
Multiplicity in restricting minimal
representations

Toshiyuki KOBAYASHI ∗

April 8, 2022

Abstract

We discuss the action of a subgroup on small nilpotent orbits, and
prove a bounded multiplicity property for the restriction of minimal
representations of real reductive Lie groups with respect to arbitrary
reductive symmetric pairs.
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1 Statement of main results
sec:Intro

This article is a continuation of our work
K95, K14, K21, K22, K22PJA, KOP, xktoshima
[9, 13, 15, 17, 18, 21, 23] that con-

cerns the restriction of irreducible representations Π of reductive Lie groups
G to reductive subgroups G′ with focus on the bounded multiplicity property
of the restriction Π|G′ (Definition

def:bdd
2). In this article we highlight the following

specific setting:

· (G,G′) is an arbitrary reductive symmetric pair;

· Π is of the smallest Gelfand–Kirillov dimension.

∗Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba,
Tokyo 153-8914, Japan.
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We refer to
xKVogan2015
[14] for some motivation and perspectives in the general

branching problems, see also Section
sec:2
2 for some aspects regarding finite/bounded

multiplicity properties of the restriction.
To be rigorous about “multiplicities” for infinite-dimensional representa-

tions, we need to fix the topology of the representation spaces. For this, let
G be a real reductive Lie group, M(G) the category of smooth admissible
representations of G of finite length with moderate growth, which are defined
on Fréchet topological vector spaces

WaI
[33, Chap. 11]. We denote by Irr(G) the

set of irreducible objects in M(G).
Suppose that G′ is a reductive subgroup in G. For Π ∈ M(G), the

multiplicity of π ∈ Irr(G′) in the restriction Π|G′ is defined by

[Π|G′ : π] := dimC HomG′(Π|G′ , π) ∈ N ∪ {∞},

where HomG′(Π|G′ , π) denotes the space of symmetry breaking operators, i.e.,
continuous G′-homomorphisms between the Fréchet representations. For
non-compact G′, the multiplicity [Π|G′ : π] may be infinite even when G′

is a maximal subgroup of G, see Example
ex:fmult
1 below.

By a reductive symmetric pair (G,G′), we mean that G is a real reductive
Lie group and that G′ is an open subgroup in the fixed point group Gσ of an
involutive automorphism σ of G. The pairs (SL(n,R), SO(p, q)) with p+q =
n, (O(p, q), O(p1, q1)×O(p2, q2)) with p1+ p2 = p, q1+ q2 = q, and the group
manifold case (‵G × ‵G, diag(‵G)) are examples. For a reductive symmetric
pair (G,G′), the subgroup G′ is maximal amongst reductive subgroups of G.

One may ask for which pair (G,G′) the finite multiplicity property

[Π|G′ : π] < ∞, ∀Π ∈ Irr(G), ∀π ∈ Irr(G′) (1) eqn:PP

holds. Here are examples when (G,G′) is a reductive symmetric pair:

ex:fmult Example 1 (
K95, xKMt
[9, 19]). (1) For the symmetric pair (SL(n,R), SO(p, q)) (p+

q = n), the finite multiplicity property (
eqn:PP
1) holds if and only if one of the

following conditions holds: p = 0, q = 0, or p = q = 1.
(2) For the pair (O(p, q), O(p1, q1) × O(p2, q2)) (p1 + p2 = p, q1 + q2 = q),
the finite multiplicity property (

eqn:PP
1) holds if and only if one of the following

conditions holds: p1 + q1 = 1, p2 + q2 = 1, p = 1, or q = 1.
(3) For the group manifold case (‵G× ‵G, diag(‵G)) where ‵G is a simple Lie
group, the finite multiplicity property (

eqn:PP
1) holds if and only if ‵G is compact

or is locally isomorphic to SO(n, 1).
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See Fact
fact:KO
15 (2) for a geometric criterion of the pair (G,G′) to have the

finite multiplicity property (
eqn:PP
1). A complete classification of such symmetric

pairs (G,G′) was accomplished in Kobayashi–Matsuki
xKMt
[19].

On the other hand, if we confine ourselves only to “small” representations
Π of G, there will be a more chance that the multiplicity [Π|G′ : π] becomes
finite, or even stronger, the restriction Π|G′ has the bounded multiplicity
property in the following sense:

def:bdd Definition 2. Let Π ∈ M(G). We say the restriction Π|G′ has the bounded
multiplicity property if m(Π|G′) < ∞, where we set

m(Π|G′) := sup
π∈Irr(G′)

dimCHomG′(Π|G′ , π) ∈ N ∪ {∞}. (2) eqn:msup

In the series of the papers, we have explored the bounded multiplicity
property of the restriction Π|G′ not only uniformly with respect to π ∈ Irr(G′)
for the subgroup G′ but also uniformly with respect to Π ∈ M(G), e.g., either
Π runs over the whole set Irr(G)

K95, K14, xktoshima
[9, 13, 23] or Π belongs to certain family

of “relatively small” representations of the group G
K21, K22, K22PJA, KOP
[15, 17, 18, 21]. See

Section
sec:2
2 for some general results, which tell that the smaller Π is, the more

subgroups G′ tends to satisfy the bounded multiplicity property Π|G′ . In this
article, we highlight the extremal case where Π is the “smallest”, and give
the bounded multiplicity theorems for all symmetric pairs (G,G′).

What are “small representations” amongst infinite-dimensional represen-
tations? For this, the Gelfand–Kirillov dimension serves as a coarse measure
of the “size” of representations. We recall that for Π ∈ M(G) the Gelfand–
Kirillov dimension DIM(Π) is defined as half the dimension of the associated
variety of I where I is the annihilator of Π in the universal enveloping alge-
bra U(gC) of the complexified Lie algebra gC. The associated variety of I is
a finite union of nilpotent coadjoint orbits in g∗C.

