture.

D(1)
n :

1\
1/2—2· · · 2—2/1

\1

By this renormalization rule, we get

b1 −−−−→ b0� �
b2 −−−−→ b1

=
1√
2
.

Repeating this procedure, we get five entries of the following 3 × 3-matrix.

(uij) =




1
2

1
2

1√
2

1
2

∗ ∗
1√
2

∗ ∗


 ,
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where

uij =

b1 −−−−→ cj� �
ci −−−−→ b1

, c1 = b0, c2 = b′0, c3 = b2.

By unitarity of a 1 × 1-matrix, we can show |u22| =
1
2
. Then by unitarity of the

above 3×3-matrix, we can determine the four entries denoted by ∗, and we get the

following matrix.

(uij) =




1
2

1
2

1√
2

1
2

1
2

− 1√
2

1√
2

− 1√
2

0


 .

This is a special case of Ocneanu’s determinating process of a connection at a triple

point. The uniqueness of the above four entries follows from the fact that Perron-

Frobenius eigenvalue is 2. (See [O3, IV.2] or [Ka, Remark 3.3].) For the segment

from b1 to bn−3, we get the following connection values by certain gauge choices.

bj −−−−→ bj+1� �
bj+1 −−−−→ bj+2

=

bj+1 −−−−→ bj� �
bj+2 −−−−→ bj+1

=

bj+1 −−−−→ bj+2� �
bj −−−−→ bj+1

=

bj+2 −−−−→ bj+1� �
bj+1 −−−−→ bj

= 1,

bk −−−−→ bk+1� �
bk+1 −−−−→ bk

=

bk+1 −−−−→ bk� �
bk −−−−→ bk+1

= 0, 1 ≤ j ≤ n − 5, 1 ≤ k ≤ n− 4.
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Now we work at the second triple point bn−3. Setting

vij =

bn−3 −−−−→ cj� �
ci −−−−→ bn−3

, c1 = bn−4, c2 = bn−2, c3 = b′n−2,

we get the following 3 × 3 matrix.

(vij) =




0
1√
2

1√
2

1√
2

∗ ∗
1√
2

∗ ∗


 .

Here the important point is that the (1,1)-entry of this matrix is 0. By this

reason, the unitarity of this matrix does not determine the four entries denoted

by ∗ uniquely, and the uniqueness argument breaks down. Instead, we have a

parameter c for the above matrix as follows.

(vij) =




0
1√
2

1√
2

1√
2

c

2
− c

2
1√
2

− c

2
c

2


 ,

where c is a complex parameter with |c| = 1. There is no more freedom of gauge

choices to make c real. The above matrix also gives the following formula by the

renormalization rule.

bn−2 −−−−→ bn−3� �
bn−3 −−−−→ bn−2

=

b′n−2 −−−−→ bn−3� �
bn−3 −−−−→ b′n−2

= c̄,

9



bn−2 −−−−→ bn−3� �
bn−3 −−−−→ b′n−2

=

b′n−2 −−−−→ bn−3� �
bn−3 −−−−→ bn−2

= −c̄.

Thus we have a one-parameter family of biunitary connections on D
(1)
n , and these

are the all biunitary connections up to gauge choice.

§2 One-parameter family of connections on A
(1)
2n−5 and cell systems between D

(1)
n

and A
(1)
2n−5

We have to determine for what values of c we have flatness. Our strategy for

flatness is the same as in [Ka]. That is, we embed the string algebra double complex

of D
(1)
n into that of A

(1)
2n−5 and check commutativity of vertical and horizontal strings

starting from ∗ in this larger double complex. (See §3 for details about flatness.)

Thus another extended Coxeter graph we need is A
(1)
2n−5, which is illustrated by the

following picture.

A
(1)
2n−5 : a0

/a1 — a2 · · · an−4 — an−3

\
a′
1 — a′

2 · · · a′
n−4 — a′

n−3

\
/an−2

Note that A
(1)
2n−5 has 2n− 4 vertices. The Perron-Frobenius eigenvector for this

graph is given by the following picture.

A
(1)
2n−5 : 2/2 — 2 · · · 2 — 2

\2 — 2 · · · 2 — 2

\
/2

As in Roche [R, page 407] (see also [Ka, §5]), we construct a cell system between

D
(1)
n and A

(1)
2n−5. This is used to embed the string algebra of D

(1)
n into that of A

(1)
2n−5.
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(See [O2, pages 128–], [O3, Chapter II], or [R, pages 398–] for string algebras for

graphs.) Note that the graph D
(1)
n is an “orbifold” of A

(1)
2n−5 by a Z2-symmetry as

Dn is an “orbifold” of A2n−3 by a Z2-symmetry. This is related to orbifold models

in solvable lattice model theory. (See [Kt, FG] for instance.) Operator algebraic

interpretation of this kind of duality was given by M. Choda [Ch].

Our cell system is given by the following. In the following squares, the left

vertical edges are from the graph D
(1)
n , the right vertical edges from A

(1)
2n−5 and the

horizontal edges connect these two graphs.

b1 −−−−→ a1� �
b0 −−−−→ a0

=

b1 −−−−→ a′
1� �

b0 −−−−→ a0

=

b1 −−−−→ a′
1� �

b′0 −−−−→ a0

=
1√
2
,

bn−3 −−−−→ an−3� �
bn−2 −−−−→ an−2

=

bn−3 −−−−→ a′
n−3� �

bn−2 −−−−→ an−2

=

bn−3 −−−−→ a′
n−3� �

b′n−2 −−−−→ an−2

=
1√
2
,

b1 −−−−→ a1� �
b′0 −−−−→ a0

=

bn−3 −−−−→ an−3� �
b′n−2 −−−−→ an−2

= − 1√
2
,

b0 −−−−→ a0� �
b1 −−−−→ a1

=

b0 −−−−→ a0� �
b1 −−−−→ a′

1

=

b′0 −−−−→ a0� �
b1 −−−−→ a′

1

= 1,

bn−2 −−−−→ an−2� �
bn−3 −−−−→ an−3

=

bn−2 −−−−→ an−2� �
bn−3 −−−−→ a′

n−3

=

b′n−2 −−−−→ an−2� �
bn−3 −−−−→ a′

n−3

= 1,
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b′0 −−−−→ a0� �
b1 −−−−→ a1

=

b′n−2 −−−−→ an−2� �
bn−3 −−−−→ an−3

= −1,

bj −−−−→ aj� �
bj+1 −−−−→ aj+1

=

bj −−−−→ a′
j� �

bj+1 −−−−→ a′
j+1

= 1, 1 ≤ j ≤ n − 4,

bj+1 −−−−→ aj+1� �
bj −−−−→ aj

=

bj+1 −−−−→ a′
j+1� �

bj −−−−→ a′
j

= 1, 1 ≤ j ≤ n − 4.

