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Abstract

A fully detailed account of Ocneanu’s theorem is given that the Hilbert
space associated to the two-dimensional torus in a Turaev-Viro type (2+1)-
dimensional topological quantum field theory arising from a finite depth sub-
factor N ⊂ M has a natural basis labeled by certain M∞-M∞ bimodules of
the asymptotic inclusion M ∨ (M ′ ∩ M∞) ⊂ M∞, and moreover that all these
bimodules are given by the basic construction from M ∨ (M ′ ∩ M∞) ⊂ M∞ if
the fusion graph is connected. This Hilbert space is an analogue of the space
of conformal blocks in conformal field theory. It is also shown that after pass-
ing to the asymptotic inclusions we have S- and T -matrices, analogues of the
Verlinde identity and Vafa’s result on roots of unity. It is explained that the
asymptotic inclusions can be regarded as a subfactor analogue of the quantum
double construction of Drinfel′d. These claims were announced by A. Ocneanu
in several talks, but he has not published his proofs, so details are given here
along the lines outlined in his talks.

1 Introduction

The subfactor theory initiated by V. F. R. Jones in [14] and his celebrated knot
invariant [15] have attracted much attention, both in the operator algebra theory
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itself and in its relations to quantum group theory, conformal field theory, and 3-
dimensional topological quantum field theory. A. Ocneanu has announced a striking
theory relating these various fields in several recent talks [30], [31], [32], [34], [35],
but unfortunately he has not published proofs of his important results. Our aim in
this paper is to give full proofs of his recent claims based on his lectures [31], [34]
and our earlier efforts [11], [16], [17], [20] about his unpublished theory. Proofs of
irreducibility of three kinds of bimodules (Theorems 2.1, 4.1, and 4.2) in this paper
are by us. Most of the pictures are taken from [31], [34].

Ocneanu [26] introduced a new algebraic/combinatorial notion a paragroup as an
invariant for subfactors of the approximately finite dimensional (AFD) II1 factor with
finite Jones index and finite depth. (Also see [27], [28], [16], [17], [19], [20] for more
information on paragroups.) He later claimed in [29] that his axioms for paragroups
are essentially equivalent to those for combinatorial initial data, the quantum 6j-
symbols generalizing the Kirillov-Reshetikhin quantum 6j-symbols for Uq(sl2) [22],
in the Turaev-Viro type topological quantum field theory (TQFT) in dimension 2+1
[42] in the sense of Atiyah [1]. He has not published his proof of this equivalence, but
a complete proof was given by us in [11] along the lines outlined in his several talks.
His more recent idea is that the following three constructions, in algebra, topology,
and analysis respectively, give different machinery realizing the same concept.

1. The quantum double construction of Drinfel′d [8]

2. Turaev-Viro type 3-dimensional TQFT based on triangulations [42]

3. Ocneanu’s asymptotic inclusion of a subfactor [26], [28]

Furthermore, the third construction also corresponds to the central sequence sub-
factor [26], [28], which is more analytic. (These constructions of subfactors were
introduced by Ocneanu for his analytic classification of subfactors in [26] first. See
[18], [21] for more on these constructions in the operator algebra theory. The analytic
classification theory of subfactors was completed by S. Popa in [37], [38], [39].) The
relations among the three constructions will be clarified in detail in this paper.

In the topological quantum field theory, the Hilbert space HS1×S1 associated to
the 2-torus S1 ×S1 has a very important meaning, and it is an analogue of the space
of conformal blocks in conformal field theory (CFT). Ocneanu sketched a proof of a
statement in [34] that the Hilbert space HS1×S1 in the TQFT arising from a subfactor
N ⊂ M with finite index and finite depth has a natural basis labeled by certain M∞-
M∞ bimodules given by the asymptotic inclusion M ∨ (M ′ ∩ M∞) ⊂ M∞, and that
all these bimodules are given by the basic constructions from M ∨ (M ′ ∩M∞) ⊂ M∞
if the so-called fusion graph is connected. A proof of this claim is given here.

We also discuss relations of the asymptotic inclusions to rational conformal field
theory (RCFT) in the sense of Moore-Seiberg [25]. In the paper [3], de Boer-Goeree
tried to generate combinatorial data satisfying the Moore-Seiberg axioms from general
paragroups without much success. Ocneanu claimed that one can construct such data
after passing to the asymptotic inclusion from the initial subfactor, in which case we
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have S- and T -matrices, and analogues of the results of C. Vafa [43] and E. Verlinde
[44] hold, as explained below.

A paragroup is regarded as a certain kind of quantization of an ordinary finite
group. If a paragroup is really a finite group, it is shown that the asymptotic inclusion
gives the dual of the quantum double of the function algebra on the group in the sense
of Drinfel′d [8]. Because of this fact, the asymptotic inclusion can be regarded as an
analogue of the quantum double construction for paragroups.

This work was completed while the second author visited the University College
of Swansea in September/October of 1993 with the financial support of SERC and
the Higher Education Funding Council for Wales-Research. He thanks University
College of Swansea for its hospitality. We thank D. Bisch for helpful communications,
A. Ocneanu for giving us a copy of notes of [31] and comments on this manuscript
including a communication of an error in our original manuscript, and F. Xu for
showing us [33] and the notes of [34].