We recall for a complex simple Lie algebra gC, there exists a unique non-
zero minimal nilpotent (Int gC)-orbit in g∗C, which we denote by Omin,C. The
dimension of Omin,C is known as below, see

C93
[2] for example. We set n(gC) to

be half the dimension of Omin,C.

gC An Bn (n ≥ 2) Cn Dn gC2 fC4 eC6 eC7 eC8
n(gC) n 2n− 2 n 2n− 3 3 8 11 17 29
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For the rest of this section, let G be a non-compact connected simple
Lie group without complex structure. This means that the complexified Lie
algebra gC is still a simple Lie algebra. By the definition, the Gelfand–
Kirillov dimension has the following property: DIM(Π) = 0 ⇐⇒ Π is
finite-dimensional, and

n(gC) ≤ DIM(Π) ≤ 1

2
(dim g− rank g), (3) eqn:GKbdd

for any infinite-dimensional Π ∈ Irr(G). In this sense, if Π ∈ Irr(G) satisfies
DIM(Π) = n(gC), then such Π is thought of as the “smallest” amongst
infinite-dimensional irreducible representations of G.

In this article, we prove the following bounded multiplicity theorem of
the restriction:

thm:Joseph Theorem 3. If the Gelfand–Kirillov dimension of Π ∈ Irr(G) is n(gC), then
m(Π|G′) < ∞ for any symmetric pair (G,G′).

For Π1,Π2 ∈ Irr(G), we consider the tensor product representation Π1 ⊗
Π2, and define the upper bound of the multiplicity in Π1 ⊗ Π2 by

m(Π1 ⊗ Π2) := sup
Π∈Irr(G)

dimCHomG(Π1 ⊗ Π2,Π) ∈ N ∪ {∞}.

The tensor product representation of two representations is a special case
of the restriction with respect to symmetric pairs. We also prove the bounded
multiplicity property of the tensor product:

thm:tensormin Theorem 4. If the Gelfand–Kirillov dimensions of Π1,Π2 ∈ Irr(G) are n(gC),
then one has m(Π1 ⊗ Π2) < ∞.

Remark 5. Since the upper bound of the multiplicity m(Π|G′) is defined
in the category of admissible representations of moderate growth, m(Π|G′)
also gives an upper bound in the category of unitary representations where
the multiplicity in the direct integral of irreducible unitary representations
is defined as a measurable function on the unitary dual of the subgroup G′.

These results apply to “minimal representations” of G, which we recall
now. For a complex simple Lie algebra gC other than sl(n,C), Joseph

J79
[6]

constructed a completely prime two-sided primitive ideal J in U(gC), whose
associated variety is the closure of the minimal nilpotent orbit Omin,C. See
also

GS04
[3].
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def:minrep Definition 6 (minimal representation, see
GS05
[4]). An irreducible admissible rep-

resentation Π of G is called a minimal representation if the annihilator of the
U(gC)-module Π is the Joseph ideal J of U(gC).

The two irreducible components of the Segal–Shale–Weil representation
are classical examples of a minimal representation of the metaplectic group
Mp(n,R), the connected double cover of the real symplectic group Sp(n,R),
which play a prominent role in number theory. The solution space of the
Yamabe Laplacian on Sp×Sq gives the minimal representation of the confor-
mal transformation group O(p+ 1, q + 1) when p+ q (≥ 6) is even (

KOr
[20]). In

general, there are at most four minimal representations for each connected
simple Lie group G if exist, and they were classified

GS05, Ta
[4, 30].

By the definition of the Joseph ideal, one has DIM(Π) = n(gC) if Π is a
minimal representation. Thus Theorems

thm:Joseph
3 and

thm:tensormin
4 imply the following:

thm:minbdd Theorem 7. Let Π be a minimal representation of G. Then the restriction
Π|G′ has the bounded multiplicity property m(Π|G′) < ∞ for any symmetric
pair (G,G′).

thm:tensor Theorem 8. Let Π1, Π2 be minimal representations of G. Then the tensor
product representation has the bounded multiplicity property m(Π1⊗Π2) < ∞.

Example 9. The tensor product representation of the two copies of the
Segal–Shale–Weil representations of the metaplectic group Mp(n,R) is uni-
tarily equivalent to the phase space representation of Sp(n,R) on L2(R2n)
via the Wigner transform, see

KOPU09
[22, Sect. 2] for instance.

In general, it is rare that the restriction Π|G′ of Π ∈ M(G) is almost
irreducible in the sense that the G′-module Π|G′ remains irreducible or a di-
rect sum of finitely many irreducible representations of G′. In

K11Zuckerman
[12, Sect. 5],

we discussed such rare phenomena and gave a list of the triples (G,G′,Π)
where the restriction Π|G′ is almost irreducible, in particular, in the follow-
ing settings: Π ∈ M(G) is a degenerate principal series representation or
Zuckerman’s derived functor module Aq(λ), which is supposed to be a “geo-
metric quantization” of a hyperbolic coadjoint orbit or an elliptic coadjoint
orbit, respectively, in the orbit philosophy, see

K11Zuckerman
[12, Thms. 3.8 and 3.5]. As

a corollary of Theorem
thm:minbdd
7, we also prove the following theorem where Π is

“attached to” the minimal nilpotent coadjoint orbit Omin,C.
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thm:irr Theorem 10. Suppose that (G,G′) is a symmetric pair such that the com-
plexified Lie algebras (gC, g

′
C) is in the list of Proposition

prop:OKO
30 (vi). Then the

restriction Π|G′ is almost irreducible if Π is a minimal representation of G.

Example 11. For the following symmetric pairs (g, g′), there exists a min-
imal representation Π of some Lie group G with Lie algebra g (e.g., G =
Mp(n,R) for g = sp(n,R)), and Theorem

thm:irr
10 applies to (G,G′,Π).

• (sp(p+ q,R), sp(p,R)⊕ sp(q,R))
• (so(p, q), so(p − 1, q)) or (so(p, q), so(p, q − 1)) for “p ≥ q ≥ 4 and p ≡ q
mod 2”, “p ≥ 5 and q = 2”, or “p ≥ 4 and q = 3”.
• (f4(4), so(5, 4)),
• (e6(6), f4(4)), or (e6(−14), f4(−20)).