It is easy to check unitarity of this system. We also need a biunitary connection

for A
(1)
2n−5. For a complex parameter c with |c| = 1 which is the same parameter as

in §1, we define the following connection on A
(1)
2n−5.

a1 −−−−→ a0� �
a0 −−−−→ a′

1

=

a′
1 −−−−→ a0� �

a0 −−−−→ a1

=

a0 −−−−→ a1� �
a′
1 −−−−→ a0

=

a0 −−−−→ a′
1� �

a1 −−−−→ a0

= 1,

aj −−−−→ aj+1� �
aj+1 −−−−→ aj+2

=

aj+2 −−−−→ aj+1� �
aj+1 −−−−→ aj

=

aj+1 −−−−→ aj� �
aj+2 −−−−→ aj+1

=

aj+1 −−−−→ aj+2� �
aj −−−−→ aj+1

= 1,

a′
j −−−−→ a′

j+1� �
a′

j+1 −−−−→ a′
j+2

=

a′
j+2 −−−−→ a′

j+1� �
a′

j+1 −−−−→ a′
j

=

a′
j+1 −−−−→ a′

j� �
a′

j+2 −−−−→ a′
j+1

=

a′
j+1 −−−−→ a′

j+2� �
a′

j −−−−→ a′
j+1

= 1,
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an−3 −−−−→ an−2� �
an−2 −−−−→ a′

n−3

=

a′
n−3 −−−−→ an−2� �

an−2 −−−−→ an−3

= c,

an−2 −−−−→ a′
n−3� �

an−3 −−−−→ an−2

=

an−2 −−−−→ an−3� �
a′

n−3 −−−−→ an−2

= c̄,

All the other admissible squares like

a0 −−−−→ a1� �
a1 −−−−→ a0

have connection value 0.

Here we used convention a′
0 = a0, a′

n−2 = an−2 and the integer j is in the interval

[0, n − 4]. By the word “admissible” we mean that all the four edges of the square

come from the graph A
(1)
2n−5.

By the above cell system, we can embed the string algebra of D
(1)
n into that

of A
(1)
2n−5. But we have identification of strings by connections in both double

complexes, so we have to show that the identifications are compatible with this

embedding. In order to show this, it is enough to check a kind of the star triangle

relation as in [Ka, Lemma 5.1]. That is, we have hexagons

↙→↘↘→↙

where the left two downward edges are from the graph D
(1)
n , the right two downward

edges from A
(1)
2n−5, and the two horizontal edges connect the two graphs. For
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each fixed hexagon, we first consider configurations ↘
↙→ for inside of the hexagon.

For each configuration, we have a D
(1)
n connection value for the left parallelogram

and two cell system values for the right parallelograms. We multiply these three

numbers and make a sum over all the configurations. Similarly we make another

sum over configurations →↙
↘. It is easy to see that the compatibility we have to

check is equivalent to equality for these two sums for all the hexagons. If the left

two downward edges of the hexagon is in between the vertices b1 and bn−3, then

it is trivial that these two sums are equal. If the vertex bn−3 is involved in the

hexagon, we need a little computations, but we can check all the cases by direct

computations. Indeed, there are 34 cases, and a typical example is as follows.

b′n−2
↗bn−3 → an−3

↘
bn−3 → a′

n−3

↘
↗an−2

For the configuration ↘
↙→, the central vertex in the hexagon is either bn−2 or

b′n−2. Thus our sum is

− c

2
· 1√

2
· 1 +

c

2
·
(
− 1√

2

)
· 1 = − c√

2
.

For the other configuration →↙
↘, we have only one choice, that is, the central

vertex is an−2. In this case our sum is − 1√
2
· 1 · c = − c√

2
, which is equal to the

above sum.

For the hexagons involving b1, the same computation setting c = 1 works and

we get the desired conclusion.
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§3 Flatness of the connections on D
(1)
n

By the result of §2, we can reduce our flatness problem for D
(1)
n to a problem

for A
(1)
2n−5. Here we recall some basics for flatness. (Flatness of connections was

introduced in [O2, page 153] in the name of the parallel transport axiom. Details of

flatness are found in [O3, II.5, II.6] and [Ka, §2].) We choose a distinguished vertex

∗ among vertices of the graph and construct a string algebra double complex as in

[O3, II.2]. Then flatness means that the vertical strings from ∗ and the horizontal

strings from ∗ commute. Because each horizontal line of the string algebra double

complex gives a basic extension, this flatness means that the vertical string algebra

from ∗ gives the tower of the higher relative commutants. In particular, we get the

original graph G as the principal graph of the string algebra subfactor. In the string

algebra, we can define the Jones projections as in [O3, II.3] and they are always

flat [O3, II.5]. This means that the vertical [resp. horizontal] Jones projections

commute with all the horizontal [resp. vertical] strings.

We take b0 = ∗ for D
(1)
n . Note that this is essentially the only choice because

if we take one of b1, · · · bn−3 to be ∗, our connection is not flat by [Ka, a remark

preceding Theorem 4.1] or [I1, 6.1 (i)].

Then note that the string algebra from ∗ is generated by the following: the Jones

projections, (b0—b1—b′0, b0—b1—b′0), (b0—b1 · · · bn−3—bn−2, b0—b1 · · · bn−3—bn−2).

Because there is no problem for the Jones projections as explained above, we only

have to work on the other two strings. We embed these two strings into the string

algebras of A
(1)
2n−5.
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First we show that the string (b0—b1—b′0, b0—b1—b′0) does not cause any prob-

lem for commutativity for any value of the parameter c. If we embed this string

into the string algebra of A
(1)
2n−5 using our cell system, we get the following string.

1
2
((ξ1, ξ1) + (ξ2, ξ2) − (ξ1, ξ2) − (ξ2, ξ1)),

ξ1 = (a0—a1—a0), ξ2 = (a0—a′
1—a0).

Note that the element

1
2
((ξ1, ξ1) + (ξ2, ξ2) + (ξ1, ξ2) + (ξ2, ξ1))

is the first Jones projection for A
(1)
2n−5, thus this causes no trouble for commuta-

tivity. Thus it is enough to prove that the vertical [resp. horizontal] string (ξ1, ξ2)

commutes with every horizontal [resp. vertical] string. For this purpose, we need

parallel transports of the vertical (ξ1, ξ2), which is given by the following lemma.