2 Hilbert spaces for labeled surfaces and surface
bimodules

We start with an AFD type II1 subfactor N ⊂ M with finite index and finite depth.
As usual [11], [26] [28], [29], [31], we deal with the finite system M of (four kinds
of) bimodules arising from the “fundamental bimodule” NMM and tensor product
operations. That is, we have a (non-commutative) fusion algebra of bimodules with
the tensor product operation and the quantized 6j-symbols. (See [36] for the basic
theory of bimodules over II1 factors.)

We work on several types of labeling of topological objects in Ocneanu’s the-
ory. Assign certain labels given by operator algebras, bimodules, and intertwiners
to graphical objects such as vertices, edges, and triangles respectively. Consider ori-
ented triangulated surfaces (possibly with boundaries). Assign a label of an algebra
N or M to each vertex. Next assign a label of a bimodule to an oriented edge so that
the left- and right-acting algebras of the bimodule coincide with the ones assigned
to vertices. A labeled edge is identified with the edge with reversed orientation and
labeling by the conjugate bimodule, as in Figure 2.1.

� �
N M

=
N M

NXM MX̄N

Figure 2.1

Next assign an intertwiner to a triangle with labeled edges so that the intertwiner
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maps from a tensor product of two bimodule to the other as in Figure 2.2, where
ξ ∈ Hom(NX ⊗M YM , NZM ).

��

�

N M

M

ξ

NXM MYM

NZM

Figure 2.2

After rotating Figure 2.2 by 120 degrees in the counterclockwise orientation, we
get the right diagram in Figure 2.3. Identify the labeled diagram in Figure 2.2 with
the right labeled diagram in Figure 2.3 using Frobenius reciprocity [29], [47].

��

�

N M

M

ξ

NXM MYM

NZM

=

��

�

M N

M

(Xξ)C

MYM M Z̄N

MX̄N

Figure 2.3

We can also take the mirror image of Figure 2.2, and then make the following
identification as in Figure 2.4 again using Frobenius reciprocity.

��

�

N M

M

ξ

NXM MYM

NZM

=

��

�

M N

M

Y ((Xξ)Z)

M ȲM MX̄N

M Z̄N

Figure 2.4
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Next assign a finite dimensional Hilbert space to each surface S with a boundary
∂S so that the boundary is divided into oriented edges which are labeled as above.
(See [42, Section 2].) Fix a triangulation of S and labeling of its vertices by N , M
that are compatible with the division on ∂S. Let H ′ be the finite dimensional vector
space spanned by all the possible labelings of the triangulated S that are compatible
with the labels on ∂S. (Because the labeling is given by intertwiners, we have a
natural vector space structure.) Let IS = I × S/I × ∂S, where I is the unit interval
[0, 1]. This is a 3-manifold with boundary. Two elements in H ′ give a 3-manifold IS
with labeled boundary, so the general partition function scheme gives a number as
a topological invariant [9], [11], [29], [42]. This gives a (possibly degenerate) inner-
product on H ′. We define HS to be the quotient of H ′ by the degenerate vectors.
Then this space HS is independent of the choice of a triangulation of S as in [42]
and its dimension is equal to the value of the topological invariant of the 3-manifold
S × S1. (The proof in [42] for the case ∂S = �© works in the same way here.)

Next we modify the path algebra construction in [10], [26], [27], [28] so that the
algebra is expressed in terms of two-dimensional pictures instead of one-dimensional
pictures. First note that Mop is naturally identified with M ′∩M∞ =

⋃
k End(MMkM ).

Consider Figure 2.5.

�

�

�

�

��

�

�

�

�

��

	

�




�

�

�

MM

N

M

N

M

M M

N

M

N

M

MMM

NMM

MMN

NMM

MMN

MMM

NMM

MMN

NMM

MMN

MXM

Figure 2.5

Putting labels of intertwiners on Figure 2.5, the left hand side picture gives an inter-
twiner in Hom(MM ⊗N M ⊗M M ⊗N M ⊗M MM , MXM ) and the right hand picture
one in Hom(MXM , MM ⊗N M ⊗M M ⊗N M ⊗M MM). Thus by composing these two
intertwiners, we get an element in End(MM⊗N M⊗M M⊗N M⊗M MM ) = M ′

−4∩M .
In this way, Figure 2.6, where labeling is dropped for simplicity, ia regarded as an
element in M ′

−4 ∩ M .
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Figure 2.6

Note that in this expression, the embedding from M ′
−4∩M into M ′

−5∩M is given
by Figure 2.7.
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�

�

�

�ξ ξ∗

=
∑

ξ

Figure 2.7

(With this embedding, the increasing sequence gives the algebra M instead of M ′ ∩
M∞.) In this graphic expression, there is a natural multiplication structure, which is
just a rewriting of the multiplication structure of the path algebra.

