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Abstract. We show the uniqueness, up to cocycle conjugacy, of an action of

a separable locally compact abelian group G on the hyperfinite type II1 factor R,

which fixes a Cartan subalgebra of R elementwise and has the Connes spectrum

Ĝ. We also show the uniqueness, up to cocycle conjugacy, of an almost periodic

prime action α of a separable locally compact abelian group on the hyperfinite type

II1 factor R with (Rα)′ ∩ R = CI, and the uniqueness, up to cocycle conjugacy,

of a quasi-free one-parameter automorphism group of R arising from the CAR

C∗-algebra, which has the Connes spectrum R.

§0 Introduction

In this paper, we show the uniqueness, up to cocycle conjugacy, of a one-

parameter automorphism group of the hyperfinite type II1 factor R, which fixes

a Cartan subalgebra of R elementwise and has the Connes spectrum R̂. This re-

sult is valid for any separable locally compact abelian group G instead of R. As

its application, we also show the uniqueness, up to cocycle conjugacy, of an almost

periodic prime action α of a separable locally compact abelian group on the hyper-

finite type II1 factor R with (Rα)′ ∩ R = CI, and the uniqueness, up to cocycle
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conjugacy, of a quasi-free one-parameter automorphism group of R arising from

the CAR C∗-algebra, which has the Connes spectrum R. Methods of computation

of the Connes spectrum in terms of the asymptotic range are also given. Several

examples are shown to be identical up to cocycle conjugacy as an application.

In the classification problem of group actions on the hyperfinite type II1 factor,

non-compact continuous groups have not been studied well. Thus we study the

classification problem for the real number group R. Note that the uniqueness of

the injective type III1 factor, which was finally solved by Haagerup [8], is equivalent

to the uniqueness of the trace scaling one-parameter automorphism group, tr◦αt =

e−ttr, of the hyperfinite type II∞ factor R0,1 by Takesaki [22]. The trace preserving

cases are still open.

We solved the classification problem for an action α of R up to stable conjugacy

in the previous paper [13] for the case Γ(α) �= R. In §1, we will deal with the case

Γ(α) = R under the condition that an action α fixes a Cartan subalgebra ofR. If an

action fixes a Cartan subalgebra elementwise, we can write down the explicit form

of this type of action by the work of Feldman-Moore [7] and Connes-Feldman-Weiss

[5], and we will classify this type of actions. We will use the technique of T -array

in Krieger [14], and reduce the general cases to infinite tensor product type actions.

The results in this section are stated for a general separable locally compact abelian

group G. The method in this section can also be applied to the hyperfinite type

II∞ factor.

In §2, we show uniqueness, up to cocycle conjugacy, of an almost periodic prime

action α of a separable locally compact abelian group on the hyperfinite type II1
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factor R with (Rα)′ ∩ R = CI as an application of the result in §1. This type of

actions were studied by Thomsen [24].

In §3, we will use the construction in §1 and its modification to show that all

the ergodic flows actually occur as α̂ on Z(M�α R), which was used as complete

invariants together with the type of the crossed product algebra for a classification

of an action α of R on the hyperfinite type II1 or II∞ factor M with Γ(α) �= R

in Kawahigashi [13]. We also show a one-parameter automorphism group α has a

trivial relative commutant propertyR′∩R�αR = CI if α fixes a Cartan subalgebra

of R and Γ(α) = R. We show examples of a one-parameter automorphism with

Γ(α) = R at the end of this section.

In §4, we use the result in §1 for quasi-free actions of R on R, which is a weak

extension of a one-parameter automorphism group on the CAR C∗-algebra coming

from the Bogoliubov automorphism given by a one-parameter unitary group on

a separable Hilbert space. We reduce these actions to the above type of actions

by expansionals in Araki [1]. As an example, we can apply this result to “CAR-

flow” which is a type II1 factor automorphism group version of the endomorphism

semigroup of L(H) in Powers-Robinson [20].

We would like to thank Prof. K. Schmidt for calling our attention to Oren [17],

Prof. R. Powers for raising our interest in the subject of §4, and Prof. M. Takesaki

for numerous suggestions and successive encouragement.

§1 Uniqueness result for locally compact abelian groups

We study actions of a locally compact abelian group G on the hyperfinite type

II1 factor R defined as follows. (Though our main interest lies in the case G = R,
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the results in this section are valid for more general cases.) Let T be an ergodic

measure preserving transformation on a measure space (X,µ), µ(X) = 1. Then

σ ∈ Aut(L∞(X,µ)) is defined by σ(ϕ)(x) = ϕ(T−1x) for ϕ ∈ L∞(X,µ). The group

measure space construction L∞(X,µ) �σ Z gives us R. Let u be the implementing

unitary for this crossed product algebra. We denote L∞(X,µ) by A in the following.

For a separable locally compact abelian group G, take a measurable function h from

X to Ĝ, and we define an action αt of G, t ∈ G by



αt(ϕ) = ϕ, for ϕ ∈ L∞(X,µ)

αt(u) = 〈t, h(x)〉u,

where 〈t, h(x)〉 denotes the duality pairing of t ∈ G and h(x) ∈ Ĝ for x ∈ X. Note

that if α is an action of G which fixes a Cartan subalgebra of R elementwise, then

α is of this form. (See Definition 3.1, Theorem 1, Theorem 5 in Feldman-Moore [7]

and Theorem 10 in Connes-Feldman-Weiss [5].) In this section, α will denote this

action. Every set in the following is assumed to be measurable.

We use a groupoid X �T Z for which the multiplication is defined by (x,n) ·

(T−nx,m) = (x,n +m), where x ∈ X, n,m ∈ Z.

Definition 1.1. For the above measurable function h and an ergodic transfor-

mation T on X, we denote by r(h, T ) the asymptotic range r∗(c) (Definition 8.2 in

Feldman-Moore [6]) for the following cocycle on a groupoid X �T Z.

c(x, n) =



h(x) + h(T−1x) + · · ·+ h(T−n+1x), if n > 0, x ∈ X,
0, if n = 0, x ∈ X,
h(Tx) + h(T 2x) + · · ·+ h(T−nx), if n < 0, x ∈ X.
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The asymptotic range r∗(c) is a closed subgroup of Ĝ by Proposition 8.5 in Feldman-

Moore [6].

For the Connes spectrum Γ(α) (see Définition 2.2.1 in Connes [3]), we get the

following, as expected. (See Proposition 2.11 in Feldman-Moore [7].)

Proposition 1.2. For the above action α, Γ(α) = r(h, T ).

Proof. By IV.5.4 in Takesaki [23] and Z(Rα) ⊆ A ⊆ Rα we get

Γ(α) = ∩{Sp(αe) | e ∈ Proj(Rα)} ⊆ ∩{Sp(αe) | e ∈ Proj(A)}

⊆ ∩{Sp(αe) | e ∈ Proj(Z(Rα))} = Γ(α).