Lemma 3.1. We define the rotation ρ of vertices of A
(1)
2n−5 by ρ(a0) = a1, ρ(a1) =

a2, . . . , ρ(an−3) = an−2, ρ(an−2) = a′
n−3, . . . , ρ(a′2) = a′

1, ρ(a′1) = a0. Then we
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have the following equality for the connection on A
(1)
2n−5.

a0
η1−−−−→ · · · −−−−→ x0� �

a1 x1� �
a0 x2 
a′
1 x3 

a0
η2−−−−→ · · · −−−−→ x4

= δη1,η2δρm(a1),x1δρm(a0),x2δρm(a′
1),x3δρm(a0),x4,

where m is given by ρm(a0) = x0.

Proof. If we fix three vertices of a 1 × 1-cell, there is only one choice of the other

vertex to get a non-zero connection value for A
(1)
2n−5, and this non-zero value is one

of 1, c, c̄. Using this fact and induction, we can prove the desired formula easily.

Q.E.D.

The above formula implies the desired conclusion for (ξ1, ξ2). (See [Ka, Theorem

2.1 (2)].)

By the above arguments, our flatness is now equivalent to commutativity of

the vertical (ξ, ξ) and the horizontal (ξ, ξ) for the double complex of D
(1)
n , where

the path ξ is given by b0—b1— · · ·—bn−2. Define two paths η, ζ for A
(1)
2n−5 by

a0—a1— · · · an−3—an−2 and a0—a′
1— · · · a′

n−3—an−2 respectively. Then it is easy

to see the image of (ξ, ξ) by our embedding using the cell system is

1
2
((η, η) + (η, ζ) + (ζ, η) + (ζ, ζ)).
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We now need the following lemma.

Lemma 3.2. We have the following identities for the connection in A
(1)
2n−5 con-

taining a complex parameter c.

a0
η−−−−→ · · · −−−−→ an−2

η

� �σ2

...
...� �

an−2 −−−−→
σ1

· · · −−−−→ a0

= δσ1,ζ̃δσ2,ζ̃c
n−2,

a0
ζ−−−−→ · · · −−−−→ an−2

ζ

� �σ2

...
...� �

an−2 −−−−→
σ1

· · · −−−−→ a0

= δσ1,η̃δσ2,η̃cn−2,

a0
ζ−−−−→ · · · −−−−→ an−2

η

� �σ2

...
...� �

an−2 −−−−→
σ1

· · · −−−−→ a0

= δσ1,η̃δσ2,ζ̃ ,

a0
η−−−−→ · · · −−−−→ an−2

ζ

� �σ2

...
...� �

an−2 −−−−→
σ1

· · · −−−−→ a0

= δσ1,ζ̃δσ2,η̃,
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where˜denotes the reversed paths.

Proof. The same kind of computation as in the proof of Lemma 3.1 gives the con-

clusion. Q.E.D.

Let σ = (η, η)+(η, ζ)+(ζ, η)+(ζ, ζ). By Lemma 3.2, we can compute the parallel

transport Tν1,ν2(σ) of the vertical strings σ along horizontal paths (ν1, ν2). (Here

we use a notation in [O2, page 127].) We may assume |ν1| = |ν2| = n − 2. If the

both of the endpoints r(ν1) and r(ν2) are different from an−2, such a term does

not cause any trouble for commutativity. If one of r(ν1) and r(ν2) is an−2 and the

other is not, then we get Tν1,ν2(σ) = 0 by Lemma 3.2. If the both of r(ν1) and

r(ν2) are an−2, we get the following by direct computation using Lemma 3.2.

Tη,η(σ) = (ζ̃ , ζ̃) + cn−2(ζ̃ , η̃) + c−n+2(η̃, ζ̃) + (η̃, η̃),

Tζ,ζ(σ) = (ζ̃ , ζ̃) + c−n+2(ζ̃ , η̃) + cn−2(η̃, ζ̃) + (η̃, η̃),

Tη,ζ(σ) = 0,

Tζ,η(σ) = 0.

Then it is easy to see that commutativity of these and the horizontal strings

σ is equivalent to cn−2 = c−n+2, that is, c2(n−2) = 1. Thus we have proved the

following.
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Proposition 3.3. The connection on D
(1)
n defined in §1 is flat if and only if the

complex parameter c satisfies c2(n−2) = 1.

Thus there are 2(n− 2) flat connections on D
(1)
n . But there is a graph automor-

phism of order 2 on D
(1)
n fixing the distinguished point ∗. It is the flip exchanging

bn−2 and b′n−2. By this flip, we can identify a connection for c and that for −c, and

this is the only graph automorphism fixing ∗. Thus our conclusion on subfactor

classification is as follows.

Theorem 3.4. The number of the conjugacy classes of the AFD type II1 subfactors

having the principal graph D
(1)
n , n ≥ 5, is n − 2.

We list three remarks here on the above theorem.

Remark 3.5. In [O2, page 159] and [O3, IV.2], Ocneanu showed the following

formula for connections on the Coxeter graphs An,Dn, E6, E7, E8 and said the proof

for biunitarity also works for D
(1)
n , A

(1)
n , E

(1)
6 , E

(1)
7 , and E

(1)
8 by setting N = ∞,

ε =
√−1.

i −−−−→ l� �
k −−−−→ j

= δklε +

√
µ(k)µ(l)
µ(i)µ(j)

δij ε̄,

where ε =
√−1 exp

π
√−1
2N

and N is the Coxeter number. For the case index< 4, all

the flat connections are represented by this formula, although the above connections

are not always flat. But in our cases for D
(1)
n , this formula gives only our flat

connection with c = 1, and the other flat connections are not represented by this

formula.
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Remark 3.6. If n = 4 then the graph arises from a group of order 4. It is well

known that there are two flat connections, one for Z4, and the other for Z2 ⊕ Z2.

Thus the conclusion in the theorem is also valid for n = 4.

Remark 3.7. The subfactor for the graph A
(1)
2n−5 is of the form

{ (
x 0
0 α(x)

) ∣∣∣∣ x ∈ R
}

⊂ M2(C) ⊗R,

where α is an automorphism of the AFD type II1 factor R with αn−2 ∈ Int(R).

(See [P2].) Our c2 for A
(1)
2n−5 corresponds to the obstruction of this automorphism

α ([O4], [C2, page 41]).

§4 Comments on subfactor construction using Cuntz algebra endomorphisms

The first author encountered a counter example to Ocneanu’s announcement at

first by working on subfactor construction for D
(1)
5 using an endomorphism of the

Cuntz algebra [Cu] and producing 3 different subfactors in this case. The details of

this work will be presented in [I2], but here we give a brief comment on the relation

between the above computation in this paper and the Cuntz algebra approach.