Next introduce a similar graphic expression of M-M bimodules in the system M.
The bimodule is given by an increasing sequence of finite dimensional Hilbert spaces.
An element of the finite dimensional Hilbert space is given by Figure 2.8 with labels
of intertwiners.
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MXM

NMM
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MMN

Figure 2.8

The embedding is given by Figure 2.9, where the labeling of vertices/edges is
dropped again for simplicity.
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ξ

ξ ξ∗

MXM MXM MXM MXM

Figure 2.9

Here the coefficient in the right hand side is the (non-normalized) 6j-symbol.
On each finite dimensional Hilbert space, there is natural left and right actions of
M ′

−k ∩ M , so by taking the completion of the union with respect to a natural inner
product, an M-M bimodule is obtained. Call this a surface bimodule and denote this
by AX.

Note that there is the following basis change rule Figure 2.10 for paths in terms
of the connections in the path algebra construction [26], [27], [28].

� �

� �

� � � �
ξ4 ξ4 ξ2 ξ2

ξ3 ξ3

ξ1 ξ1

d

a

c d

a

c

b a

c

b

=
∑

b,ξ1,ξ2

Figure 2.10

7



The new basis change rule Figure 2.11 for surfaces in terms of the (non-normalized)
6j-symbols is as follows, which is essentially a rewriting of Figure 2.10.

� � �

� � �

� � �

� � �

� �

�

�
X Y X Y X Y

D D D

A A A

B B

CC
=

∑

Figure 2.11

These surface bimodules are irreducible.

Theorem 2.1 The bimodule AX is irreducible.

Proof: First, note that there is the following decomposition rule Figure 2.12 of the
tensor products of the surface bimodules graphically.
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X �
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X Y
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Z

= =⊗M ⊗C� ��
Z

YX

Figure 2.12

Here the triangle on the right hand sides denotes a Hilbert space with dimension
NZ

XY , the structure constant of the fusion algebra. That is, AX⊗M AY =
∑

Z NZ
X,Y AZ .

(At this point, it is not known yet that this is the irreducible decomposition.)
Let µX be the square root of the Jones index [AX] corresponding to the bimodule

AX, that is, the square root of the product of the dimension of AX as a left module
and that as a right module. Note that A∗ for X = ∗ = MMM is clearly isomorphic to

MMM and hence µ∗ = 1. Because of µXµY =
∑

Z NZ
X,Y µZ , µ∗ = 1, and uniqueness of

the Perron-Frobenius eigenvector, we get µX = [X]1/2 for each M-M bimodule X in
the system M. Let RX be the von Neumann algebra corresponding to Figure 2.13.
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X X

Figure 2.13

(Note that R∗ is naturally identified with M .) Then the bimodule AX has a natural
left action of RX in addition to the left and right actions of M . There is a natural
embedding of M into RX with index [X], and the left action of RX and the right
action of M on AX commute. By computing the index, we know that the commutant
of the right M action on AX is the left RX action. The natural embedding of M into
RX has a trivial relative commutant by Wenzl’s dimension estimate [45, Theorem 1.6]
(or Ocneanu’s compactness argument [28, II.6]), hence we know that the bimodule
AX is irreducible. Q.E.D.

With this irreducibility and the decomposition rule of the tensor products, we can
identify the systems of surface bimodules with the original system M of bimodules.

3 Tube algebra, the Hilbert space HS1×S1, and la-
beling for circles

In the study of the Hilbert spaces associated to surfaces with labeled boundaries as
above, we encounter the problem to label circles which are parts of boundaries of
surfaces in more natural way. For this purpose, a new algebra, the tube algebra, as
in [30], [31], [34], [35], is introduced and it is shown that its center gives a natural
labeling of circles in the TQFT. This section is based on [31], [32], [33], [34].

Take M-M bimodules X,X ′, Y, Y ′, A, A′, B in the system M. We define a finite
dimensional C∗-algebra Tube M

Tube M = ⊕X,Y,AHom(X ⊗ A, A ⊗ Y ),

with the product defined by

ξ · ξ′ = δY,X′
∑

B,α

(α ⊗ 1Y ′) · (1A ⊗ ξ′) · (ξ ⊗ 1A′) · (1X ⊗ α∗)
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where ξ ∈ Hom(X ⊗ A, A ⊗ Y ), ξ′ ∈ Hom(X ′ ⊗ A′, A′ ⊗ Y ′) and α is in a basis of
Hom(A⊗A′, B). Graphically, an element in this algebra and the product is expressed
as in Figure 3.1.

� � � � � ��

�

�

�

�

�

�

�

�

�

�
· =

∑

α α

α∗

ξ ξ′
A

A

A′

A′

B

B

X Y X ′ Y ′ X Y ′A

A

A′

A′Y X ′

Figure 3.1

In the expression of ξ in Figure 3.1, the top and the bottom edges are labeled by
the same bimodule A, and the square is regarded as a tube with this identification.
The name tube algebra comes from this. (See Figure 3.2.)