(Here the symbol Z means the center.) Thus λ ∈ Γ(α) if and only if λ ∈ Sp(αe)

for every e = χB ∈ A, where B ⊆ X, µ(B) > 0.

Suppose λ ∈ r(h, T ). Choose an arbitrary B ⊆ X, µ(B) > 0, and set e = χB ∈

A. We have to show f̂(λ) = 0 if we have an f ∈ L1(G) such that

(∗)
∫

G

f(−t)αe
t (y)dt = 0, for every y ∈ Re.

Assume f̂(λ) �= 0, and take an open neighborhood U ⊆ Ĝ of λ so that f̂ �= 0 on U .

Now by the definition of the asymptotic range, there exists an integer n such that

we have µ(B′) > 0 for

B′ = {x ∈ B | T−nx ∈ B, c(x, n) ∈ U},

5



where we used the cocycle c as in Definition 1.1. Take y = eune in (∗). We have

∫
G

f(−t)χBαt(un)χB dt =
∫

G

f(t)χB (x)〈t, c(x, n)〉χT nB(x)dt · un = 0.

This implies

∫
G

f(t)〈t, c(x, n)〉 dt = 0, for almost all x ∈ B′.

This contradicts c(x, n) ∈ U for x ∈ B′ and f̂ �= 0 on U .

Conversely, assume λ ∈ Sp(αe) for every e = χB , B ⊆ X, µ(B) > 0. Suppose

λ /∈ r(h, T ). Then there exist B ⊆ X, µ(B) > 0, and a neighborhood U ⊆ Ĝ of λ

such that

(∗∗) µ({x ∈ B | T−nx ∈ B, c(x, n) ∈ U}) = 0, for every integer n.

Take an f ∈ L1(G) such that supp(f̂) ⊆ U and f̂(λ) �= 0. Then for every integer n

and ϕ ∈ L∞(X,µ), we have

∫
G

f(−t)αt(eϕune)dt =
∫

G

f(t)χBϕ〈t, c(x, n)〉χT nB dt · un.

But the right hand side of this is 0 because of (∗∗) and supp(f̂) ⊆ U . Thus by

the definition of Sp(αe), we get f̂(λ) = 0, which contradicts the construction of

f . Q.E.D.

We get the following for the Poincaré flow. (See Definition 8.1 in Feldman-Moore

[6].)
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Proposition 1.3. For the above action α, the flow on Z(R �α G) given by the

dual action α̂ of Ĝ is the Poincaré flow of the cocycle c.

Proof. By considering the dual action α̂ on Z(L∞(X,µ) �σ Z �α G), it follows

easily from the definition of the Poincaré flow. Q.E.D.

We are interested in the case r(h, T ) = Γ(α) = Ĝ. Thus in the rest of this

section, we assume this equality. In the following we use the notation [T ] for the

full group of T .

Definition 1.4 For S ∈ [T ] and a measurable function h from X to Ĝ, we

define

F (h;x,S) =



h(x) + h(T−1x) + · · ·+ h(T−n+1x), if n > 0,
0, if n = 0,
h(Tx) + h(T 2x) + · · ·+ h(T−nx), if n < 0,

on the set {x ∈ X | Sx = T−nx}.

Lemma 1.5. For every A,B ⊆ X, µ(A) = µ(B) > 0, λ ∈ Ĝ and a neighborhood

W ⊆ Ĝ of λ, there exists S ∈ [T ] such that S(A) = B, F (h;x,S) ∈ W for almost

all x ∈ A.

Proof. Because T is ergodic, there exist A1 ⊆ A, B1 ⊆ B, µ(A1) = µ(B1) > 0

and an integer n such that T−nA1 = B1. By considering c(x, n) on A1, there exist

A2 ⊆ A1, B2 ⊆ B1, µ(A2) = µ(B2) > 0, λ′ ∈ Ĝ, an open neighborhood W ′ ⊆ Ĝ

of λ′, and an open neighborhood W ′′ ⊆ Ĝ of λ − λ′ such that c(x, n) ∈ W ′ for

almost all x ∈ A2 and W ′ +W ′′ ⊆ W because Ĝ is second countable. Then by the

definition of the asymptotic range, there exist B3, B4 ⊆ B2, µ(B3) = µ(B4) > 0,
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and an integer m such that T−mB3 = B4 and c(x,m) ∈W ′′ for almost all x ∈ B3.

Now set A3 = TnB3. Then we have c(x, n+m) ∈W for almost all x ∈ A3.

Now let F be the set of family {Ai, Bi}i∈I , where µ(Ai) = µ(Bi) > 0, Ai’s are

mutually disjoint subsets of A, Bi’s are mutually disjoint subsets of B, and for each

i ∈ I, there exists an integer ni such that T−niAi = Bi and c(x, ni) ∈ W for almost

all x ∈ Ai. Consider the usual order on F , then it is inductively ordered. Thus take

a maximal {Ai, Bi}i∈I in F , then µ(∪Ai) = µ(∪Bi). If µ(A−∪Ai) = µ(B−∪Bi) >

0, then we can find another A′ and B′ by applying the above argument to A−∪Ai,

B − ∪Bi, which contradicts the maximality of {Ai, Bi}i∈I . Thus A = ∪Ai, and

B = ∪Bi, hence we are done. (The transformation S is defined to be T−ni on

Ai.) Q.E.D.

While this Lemma 1.5 is similar to Lemma 2.7 in Krieger [14], the important

difference is that λ is arbitrary here.

Take an action β of G on R of the form βt =
⊗∞

j=1 diag(〈t, νj
0〉, . . . , 〈t, νj

Nj
〉),

where diag(〈t, νj
0〉, . . . , 〈t, νj

Nj
〉) stands for the (Nj + 1)× (Nj + 1) diagonal matrix

with diagonal entries 〈t, νj
0〉, . . . , 〈t, νj

Nj
〉, and νj

i ’s are in Ĝ. We say this action is of

the infinite tensor product type. In this expression, we may assume νj
0 = 0 for all j,

thus we assume this in this section, and fix β. We will prove the following theorem

on the uniqueness of actions up to cocycle conjugacy. (See p. 215 of Jones-Takesaki

[10] for a definition of cocycle conjugacy.)

Theorem 1.6. If an action α of a locally compact abelian separable group G on

the hyperfinite type II1 factor R fixes a Cartan subalgebra elementwise and Γ(α) =

Ĝ, and another action β is of the infinite tensor product type, then α is cocycle
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conjugate to an action of the infinite tensor product type, and α ⊗ β is cocycle

conjugate to α.