Let O3 be the Cuntz algebra generated by 3 isometries S1, S2, S3 satisfying

S1S
∗
1 + S2S

∗
2 + S3S

∗
3 = 1. For a ∈ T, we define endomorphism ρa on O3 as

follows.

ρa(S1) =
S1 + S2

2
+

S3S3√
2

,

ρa(S2) =
(

S1 + S2

2
− S3S3√

2

)
U,

ρa(S3) = ā
S1 − S2√

2
S∗

3 + aS3(S1S
∗
1 − S2S

∗
2),
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where U = S1S
∗
1 + S2S

∗
2 − S3S

∗
3 is a unitary. We also define a Z2 action α and a

T action γ as follows.

α(S1) = S2,

γt(S1) = e2itS1,

α(S2) = S1,

γt(S2) = e2itS2,

α(S3) = −S3,

γt(S3) = eitS3,

Then these satisfy the following relations.

γt · ρ = ρ · γt, α · ρ = ρ, ρ · α = AdU · ρ,

S1x = ρ2
a(x)S1, S2α(x) = ρ2

a(x)S2, S3ρā2(x) = ρ2
a(x)S3, S3ρa(x) = ρā2 · ρa(x)S3,

If we define a conditional expectation E from O3 to ρa(O3) by E(x) =

ρa(S∗
1ρa(x)S1), x ∈ O3, then (2S∗

1 , 2S1) is a quasi-basis in the sense of Watatani

[Wt, §1.2] and the index of E is 4.

There is a unique KMS state for γ, and by the G.N.S. construction for this

state, we obtain inclusions of type III1/2 AFD factors. We denote by M ⊃ Na

these inclusions.

Let Oγ
3 be the fixed point algebra of O3 under γ. We can show that Oγ

3 is

isomorphic to the string algebra of D
(1)
5 and Mγ ⊃ Nγ

a is a pair of II1 factors.

We can also show that ρa|Oγ
3

comes from a connection on D
(1)
5 . More precisely,

the complex number a2 here corresponds to c in §1. Then the principal graph of

Mγ ⊃ Nγ
a is D

(1)
5 if and only if a12 = 1 by Proposition 3.3. This can be proved by

direct computation for ρā2 · ρa|Oγ
3
, too. We also have the following fact.
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Fact. (1) For a, b ∈ T satisfying a6 = b6 = 1, the inclusion M ⊃ Na is isomorphic

to M ⊃ Nb if and only if a2 = b2.

(2) The principal graph of M ⊃ Na is D
(1)
5 if and only if a6 = 1.

If a12 = 1 and a6 �= 1, then the principal graphs of M ⊃ Na and Mγ ⊃ Nγ
a are

different. In this case, the inclusion M ⊃ Na does not split into a type II1 inclusion.

§5 Reduction to classification of actions of dihedral groups

Goodman, de la Harpe, and Jones constructed a subfactor with the principal

graph D
(1)
n (and A

(1)
n , E

(1)
6 , E

(1)
7 , E

(1)
8 , A∞,∞, A∞, D∞) in [GHJ, 4.7.d]. Their

construction gives a subfactor with the principal graph D
(1)
n as (R ⊗ C)Dn−2 ⊂

(R ⊗ M2(C))Dn−2 for a product type action of the dihedral group Dn−2 on the

AFD type II1 factor R. Here we show that a subfactor of an arbitrary factor with

the principal graph D
(1)
n can be realized as (P ⊗ C)Dm ⊂ (P ⊗ M2(C))Dm for an

action of the dihedral group Dm for some m on some factor P and classification

of these subfactors can be reduced to classification of these group actions. (For

subfactor theory for arbitrary factors, see [Ks1, L1, L2].) Invoking classification of

finite group actions on the AFD factors [J1], [KST], we get another proof of our

main result and also prove that a subfactor of the AFD type III1 factor with the

principal graph D
(1)
n is a tensor product of an AFD type II1 subfactor with the

principal graph D
(1)
n and a common AFD type III1 factor.

Let a, b be the generators of the dihedral group Dm with the relations am =

b2 = (ab)2 = 1. We define the following equivalence relation for actions of Dm.
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Definition 5.1. Let θ, θ′ be actions of the dihedral group Dm on a factor. These

are said to be equivalent if and only if there exists an integer k such that θ and θ′ ·πk

are conjugate, where π is an automorphism Dm defined by π(a) = a, π(b) = ab.

Let M be a factor and α, β automorphisms of M with αm = β2 = (αβ)2 = id,

m ≥ 3. This defines an action θ of the dihedral group Dm on M by θa = α, θb = β.

We also denote this action by 〈α, β〉. We call this action minimal periodic if α has

a minimal period m in the sense of [Co2, page 46] and β is outer. Note that if an

action θ of Dm is minimal periodic and π is an automorphism of Dm, then θ · π is

also minimal periodic.

Lemma 5.2. (1) Two cocycle conjugate minimal periodic automorphisms are con-

jugate.

(2) The fixed point algebra of a minimal periodic action of Dm is a factor.

(3) Two cocycle conjugate minimal periodic actions of Dm are conjugate.

Proof. (1) This is [Co2, Corollary 2.6 (b)].

(2) Let θ = 〈α, β〉 be a minimal periodic action of Dm on a factor M . Then a

direct computation shows that M �θ Dm is a factor because αk ·β is outer for each

k and M �θ′ Zm is a factor, where θ′ is a restriction of θ on Zm = Z/mZ generated

by a. We get the conclusion by [Pa, Corollary 3.2].

(3) Thanks to (2), the usual one-cohomology vanishing trick of [Co2, Corollary

2.6] works. Q.E.D.
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Lemma 5.3. Let M be a factor and α be a minimal periodic automorphism of M

with a period m. Then there exists a minimal periodic automorphism α0 ∈ Aut(Mα)

with a period m such that (M,α) is conjugate to (Mα
�α0 Zm, α̂0), where α̂0 is the

dual action of α0.

Proof. Taking a system of matrix units {eij}m
i,j=1 ⊂ Mα, we may identify (M,α)

with (eMe ⊗ Mm(C), αe ⊗ id), e = e11, α
e = α|eMe. By Takesaki duality [T,

Theorem 4.5] and Lemma 5.2 (1), we obtain the result. Q.E.D.

The following is a generalization of [GHJ, Lemma 4.7.1]. (Also see Invariance

Principle of A. J. Wassermann [Ws, page 227].)