� ��

�

A

A

X Y ↔

A�

� �X Y

Figure 3.2

In the Turaev-Viro type TQFT arising from the system M as in [11], [29], we
study the Hilbert space HS1×S1 associated to the 2-dimensional torus S1 × S1, which
is defined as in Section 2. Note that the topological invariant of the 3-dimensional
torus in this TQFT gives the dimension of this Hilbert space. For the study of this
space, we can fix any triangulation of the 2-dimensional torus, so we choose the one
as in Figure 3.3.

� ��

�

�

Figure 3.3

In this picture, the top and the bottom edges are identified, and the left and right
edges are identified to give a torus. This is not a triangulation in the standard
terminology in combinatorial topology, because it has only one vertex, but this does
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not matter for our purpose. To compute the Hilbert space HS1×S1 , assign an algebra
M to any vertex so that only M-M bimodules in M are used. If ξ ∈ Tube M with
the above graphical expression is in the center of Tube M, it is easy to see that we
have X = Y , so an element in the center of Tube M naturally gives an element in
HS1×S1 as the same intertwiner on the same picture in H ′

S1×S1 modulo the degenerate
vectors. Ocneanu’s claim in [34] is that this gives an isomorphism.

Theorem 3.1 The center of the tube algebra M is identified with the Hilbert space
HS1×S1 associated to the TQFT arising from M.

Proof: This is proved graphically as follows. These pictures are taken from [33,
Figure 8.5], where Ocneanu works on the two-dimensional theory rather than the
three-dimensional theory. Because it is easier to draw two-dimensional pictures than
three-dimensional pictures, we have Figures 3.4 and 3.5 with dimension one less as
in [33]. To get the real pictures for the current situation, it is enough to multiply
everything below with S1.

�� � � � ��� �
γ γ γ

�
γγ

γ ξ

η

= = = =

ξ ξ ξ ξ γ

η
η

η
η

Figure 3.4

� � ���
�

�
� � �

� �ξ

γ

γ

γ

γ

ξ γ ξ

γ

ξ

γ γ=
∑

ξ

=
∑

ξ

=1 =

Figure 3.5

The interiors of the small inner disks labeled with γ in the second, third, and
fourth pictures of Figure 3.4 and in the fourth picture of Figure 3.5 are all empty.

Figure 3.4 shows that an element γ in HS1×S1 commutes with any ξ in the tube
algebra. Figure 3.5 shows that a central element γ in the tube algebra is in HS1×S1 .

Q.E.D.

Denote the set of the minimal central projections of Tube M by {π1, · · · , πn}.
Label circles, which are parts of boundaries of surfaces, with πj’s.

First rewrite the picture of πj as in Figure 3.6.
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�

� �πj

A

X Y

Figure 3.6

(Actually, there is a labeling for the annulus with intertwiners and a summation over
A, X, Y , which we have dropped for simplicity.)

By labeling a circle, which is a part of the boundary of a surface S, with πj, we
mean the following. Thicken the circle so that there is an annulus which has the
circle as a common boundary with S. Then we have a new surface, a part of which is
labeled with intertwiners. We can still assign a Hilbert space to this partially labeled
surface just as in Section 2. Then the product rule πjπk = δjkπj and the minimality
of πj imply that the dimension of the Hilbert space for the annulus in Figure 3.7 is
δjk.

� �πj πk

Figure 3.7

4 Tensor products of bimodules for the asymp-
totic inclusion

The contents the previous section were mostly combinatorial. The aim in this section
is to give them an operator algebraic meaning, as sketched in [34]. That is, the
“convolution product” in the center of the tube algebra will be identified with the
fusion rule of M∞-M∞ bimodules of the asymptotic inclusion. In particular, it will
then turn out that the tensor product operation of the M∞-M∞ bimodules arising
from the asymptotic inclusion is commutative, as claimed in [35]. This is not trivial
at all from the definition of the asymptotic inclusion.

We first introduce a new commutative multiplication ∗, a convolution, on HS1×S1

as follows, as in [31]. Let Nk
ij be the dimension of the Hilbert space associated to
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the partially labeled surface in Figure 4.1. (Here this picture is a disk with two disks
removed and has three boundary components.)

�� �πk πi πj

Figure 4.1

We define πi ∗πj =
∑

k Nk
ijπk and extend this linearly to HS1×S1 . The commutativity

follows from that switching πi and πj in Figure 4.1 gives a homeomorphic picture. We
call the algebra HS1×S1 with this convolution product the asymptotic fusion algebra
of the original system M of bimodules.

In order to deal with bimodules arising from the asymptotic inclusion M ∨ (M ′ ∩
M∞) ⊂ M∞, we first express the algebras M ∨ (M ′ ∩ M∞) and M∞ graphically.
Because M ′∩M∞ is naturally identified with Mop, we express the algebra M ∨ (M ′∩
M∞) with Figure 4.2.

�

�

�

�

��

�

�

�

�

�

	

�




�

�

�

�
�

�

�

��

�
�

�

�

�

�

�

�

�

�

�

Figure 4.2

Here the bottom copy for M is the same as in Section 2 and the top copy is for Mop.
We have the same embedding rule as in Section 2. The algebra M∞ is expressed as∨

j,k(M
′
−j ∩ Mk) for a generating tunnel {M−j}j, so we have Figure 4.3.
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Figure 4.3

The upward and downward embeddings are expressed as in Figure 4.4.

