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Abstract

Given irreducible representations Π and π of the rank one special orthog-
onal groups G = SO(n + 1, 1) and G′ = SO(n, 1) with nonsingular integral
infinitesimal character, we state in terms of θ-stable parameter necessary and
sufficient conditions so that

HomG′(Π|G′ , π) ̸= {0}.

In the special case that both Π and π are tempered, this implies the Gross–
Prasad conjectures for tempered representations of SO(n + 1, 1) × SO(n, 1)
which are nontrivial on the center.

We apply these results to construct nonzero periods and distinguished rep-
resentations. If both Π and π have the trivial infinitesimal character ρ then we
use a theorem that the periods are nonzero on the minimal K-type to obtain
a nontrivial bilinear form on the (g,K)-cohomology of the representations.
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I Introduction

In the book [23] The Classical Groups: Their Invariants and Representations pub-
lished in 1939, HermannWeyl discusses the restriction of irreducible finite-dimensional
representations of the orthogonal group O(n) to an orthogonal subgroup O(n − 1).
The restriction splits into a direct sum of irreducible representations and can be
roughly described by the following branching law. Suppose n ≥ 2. Denote by [x] the
greatest integer that does not exceed x. To each irreducible representation of O(n)
is assigned a highest weight

µ = (µ1, µ2, . . . , µ[n
2
])

satisfying
µ1 ≥ µ2 ≥ · · · ≥ µ[n

2
]

and a character ε of O(n)/SO(n). We denote by this representation FO(n)(µ)ε where
ε ∈ {+,−} (ε is not unique when n is even and µn

2
̸= 0). H. Weyl obtained the

“branching law” as

FO(n)(µ1, . . . , µ[n
2
])ε|O(n−1) =

⊕
FO(n−1)(ν1, . . . , ν[n−1

2
])ε (1.1)

where the summation is taken over (ν1, . . . , ν[n−1
2

]) ∈ Z[n−1
2

] subject to

µ1 ≥ ν1 ≥ µ2 ≥ · · · ≥ νn−1
2

≥ 0 for n odd,

µ1 ≥ ν1 ≥ µ2 ≥ · · · ≥ νn−2
2

≥ µn
2
≥ 0 for n even.

In this article we present similar branching laws for the restriction of irreducible
infinite-dimensional representations of SO(n+1, 1) to the subgroup SO(n, 1). Since
the restriction of an infinite-dimensional representation Π of SO(n+1, 1) to SO(n, 1)
is not a direct sum of irreducible representations [7], we consider as in [9, 11] the
representations Π and π of SO(n + 1, 1), respectively SO(n, 1), realized as smooth
representations of moderate growth [22, Chap. 11] and define the multiplicity by

m(Π, π) := dimCHomSO(n,1)(Π|SO(n,1), π).

The multiplicity is either 0 or 1 [17].
We consider in the article only representations of the special orthogonal group

which have the same infinitesimal character as an irreducible finite-dimensional repre-
sentation F of SO(n+1). To simplify the notation and presentation we assume in this
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article that F is “self-dual”, i.e., assume that the highest weight µ = (µ1, · · · , µm+1)
satisfies µm+1 = 0 when n = 2m+ 1. We do not impose any assumption on F when
n is even. See Assumption A in Section II.2.1. For the general case, see [11] and [12].

For every irreducible representation π of SO(n, 1) we define in Section II.3 a
height

hπ ∈ {0, . . .m} if n = 2m or 2m+ 1

and in Section II.4 a signature δ ∈ {+,−}. The signature is unique except for
discrete series representations. If π has the same infinitesimal character as F (µ) we
say that (µ, hπ, δ) are the enhanced θ-stable parameters of π. The representations
with enhanced θ-stable parameters ((0, . . . , 0), i, δ) are representations with trivial
infinitesimal character ρ and are denoted by Πi,δ. See [11, Chap. 2, Sect. 4] for a
description of the representations of O(n + 1, 1) with trivial infinitesimal character
ρ and [11, Chap. 14, Sect. 9] for their enhanced θ-parameters.