Lemma 5.4. Let M ⊃ N be a pair of factors and E ∈ E(M,N) have a finite

index, where E(M,N) denotes the set of faithful normal conditional expectations

from M onto N . In case that M is of type II1, we assume that E comes from the

unique trace. Let M1 be the basic extension of M by N , e the Jones projection

for E, and E1 ∈ E(M1,M) the expectation constructed by E−1 as in [Ks1]. We

assume that there exists an action θ of a group G on M1 satisfying the following

conditions.

(1) E1 · θg = θg · E1, E · θg |M = θg · E, for g ∈ G.

(2) θg(e) = e, for g ∈ G.

(3) The fixed point algebras Mθ
1 , Mθ, and Nθ are factors and Ind(F ) =

Ind(F1) = Ind(E), where F = E|Mθ ∈ E(Mθ , Nθ), F1 = E1|Mθ
1

∈

E(Mθ
1 ,Mθ).
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Then Mθ
1 = 〈Mθ, e〉 and Mθ

1 is the basic extension of Mθ by Nθ.

Proof. By the downward basic construction, we have a projection f ∈ Mθ
1 such

that Mθ
1 = 〈Mθ , f〉 and F1(f) = Ind(F1). By F1(e) = E1(e) = Ind(E) = Ind(F1),

we have a unitary u ∈ Mθ
1 satisfying ufu∗ = e as in the proof of [Ks2, Theorem 2].

Because exe = E(x)e = F (x)e for x ∈ Mθ, we get the results. Q.E.D.

We generalize a construction of an AFD type II1 subfactor with the principal

graph D
(1)
n in [GHJ, 4.7] as follows.

Theorem 5.5. Let M be a factor and α, β ∈ Aut(M) satisfy αm = β2 = (αβ)2 =

id, m ≥ 3. We assume that 〈α, β〉 is a minimal periodic action of Dm and the

outer invariants of α are (po, γ). If we define an action of Dm on M ⊗ M2(C) by

〈
α ⊗ Ad

(
ω1/2 0

0 ω−1/2

)
, β ⊗Ad

(
0 1
−1 0

)〉
, ω = e2π

√−1/m, ω1/2 = eπ
√−1/m,

then we get the following.

(1) The principal graph of a subfactor (M⊗C)Dm ⊂ (M⊗M2(C))Dm is D
(1)
po+2.

(2) The parameter c of the connection determined by the tower of higher relative

commutants as in §1 satisfies the relation that c2 is given by the obstruction

of α̂.

Proof. By Lemma 5.3, there exists a minimal periodic automorphism α0 ∈

Aut(Mα) such that

M = Mα
�α0 Zm = 〈Mα, λ〉,

α(λ) = ωλ,
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where λ is the implementing unitary for α0. Note that α0 and α have the same

outer periods. Let u be a unitary in Mα satisfying αpo

0 = Ad(u). Then we have

(5.5.1) M ∩ (Mα)′ = 〈uλ−po〉.

Because β is outer, both M � Dm and M �α Zm are factors, hence we obtain the

following. (See [A, II.3].)

M ∩ (MDm )′ = J(J(M ∩ (MDm )′)J)J = J(M ′ ∩ (M � Dm))J

= J(M ′ ∩ (M �α Zm))J = M ∩ (MZm)′,(5.5.2)

where J is the modular conjugation. By direct computations, we get the following.

(M ⊗ M2(C))Zm =
{ (

a bλ−1

λc d

)
; a, b, c, d ∈ Mα

}
,

(5.5.3)

(M ⊗ M2(C))Zm ∩ ((M ⊗ C)Zm)′ =
{ (

c1 0
0 c2

)
; c1, c2 ∈ C

}
,

(5.5.4)

(M ⊗ M2(C))Dm =
{ (

a bλ−1

−β(bλ−1) β(a)

)
; a, b ∈ Mα

}
,

(5.5.5)

(M ⊗ M2(C))Dm ∩ ((M ⊗C)Dm )′ = C.

(5.5.6)

For (5.5.4) and (5.5.6), we used (5.5.1) and (5.5.2).

We investigate the structure of the inclusion (M ⊗ C)Zm ⊂ (M ⊗ M2(C))Zm .

Let

ρ = Ad
(

1 0
0 λ−1

)
∈ Aut(M ⊗ M2(C)).
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Then we have the following.

ρ((M ⊗ M2(C))Zm) =
{ (

a b
c d

)
; a, b, c, d ∈ Mα

}
= Mα ⊗ M2(C),

(5.5.7)

ρ((M ⊗ C)Zm) =
{ (

a 0
0 α−1

0 (a)

)
; a ∈ Mα

}
,

(5.5.8)

Because the outer period of α0 is po, this means that the principal graph of (M ⊗

C)Zm ⊂ (M ⊗ M2(C))Zm is A
(1)
2po−1.

Thanks to Lemma 5.4 and the argument in [GHJ, 4.7.d], the towers associated

with (M ⊗ C)Zm ⊂ (M ⊗ M2(C))Zm and (M ⊗ C)Dm ⊂ (M ⊗ M2(C))Dm are as

follows.

(M ⊗ C)Zm ⊂ (M ⊗ M2(C))Zm ⊂ (M ⊗ M2(C) ⊗M2(C))Zm ⊂ · · ·

(M ⊗ C)Dm ⊂ (M ⊗ M2(C))Dm ⊂ (M ⊗ M2(C) ⊗ M2(C))Dm ⊂ · · ·

where the group actions are defined by

α̃ = α ⊗ Ad
((

ω1/2 0
0 ω−1/2

)
⊗

(
ω1/2 0

0 ω−1/2

)
⊗ · · ·

)

β̃ = β ⊗ Ad
((

0 1
−1 0

)
⊗

(
0 1
−1 0

)
⊗ · · ·

)
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Let

Pk = (M ⊗
k times︷ ︸︸ ︷

M2(C) ⊗ · · · ⊗ M2(C))Zm ∩ ((M ⊗ C)Zm)′

Qk = (M ⊗
k times︷ ︸︸ ︷

M2(C) ⊗ · · · ⊗ M2(C))Zm ∩ ((M ⊗ M2(C))Zm)′

Rk = (M ⊗
k times︷ ︸︸ ︷

M2(C) ⊗ · · · ⊗ M2(C))Dm ∩ ((M ⊗ C)Dm)′

Sk = (M ⊗
k times︷ ︸︸ ︷

M2(C) ⊗ · · · ⊗ M2(C))Dm ∩ ((M ⊗ M2(C))Dm )′

A = M ∩ (MZm )′ = M ∩ (MDm )′.

Then we have the following.