�

� �
� �

� �
� �

��

	 �

� �
� �

�

� �
� �

� �
� �

� �
�	

	 �

� �
� �

� 

=
∑

ξ

ξ ξ∗

���

� �
� �

� �
� �

� �

� �
� �

� �
� �

→basis

change

���
� �

� �
� �

� �
� �

� �

�  
� �

� �

� �
� �

=
∑

η

η η∗

Figure 4.4

Next the algebra M∞ as an M ∨ (M ′ ∩ M∞)-M∞ bimodule is expressed with the
following picture. Again this has two directions of embeddings as in Figure 4.5.

�

�

�

�

�

�

�

�

�

!

"

�

�

#

$
Figure 4.5

With the above preliminaries, we now deal with bimodules arising from the asymp-
totic inclusion M∨(M ′∩M∞) ⊂ M∞. First, we handle M∨(M ′∩M∞)-M∨(M ′∩M∞)
bimodules. They are expressed with Figure 4.6.
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X

�
�

�

�

� �

�

�

�

�
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�

�

 

Y

Figure 4.6

where X and Y are any pair of M-M bimodules of the original system M and this
picture again has two directions of embeddings. We denote this bimodule by BX,Y .
This is essentially just a pair of M-M bimodules, and the tensor product structure
is easy to see. In particular, this bimodule is irreducible as an M ∨ (M ′ ∩ M∞)-
M ∨ (M ′ ∩ M∞) bimodule.

Next we multiply the M∨(M ′∩M∞)-M ∨(M ′∩M∞) bimodule in Figure 4.6 with

M∨(M ′∩M∞)M∞M∞ from the right. Then we have the M ∨ (M ′ ∩ M∞)-M∞ bimodule
as in Figure 4.7.

�

�

�
�

�
�

�
�

%
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�

Y

X

Figure 4.7

It is decomposed as in Figure 4.8.
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Y

X
Z Z

∑

Z

Figure 4.8

It is claimed that this is really an irreducible decomposition. Note that the dimension
of the Hilbert space associated to the triangle on the right hand side is NZ

X,Ȳ .

Theorem 4.1 An M ∨ (M ′ ∩ M∞)-M∞ bimodule given by Figure 4.9 is irreducible.
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Z

Figure 4.9

Proof: We denote the bimodule in Figure 4.9 by BZ for an M-M bimodule Z in M.
Note that B∗ = M∨(M ′∩M∞)M∞M∞ . Then a graphical inspection easily produces

BZ ⊗M∞ M∞M∨(M ′∩M∞) =
⊕

X,Y

NZ
X,Ȳ BX,Y ,

which is the irreducible decomposition.
Let Bj ’s be the irreducible M∨(M ′∩M∞)-M∞ bimodules in the system. Suppose

we have BZ = ⊕jn
Z
j Bj. Suppose we have BX,Y ⊗M∨(M ′∩M∞) M∞M∞ =

∑
j nX,Y

j as
an irreducible decomposition. Then the above irreducible decomposition of BZ ⊗M∞
M∞M∨(M ′∩M∞) and the formula BX,Y ⊗M∨(M ′∩M∞) M∞M∞ =

∑
j nX,Y

j with Frobenius

reciprocity give NZ
X,Ȳ =

∑
j nZ

j nX,Y
j . We set µj = [Bj]

1/2 and µZ = [BZ ]1/2. Then
Figure 4.8 shows

∑

j

nX,Y
j µj = [BX,Y ]1/2[M∨(M ′∩M∞)M∞M∞ ]1/2 =

∑

Z

NZ
X,Ȳ µZ .
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We also have

∑

Z

NZ
X,Ȳ µZ =

∑

Z,j,k

(nZ
k nX,Y

k )(nZ
j µj) =

∑

j

(
∑

Z,k

nZ
k nX,Y

k nZ
j )µj ≥

∑

j

(
∑

Z

(nZ
j )2nX,Y

j )µj .

We fix X,Y . Note that for any j, we have Z with nZ
j ≥ 1. We thus get

∑

Z

(nZ
j )2nX,Y

j = nX,Y
j

for all j.
We next fix j and choose X,Y so that nX,Y

j ≥ 1. Then we have
∑

Z(nZ
j )2 = 1,

that is, for any j we have only one Z with nZ
j ≥ 1 and we have nZ

j = 1 for this Z.
We next fix Z and choose j, X, Y with nZ

j ≥ 1 and NZ
X,Ȳ ≥ 1. These imply

nX,Y
j ≥ 1. Then we have

nX,Y
j =

∑

k,Z′
nZ′

k nX,Y
k nZ′

j = (
∑

k

nZ
k nX,Y

k )nZ
j .

This implies nZ
k nX,Y

k = 0 for all k �= j. This implies the irreducible decomposition of
BZ has just one summand Bj. This means each BZ is irreducible. Q.E.D.