Note that the infinite tensor product type actions are particular cases of the

actions in this theorem.

We need some lemmas for the proof of this theorem. We will use the technique of

T -array of Krieger. (See p. 166 in Krieger [14] and V.5 in Takesaki [23] for definitions

and notations.) In our convention here, we assume U(a, b)Z(a) = Z(b), the index

set A is finite, and ∪a∈AZ(a) = X for a T -array A = {Z(a),U(a, b) | a, b ∈ A}. We

use a notation ∂k(x) = k(x)− k(T−1x) for a measurable function k from X to Ĝ.

Lemma 1.7. Suppose a T -array A1 = {Z1(a),U1(a, b) | a, b ∈ A1}, B1, . . . , Bm ⊆

X, a measurable function h1 from X to Ĝ, ε > 0, and an open neighborhood

W ⊆ Ĝ of 0 are given. Moreover, we assume that F (h1;x,U1(a, b)) is an almost

everywhere constant function on Z1(b). Then there exists an integer n0 such that

for every integer n ≥ n0, and λ0, . . . , λn−1 ∈ Ĝ, where λ0 = 0, there exist an

extension T -array of A1

A2 = {Z2(a),U2(a, b) | a, b ∈ A2 = A1 × Zn}

and a measurable function h2 from X to Ĝ such that

h2(x) ∈W, for almost all x ∈ X,

Bk
ε∈B{Z2(a) | a ∈ A2}, for every 1 ≤ k ≤ m,

F (h1;x,U1(a, b)) = F (h1 + ∂h2;x,U1(a, b)), for almost all x ∈ X,

F (h1 + ∂h2;x,U2((a, j), (a,0))) = λj , a ∈ A1, for almost all x ∈ Z2(a,0).
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Proof. Take n0 as in Lemma V.5.7 in Takesaki [23], and for n ≥ n0, take Z2(a, j)

for (a, j) ∈ A1 × Zn as in the proof of Lemma V.5.7 in Takesaki [23] so that

Bk

ε∈B{Z2(a) | a ∈ A2}, where the right hand side means the σ-algebra generated

by Z2(a), a ∈ A2. Fix a0 ∈ A. Now take U2((a0, j), (a0, 0)) ∈ [T ] by Lemma 1.5 so

that

F (h1;x,U2((a0 , j), (a0, 0))) ∈ λj +W, for almost all x ∈ Z2(a0, 0).

(For j = 0, take U2((a0 , 0), (a0, 0)) = id.) Now define

U2((a0 , i), (a0, j)) = U2((a0 , i), (a0 , 0))U2((a0, j), (a0, 0))−1,

and extend this as usual. (See V.5.6 in Takesaki [23].) We define

h2(x) = F (h1;U2((a,0), (a, j))x,U2((a, j), (a,0))) − λj

on Z2(a, j), (a, j) ∈ A1 × Zn. Then h2(x) ∈ W for almost all x ∈ X. For almost

all x ∈ Z2(a,0), we have

F (h1 + ∂h2;x,U2((a, j), (a,0)))

=h1(x) + h1(T−1x) + · · ·+ h1(T−n+1x) + h2(x)− h2(T−nx)

=h1(x) + h1(T−1x) + · · ·+ h1(T−n+1x)− F (h1;x,U2((a, j), (a,0))) + λj

=λj ,
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where n is given by U2((a, j), (a,0))x = T−nx. Thus by construction of h2, we have

the desired equalities. Q.E.D.

We use a notation OrbU (x) = {U(a, b)x | a, b ∈ A} for a T -arrayA = {Z(a),U(a, b) |

a, b ∈ A} and x ∈ X.

Lemma 1.8. For a given T -array A1 = {Z1(a),U1(a, b) | a, b ∈ A1}, ε > 0, an

open neighborhood W ⊆ Ĝ of 0, and a measurable function h1 from X to Ĝ such that

F (h1;U1(a, b), x) is an almost everywhere constant function on Z1(b), there exist

an integer n, an extension T -array A2 = {Z2(a),U2(a, b) | a, b ∈ A2 = A1 ×Zn}, a

measurable function h2 from X to Ĝ, and ρ0, . . . , ρn−1 ∈ Ĝ such that

µ({x ∈ X | Tx /∈ OrbU2(x)}) < ε,

µ({x ∈ X | h2(x) ∈W}) > 1− ε,

F (h1;x,U1(a, b)) = F (h1 + ∂h2;x,U1(a, b)), for almost all x ∈ Z1(b),

F (h1 + ∂h2;x,U2((a, j), (a,0)) = ρj, a ∈ A1, for almost all x ∈ Z2(a,0).

Proof. First, take an extension T -array A′
1 = {Z ′

1(a),U
′
1(a, b) | a, b ∈ A′

1 = A1 ×

Zm} for some integer m by Lemma V.5.8 in Takesaki [23] such that

µ({x ∈ X | Tx /∈ OrbU ′
1
(x)}) < ε.

We make an extension of this by technique on p. 168 in Krieger [14]. Fix a0 ∈

A1. Then there exist E ⊆ Z ′
1(a0, 0), an open neighborhood W ′ ⊆ Ĝ of 0, and

ρ0
0, . . . , ρ

0
m−1 ∈ Ĝ such that µ(E) > 0, W ′ +W ′ ⊆ W , and

F (h1;x,U ′
1((a0 , j), (a0, 0))) ∈ ρ0

j +W ′, 0 ≤ j ≤ m− 1, for almost all x ∈ E.
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By maximality argument, we can find a family of mutually disjoint sets {E′
i}i∈N

in Z ′
1(a0, 0) and elements {ρ′i,j}i∈N,0≤j≤m−1 of Ĝ such that ρ′i,0 = 0, µ(E′

i) > 0,

µ(Z ′
1(a0, 0)− ∪i∈NE

′
i) = 0 and

F (h1;x,U ′
1((a0 , j), (a0, 0))) ∈ ρ′i,j +W ′, for all j and almost all x ∈ E′

i.

Take l0 ∈ N such that µ(∪i≥l0E
′
i) < εµ(Z′

1(a0, 0))/2. By approximating ∪i≥l0E
′
i

and E′
i’s (0 ≤ i ≤ l0 − 1) by unions of smaller sets, we get integers l1, l, a family

{Ei}0≤i≤l−1 of mutually disjoint sets in Z ′
1(a0, 0) and elements {ρi,j}0≤i≤l−1,0≤j≤m−1

of Ĝ such that

ρi,0 = 0,

µ(Ei) = µ(Ei′ ),

µ(Z ′
1(a0, 0) −∪0≤i≤l−1Ei) = 0,

µ(∪l1≤i≤l−1Ei) ≤ εµ(Z′
1(a0, 0)),

F (h1;x,U ′
1((a0 , j), (a0, 0))) ∈ ρi,j +W ′, 0 ≤ i ≤ l1 − 1, for almost all x ∈ Ei.