We note that the upper bound m(Π|G′) or m(Π1⊗Π2) of the multiplicity
can be larger than 1 in Theorems

thm:Joseph
3 and

thm:tensormin
4, see e.g.

KOP
[21] for an explicit

branching law of the restriction Π|G′ when (G,G′) = (SL(n,R), SO(p, q))
with p + q = n. However, it is plausible that a multiplicity-free theorem
holds in Theorems

thm:minbdd
7 and

thm:tensor
8:

conj:multone Conjecture 12. m(Π|G′) = 1 in Theorem
thm:minbdd
7, andm(Π1⊗Π2) = 1 in Theorem

thm:tensor
8.

Conjecture
conj:multone
12 holds when (G,G′) is a Riemannian symmetric pair (G,K),

see
GS05
[4, Prop. 4.10].

Remark 13. (1) The Joseph ideal is not defined for sl(n,C), hence there is
no minimal representation in the sense of Definition

def:minrep
6 for G = SL(n,R), for

instance. However there exist continuously many Π ∈ Irr(G) (e.g., degener-
ate principal series representations induced from a mirabolic subgroup) for
G = SL(n,R) such that DIM(Π) = n(gC), and Theorems

thm:Joseph
3 and

thm:tensormin
4 apply to

these representations. The Plancherel-type theorem for the restriction Π|G′

is proved in
KOP
[21] for all symmetric pairs (G,G′) when Π is a unitarily induced

representation. See also Example
ex:BC
16 below.

(2) The inequality (
eqn:GKbdd
3) depends only on the complexification gC, and is not

necessarily optimal for specific real forms g. In fact, one has a better in-
equality n(g) ≤ DIM(Π) where n(g) depends on the real form g, see Section
subsec:realmin
3.2. For most of real Lie algebras one has n(g) = n(gC), but there are a few
simple Lie algebras g satisfying n(g) > n(gC). For example, if G = Sp(p, q),
n(g) = 2(p + q) − 1 > n(gC) = p + q, hence there is no Π ∈ Irr(G) with
DIM(Π) = n(gC), however, there exists a countable family of Π ∈ Irr(G)
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with DIM(Π) = n(g), to which another bounded multiplicity theorem (The-
orem

thm:Rminbdd
34 in Section

sec:coiso
3) applies.

(3) Concerning Theorem
thm:Joseph
3, the bounded property of the multiplicity in the

tensor product representations Π1 ⊗ Π2 still holds for some other “small
representations” Π1 and Π2 whose Gelfand–Kirillov dimensions are greater
than n(gC). See

K22
[17, Thm. 1.5 and Cor. 4.10] for example.

This paper is organized as follows. In Section
sec:2
2 we give a brief review of

some background of the problem, examples, and known theorems. Section
sec:coiso
3

is devoted to the proof of Theorems
thm:Joseph
3,

thm:tensormin
4 and

thm:irr
10.

〈Acknowledgements〉 The author warmly thanks Professor Vladimir Do-
brev for his hospitality during the 14th International Workshop: Lie Theory
and its Applications in Physics, held online in Bulgaria, 20–26 June 2021.
This work was partially supported by Grant-in-Aid for Scientific Research
(A) (18H03669), JSPS.

2 Background and motivation
sec:2

In this section, we explain some background, examples, and known theorems
in relation to our main results.

If Π is an irreducible unitary representation of a group G, then one may
consider the irreducible decomposition (branching law) of the restriction Π|G′

to a subgroup G′ by using the direct integral of Hilbert spaces. For non-
unitary representations Π, such an irreducible decomposition does not make
sense, but the computation of the multiplicity [Π|G′ : π] for all π ∈ Irr(G′)
may be thought of as a variant of branching laws. Here we recall from Section
sec:Intro
1 that for Π ∈ M(G) and π ∈ Irr(G′) that the multiplicity [Π|G′ : π] is the
dimension of the space HomG′(Π|G′ , π) of symmetry breaking operators.

By branching problems in representation theory, we mean the broad prob-
lem of understanding how irreducible (not necessarily, unitary) representa-
tions of a group behave when restricted to a subgroup. As viewed in

xKVogan2015
[14], we

may divide the branching problems into the following three stages:
Stage A. Abstract features of the restriction;
Stage B. Branching law;
Stage C. Construction of symmetry breaking operators.

The role of Stage A is to develop a theory on the restriction of repre-
sentations as generally as possible. In turn, we may expect a detailed study
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of the restriction in Stages B (decomposition of representations) and C (de-
composition of vectors) in the “promising” settings that are suggested by the
general theory in Stage A.

The study of the upper estimate of the multiplicity in this article is con-
sidered as a question in Stage A of branching problems.

For a detailed analysis on the restriction Π|G′ in Stages B and C, it
is desirable to have the bounded multiplicity property m(Π|G′) < ∞ (see
Definition

def:bdd
2), or at least to have the finite multiplicity property

[Π|G′ : π] < ∞ for π ∈ Irr(G′). (4) eqn:fweak

In the previous papers
xkAnn98, K14, K21Kostant, K22, K22PJA, xktoshima
[10, 13, 16, 17, 18, 23] we proved some general theo-

rems for bounded/finite multiplicities of the restriction Π|G′ , which we review
briefly now.

2.1 Bounded multiplicity pairs (G,K ′) with K ′ compact

Harish-Chandra’s admissibility theorem tells the finiteness property (
eqn:fweak
4) holds

for any Π ∈ M(G) if G′ is a maximal compact subgroup K of G. More gen-
erally, the finiteness property (

eqn:fweak
4) for a compact subgroup plays a crucial role

in the study of discretely decomposable restriction with respect to reductive
subgroups

xkInvent94, xkAnn98, xkInvent98, K21Kostant
[8, 10, 11, 16]. We review briefly the necessary and sufficient con-

dition for (
eqn:fweak
4) when G′ is compact. In this subsection, we use the letter K ′

instead of G′ to emphasize that G′ is compact. Without loss of generality,
we may and do assume that K ′ is contained in K.

fact:Kadm Fact 14 (
xkAnn98, K21Kostant
[10, 16]). Suppose that K ′ is a compact subgroup of a real reduc-

tive group G. Let Π ∈ M(G). Then the following two conditions on the
triple (G,K ′,Π) are equivalent:
(i) The finite multiplicity property (

eqn:fweak
4) holds.