This describes the principal graph of the asymptotic inclusion as follows. We have
a system of M ∨ (M ′ ∩ M∞)-M ∨ (M ′ ∩ M∞) bimodules BX,Y labeled by X,Y in
M and a system of M ∨ (M ′ ∩ M∞)-M∞ bimodules BZ labeled by Z in M. We
have the fusion graph whose vertices are bimodules BX,Y and BZ and which has
NZ

X,Ȳ edges between BX,Y and BZ . The connected component of the fusion graph
containing the vertex ∗ is the principal graph of the subfactor M∨(M ′∩M∞) ⊂ M∞,
where ∗ denotes the identity bimodule MMM . This proves a theorem claimed in [28,
III.1] without a proof and also left without proof in [18, Remark 2.16]. That is, the
connection for the natural commuting square

(M ′
−k ∩ M0) ∨ (M ′

0 ∩ Mk) ⊂ (M ′
−k−1 ∩ M0) ∨ (M ′

0 ∩ Mk+1)
∩ ∩

M ′
−k ∩ Mk ⊂ M ′

−k−1 ∩ Mk+1

is flat. The other statement of Ocneanu [28] left unproved in [18, Remark 2.16] is
proved in [21, Appendix].

Next we have to deal with M∞-M∞ bimodules. First we have a graphical expres-
sion for an M∞-M ∨ (M ′ ∩ M∞) bimodule B̄Z as in Figure 4.10.
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Figure 4.10

We make a tensor product B̄Z ⊗M∨(M ′∩M∞) BZ′. First we have a graphical expres-
sion as in Figure 4.11.

��

�

�

� � � �

��

Z Z ′

Figure 4.11

Here the interior of the inner disk is empty. We need an irreducible decomposition
of this M∞-M∞ bimodule. Denote by N

πj

Z,Z′ the dimension of the Hilbert space
associated to the annulus in Figure 4.12.

� � �πj Z Z ′

Figure 4.12

Here the boundary of this annulus consists of two circles. The inner circle has two
components and they are labeled by Z and Z ′ respectively. The outer circle is labeled
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by πj. Because πj is a projection in the tube algebra, we get the decomposition of
the M∞-M∞ bimodule as in Figure 4.13.

��

�

�

� � � �

��

Z Z ′ Zπj πjZ ′ �� � � �

��

��
�=

∑

j

⊗C

Figure 4.13

Denote this M∞-M∞ bimodule on the right hand by Bπj . It is then claimed that the
decomposition in Figure 4.13 is the irreducible decomposition.

Theorem 4.2 Each Bπj is an irreducible M∞-M∞ bimodule.

Proof: A graphical expression yields the identity

Bπj ⊗M∞ M∞M∨(M ′∩M∞) =
⊕

Z

N
πj

Z,∗BZ ,

which is the irreducible decomposition as an M∞-M ∨ (M ′ ∩ M∞) bimodule. Then
the same argument as in the proof of Theorem 3.1 works. Q.E.D.

It is easy to see that the system of bimodules Bπj is closed under the tensor
product of M∞-M∞ bimodules. Call this system the tube system and denote it by
M∞. The tensor product in the tube system is given by the following.

Theorem 4.3 In M∞, we have

Bπi ⊗M∞ Bπj =
⊕

k

Nk
ijBπk

.

Proof: The bimodule Bπi ⊗M∞ Bπj is expressed as in Figure 4.14.

� �� � � �

��

πi πj

Figure 4.14
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Then this decomposes as in Figure 4.15.

��� � � � � �

��

πkπi πj

πk

∑

k

⊗C

Figure 4.15

Q.E.D.

In this way, the tube system is identified with the asymptotic fusion algebra.
We now have a graph with vertices labeled by BZ and Bπj with N

πj

Z,∗ edges between
vertices represented by BZ and Bπj . The above theorem shows that the connected
component of this graph containing B∗ is the dual principal graph of the asymp-
totic inclusion M ∨ (M ′ ∩ M∞) ⊂ M∞. If the fusion graph is connected, then this
graph is also connected. In particular, the above theorem shows that the tensor
product operation of the M∞-M∞ bimodules arising from the asymptotic inclusion
is commutative, as mentioned above.

Thus if the fusion graph is connected, there is an identification between the natu-
ral basis of the Hilbert space HS1×S1 of the TQFT arising from the original subfactor
N ⊂ M , the minimal central projections in the tube algebra Tube M of the orig-
inal subfactor N ⊂ M , and the irreducible M∞-M∞ bimodules arising from the
asymptotic inclusion M ∨ (M ′ ∩ M∞) ⊂ M∞. If the fusion graph is not connected,
some bimodules in the tube system are not given by the basic constructions from the
asymptotic inclusion.