We define Z2(a0, j, i) = U ′
1((a0, j), (a0, 0))Ei, choose U2((a0, 0, i), (a0 , 0, 0)) ∈ [T ]

such that

U2((a0, 0, i), (a0 , 0, 0))Z2(a0, 0, 0) = Z2(a0, 0, i),

U2((a0, 0, 0), (a0 , 0, 0)) = id,

F (h1;x,U2((a0 , 0, i), (a0 , 0, 0))) ∈W ′, for almost all x ∈ Z2(a0, 0, 0),
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by Lemma 1.5. Now we can define

U2((a0 , j, i), (a0, 0, 0)) = U ′
1((a0, j), (a0, 0))U2((a0 , 0, i), (a0 , 0, 0)),

and extend this as usual. Now we define

h2(x) = F (h1;U2((a0 , 0, 0), (a0, j, i))x,U2((a0, j, i), (a0 , 0, 0)))− ρi,j

on Z2(a0, j, i). Thus this h2(x) is defined on Z1(a0). We extend this to the entire

set X by h2(x) = h2(U1(a0, a)x) on Z1(a). Then we know that µ({x ∈ X | h2(x) ∈

W}) > 1− ε. Set n = lm. Because two equalities for F are proved as in the proof

of Lemma 1.7, A2 = {Z2(a),U2(a, b) | a, b ∈ A2 = A1 ×Zn}, ρ’s and h2 satisfy the

desired properties. Q.E.D.

Now we can prove Theorem 1.6.

Proof of Theorem 1.6. Let β̃ be the infinite tensor product of copies of β. Because

β̃ is also of the infinite tensor product type, we represent this as

β̃ =
∞⊗

j=0

Ad(diag(〈t, λj
0〉, . . . , 〈t, λj

lj
〉)), λj

i ∈ Ĝ.

Let {Bn}n∈N be a sequence of Borel sets which generates the σ-algebra of X.

Choose a sequence {Wj}j∈N of open neighborhoods of 0 in Ĝ such that
∑∞

j=0 λj

always converges for an arbitrary sequence {λj}j∈N, λj ∈Wj . We can construct a

sequence of T -arrays, A1
0, A2

0, A1
1, A2

1, . . . , a sequence of measurable functions from

X to Ĝ, {h1
j , h

2
j}j∈N, a sequence of integers {n1

j , n
2
j}j∈N, a sequence of elements
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{ρ1
j,k, ρ

2
j,k}j∈N,0≤k≤nj−1 of Ĝ, (ρ1

j,0 = ρ2
j,0 = 0), and a strictly increasing sequence

of integers {mj}j∈N, (m0 = 0), by applying Lemma 1.7 and Lemma 1.8 alternately

so that the following conditions are satisfied.

(1) Ai
j = {Zi

j(a),U
i
j (a, b) | a, b ∈ Ai

j}, i = 1, 2, j ∈ N,

(2) A2
j is an extension of A1

j ,

(3) A1
j+1 is an extension of A2

j ,

(4) A1
j = Zn1

1
× Zn2

1
× · · · ×Zn1

j
,

(5) A2
j = A1

j × Zn2
k
,

(6) Bk

1/2j

∈ B{Z1
j (a) | a ∈ A1

j}, k ≤ j,

(7) µ({x ∈ X | Tx ∈ OrbU2
j
(x)}) > 1− 1/2j,

(8) h1
j(x) ∈ Wj , for almost all x ∈ X,

(9) µ({x ∈ X | h2
j(x) ∈Wj}) ≥ 1− 1/2j ,

(10) F (h + ∂(h1
0 + h2

0 + h1
1 + h2

1 + · · · + h1
j);x,U

1
j ((a, k), (a,0))) = ρ1

j,k, for

a ∈ A2
j−1, 0 ≤ k ≤ n1

j − 1, and almost all x ∈ Z1
k(a,0),

(11) F (h + ∂(h1
0 + h2

0 + h1
1 + h2

1 + · · · + h2
j);x,U

2
j ((a, k), (a,0))) = ρ2

j,k, for

a ∈ A1
j , 0 ≤ k ≤ n2

j − 1, and almost all x ∈ Z2
k(a,0),

(12) diag(〈t, ρ1
j,0〉, . . . , 〈t, ρ1

j,n1
j
〉) =

⊗mj+1−1
n=mj

diag(〈t, λn
0 〉, . . . , 〈t, λn

ln
〉).

Note that there exists a measurable function h′ =
∑∞

j=0(h
1
j + h2

j) on X by

(8) and (9). By (2), (3), (4), (5), (6) and (7), L∞(X,µ) �σ Z is isomorphic to

L∞(
∏∞

j=0(Zn1
j
× Zn2

j
), ν) �

⊕∞
j=0(Zn1

j
⊕ Zn2

j
), where the action is given by the

natural addition, and the measure ν is the product measure of ν1
j on Zn1

j
and ν2

j

on Zn2
j
, ν1

j (pt) = 1/n1
j , ν

2
j (pt) = 1/n2

j . Under this isomorphism, Ad(〈t, h′〉)αt is
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conjugate to

∞⊗
j=0

(Ad(diag(〈t, ρ1
j,0〉, . . . , 〈t, ρ1

j,n1
j
〉))⊗ Ad(diag(〈t, ρ2

j,0〉, . . . , 〈t, ρ2
j,n2

j
〉))),

by (10), and (11). Setting

α′
t =

∞⊗
j=0

Ad(diag(〈t, ρ2
j,0〉, . . . , 〈t, ρ2

j,n2
j
〉)),

we know by (12) that α is cocycle conjugate to β̃⊗α′, which is of the infinite tensor

product type. We also know α ⊗ β is cocycle conjugate to β ⊗ β̃ ⊗ α′ ∼= β̃ ⊗ α′,

which is cocycle conjugate to α. Q.E.D.

Corollary 1.9. If an action α of a separable locally compact abelian group G on

the hyperfinite type II1 factor R fixes a Cartan subalgebra and Γ(α) = Ĝ, then this

α is unique up to cocycle conjugacy.

Proof. Suppose α, β be actions as in the statement. We may assume these are of the

above type, and by Theorem 1.6, we may also assume these are of the infinite tensor

product type by changing these within their cocycle conjugacy classes if necessary.

Now again by Theorem 1.6, both α and β are cocycle conjugate to α ⊗ β, thus α

and β are cocycle conjugate. Q.E.D.

We can apply the above technique to the hyperfinite type II∞ factor R0,1, too.