(ii) ASK(Π) ∩ CK(K
′) = {0}.

Here ASK(Π) is the asymptotic K-support of Π, and CK(K
′) is the mo-

mentum set for the natural action on the cotangent bundle T ∗(K/K ′). There
are two proofs for the implication (ii) ⇒ (i): by using the singularity spec-
trum (or the wave front set)

xkAnn98
[10] and by using symplectic geometry

K21Kostant
[16].

The proof for the implication (i) ⇒ (ii) is given in
K21Kostant
[16]. See

KO15
[24] for some

classification theory.
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2.2 Bounded/finite multiplicity pairs (G,G′)
subsec:bdd

We now consider the general case where G′ is not necessarily compact. In
K14
[13] and

xktoshima
[23, Thms. C and D] we proved the following geometric criteria that

concern all Π ∈ Irr(G) and all π ∈ Irr(G′):

fact:KO Fact 15. Let G ⊃ G′ be a pair of real reductive algebraic Lie groups.
(1) Bounded multiplicity for a pair (G,G′):

sup
Π∈Irr(G)

sup
π∈Irr(G′)

[Π|G′ : π] < ∞ (5) eqn:BB

if and only if (GC ×G′
C)/ diagG

′
C is spherical.

(2) Finite multiplicity for a pair (G,G′):

[Π|G′ : π] < ∞, ∀Π ∈ Irr(G), ∀π ∈ Irr(G′)

if and only if (G×G′)/ diagG′ is real spherical.

Here we recall that a complex GC-manifold X is called spherical if a Borel
subgroup of GC has an open orbit in X, and that a G-manifold Y is called
real spherical if a minimal parabolic subgroup of G has an open orbit in Y .

A remarkable discovery in Fact
fact:KO
15 (1) was that the bounded multiplicity

property (
eqn:BB
5) is determined only by the complexified Lie algebras gC and g′C.

In particular, the classification of such pairs (G,G′) is very simple, because
it is reduced to a classical result when G is compact

xkramer
[27]: the pair (gC, g

′
C) is

the direct sum of the following ones up to abelian ideals:

(sln, gln−1), (son, son−1), or (so8, spin7). (6) eqn:BBlist

See
KS15, xksbonvec
[25, 26] e.g., for some recent developments in Stage C such as detailed

analysis on symmetry breaking operators for some non-compact real forms
of the pairs (

eqn:BBlist
6).

On the other hand, the finite multiplicity property in Fact
fact:KO
15 (2) de-

pends on real forms G and G′. It is fulfilled for any Riemannian symmetric
pair, which is Harish-Chandra’s admissibility theorem. More generally for
non-compact G′, the finite-multiplicity property (

eqn:fweak
4) often holds when the

restriction Π|G′ decomposes discretely, see
xkInvent94, xkAnn98, xkInvent98
[8, 10, 11] for the general theory

of “G′-admissible restriction”. However, for some reductive symmetric pairs
such as (G,G′) = (SL(p+ q,R), SO(p, q)), there exists Π ∈ Irr(G) for which
the finite multiplicity property (

eqn:fweak
4) of the restriction Π|G′ fails, as we have

seen in Example
ex:fmult
1. Such Π is fairly “large”.
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2.3 Uniform estimates for a family of small represen-
tations

The classification in
xKMt
[19] tells that the class of the reductive symmetric pairs

(G,G′) satisfying the finite multiplicity property (
eqn:PP
1) is much broader than

that of real forms (G,G′) corresponding to those complex pairs in (5). How-
ever, there also exist pairs (G,G′) beyond the list of

xKMt
[19] for which we can

still expect fruitful branching laws of the restriction Π|G′ in Stages B and C
for some Π ∈ Irr(G). Such Π must be a “small representation”. Here are
some known examples:

ex:BC Example 16. (1) (Stage B) See-saw dual pairs (
Ku
[28]) yield explicit for-

mulæ of the multiplicity for the restriction of small representations, with
respect to some classical symmetric pairs (G,G′).
(2) (Stage C) ForG = SL(n,R), any degenerate representation Π = IndG

P (Cλ)
induced from a “mirabolic subgroup” P of G has the smallest Gelfand–
Kirillov dimension n(gC). For a unitary character Cλ, the Plancherel-type
formula of the restriction Π|G′ is determined in

KOP
[21] for all symmetric pairs

(G,G′). The feature of the restriction Π|G′ is summarized as follows: let
p+ q = n, and when n is even we write n = 2m.
· G′ = S(GL(p,R)×GL(q,R)).

· · · Only continuous spectrum appears with multiplicity one.
· G′ = SL(m,C) · T.

· · · Only discrete spectrum appears with multiplicity one.
· G′ = SO(p, q).

· · · Discrete spectrum appears with multiplicity one,
and continuous spectrum appears with multiplicity two.

· G′ = Sp(m,R)
· · · Almost irreducible (See also Theorem

thm:irr
10).

The uniform bounded multiplicity property in all these cases (Stage A)
is guaranteed by Theorem

thm:Joseph
3 in this article because DIM(Π) attains n(gC),

and alternatively, by another general result
K22
[17, Thm. 4.2].

(3) (Stage C) For the symmetric pair (G,G′) = (O(p, q), O(p1, q1)×O(p2, q2))
with p1+p2 = p and q1+ q2 = q, by using the Yamabe operator in conformal
geometry, discrete spectrum in the restriction Π|G′ of the minimal represen-
tation Π was obtained geometrically in

KOr
[20]. Moreover, for the same pair

(G,G′), discrete spectrum in the restriction Π|G′ was explicitly constructed
and classified when Π belongs to cohomologically parabolic induced repre-
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sentation Aq(λ) from a maximal θ-stable parabolic subalgebra q in
K21
[15]. In

contrast to Example
ex:fmult
1 (2), the multiplicity is one for any p1, q1, p2, and q2.