Pk = (A ⊗
k times︷ ︸︸ ︷

M2(C) ⊗ · · · ⊗ M2(C))Zm

Rk = (A ⊗
k times︷ ︸︸ ︷

M2(C) ⊗ · · · ⊗ M2(C))Dm

= P β̃
k

In the same way, we also have Sk = Qβ̃
k . Since β̃ preserves Pk and the Jones

projections, and exchanges two minimal projections in P1, the automorphism β̃|⋃ Pk

comes from the unique non-trivial graph automorphism of A
(1)
2po−1 fixing the ∗. So⋃

Rk is the string algebra of D
(1)
po+2 and the parameter c of the connection in §1 is

given by the square root of the obstruction of α0. Q.E.D.

We list three remarks on this construction.
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Remark 5.6. We study the relation between β0 = β|Mα and α0. By

α · β(λ) = β · α−1(λ) = ω−1β(λ),

we have β(λ) = wλ−1 for some unitary w ∈ Mα. Then

β0 · α0(x) = β(λxλ−1) = wλ−1β0(x)λw∗

= wα−1
0 · β0(x)w∗ for x ∈ Mα.

By direct computations, we obtain the following.

ρ ·
(

β ⊗ Ad
(

0 1
−1 0

))
· ρ−1

(
a b
c d

)
(5.6.1)

=ρ ·
(

β ⊗ Ad
(

0 1
−1 0

)) (
a bλ−1

λc α0(d)

)

=ρ

(
β · α0(d) −β(λc)
−β(bλ−1) β(a)

)

=
(

β · α0(d) −β(λc)λ
−λ−1β(bλ−1) α−1

0 β(a)

)

=
(

wα−1
0 · β0(d)w∗ −wλ−1β0(c)λ

−λ−1β0(b)λw∗ α−1
0 β0(a)

)

=
(

wα−1
0 · β0(d)w∗ −wα−1

0 · β0(c)
−α−1

0 · β0(b)w∗ α−1
0 β0(a)

)
,

for
(

a b
c d

)
∈ Mα ⊗ M2(C). Because ρ · β · ρ−1 has a period 2, we have

(α−1
0 · β0)2 = Ad(w∗), α−1

0 · β0(w) = w.
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Remark 5.7. By (5.5.7), (5.5.8), and (5.6.1), we obtain the following.

N = ρ((M ⊗ M2(C))Dm ) =
{ (

a b
−α−1

0 · β0(b)w∗ α−1
0 · β0(a)

)
; a, b ∈ Mα

}
,

(5.7.1)

L = ρ((M ⊗ C)Dm) =
{ (

a 0
0 α−1

0 (a)

)
; a ∈ (Mα)β0

}
.

(5.7.2)

Because [Mα : (Mα)β0 ]0 = 2, there exists a unitary S ∈ Mα with order 2 such that

S normalizes (Mα)β0 and

Mα = (Mα)β0 + (Mα)β0S,

β0(S) = −S.

We define unitaries v, t as follows.

v =
(

S 0
0 α−1

0 · β0(S)

)
=

(
S 0
0 −α−1

0 (S)

)
∈ N \ L,

t =
(

S 0
0 α−1

0 (S)

)
∈ ρ((M ⊗C)Zm) \L.

Because t normalizes N and L, we define a Z2-action τ on N by τ = Ad t|N . It is

easy to show ρ((M ⊗M2(C))Zm ) = N + Nt, ρ((M ⊗C)Zm) = L + Lt. So we have

ρ((M ⊗C)Zm) ⊂ ρ((M ⊗ M2(C))Zm)
∪ ∪
L ⊂ N

∼=
L �τ Z2 ⊂ N �τ Z2

∪ ∪
L ⊂ N

.
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Because
(

1 0
0 −1

)
= vt also normalizes N , we define θ ∈ Aut(N) by θ =

Ad
(

1 0
0 −1

)∣∣∣∣
N

. Then it is easy to show that

τ = Ad(v) · θ,

Nθ = L + Lv.

Remark 5.8. The conjugacy class of a subfactor (M ⊗C)Dm ⊂ (M ⊗M2(C))Dm

does not depend on the choice of the generator β. That is, two equivalent minimal

periodic actions in the sense of Definition 5.1 produce conjugate subfactors. This

can be proved as follows. If we take αk·β instead of β, then the action on M⊗M2(C)

turns into

〈
α ⊗ Ad

(
ω1/2 0

0 ω−1/2

)
, (αkβ) ⊗Ad

(
0 1
−1 0

)〉

=
〈

α ⊗ Ad
(

ω1/2 0
0 ω−1/2

)
, β ⊗ Ad

(
0 ωk/2

−ω−k/2 0

)〉
.

By

(
1 0
0 ωk/2

) (
ω1/2 0

0 ω−1/2

) (
1 0
0 ω−k/2

)
=

(
ω1/2 0

0 ω−1/2

)
,

(
1 0
0 ωk/2

) (
0 ωk/2

−ω−k/2 0

) (
1 0
0 ω−k/2

)
=

(
0 1
−1 0

)
,

we get the results.

Note that the conjugacy class of the subfactor (M ⊗ C)Dm ⊂ (M ⊗ M2(C))Dm

depends on the choice of α because the outer invariants depends on the choice of

the generators of Zm.
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Lemma 5.9. Let P be a factor and α0, β0 ∈ Aut(P ) satisfy

αm
0 = β2

0 = id, (m ≥ 3),

β0 · α0 · β0 = Ad(w) · α−1
0 , w ∈ P ; unitary,

α0(w) = β0(w).

If α0 has a minimal period m and β0 is outer, then there exists β ∈ Aut(P �α0 Zm)

such that 〈α̂0, β〉 is a minimal periodic action of Dm and β|P = β0. If β1 ∈

Aut(P �α0 Zm) is another extension of β0 so that 〈α̂0, β1〉 is an action of Dm, then

β1 = α̂k
0 · β for some k.

Proof. By

id = (β0 · α0 · β0)m = Ad(wα−1
0 (w)α−2

0 (w) · · · α−(m−1)
0 (w)),

we may assume that wα−1
0 (w)α−2

0 (w) · · ·α−(m−1)
0 (w) = 1. Let λ be the implement-

ing unitary for α0 in P �α0 Zm. Suppose that β is an extension of β0 to P �α0 Zm

so that 〈α̂0, β〉 is an action of Dm on P �α0 Zm. Then

Ad(w) · α−1
0 (x) = β0 · α0 · β0(x)

= β(λβ0(x)λ−1)

= β(λ)xβ(λ−1), for x ∈ P.
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So β(λ) = cwλ−1 for some c ∈ P ′ ∩ P �α0 Zm. By α̂0 · β(λ) = β · α̂−1
0 (λ), we get

α̂0(c) = c, which implies c ∈ P . Thus c is a complex scalar. By

1 = β(λm) = β(λ)m = cmwα−1
0 (w)α−2

0 (w) · · · α−(m−1)
0 (w) = cm,

we get cm = 1. On the other hand, if cm = 1, we can define β ∈ Aut(P �α0 Zm) by

β(x) =
{

β0(x), for x ∈ P

cwλ−1, for x = λ.