5 S-matrix, T -matrix, and the Verlinde identity

In [3], de Boer and Goeree constructed paragroups from combinatorial data of RCFT
satisfying the Moore-Seiberg axioms [25]. In the converse direction, they attempted
to construct combinatorial data of RCFT from paragroups. In particular, they tried
to construct S-matrices from paragroups of type D and E in the last section of [3]
without success. (See [2], [13], [16] for paragroups of type D and E.) It will be
shown that such data can be constructed after passing to the asymptotic inclusion
from a given paragroup. That is, the S-matrix and T -matrix are introduced for
the tube system M∞, and several analogues of the theorems in RCFT [43], [44] are
then proved. That is, the S-matrix and the T -matrix are defined so that the S-matrix
diagonalizes the fusion algebra of the M∞-M∞ bimodules of the asymptotic inclusion,
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the T -matrix is diagonal, and its diagonal entries are roots of unity. This section is
mainly based on Ocneanu’s lectures at Collège de France [31].

Define the operations S, T on HS1×S1 graphically as in Figures 5.1 and 5.2.

� � � �

�

�

�

�
Y

Y

X

X

X X Y Y
S�

Figure 5.1

� � �
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� �

�

�

� �

�

�

�

�

�
X X X

X

X X

Y

Y

Y

Y

Y
Z

Z

Z

Z

T =�

Figure 5.2

It is easy to see that these two operators are unitary on HS1×S1 . Note that the
operation T means a “twist” of a tube.

It is again easy to see graphically that the S-matrix interchanges the two products,
the tube algebra product and the convolution product as in Figure 5.3.

� � � �

� �

� �

�

�

�

�

�

�

�Y

Y

Y ′

Y ′

X X X ′ X ′∗ = δY,Y ′

X X

X ′ X ′

Y

Y

Y ′

Figure 5.3

Note that in the right hand side, the product is expressed as in Figure 3.1. That is,
we have the following theorem.

Theorem 5.1 For ξ, η ∈ HS1×S1 , we have

Sξ ∗ Sη = S(ξ · η),

where the product · denotes the multiplication in the tube algebra. That is, the S-
matrix diagonalizes the asymptotic fusion algebra.
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This is an analogue of the celebrated theorem of E. Verlinde [44].
Again from Figure 5.4, we have the following identity.

(Tξ · T ∗η, ζ) = (ξ · η, ζ), for all ζ.

� �

� �

� � � �

�

�

�

�
�

�

�

�Y

Y

Y ′

Y ′

X

X X ′

X ′

·

·= X X X ′ X ′

Y

Y

Y ′

Y ′

Figure 5.4

Thus we have
Tξ · T ∗η = ξ · η,

which implies the matrix T is diagonal to the natural basis πj of the Hilbert space
πj. That is, we have a scalar tj ∈ C with Tπj = tjπj. Then exactly as in [43], we can
prove that the diagonal entries of the T -matrix are roots of unity. This was claimed
in Ocneanu’s conference talk [32]. (Here we need to appeal to Remark # 7 in [43,
page 424].)

In this way, we can also construct data for rational conformal field theory in the
combinatorial sense of Moore-Seiberg [25].

See [4] for an example of S- and T -matrices. The examples in [30] are the same
as these.

6 Quantum double construction for paragroups

In this last section, it is explained why this passage from a paragroup to the new
paragroup of the asymptotic inclusion can be regarded as a paragroup analogue of
the quantum double construction of Drinfel′d [8], as claimed in [34], [35].

We look at the group case in detail, so start with a finite group G. Consider the
subfactor N ⊂ M = N × G, where N is the AFD II1 factor and the finite group
G acts on N freely. Then the central sequence subfactor Nω ∩ M ′ ⊂ Mω is of the
form Q× G ∈ Q× (G ×G), where Q is some factor of type II1 with an outer action
of G × G and G is embedded into G × G with a map g → (g, g). (This was first
claimed in [28, III.3]. See [21, Appendix] for a complete proof.) Then we know that
the asymptotic inclusion is of the form RG×G ⊂ RG, where R is the AFD II1 factor
and G×G acts freely on R with G embedded into G×G diagonally as above. (This
follows from a general theorem on the asymptotic inclusion and the central sequence
subfactor claimed in [28, III.2]. See [18] and [21, Appendix] for a complete proof.) It
now turns out that the system of the M∞-M∞ bimodules of the asymptotic inclusion
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M ∨ (M ′ ∩ M∞) ⊂ M∞ of N ⊂ M = N × G is given by the dual of the quantum
double of the function algebra F (G) on the group G in the sense of Drinfel′d [8]. (See
[4], [5], [6], [7] for results on this system. Also see [23], [24] for operator algebraic
study of this type of subfactors arising from finite group actions.) In this sense, if the
paragroup is really a (finite) group, the asymptotic inclusion really gives the quantum
double. (In the setting of TQFT, this is the Dijkgraaf-Witten construction [7] with
trivial 3-cocycle.) So it can be said that the asymptotic inclusion gives the quantum
double of a paragroup.

A general paragroup is more like a general Hopf algebra than a quantum group,
so that in general the fusion algebra is not commutative and there is no analogue of
the R-matrix. These inconveniences can be eliminated by passing to the “quantum
double”,

At the end, we discuss three constructions mentioned in the Introduction. In
Section 3, a relation was shown between the TQFT based on triangulation and the
asymptotic inclusion. Here in this section a relation between the asymptotic inclu-
sion and the quantum double was observed. Finally we mention an interpretation
of Ocneanu’s recent announcement on chirality [35] from a viewpoint of a relation
between the TQFT based on triangulation and the quantum double.