Proposition 1.10. If α is an action of a separable locally compact abelian group

G on the hyperfinite type II∞ factor R0,1 which fixes a Cartan subalgebra and

Γ(α) = Ĝ, then this α is unique up to cocycle conjugacy.
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Proof. We may assume R0,1 = L∞(X,µ) �σ Z, where T is a measure preserving

transformation on a measure space L∞(X,µ), µ(X) =∞, and α is given by



αt(ϕ) = ϕ, for ϕ ∈ L∞(X,µ)

αt(u) = 〈t, h(x)〉u,

Then choose a sequence of mutually disjoint measurable sets {Xn}n∈N in X such

that X = ∪n∈NXn, µ(Xn) = 1. Choose an open neighborhood W ⊆ Ĝ of 0. Then

by applying Lemma 1.5, we get Sn ∈ [T ] such that S0 = id, Sn(X0) = Xn, and

F (h;x,Sn) ∈ W for almost all x ∈ X0. Define h1(x) = F (h;S−1
n x, x) for x ∈ Xn,

and consider the induced transformation T0 on X0, the reduced cocycle cX0 , and

the action α′ given by cX0 on the hyperfinite type II1 factor L∞(X0, µ) �T0 Z as

above. Then Ad(〈t, h1〉)α is given by α′ ⊗ i and Γ(α′) = Ĝ, where i stands for the

trivial action on the type I∞ factor. If β is another action as in the proposition,

we get β′ similarly. Now α′ and β′ cocycle conjugate, hence we know that α and β

are cocycle conjugate. Q.E.D.

§2 Almost periodic prime actions of locally compact abelian groups

As an application of the result in §1, we consider almost periodic prime actions

of separable locally compact abelian groups. We keep denoting a separable locally

compact abelian group by G, and consider an action α of G on the hyperfinite type

II1 factor R. We say α is prime if the fixed point algebra Rα is a factor. We define

an eigenspace R(p) for p ∈ Ĝ by

R(p) = {x ∈ R|αg(x) = 〈g, p〉x, for all g ∈ G},
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and the pure point spectrum Spd(α) by

Spd(α) = {p ∈ Ĝ|R(p) �= 0}.

We say α is almost periodic if the linear span of the subspaces R(p), p ∈ Ĝ, is

weakly dense in R. (Definition 7.3 in Olesen-Pedersen-Takesaki [16] and Definition

7.1 in Thomsen [24].) Note the assumption of the existence of a faithful normal

α-invariant state in definitions of Olesen-Pedersen-Takesaki [16] and Thomsen [24]

is unnecessary here because we consider the type II1 factor. In this section, we

assume α is a faithful, prime, almost periodic action of G on the hyperfinite type

II1 factor R with (Rα)′ ∩R = CI, and we will show the uniqueness up to cocycle

conjugacy of this type of action.

Lemma 2.1. Let H be a separable compact abelian group, and let Ĥ = {λn|n ∈ N}.

Define the infinite tensor product type action σ of H on the hyperfinite type II1

factor R by

σh =
⊗

j,n∈N

Ad
(

1 0
0 〈h, λn,j〉

)
,

where λn,j = λn for all j ∈ N. Then this action is faithful and we have (Rσ)′∩R =

CI.

Proof. It is trivial that this σ is faithful.

First we calculate the Connes spectrum Γ(σ). Although it will follow from

(Rσ)′ ∩ R = CI that Γ(σ) = Ĝ by Corollary 4.7 in Paschke [18], we need this

type of computation later.
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Make a sequence {µn}n∈N by renumbering the double sequence {λn,j}n,j∈N. Set

X =
∏∞

n=1{0, 1}, and let µ be a product measure of a measure ν on {0, 1}, ν({0}) =

ν({1}) = 1/2. We define an equivalence relation x ∼ y for x = (xn), y = (yn) ∈ X

by

x ∼ y ⇐⇒ xn = yn for all sufficiently large n’s.

Then this induces a groupoid, and we can define an Ĥ-valued 1-cocycle c by

c(x, y) =
∑∞

n=1(yn − xn)µn for x ∼ y ∈ X. (Note that the sum is actually a

finite sum.) Because this groupoid is amenable, this cocycle is of the type con-

sidered in §3.2, and the obtained one-parameter automorphism group is exactly σ.

Thus it is enough to show r∗(c) = Ĥ by Proposition 1.2, and it is also enough

to show that for every E ⊆ X there exists an integer k such that if n > k, then

µn ∈ r∗(cE). (Here cE is the restriction of the cocycle c above to E. See Proposition

7.6 in Feldman-Moore [6].)

Fix E ⊆ X, µ(E) �= 0 and take ε = µ(E)/9. Then there exist an integer k

and F ⊆ ∏k
j=1{0, 1} ⊆ X such that µ(E � F ) < ε. (We identify a set A ⊆

∏k
j=1{0, 1} withA×∏∞

j=k+1{0, 1}.) Let F =
⊔L

l=1 Fl, where each Fl is a singleton in

∏k
j=1{0, 1}. Note that each Fl has measure 1/2k. We show µ(gn(E∩G0

n)∩E∩G1
n) �=

0 for n > k, where

gn = (0, . . . , 0, 1, 0, . . . ) ∈ ⊕∞
j=1Z2,

(1 is at the n-th entry),

G0
n =

n−1∏
j=1

{0, 1} × {0} ×
∞∏

j=n+1

{0, 1},
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and

G1
n =

n−1∏
j=1

{0, 1} × {1} ×
∞∏

j=n+1

{0, 1}.

Suppose it was zero. Setting El = E ∩ Fl, we get µ(gn(El ∩G0
n)∩El ∩G1

n) �= 0 for

each l. It implies µ(El) ≤ 1/2k+1. Thus µ(Fl − El) ≥ 1/2k+1, and we get

µ(E � F ) ≥
L∑

l=1

µ(Fl − El) ≥
L∑

l=1

1/2k+1 = µ(F )/2,

which implies

(
√

2 + 1)µ(E)1/2/3 ≥ µ(E)1/2,

but it is a contradiction. Thus µ(gn(E∩G0
n)∩E∩G1

n) �= 0. Because c(x, gnx) = µn

for x ∈ E ∩ G0
n ∩ g−1

n (E ∩ G1
n), we get µn ∈ r∗(cE). Thus we now have Γ(σ) = Ĥ .

It is known that the dual action of the free action of Z on R is conjugate to the

infinite tensor product type action
⊗∞

j=1 Ad
(

1 0
0 z

)
, z ∈ T, of T. Because each

element of Ĝ appears for infinitely many times in {µn}, we can write R =
⊗∞

j=1Rj ,⊗∞
j=1 Pj ⊆ Rσ, where Rj

∼= Pj
∼= R, P ′

j ∩ Rj = CI for all j. This implies

(Rσ)′ ∩R = CI. Q.E.D.