By β0(w) = α0(w), we have

β2(λ) = β(cwλ−1) = cβ0(w)(cwλ−1)∗ = β0(w)λw∗

= β0(w)α0(w∗)λ = λ.

So β has a period 2. It is easy to see that 〈α̂0, β〉 is an action of Dm on P �α0Zm. We

must show that β is outer. Suppose that x =
∑

akλk, ak ∈ P , satisfies β = Ad x.

Then for all y ∈ P , we get akαk
0(y) = β0(y)ak . Because αk

0 · β0 is outer, we obtain

ak = 0, which is a contradiction. The second statement follows from the above

arguments. Q.E.D.

The following is a generalization of a statement made in the proof of [P2, Corol-

laire 1 (v)].
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Lemma 5.10. Let L ⊂ N be a pair of factors with the principal graph D
(1)
n , n ≥ 3.

Then the following hold.

(1) Let G be the group of automorphisms of N fixing L pointwise. Then G ∼= Z2.

We denote the generator of G by θ.

(2) There exists θ0 ∈ Aut(L) such that Nθ = L �θ0 Z2. The automorphism θ0

is determined up to cocycle conjugacy.

Proof. By N ′ ∩L = C, there is a unique conditional expectation E ∈ E(N,L). Let

L ⊂ N ⊂ N1 ⊂ N2 · · ·

be the tower associated with L ⊂ N and Ei be the unique element in E(Ni, Ni−1),

(N0 = N). Because the principal graph of L ⊂ N is D
(1)
n , L′ ∩ N1 = C ⊕ C ⊕ C.

Denote the set of the minimal projections in N1 ∩ L′ by {eL, p1, p2}. Note that

E · E1 · · ·Ek converges to the unique trace on
∨

k(Nk ∩ L′). Then the values of

E1 on N1 ∩L′ are determined by the Perron-Frobenius eigenvector of D
(1)
n and we

obtain

{E1(p1), E1(p2)} = {1
4
,
1
2
},

#{p ∈ N1 ∩ L′;E1(p) = E1(eL) =
1
4
, p : projection} = 2.

Let U(L) be the unitary group of L and N (L) = {u ∈ U(N);uLu∗ = L}. In the

same way as in [Ks2, Lemma 5], we can show that the order of the Weyl group of

L ⊂ N is 2, that is, #(N (L)/U(L)) = 2. So there exists a unique θ0 ∈ Aut(L) up
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to cocycle conjugacy such that L�θ0 Z2 ⊂ N . Thanks to [N : L�θ0 Z2]0 = 2, there

exists a unique automorphism θ of N with a period 2 such that L �θ0 Z2 = Nθ.

By |G| ≤ [N : L]0 = 4, we have |G| = 2 or |G| = 4. If |G| = 4, then L is the

fixed point algebra under the action of G, but this is impossible and we get the

results. Q.E.D.

Now we reach the main result of this section.

Theorem 5.11. Let L ⊂ N be a subfactor with the principal graph D
(1)
n . Then

there exists a factor M and α, β ∈ Aut(M) satisfying the conditions of Theorem

5.5 such that

L ⊂ N ∼= (M ⊗ C)Dm ⊂ (M ⊗ M2(C))Dm ,

where the Dm-action is constructed as in Theorem 5.5. Moreover, the conjugacy

class of a subfactor N ⊂ L is in a bijective correspondence to a pair of an isomor-

phism class of M and an equivalence class of a minimal periodic action 〈α, β〉 of

Dm on M in the sense of Definition 5.1.

Proof. By Lemma 5.10, there exist θ ∈ Aut(N) and θ0 ∈ Aut(L) with periods 2

such that Nθ = L �θ0 Z2. Let v ∈ L �θ0 Z2 be the implementing unitary for θ0.

We define τ ∈ Aut(N) by τ = Ad(v) · θ. Then we have

τ 2 = Ad(vθ(v)) · θ2 = Ad(v2) = id,

τ |L = Ad(v)|L = θ0.
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We consider the following inclusions of factors.

L �τ Z2 ⊂ N �τ Z2

∪ ∪
L ⊂ N

.

Note that these inclusions and the dual action τ̂ do not depend on the choice of θ0.

Let t ∈ L �τ Z2 be the implementing unitary for τ . Then (vt)2 = vτ (v) =

vAd(v) · θ(v) = v2 = 1. We write vt = f1 − f2, where f1 and f2 are mutually

orthogonal non-zero projections. Direct computation shows

N �τ Z2 ∩ (L �τ Z2)′ = 〈vt〉 = Cf1 + Cf2.

If N is of type II1, then f1 ∼ f2 because of [N �τ Z2 : L �τ Z2] = 4, and if N is of

type II∞, then f1 ∼ f2 also holds because f1 and f2 are both infinite projections.

In any case, we have f1 ∼ f2. So we identify L �τ Z2 ⊂ N �τ Z2 with

{ (
x 0
0 α−1

0 (x)

)
;x ∈ P

}
⊂ P ⊗ M2(C),

where P = f1(N �τ Z2)f1.

First, we assume that the outer period of α0 is po �= 0. Thanks to [Co2, Propo-

sition 2.3], we may assume that α0 is minimal periodic by change of the partial

isometries between f1 and f2, if necessary. We assume this and let m be the period

of α0. Note that α0 is uniquely determined up to cocycle conjugacy.
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We investigate the relation between τ̂ and α0. By τ̂(f1) = f2 and τ̂(f2) = f1,

the dual action τ̂ is written as follows.

τ̂

(
a b
c d

)
=

(
wσ(d)w∗ −wσ(c)
−σ(b)w∗ σ(a)

)
,

(
a b
c d

)
∈ P ⊗ M2(C),w ∈ U(P ), σ ∈ Aut(P ).

By τ̂ 2 = id, we have the following relations.

(5.11.1) σ2 = Ad w∗, σ(w) = w.

Because τ̂ preserves N �τ Z2, we obtain α−1
0 · Ad(w) · σ · α−1

0 = σ from

τ̂

(
a 0
0 α−1

0 (a)

)
=

(
wσ · α−1

0 (a)w∗ 0
0 σ(a)

)
.

So

(α0 · σ)2 = id,(5.11.2)

σ · α−1
0 σ−1 = Ad(w∗) · α0,(5.11.3)

where we use (5.11.1). We define β0 ∈ Aut(P ) by β0 = α0 ·σ. Then β0 satisfies the

following.