In view of these nice cases, and also in search for further broader settings
in which we could expect a detailed study of the restriction Π|G′ in Stages B
and C, we addressed the following:

q:Bdd Problem 17 (
xKVogan2015
[14, Prob. 6.2],

K22
[17, Prob. 1.1]). Given a pair G ⊃ G′, find a

subset Ω of M(G) such that sup
Π∈Ω

m(Π|G′) < ∞.

Since branching problems often arise for a family of representations Π, the
formulation of Problem

q:Bdd
17 is to work with the triple (G,G′,Ω) rather than

the pair (G,G′) for the finer study of multiplicity estimates of the restriction
Π|G′ . Fact

fact:KO
15 (1) deals with the case Ω = Irr(G). In

K21, K22
[15, 17], we have

considered Problem
q:Bdd
17 including the following cases:

(1) Ω = Irr(G)H , the set of H-distinguished irreducible representations of
G where (G,H) is a reductive symmetric pair;

(2) Ω = ΩP , the set of induced representations from characters of a parabolic
subgroup P of G;

(3) Ω = ΩP,q, certain families of (vector-bundle valued) degenerate princi-
pal series representations.

For the readers’ convenience, we give a flavor of the solutions to Problem
q:Bdd
17 in the above cases by quoting the criteria from

K22
[17]. See

K22PJA
[18] for a brief

survey.
We write GC for the complexified Lie group G, and GU for the compact

real form of GC. For a reductive symmetric pair (G,H), one can define a
Borel subgroup BG/H which is a parabolic subgroup in GC, see

K22PJA
[18, Def. 3.1].

Note that BG/H is not necessarily solvable. For Ω = Irr(G)H when (G,H) is
a reductive symmetric pair, one has the following answer to Problem

q:Bdd
17:

fact:bdd Fact 18 (
K22
[17, Thm. 1.4]). Let BG/H be a Borel subgroup for G/H. Sup-

pose G′ is an algebraic reductive subgroup of G. Then the following three
conditions on the triple (G,H,G′) are equivalent:

(i) sup
Π∈Irr(G)H

m(Π|G′) < ∞.

(ii) GC/BG/H is G′
U -strongly visible.
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(iii) GC/BG/H is G′
C-spherical.

For Ω = ΩP , one has the following answer to Problem
q:Bdd
17:

fact:introQsph2 Fact 19 (
K22
[17, Ex. 4.5],

Tu
[31]). Let G ⊃ G′ be a pair of real reductive algebraic

Lie groups, and P a parabolic subgroup of G. Then one has the equivalence
on the triple (G,G′;P ) :
(i) sup

Π∈ΩP

m(Π|G′) < ∞.

(ii) GC/PC is strongly G′
U -visible.

(iii) GC/PC is G′
C-spherical.

The following is a useful extension of Fact
fact:introQsph2
19.

fact:Qsph Fact 20 (
K22
[17, Thm. 4.2]). Let G ⊃ G′ be a pair of real reductive algebraic

Lie groups, P a parabolic subgroup ofG, andQ a complex parabolic subgroup
of GC such that q ⊂ pC. One defines a subset ΩP,q in M(G) that contains
ΩP (see

K22
[17] for details). Then the following three conditions on (G,G′;P,Q)

are equivalent:

(i) sup
Π∈ΩP,q

m(Π|G′) < ∞.

(ii) GC/Q is G′
U -strongly visible.

(iii) GC/Q is G′
C-spherical.

These criteria lead us to classification results for the triples (G,G′,Ω),
see

K21, K22, K22PJA
[15, 17, 18] and references therein.
The representations Π in Ω = Irr(G)H or ΩP , ΩP,q are fairly small, how-

ever, the classification results in
K22
[17] indicate that some symmetric pairs

(G,G′) still do not appear for such a family Ω. A clear distinction from these
previous results is that Theorem

thm:Joseph
3 allows all symmetric pairs (G,G′) for an

affirmative answer to Problem
q:Bdd
17 in the extremal case where Ω = {Π} with

DIM(Π) = n(gC).
Concerning the method of the proof, we utilized in

xktoshima
[23] hyperfunction

boundary maps for the “if” part (i.e., the sufficiency of the bounded multi-
plicity property) and a generalized Poisson transform

K14
[13] for the “only if”

part in the proof of Fact
fact:KO
15. The proof in

K22, Tu
[17, 31] used a theory of holonomic

D-modules for the “if” part. Our proof in this article still uses a theory of
D-modules, and more precisely, the following:

12



fact:Ki Fact 21 (
Ki
[7]). Let I be the annihilator of Π ∈ M(G) in the enveloping

algebra U(gC). Assume that the G′
C-action on the associated variety of I

is coisotropic (Definition
def:coisotropic
22). Then the restriction Π|G′ has the bounded

multiplicity property (Definition
def:bdd
2).

We note that the assumption in Fact
fact:Ki
21 depends only on the complexifi-

cation of the pair (g, g′) of the Lie algebras. Thus the proof of Theorems
thm:Joseph
3

and
thm:tensormin
4 is reduced to a geometric question on holomorphic coisotropic actions

on complex nilpotent coadjoint orbits, which will be proved in Theorem
thm:22030921
23.

3 Coisotropic action on coadjoint orbits
sec:coiso

Let V be a vector space endowed with a symplectic form ω. A subspace W
is called coisotropic if W⊥ ⊂ W , where

W⊥ := {v ∈ V : ω(v, ·) vanishes on W}.

The concept of coisotropic actions is defined infinitesimally as follows.

def:coisotropic Definition 22 (Huckleberry–Wurzbacher
huwu90
[5]). LetH be a connected Lie group,

and X a Hamiltonian H-manifold. The H-action is called coisotropic if there
is an H-stable open dense subset U of X such that Tx(H · x) is a coisotropic
subspace in the tangent space TxX for all x ∈ U .