Now we can prove the following theorem.

Theorem 2.2. For a separable locally compact abelian group G, a faithful almost

periodic prime action α with (Rα)′ ∩R = CI is unique up to cocycle conjugacy.

Proof. By Proposition 7.3 in Thomsen [24], Spd(α) is a countable dense subgroup

of Ĝ, and if we set H = Spd(α) ,̂ there exists an action β of the separable compact
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abelian group H on R such that αg = βι(g), where ι is a natural dense embedding

G ⊆ H. BecauseRα is a factor by assumption and ι is a dense embedding,Rβ = Rα

is also a factor, and we have (Rβ)′ ∩ R = CI. By Theorem 5.2 in Thomsen [24],

this β is conjugate to the action σ in Lemma 2.1. By αg = βι(g), α is also of infinite

tensor product type. Because Γ(α) = Ĝ by the almost periodicity and primeness,

we know that α is unique up to cocycle conjugacy by Corollary 1.9. Q.E.D.

Remark 2.3. A faithful almost periodic ergodic action is a particular case of al-

most periodic prime actions. A classification of this type of actions up to conjugacy

was given by Theorem 7.4 in Olesen-Pedersen-Takesaki [16], and this result was ex-

tended to faithful almost periodic prime actions by Theorem 7.4 in Thomsen [24].

Their invariants are Spd(α) and a symplectic bicharacter χα in Olesen-Pedersen-

Takesaki [16], and a fixed point algebraMα and N(α) = Spd(α|(Mα)′∩M) in addi-

tion to these two in Thomsen [24]. Theorem 7.5 in Thomsen [24] claims that there

is only one action of the type of Theorem 2.2 up to conjugacy for each Spd(α). Our

Theorem 2.2 shows cocycle conjugacy class of the action does not depend on the em-

bedding intoH = Spd(α)̂, and these actions are unique in the case (Rα)′∩R = CI

if we consider the cocycle conjugacy.

§3 One-parameter automorphism groups of R.

In this section, we study the case where the group G in §1 and §2 is the real

number group R.

In Theorem 0.1 in Kawahigashi [13], we classified one-parameter automorphism

group α of the hyperfinite type II1 and II∞ factors R, R0,1 up to stable conjugacy
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under the assumption Γ(α) �= R. Thus we have a complete classification for one-

parameter automorphism groups of R, R0,1 fixing a Cartan subalgebra by this

result, Corollary 1.9, and Proposition 1.10. In Kawahigashi [13], we considered

the ergodic flow on Z(M�α R) given by α̂ and the type of M�α R as complete

invariants forM = R,R0,1. In this section, we show all the ergodic flows occur as

this invariant by a similar construction to actions in §1. Note that we showed in

Kawahigashi [13] the type of the crossed product algebra is of II∞ or I∞ unless αt

is inner for every t ∈ R. Because we have an invariant trace on the crossed product

algebra, if the crossed product is of type I∞, only measure preserving ergodic flows

can occur. In the following, we show this is the only restriction on these complete

invariants.

Proposition 3.1. In the above context, all the measure preserving ergodic flows

occur as α̂ on Z(M�α R) ifM�α R is of type I∞, and all the ergodic flows occur

as α̂ on Z(M�α R) if M�α R is of type II∞.

Proof. Suppose an ergodic flow Tt on a measure space (Y, ν) is given. First assume

this is measure preserving. Then by the Theorem of Ambrose-Kakutani (see Katok

[12]), there exist an ergodic measure preserving transformation T on a measure

space (X,µ) and a positive measurable function h on X such that Tt on Y is

conjugate to the flow under the ceiling function h over the base X. Construct a

one-parameter automorphism group α for this X, T , and h as in §1. Then by

Proposition 1.3, we know that α̂ on Z(R�α R) is conjugate to Tt. It can be shown

as in the argument after Lemma 1.1 in Kawahigashi [13] that the crossed product

R×α R is of type I∞. If we consider α ⊗ i on R⊗̄R, where i is the trivial action
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of R on the second copy of R, we get a type II∞ crossed product algebra and the

same flow as α̂ on Z(M�α R).

Next assume there is no measure on Y that is equivalent to ν and preserved by Tt.

By the Theorem of Ambrose-Kakutani-Krengel-Kubo (see Katok [12]), there exist

an ergodic measurable transformation T on a measure space (X,µ) and a positive

measurable function h on X such that Tt on Y is conjugate to the flow under the

ceiling function h over the base X. Take and fix an action θ of R on R0,1 such that

we have tr ◦ θt = ettr where tr is the trace on R0,1 and t ∈ R. (See Takesaki

[22].) We define an automorphism σ of L∞(X,µ)⊗̄R0,1 by σ(y) = θ− log m(x) for

x ∈ X, where this define a map from R0,1(x) to R0,1(Tx) in

L∞(X,µ)⊗̄R0,1 =
∫ ⊕

X

R0,1(x)dx, R0,1(x) = R0,1,

and m(x) is the value of Radon-Nikodym derivative of T at x ∈ X. Then this σ

is trace preserving on L∞(X,µ)⊗̄R0,1, where the trace is given by µ and tr. By

Lemma 7.11.10 in Pedersen [19] and the ergodicity of T , we know that (L∞(X,µ)⊗̄R0,1)�σ

Z is a factor. Because it has a trace and it is infinite, it is isomorphic to R0,1. On

this (L∞(X,µ)⊗̄R0,1) �σ Z ∼= R0,1, we can define a one-parameter automorphism

αt by 

αt(ϕ) = ϕ, for ϕ ∈ L∞(X,µ)⊗̄R0,1

αt(u) = 〈t, h(x)〉u,

where u is the implementing unitary in the crossed product. Then by a similar

argument to Proposition 1.3, we know that α̂ on Z(R0,1 �α R) is conjugate to Tt.

By choosing an invariant projection e with finite trace in L∞(X,µ)⊗̄R0,1, we can
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also consider αe which is a one-parameter automorphism group of the hyperfinite

type II1 factor R and has the desired property. Q.E.D.

In group actions, the trivial relative commutant property R′ ∩R�G = CI has

been important. We prove this property for one-parameter automorphism groups

of the type in §1.

Proposition 3.2. If a one-parameter automorphism group α of the hyperfinite type

II1 factor R fixes a Cartan subalgebra and Γ(α) = R, then this α has the trivial

relative commutant property, R′ ∩R�α R = CI.