Conceptually, the quantum “double” construction pairs the original object with
something “dual” to the original object, and then appeals to some machinery to pro-
duce a higher symmetry. In the ordinary quantum double construction, the “dual” ob-
ject is the dual Hopf algebra and the “machinery” changes the product structure. In
the asymptotic inclusion, the “dual” object is an opposite algebra Mopp ∼= M ′ ∩M∞,
and the “machinery” allows us to pass from the system of the M ∨ (M ′ ∩ M∞)-
M ∨ (M ′ ∩M∞) bimodules to that of the M∞-M∞ bimodules. In the case of TQFT
based on triangulation, Ocneanu introduced a notion of non-degenerate braided sys-
tem of bimodules in [35], and in that case a factorization of the TQFT holds as a
tensor product of the TQFT given by the same system with the Reshetikhin-Turaev
type method based on surgery [40] and its complex conjugate. (The Reshetikhin-
Turaev TQFT [40] gave a rigorous realization of the TQFT predicted by Witten
[46].) Ocneanu’s non-degenerate bimodule assumption means that the system of bi-
modules has a high enough symmetry from the beginning, and then the “quantum
double” construction is just making everything “double” without any more change.
In this sense, the TQFT based triangulation makes everything double if we have a
high symmetry at the beginning. In general, we can interpret the TQFT based on
triangulation as a method making a “double” and changing the symmetry to a higher
one. In this construction, the “dual” object is complex conjugate. This gives a more
conceptual understanding of Ocneanu’s result [35], which generalized an earlier result
of Turaev [41].

We finally mention a relation to RCFT. Ordinary paragroups do not give ana-
logues of RCFT, as shown in [3], but the above shows that after passing to the
asymptotic inclusion, the “quantum double for paragroups”, we have a symmetry
high enough to get an RCFT, as explained in the previous section.
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[12] D. E. Evans & Y. Kawahigashi, Subfactors and conformal field theory, in “Quan-
tum and non-commutative analysis”, 341–369, Kluwer Academic (1993).

[13] M. Izumi, On flatness of the Coxeter graph E8, to appear in Pac. J. Math.

[14] V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), 1–15.

[15] V. F. R. Jones, A polynomial invariant for knots via von Neumann algebras,
Bull. Amer. Math. Soc. 12 (1985), 103–112.

[16] Y. Kawahigashi, On flatness of Ocneanu’s connections on the Dynkin diagrams
and classification of subfactors, to appear in J. Funct. Anal.

24



[17] Y. Kawahigashi, Exactly solvable orbifold models and subfactors, in “Functional
Analysis and Related Topics”, Lect. Notes in Math. (Springer Verlag) 1540
(1992), 127–147.

[18] Y. Kawahigashi, Centrally trivial automorphisms and an analogue of Connes’s
χ(M) for subfactors, Duke Math. J. 71 93–118, (1993).

[19] Y. Kawahigashi, Classification of paragroup actions on subfactors, preprint 1993.

[20] Y. Kawahigashi, Paragroups as quantized Galois groups of subfactors, to appear
in Sugaku Exp.

[21] Y. Kawahigashi, Orbifold subfactors, central sequences and the relative Jones
invariant κ, in preparation.

[22] A. N. Kirillov & N. Yu. Reshetikhin, Representations of the algebra Uq(sl2),
q-orthogonal polynomials and invariants for links, in “Infinite dimensional Lie
algebras and groups” (V. G. Kac, ed.), Adv. Ser. in Math. Phys., vol. 7, 1988,
pp. 285–339.

[23] H. Kosaki, A. Munemasa, & S. Yamagami, On fusion algebras associated to finite
group actions, in preparation.

[24] H. Kosaki & S. Yamagami, Irreducible bimodules associated with crossed product
algebras, Internat. J. Math. 3 (1992), 661–676.

[25] G. Moore & N. Seiberg, Classical and quantum conformal field theory, Comm.
Math. Phys. 123 (1989), 177–254.

[26] A. Ocneanu, Quantized group string algebras and Galois theory for algebras, in
“Operator algebras and applications, Vol. 2 (Warwick, 1987),” London Math.
Soc. Lect. Note Series Vol. 136, Cambridge University Press, 1988, pp. 119–172.

[27] A. Ocneanu, Graph geometry, quantized groups and nonamenable subfactors,
Lake Tahoe Lectures, June–July, 1989.

[28] A. Ocneanu, “Quantum symmetry, differential geometry of finite graphs and
classification of subfactors”, University of Tokyo Seminary Notes 45, (Notes
recorded by Y. Kawahigashi), 1991.

[29] A. Ocneanu, An invariant coupling between 3-manifolds and subfactors, with
connections to topological and conformal quantum field theory, preprint 1991.

[30] A. Ocneanu, Operator algebras, 3-manifolds and quantum field theory, OHP
sheets for the Istanbul talk, July, 1991.

[31] A. Ocneanu, Lectures at Collège de France, Fall 1991.
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