Any coadjoint orbit of a Lie groupG is a HamiltonianG-manifold with the
Kirillov–Kostant–Souriau symplectic form. The main result of this section is
the following:

thm:22030921 Theorem 23. Let Omin,C be the minimal nilpotent coadjoint orbit of a con-
nected complex simple Lie group GC.

1) The diagonal action of GC on Omin,C ×Omin,C is coisotropic.

2) For any symmetric pair (GC, KC), the KC-action on Omin,C is coisotropic.

3.1 Generalities: coisotropic actions on coadjoint or-
bits

subsec:gencoiso

We begin with a general setting for a real Lie group. Suppose that O is
a coadjoint orbit of a connected Lie group G through λ ∈ g∗. Denote by

13



Gλ the stabilizer subgroup of λ in G, and by Zg(λ) its Lie algebra. Then
the Kirillov–Kostant–Souriau symplectic form ω on the coadjoint orbit O =
Ad∗(G) ' G/Gλ is given at the tangent space TλO ' g/Zg(λ) by

ω : g/Zg(λ)× g/Zg(λ) → R, (X,Y ) 7→ λ([X,Y ]). (7) eqn:KKS

Suppose that H is a connected subgroup with Lie algebra h. For λ ∈ g∗, we
define a subspace of the Lie algebra g by

Zg(h;λ) := {Y ∈ g : λ([X,Y ]) = 0 for all X ∈ h}. (8) eqn:zhlmd

Clearly, Zg(h;λ) contains the Lie algebra Zg(λ) ≡ Zg(g;λ) of Gλ.
We shall use the following:

lem:1.7 Lemma 24. The H-action on a coadjoint orbit O in g∗ is coisotropic if there
exists a subset S (slice) in O with the following two properties:

Ad∗(H)S is open dense in O,

Zg(h;λ) ⊂ h+ Zg(λ) for any λ ∈ S. (9) eqn:coiso

Proof. It suffices to verify that Tλ(Ad
∗(H)λ) is a coisotropic subspace in TλO

for any λ ∈ S because the condition (
eqn:coiso
9) is H-invariant. Via the identification

TλO ' g/Zg(λ), one has Tλ(Ad
∗(H)λ) ' (h+ Zg(λ))/Zg(λ). By the formula

(
eqn:KKS
7) of the symplectic form ω on O, one has Tλ(Ad

∗(H)λ)⊥ ' Zg(h;λ)/Zg(λ).
Hence Tλ(Ad

∗(H)λ) is a coisotropic subspace in TλO if and only if Zg(h;λ) ⊂
h+ Zg(λ), whence the lemma.

For semisimple g, the Killing form B induces the following G-isomorphism

g∗ ' g, λ 7→ Xλ. (10) eqn:Xlmd

By definition, one has λ([X,Y ]) = B(Xλ, [X,Y ]) = B([Xλ, X], Y ), and thus

Zg(h;λ) = [Xλ, h]
⊥B,

where the right-hand side stands for the orthogonal complement subspace of
[Xλ, h] := {[Xλ, X] : X ∈ h} in g with respect to the Killing form B. Hence
we have the following.

lem:Hcoiso Lemma 25. For semisimple g, one may replace the condition (
eqn:coiso
9) in Lemma

lem:1.7
24 by

(h+ Zg(λ))
⊥B ⊂ [Xλ, h] for any λ. (11) eqn:coisoB

14



3.2 Real minimal nilpotent orbits
subsec:realmin

Let G be a connected non-compact simple Lie group without complex struc-
ture. Denote by N the nilpotent cone in g, and N /G the set of nilpotent
orbits, which may be identified with nilpotent coadjoint orbits in g∗ via (

eqn:Xlmd
10).

The finite set N /G is a poset with respect to the closure ordering, and there
are at most two minimal elements in (N \ {0})/G, which we refer to as real
minimal nilpotent (coadjoint) orbits. See

B98, KO15, O15
[1, 24, 29] for details. The relation-

ship with the complex minimal nilpotent orbits Omin,C in the complexified
Lie algebra gC := g ⊗R C is given as below. Let K be a maximal compact
subgroup of G modulo center.

lem:CRmin Lemma 26. In the setting above, exactly one of the following cases occurs.

(1) (g, k) is not of Hermitian type, and Omin,C ∩ g = ∅.

(2) (g, k) is not of Hermitian type, and Omin,C ∩ g is a single orbit of G.

(3) (g, k) is of Hermitian type, and Omin,C ∩ g consists of two orbits of G.

As the G-orbit decomposition of Omin,C∩g, we write Omin,C∩g = {Omin,R}
in Case (2), Omin,C∩ g = {O+

min,R,O
−
min,R} in Case (3). Then they exhaust all

real minimal nilpotent orbits in Cases (2) and (3). Real minimal nilpotent
orbits are unique in Case (1), to be denoted by Omin,R. We set

n(g) :=

{
1
2
dimOmin,R in Cases (1) and (2),

1
2
dimO+

min,R = 1
2
dimO−

min,R in Case (3).
(12) eqn:ng

Then n(g) = n(gC) in Cases (2) and (3), and n(g) > n(gC) in Case (1). The
formula of n(g) in Case (1) is given in

O15
[29] as follows.

g su∗(2n) so(n− 1, 1) sp(m,n) f4(−20) e6(−26)

n(g) 4n− 4 n− 2 2(m+ n)− 1 11 16

For any Π ∈ Irr(G), the Gelfand–Kirillov dimension DIM(Π) satisfies
n(g) ≤ DIM(Π), which is equivalent to n(gC) ≤ DIM(Π) in Cases (2) and
(3). We shall give a brief review of several conditions that are equivalent to
n(g) > n(gC) in Proposition

prop:OKO
30.

We prove the following.
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thm:realmin Theorem 27. Let O be a real minimal nilpotent coadjoint orbit in g∗. Then
the K-action on O is coisotropic.