Proof. Because the trivial relative commutant property is invariant under cocycle

conjugacy, we may assume α is of the infinite tensor product type by Theorem

1.6. Thus we have an increasing sequence Mn of matrix algebras in R such that

α(Mn) = Mn and
∨

nMn = R. Suppose x ∈ R′ ∩ R �α R. Let En be the

conditional expectation from R�α R ontoMn �α R. Now x ∈ R′∩R�α R implies

En(x) ∈ M′
n ∩Mn �α R = λ(R), where λ denotes the representation of R in the

crossed product algebra. (Note that α|Mn is inner.) Thus x = limn→∞ En(x) ∈

λ(R) = λ(R)′, hence we have x ∈ R′ ∩ λ(R)′ = CI because R�α R is a factor by

Γ(α) = R. Q.E.D.

In general, it is not very easy to compute the asymptotic range in Proposition

1.2. But we have the following example for one-parameter automorphism groups.

Example 3.3. Let θ be an irrational number, 0 < θ < 1, and consider the

torus T = [0, 1) with the Lebesgue measure, and an ergodic transformation T on

X defined by Tx = x + θ. Take a number c, 0 < c < 1, c /∈ Q + Qθ, and define
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a function h(x) = χ[0,c](x) − c. Define an action α on R = L∞(T, µ) � Z by h

as above. Then by Theorem A in Oren [17], we have r(h, T ) = E, where E is the

closed subgroup of R generated by 1 and c, which is R, and we get an example for

Γ(α) = R. Corollary 1.9 shows that the cocycle conjugacy class of this action does

not depend on choice of an irrational c.

We also have the following for almost periodic prime actions of R.

Corollary 3.4. For an almost periodic prime one-parameter automorphism group

α on the hyperfinite type II1 factor R with (Rα)′ ∩ R = CI, we have the trivial

relative commutant property R′ ∩ R�α R = CI.

Proof. Immediate by Theorem 2.2. Q.E.D.

We consider the next example of an almost periodic prime one-parameter auto-

morphism group on the hyperfinite type II1 factor R.

Example 3.5. Take a free action β of Z2 on R, and make the crossed product

algebra R�β Z2, which is isomorphic to R. A one-parameter automorphism group

α can be defined by αt(x) = x for x ∈ R, αt(u) = e2πitµu and αt(v) = e2πitλv,

where u and v are the implementing unitaries for Z2, and λ and µ are nonzero

numbers with λ/µ /∈ Q. Then it is easy to show this is faithful, almost periodic,

and (Rα)′ ∩ R = CI. Thus by Theorem 2.2, this is cocycle conjugate to the

one-parameter automorphism group in Example 3.3.

§4 The CAR C∗-algebra and quasi-free actions of R

As an application of the theorem in §1, we will classify quasi-free actions arising

from the CAR C∗-algebra.
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We introduce a quasi-free action of R on the hyperfinite type II1 factor R as

follows.

Take a separable Hilbert space H. There exists the Fock representation f �→

a(f) ∈ L(K) on another Hilbert space K, which satisfies

(1) a(αf + βg) = αa(f) + βa(g), α, β ∈ C,

(2) a(f)a(g) + a(g)a(f) = 0,

(3) a(f)∗a(g) + a(g)a(f)∗ = (f |g)HIK.

Then a(f)’s generate a C∗-algebra, and if {fn}n≥1 is a complete orthonormal basis

for H, we get the following correspondence between this C∗-algebra and the 2∞

UHF algebra.

a(f1)←→
(

0 1
0 0

)

a(f2)←→
(

1 0
0 −1

)
⊗

(
0 1
0 0

)

a(f3)←→
(

1 0
0 −1

)
⊗

(
1 0
0 −1

)
⊗

(
0 1
0 0

)
...

We get the hyperfinite type II1 factor R by taking a weak closure with respect to

the trace. If we have a one-parameter unitary group {Ut}t∈R on H, then

αt(P (a(f1), . . . , a(fn)∗)) = P (a(Utf1), . . . , a(Utfn)∗),

where P is a (non-commutative) polynomial, defines a one-parameter automor-

phism group on the CAR C∗-algebra. This extends to a one-parameter automor-

phism group on R, and we denote it by α, too. We call this a quasi-free action of

R on R, and classify this type of actions in this section.
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In the above context, let H be a self-adjoint operator such that eiHt = Ut. Then

by von Neumann’s theorem (see Theorem X.2.1 in Kato [11]) there exists a Hilbert-

Schmidt class self-adjoint operator V such that a self-adjoint operator K = H + V

has pure point spectrum. Then one-parameter unitary group eiKt defines another

one-parameter automorphism group β on R. We have the following for these two

actions. (See also p. 315 in Saka [21].)

Theorem 4.1. Let α and β be quasi-free actions of R on R corresponding to eiHt

and eiKt respectively as above. Then α is cocycle conjugate to β, and β is of the

infinite tensor product type.

Proof. Let V =
∑∞

n=1 λnEn, where En is a mutually orthogonal rank-one pro-

jection onto a subspace spanned by fn. We may assume {fn}n≥1 is a complete

orthonormal basis of H. We know that λn’s are real and
∑∞

n=1 λ
2
n < ∞. Let α(n)

t

be the one-parameter automorphism group on R corresponding to a one-parameter

unitary group exp it(H+
∑n

j=1 λjEj). (We use a convention α(0) = α.) We use the

above correspondence between the CAR C∗-algebra and the infinite tensor product

of copies of the 2× 2 matrix algebra for the orthonormal sequence {fn}n≥1. Define

for n ≥ 0,

u
(n)
t = Expr

(∫ t

0

;α(n)
s

(
1⊗ · · · ⊗ 1⊗

(
iλn+1/2 0

0 −iλn+1/2

))
ds

)
,

where Expr means an expansional. (See §2 in Araki [1].) By Theorem 2 in Araki
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[1], it is an α(n)-unitary cocycle. If g is in Dom(H) = Dom(K) ⊆ H, then we have

δα(n+1)(a(g))

=a(i(H +
n∑

j=1

λjEj + λn+1En+1)g)

=δα(n)(a(g)) +
d

dt

(
Ad

(
exp it

(
1⊗ · · · ⊗ 1⊗

(
λn+1/2 0

0 −λn+1/2

)))
a(g)

)∣∣∣∣
t=0

=δα(n)(a(g)) +
[
1⊗ · · · ⊗ 1⊗

(
iλn+1/2 0

0 −iλn+1/2

)
, a(g)

]
,

where δ’s stand for derivations. Thus α(n+1)
t (a(g)) = Ad(u(n)

t )α(n)
t (a(g)) by The-

orem 2 in Araki [1], and thus we get α(n+1)
t = Ad(u(n)

t )α(n)
t . Hence if we set

v
(n)
t = u

(n)
t · · ·u(0)

t , it is an α-unitary cocycle. Note that we have

v
(n)
t = Expr

(∫ t

0

;αs

(
i

(
λ1/2 0

0 −λ1/2

)
� · · · �

(
λn+1/2 0

0 −λn+1/2

))
ds

)
,

where the operation � is define by

(
a 0
0 b

)
�

(
c 0
0 d

)
=



a + c 0 0 0

0 a+ d 0 0
0 0 b+ c 0
0 0 0 b + d


 .