β2
0 = id,(5.11.4)

β0 · α0 · β0 = Ad(w) · α−1
0 ,(5.11.5)

β0(w) = α0(w),(5.11.6)

τ̂

(
a b
c d

)
=

(
wα−1

0 · β0(d)w∗ −wα−1
0 · β0(c)

−α−1
0 · β0(b)w∗ α−1

0 · β0(a)

)
(5.11.7)
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From (5.11.5), we may assume that wα−1
0 (w) · · ·α−(m−1)

0 (w) = 1 by changing the

partial isometries between f1 and f2, if necessary. Now we get the following.

N �τ Z2 = P ⊗ M2(C),
(5.11.8)

L �τ Z2 =
{ (

a 0
0 α−1

0 (a)

)
; a ∈ P

}
,

(5.11.9)

N = (P ⊗ M2(C))τ̂ =
{ (

a b
−α−1

0 · β0(b)w∗ α−1
0 · β0(a)

)
; a, b ∈ P

}
,

(5.11.10)

L = N ∩ (L �τ Z2) =
{ (

a 0
0 α−1

0 (a)

)
; a ∈ P, β0(a) = a

}
.

(5.11.11)

We define M by M = P �α0 Zm. By Lemma 5.9, we have α = α̂0 ∈ Aut(M)

and β ∈ Aut(M), an extension of β0, such that 〈α, β〉 satisfies the conditions of

Theorem 5.5. By (5.7.1), (5.7.2), (5.11.10), and (5.11.11), we get the first part of

the statement.

If the minimal period of α0 is 0, then we define M by M = P �α0 Z. In the

same way, we have an outer action of T � Z2 on M and the subfactor L ⊂ N is

conjugate to (M ⊗ C)T�Z2 ⊂ (M ⊗ M2(C))T�Z2 . But in this case, the principal

graph of L ⊂ N is D∞ as in [GHJ, 4.7.d], which is a contradiction. (Use Lemma

5.4 instead of [GHJ, Lemma 4.7.1].)

Let u be α−1
0 -cocycle. We define α̃0 by α̃0 = α0 · Ad(u∗). If we take α̃0 instead

of α0, then σ,w, β0 turn into σ̃ = Ad(u) · σ, w̃ = wσ(u∗)u∗, β̃0 = β0. Let λ be the

implementing unitary for α0. Then the implementing unitary for α̃0 is λ̃ = λu∗. If

β and β̃ ∈ Aut(M) are extensions of β0 defined by β(λ) = wλ−1 and β̃(λ̃) = w̃λ̃−1,

it is easy to show that β and β̃ coincide. So the above construction of M and
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the Dm-action does not depend on the choice of α0. The claim for the bijective

correspondence follows from Remark 5.7 and Lemma 5.9. Q.E.D.

With this theorem, we can give a different proof of our main result, Theorem

3.4, as follows.

Another proof of Theorem 3.4. By Lemma 5.2 (3), we can use classification of finite

group actions on the AFD type II1 factor up to cocycle conjugacy, [J1]. We study

characteristic invariants of [J1, 1.2]. Now G be the dihedral group Dm generated by

a, b with am = b2 = (ab)2 = 1. For an action σ of Dm on the AFD type II1 factor

σ, denote σa, σb by α, β respectively. Because n− 2 is now the outer period of α, it

is a divisor of m. Let m = l(n− 2). Let γ be the obstruction of α. Then γn−2 = 1

and the order of γ is l by [Co2, Proposition 2.3]. Fix γ. The inverse image N of the

inner automorphism group by σ is {a, an−2, a2(n−2), . . . a(l−1)(n−2)} ⊂ G. We study

a characteristic invariant, a pair (λ, µ) ∈ Λ(G,N) We may assume that µ is trivial,

µ(g) = 1 for all g ∈ N . Note that the map λ(g, ·) gives an element of N̂ for each

g ∈ G because µ is trivial by [J1, (1.2.2)]. Set c = λ(b, an−2) ∈ C. Then cl = 1

and all the values of λ is determined by this c and γ = λ(a, an−2). For example,

λ(akb, an−2) = γkc by [J1, (1.2.3)]. For different values of c, the characteristic

invariants (λ, µ) may or may not be equivalent in Λ(G,N), but the corresponding

actions are equivalent in the sense of Definition 5.1, because an automorphism of

Dm defined by a �→ a, b �→ akb, changes c into γkc and all the l-th roots of unity

are realized in this way. (Note that γ has an order l.) Thus for fixed γ, there is a

unique equivalence class of actions. Because the number of possible γ is n− 2, the

number of conjugacy classes of our subfactors is also n − 2. Q.E.D.

For the principal graph D∞, we can prove the following in the same way.
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Theorem 5.12. Let L ⊂ N be a pair of factors with the principal graph D∞. Then

there exist a factor M and an outer action of T � Z2 on M such that L ⊂ N is

conjugate to (M ⊗C)T�Z2 ⊂ (M ⊗M2(C))T�Z2 .

For the AFD type III1 factor, Kosaki and Longo conjectured that its subfactor

splits as a tensor product of an AFD type II1 subfactor and a common AFD type

III1 factor under a “good” condition, such as a finite depth and a trivial relative

commutant. If a subfactor arises as a fixed point algebra or a crossed product al-

gebra of an outer action of a finite group, this is true, and these are considered as

rather trivial examples of the conjecture. (Finite group actions on the AFD type

III1 factor have been classified in [KST, Theorem 20] based on Jones-Ocneanu clas-

sifications [J1, O1] and Connes’ announcement on centrally trivial automorphisms

and approximately inner automorphisms, which was announced in [Co1, section

3.8] and proved in [KST].) The first author showed in [I1, §5] that an AFD type

III1 subfactor with the principal graph A5 gives the first non-trivial supporting

example of the above conjecture. Now we can give the second non-trivial example

as follows.

Corollary 5.13. Let L ⊂ N be a pair of AFD type III1 factors with the principal

graph D
(1)
n . Then there exists a pair of AFD type II1 factors P ⊂ R such that

L ⊂ N is conjugate to P ⊗R∞ ⊂ R⊗R∞, where R∞ is the AFD type III1 factor.

Proof. By [KST, Theorem 20], any finite group action σ on the AFD type III1

factor is cocycle conjugate to σ′ ⊗ id, where σ′ is an action on the AFD type II1

factor and id is the trivial action on the AFD type III1 factor. Now Lemma 5.2 (3)

and Theorem 5.11 give the conclusion. Q.E.D.
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