For the proof, we recall some basic facts on real minimal nilpotent orbits.
Let g = k + p be the Cartan decomposition, and θ the corresponding

Cartan involution. We take a maximal abelian subspace a of p, and fix a
positive system Σ+(g, a) of the restricted root system Σ(g, a). We denote
by µ the highest element in Σ+(g, a), and Aµ ∈ a the coroot of µ. It is
known (e.g.,

O15
[29]) that any minimal nilpotent coadjoint orbit O is of the

form O = Ad(G)X via the identification g∗ ' g for some non-zero element
X ∈ g(a;µ) := {X ∈ g : [H,X] = µ(H)X for all H ∈ a}. Let GX be the
stabilizer subgroup of X in G. Then one has the decomposition:

lem:KAN Lemma 28. G = K exp(RAµ)GX .

Proof. We set a⊥µ := {H ∈ a : µ(H) = 0}, n =
⊕

ν∈Σ+(g,a) g(a; ν), and

m := Zk(a), the centralizer of a in k. We note that a = RAµ ⊕ a⊥µ is the
orthogonal direct sum decomposition with respect to the Killing form.

Since µ is the highest element in Σ+(g, a), the Lie algebra Zg(X) of GX

contains a⊥µ⊕n. In particular, GX contains the subgroup exp(a⊥µ)N . Since
A = exp(RAµ) exp(a

⊥µ), the Iwasawa decomposition G = KAN implies
G = K exp(RAµ)GX .

Proof of Theorem
thm:realmin
27. Retain the above notation and convention. In par-

ticular, we write as O = Ad∗(G)X. By Lemmas
lem:Hcoiso
25 and

lem:KAN
28, it suffices to

verify
(k+ Zg(X

′))⊥ ⊂ [X ′, k] for any X ′ ∈ Ad(expRAµ)X. (13) eqn:coisonu

Since X ∈ g(a;µ), any X ′ ∈ Ad(expRAβ)X is of the form X ′ = cX for some
c > 0. Thus it is enough to show (

eqn:coisonu
13) when X ′ = X. Since Zg(X) ⊃ a⊥µ⊕n,

one has k+Zg(X) ⊃ θn⊕ a⊥µ ⊕m⊕ n, hence (k+Zg(X))⊥µ ⊂ RAµ. In view
that (Aµ, X, c′θX) forms an sl2(R)-triple for some c′ ∈ R, one has Aµ ∈ [X, k].
Thus (

eqn:coisonu
13) is verified for X ′ = X. Hence the K-action on O is coisotropic by

Lemma
lem:1.7
24.

3.3 Complex minimal nilpotent orbit
subsec:cpxmin

In this section we give a proof of Theorem
thm:22030921
23.

Suppose that GC is a connected complex simple Lie group. We take a
Cartan subalgebra hC of the Lie algebra gC of GC, choose a positive system
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∆+(gC, hC), and set n+C :=
⊕

α∈∆+(gC,hC)
gC(hC;α), n

−
C :=

⊕
α∈∆+(gC,hC)

gC(hC;−α).

Let β be the highest root in ∆+(gC, hC), and Hβ ∈ hC the coroot of β. Then

one has the direct sum decomposition hC = CHβ ⊕ h⊥β
C where h⊥β

C := {H ∈
hC : β(H) = 0}. The minimal nilpotent coadjoint orbit Omin,C is of the form
Omin,C = Ad(GC)X ' GC/(GC)X for any non-zero X ∈ g(hC; β) via the iden-
tification g∗C ' gC. One can also write as Omin,C = Ad(GC)Y ' GC/(GC)Y
for any non-zero Y ∈ g(hC;−β).

By an elementary representation theory of sl2, one sees (e.g.,
C93
[2]) that the

Lie algebras ZgC(X) and ZgC(Y ) of the isotropy subgroups (GC)X and (GC)Y
are given respectively by

ZgC(X) =
⊕

α∈∆+(gC,hC)
α⊥β

gC(hC;−α)⊕ h⊥β
C ⊕ n+C , (14) eqn:Zglmd

ZgC(Y ) =n−C ⊕ h⊥β
C ⊕

⊕
α∈∆+(gC,hC)

α⊥β

gC(hC;α).

Proof of Theorem
thm:22030921
23 (1). We set S := expC(Hβ,−Hβ) · (X,Y ) in Omin,C ×

Omin,C. We claim that diag(GC)S is open dense in Omin,C × Omin,C. To see
this, we observe that (GC)X exp(CHβ)(GC)Y contains the open Bruhat cell

N+
C HCN

−
C = N+

C exp(h⊥β
C ) exp(CHβ)N

−
C in GC as is seen from (

eqn:Zglmd
14), and thus

diag(GC) expC(Hβ, 0)((GC)X × (GC)Y ) is open dense in the direct product
group GC × GC via the identification diag(GC)\(GC × GC) ' GC, (x, y) 7→
x−1y.

By Lemma
lem:Hcoiso
25, Theorem

thm:22030921
23 (1) will follow if we show

(diag(gC)+ZgC⊕gC(Ad(a)X,Ad(a)−1Y ))⊥B ⊂ [(Ad(a)X,Ad(a)−1Y ), diag(gC)]
(15) eqn:ZZdiag

for any a ∈ exp(CHβ). Since Ad(a)X = cX and Ad(a)−1Y = c−1Y for some
c ∈ C×, and since X and Y are arbitrary non-zero elements in gC(hC; β) and
gC(hC;−β), respectively, it suffices to verify (

eqn:ZZdiag
15) for a = e. By (

eqn:Zglmd
14), one has

(diag(gC) + (ZgC(X)⊕ ZgC(Y )))⊥B = C(Hβ,−Hβ).

Since [X,Y ] = c′Hβ for some c′ ∈ C×, one has [(X,Y ), (X + Y,X + Y )] =
c′(Hβ,−Hβ), showing (Hβ,−Hβ) ∈ [(X,Y ), diag(gC)]. Thus Theorem

thm:22030921
23 (1)

is proved.
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Next, we consider the setting in Theorem
thm:22030921
23 (2). Let (GC, KC) be a

symmetric pair defined by a holomorphic involutive automorphism θ of GC.
Then there is a real form gR of the Lie algebra gC of GC such that θ|gR
defines the Cartan decomposition gR = kR+ pR of the real simple Lie algebra
gR with kR⊗RC being the Lie algebra kC ofKC. We denote by GR the analytic
subgroup of GC with Lie algebra gR.