Remark I.1. In [11] we have treated mainly the full group O(n+1, 1) rather than the
special orthogonal group SO(n+1, 1), and stated results for SO(n+1, 1) in Chapter
11 with “bar” for the corresponding objects. The relation between branching laws
for O(n + 1, 1) ↓ O(n, 1) and SO(n + 1, 1) ↓ SO(n, 1) is discussed in [11, Chap.
15 (Appendix II)]. In this article, we treat mainly the special orthogonal group
SO(n + 1, 1), and use different convention in the point that we omit the “bar” for
representations of SO(n+ 1, 1).

All results in this article are based on the following branching theorem:

Theorem I.2 (branching law). Let Π and π be irreducible representations of SO(n+
1, 1) respectively SO(n, 1) with enhanced θ-stable parameters (µ, hΠ,ε), respectively
(ν, hπ, δ).

(1) Suppose that n = 2m. Then

dimC HomSO(n,1)(Π|SO(n,1), π) = 1

if and only if the enhanced θ-stable parameters of the representations Π and π
satisfy

(a) ε = δ,

(b) hπ ∈ {hΠ, hΠ − 1} when hπ < m and hπ = hΠ when hπ = m,

(c) µ0 ≥ ν0 ≥ µ1 ≥ · · · ≥ µm ≥ νm ≥ 0.
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(2) Suppose that n = 2m− 1. Then

dimC HomSO(n,1)(Π|SO(n,1), π) = 1

if and only if the enhanced θ-stable parameters of the representations satisfy

(a) ε = δ,

(b) hπ ∈ {hΠ, hΠ − 1},
(c) µ0 ≥ ν0 ≥ µ1 ≥ · · · ≥ µm ≥ νm−1 ≥ µm = 0.

A detailed proof will be given in [12].

Remark I.3. A similar theorem was proved in [11, Thms. 4.1 and 4.2] for the restric-
tion of irreducible representations of O(n+ 1, 1) to O(n, 1) with trivial infinitesimal
character ρ.

Applications of the branching theorem

Gross–Prasad conjectures. The discussion in [11, Chap. 13, Sect. 3.3] shows
that Theorem I.2 in the special case where hΠ =

[
n+1
2

]
and hπ =

[
n
2

]
implies the

following.

Theorem I.4. The Gross–Prasad conjectures are valid for all tempered representa-
tions with nonsingular infinitesimal character of SO(n + 1, 1) and SO(n, 1), which
are nontrivial on the center.

Remark I.5. (1) For tempered principal series representations Π of SO(n+1, 1), and
π of SO(n, 1) which are nontrivial on each center, it was proved in [11, Chap. 11,
Sect. 4]. For irreducible tempered representations with trivial infinitesimal character
ρ, this was announced in [10] and proved in [11, Chap. 11, Sect. 5].
(2) The branching law for nontempered representations (Theorem I.2) interpolates
between the classical branching laws of finite-dimensional representations (1.1) and
the branching laws of the conjecture by Gross and Prasad for tempered representa-
tions.

Periods. For representations Π, π of a real reductive Lie group G, respectively of
a reductive subgroup G′, the space of symmetry breaking operators

HomG′(Π|G′ , π∨)

and the space of G′-invariant continuous linear functionals

HomG′(Π⊗ π,C)
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are naturally isomorphic to each other [11, Thm. 5.4], where π∨ denotes the con-
tragredient representation of π in the category of admissible smooth representations
(see Section III.2), and Π ⊗ π denotes the representation of G′ acting on the outer
tensor product representation Π⊠π of G×G′ diagonally. Thus we may use symmetry
breaking operators to determine G′-invariant continuous linear functionals on Π⊗π,
i.e., periods. Hence, the branching theorem implies the following.