(This operation is defined similarly for higher dimensional matrices.)

Now we claim that there exists an α-unitary cocycle vt such that v(n)
t −→ vt as

n −→ ∞ uniformly for t on every compact set in R.

For a given ε, choose N such that
(∑

n>N λ2
n

)1/2
< 2ε. We will show that

‖v(n)
t − v(m)

t ‖2 ≤ εt for n > m > N . Set

Am,n = 0� · · · � 0�
(
λm+2/2 0

0 −λm+2/2

)
� · · · �

(
λn+1/2 0

0 −λn+1/2

)
.
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Then by Theorem 1 in Araki [1]

‖v(n)
t − v(m)

t ‖2 = ‖Expr

(∫ t

0

;α(m+1)
s (Am,n)ds

)
− 1‖2

= ‖
∫ t

0

Expr

(∫ s

0

;α(m+1)
r (Am,n)dr

)
α(m+1)

s (Am,n)ds‖2

≤
∫ t

0

‖Am,n‖2 ds

=


 n+1∑

j=m+2

λ2
j




1/2

t/2 < εt.

Thus vn
t converges to an α-unitary cocycle vt. Letting n→∞ in

Ad(v(n)
t )αt(a(g)) = α

(n)
t (a(g)) = a(exp it(H +

n∑
j=1

λjEj)g),

we get Ad(vt)αt = βt.

Because K has a pure point spectrum, we may assume K =
∑∞

n=1 µnFn, where

µn’s are real numbers, Fn’s are mutually orthogonal rank-one projections, and

∑∞
n=1 Fn = IH. Thus βt is of the form

⊗∞
n=1 Ad

(
exp it

(
µn/2 0

0 −µn/2

))
.

Q.E.D.

Thus we can apply the result in §1 to quasi-free actions. In the following, we

consider the above α, and β which arises from K =
∑∞

n=1 µnFn. Define a groupoid

whose unit is X =
∏∞

j=1{0, 1} as in the proof of Lemma 2.1. We also define an

R-valued 1-cocycle c by c(x, y) =
∑∞

j=1(xj − yj)µj for x ∼ y ∈ X. The obtained

one-parameter automorphism group as in §1 is β, hence we get the following by

Corollary 1.9 and Proposition 1.2.
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Corollary 4.2. A one-parameter automorphism group α on R arising from the

CAR C∗-algebra in the above way is unique up to cocycle conjugacy if Γ(α) = R.

Proposition 4.3. In the above contest, the Connes spectra Γ(α) and Γ(β) are

equal to the asymptotic range r∗(c).

We can also show the trivial relative commutant property (Proposition 3.2) for

this type of α if Γ(α) = R.

For the computation of examples, we prove the following.

Proposition 4.4. For a one-parameter automorphism group α on R arising from

one-parameter unitary group eiHt in the above way, the essential spectrum σe(H)

is contained in Γ(α).

Proof. By von Neumann’s theorem again, we get H + V = K as above. Because

σe(H) = σe(K), we consider K =
∑∞

n=1 µnPn and β instead of H and α.

Then we can prove the statement exactly as in the proof of Lemma 2.1.

Q.E.D.

In particular, if the spectrum of H contains a continuous part, it implies Γ(α) =

R for α coming from eiHt, and this type of α is unique up to cocycle conjugacy.

Example 4.5. Let H = L2(R), and define a one-parameter unitary group Ut

by Utf(x) = f(x − t) for f ∈ L2(R). Then we can define a one-parameter auto-

morphism group α on R. (See pp. 4–5 in Powers-Robinson [20]. They construct a

similar endomorphism semigroup for the CAR C∗-algebra.) In this context, above

H is i
d

dx
, which has spectrum R. Thus by Proposition 4.4, we know Γ(α) = R.

Take another H′ = H1⊕H2, where H1 and H2 are infinite dimensional separable

Hilbert spaces. We consider H = λ1IH1 ⊕ λ2IH2 , where λ1 and λ2 are non-zero
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real numbers, and λ1/λ2 is irrational. Then we can consider one-parameter unitary

group eiH′t, and it induces a one-parameter automorphism group α′ of R as above.

Because σe(H′) = {λ1, λ2}, λ1/λ2 is irrational, and Γ(α) is a closed subgroup of

R, we know Γ(α′) = R again by Proposition 4.4. Note that this α′ is of the form

∞⊗
j=1

Ad
(

exp it
(
λ1 0
0 0

))
⊗

∞⊗
k=1

Ad
(

exp it
(
λ2 0
0 0

))
.

Then by Corollary 4.2, we know that α and α′ are cocycle conjugate. We also

know that these are cocycle conjugate to the one-parameter automorphism groups

in Examples 3.3 and 3.5.

Remark 4.6. The inclusion in Proposition 4.4 is not the best possible. Actually

by the very similar arguments to Lemma 4.2, Lemma 4.3, Lemma 5.4 in Araki-

Woods [2], and Théorème 1 in Connes [3] with Corollaries 4.2 and 4.3 here, we get

the following characterization. (This corresponds to writing the asymptotic range

in the original formulation of the asymptotic ratio set of Araki-Woods.)

A real number λ is in Γ(α) if and only if the following conditions are satisfied.

(1) {In}n∈N is a family of mutually disjoint finite subsets of N,

(2) K1
n, K2

n are mutually disjoint subsets of {∑j∈F µj | F ⊆ In},

(3) ψn is a bijective map from K1
n onto K2

n,

(4)
∑∞

n=1 |K1
n|/2|In| =∞,

(5) limn→∞ maxρ∈K1
n
|λ− (ψn(ρ)− ρ)| = 0.

In (2), µj ’s are eigenvalues of K as above.
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By this criterion, we can show that the following H has σe(H) = {0}, but the

one-parameter automorphism group it induces has the Connes spectrum R. (Hence

it is cocycle conjugate to the actions in Example 4.5.)

Let {an}n∈N be the following sequence.

1, 1,
1
2
, . . . ,

1
2︸ ︷︷ ︸

8 times

, . . . ,
1
n
, . . . ,

1
n︸ ︷︷ ︸

n2n times

, . . .

Define an,m =
1
m
an. We define H =

∑
n,m an,mEn,m, where En,m’s are mutually

orthogonal rank-one projections in H. Then H is a compact operator, and σe(H) =

{0}, but by the above criterion, we can show 1/m is in Γ(α) for every positive integer

m. Thus we have Γ(α) = R.

References

[1] H. Araki, Expansional in Banach algebras, Ann. Sci. École Norm. Sup. 6 (1973),
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