We take a maximal abelian subspace aR in pR, and apply the results of
Section

subsec:realmin
3.2 by replacing the notation g, k, p, a, · · · with gR, kR, pR, aR, etc.

Let NC be the nilpotent cone in gC, and NR,C := {X ∈ NC : Ad(GC)X ∩
gR 6= ∅}. Then there exists a unique GC-orbit, to be denoted by OC

min,R,
which is minimal in (NR,C \{0})/GC with respect to the closure relation, and
OC

min,R = Ad(GC)X for any non-zero X ∈ gR(aR; β) (
O15
[29]).

We extend aR to a maximally split Cartan subalgebra hR = tR + aR of gR
where tR := hR ∩ kR, write hC = tC + aC for the complexification, and take a
positive system ∆+(gC, hC) which is compatible with Σ+(gR, aR).

The proof of Theorem
thm:realmin
27 shows its complexified version as follows.

thm:22030921b Theorem 29. The action of KC on OC
min,R is coisotropic.

This confirms Theorem
thm:22030921
23 (2) when Omin,C = OC

min,R, or equivalently, in
Cases (2) and (3) of Lemma

lem:CRmin
26.

Let us verify Theorem
thm:22030921
23 (2) in the case Omin,C 6= OC

min,R.
We need the following:

prop:OKO Proposition 30 (
KO15
[24, Cor. 5.9],

O15
[29, Prop. 4.1]). Let gR be a real form of a

complex simple Lie algebra gC, and kC the complexified Lie algebra of kR, the
Lie algebra kR of a maximal compact subgroup KR of the analytic subgroup
GR in Int gC. Then the following six conditions on gR are equivalent:

(i) Omin ∩ gR = ∅.

(ii) Omin,C 6= OC
min,R.

(iii) θβ 6= −β.

(iv) n(g) > n(gC).

(v) gR is compact or is isomorphic to su∗(2n), so(n−1, 1) (n ≥ 5), sp(m,n),
f4(−20), or e6(−26).
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(vi) gC = kC or the pair (gC, kC) is isomorphic to (sl(2n,C), sp(n,C)),
(so(n,C), so(n − 1,C)) (n ≥ 5), (sp(m + n,C), sp(m,C) ⊕ sp(n,C)),
(fC4 , so(9,C)), or (eC6 , f

C
4 ).

Remark 31. The equivalence (i) ⇐⇒ (v) was stated in
B98
[1, Prop. 4.1]

without proof, and Okuda
O15
[29] supplied a complete proof.

lem:22031312 Lemma 32. Suppose X is a highest root vector, namely, 0 6= X ∈ gC(hC; β).
If θβ 6= −β, then Hβ ∈ kC + ZgC(X).

Proof. Since θβ 6= −β, one has β|tC 6≡ 0, namely, tC 6⊂ h⊥β
C . Since h⊥β

C
is of codimension one in hC, we get tC + h⊥β

C = hC. Thus Hβ ∈ hC ⊂
kC + ZgC(X).

prop:22031313 Proposition 33. If one of (and therefore any of) the equivalent conditions
in Proposition

prop:OKO
30 holds, then KC has a Zariski open orbit in Omin,C. In

particular, the KC-action on Omin,C is coisotropic.

Proof. Since Omin,C = Ad(GC)X for a non-zero X ∈ gC(hC; β), the proposi-
tion is clear.

Proof of Theorem
thm:22030921
23 (2). The Case (1) in Lemma

lem:CRmin
26 is proved in Proposition

prop:22031313
33, and the Cases (2) and (3) are proved in Theorem

thm:22030921b
29.

3.4 Proof of Theorems in Section
sec:Intro

1

As we saw at the end of Section
sec:2
2, Theorems

thm:Joseph
3 and

thm:tensormin
4 are derived from

the geometric result, namely, from Theorem
thm:22030921
23, and thus the proof of these

theorems has been completed.
In the same manner, one can deduce readily from Theorem

thm:22030921b
29 the fol-

lowing bounded multiplicity property which is not covered by Theorem
thm:Joseph
3 for

the five cases in Proposition
prop:OKO
30 where n(g) > n(gC).

thm:Rminbdd Theorem 34. Suppose that the Gelfand–Kirillov dimension of Π ∈ Irr(G) is
n(g). If (G,G′) is a symmetric pair such that g′C is conjugate to kC by Int gC,
then m(Π|G′) < ∞.

Proof. We write G′
C and KC for the analytic subgroups of GC = Int gC

with Lie algebras g′C and kC, respectively. Then the KC-action on OC
min,R

is coisotropic by Theorem
thm:22030921b
29, and so is the G′

C-action on OC
min,R because G′

C
and KC are conjugate by an element of GC. Hence the theorem follows from
Fact

fact:Ki
21.

19



Finally, we give a proof of Theorem
thm:irr
10.

Proof of Theorem
thm:irr
10. Let J be the Joseph ideal. Let (U(gC)/J )g

′
C be the

algebra of g′C-invariant elements in U(gC)/J via the adjoint action. Then
one has

(U(gC)/J )g
′
C = C

if one of (therefore, all of) the equivalent conditions in Proposition
prop:OKO
30 is sat-

isfied, see
Ta
[30, Lem. 3.4]. In particular, the center Z(g′C) of the enveloping

algebra U(g′C) of the subalgebra g′C acts as scalars on the minimal repre-
sentation Π because the action factors through the following composition of
homomorphisms:

Z(g′C) → U(gC)/J → EndC(Π).

Since any minimal representation is unitarizable by the classification
Ta
[30],

and since there are at most finitely many elements in Irr(G′) having a fixed
Z(g′C)-infinitesimal character, the restriction Π|G′ splits into a direct sum
of at most finitely many irreducible representations of G′, with multiplicity
being finite by Theorem

thm:minbdd
7. Thus the proof of Theorem

thm:irr
10 is completed.
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