Theorem I.6. Suppose that the representations Π and π of G, respectively of G′

satisfy Assumption A (see Section II.2.1) with height i respectively j. Then the
following statements on the pair (Π, π) are equivalent:

(i) The representation Π⊠ π has a nontrivial G′-period;

(ii) Π and π have the same signature, j = i or i − 1 and their enhanced θ-stable
parameters satisfy the interlacing conditions of Theorem I.2.

For representations with infinitesimal character ρ we proved in [11, Chap. 10]
furthermore the following:

Theorem I.7. If Π and π are representations with trivial infinitesimal character ρ,
then any nonzero period does not vanish on the minimal K-type of the outer tensor
product representation Π⊠ π.

In a special case we determine in [11, Chap. 12] the value of the period on vectors
in the minimal K-type of a representation with infinitesimal character ρ. See also
Theorem V.11.

Distinguished representations. Let G be a reductive group and H a reductive
subgroup. We regard H as a subgroup of the direct product group G × H via the
diagonal embedding H ↪→ G×H.

Definition I.8. Let ψ be a one-dimensional representation of H. We say an admis-
sible smooth representation Π of G is (H,ψ)-distinguished if

(HomH(Π⊠ ψ∨,C) ≃)HomH(Π|H , ψ) ̸= {0}.

If the character ψ is trivial, we say Π is H-distinguished.

Let G = SO(n+1, 1), and g ≃ so(n+1, 1) its Lie algebra. We fix a fundamental
Cartan subalgebra h of g. For 0 ≤ i ≤ [n+1

2
], there are θ-stable parabolic subalgebras

qi ≡ q+i = (li)C + ui and q−i = (li)C + u−i in gC = Lie(G)⊗R C = u−i + (li)C + ui such
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that qi and q−i contain hC and that both the Levi subgroups Li of q = qi and q−i are
given by Li ≃ SO(2)i × SO(n− 2i+ 1, 1), see [11, Lem. 14.38].

There are two one-dimensional representations of SO(n−2i+1, 1) when n ̸= 2i−1:
we denote by χ+ the trivial representation 1 and by χ− the nontrivial one. For
n = 2i−1, we consider only χ+. We consider the differential λ = (λ1, · · · , λi, 0, . . . 0)
of a one-dimensional representation of Li and assume that λ satisfies the conditions
in [11, Chap. 14, Sect. 9] and δ ∈ {+,−}. We consider an irreducible one-dimensional
Li-module

Cλ ⊠ χδ

and define an admissible smooth representation of G of moderate growth denoted
by Aqi(λ)δ. Its underlying (g, K)-module is given by the cohomological parabolic
induction from qi, see [5, 21]. For δ = + we often omit the subscript.

Theorem I.9. Suppose that Π ∈ A (see Section II.2.1 below for definition) is a
representation of SO(n+ 1, 1) cohomologically induced from a one-dimensional rep-
resentation of a θ-stable parabolic subalgebra qi, i.e. that Π = Aqi(λ). Then the
height (see Section II.3) of Π is i and Π is SO(n+ 1− i, 1)-distinguished.

Remark I.10. The proof of this theorem will be given in a subsequent paper, based
on the work [11]. For a different proof and perspective of this theorem, see [6].

The irreducible representations with trivial infinitesimal character ρ are obtained
through cohomological induction. We set Πi := Aqi(0). Then Theorem I.9 may be
regarded as a generalization of the following results in [11, Thm. 12.4 and Lem. 15.10]:

Theorem I.11. Let 0 ≤ i ≤ n+1. Then the representations Πi of G = SO(n+1, 1)
are SO(n+ 1− i, 1)-distinguished.

For details see [11, Chap. 12].

A bilinear form on the (g, K)-cohomology. In [11, Chap. 12, Sect. 3], we
considered the morphism on (g, K)-cohomologies of representations induced by a
symmetry breaking operator: Let (G,G′) = (SO(n + 1, 1), SO(n, 1)) and Π, π be
irreducible representations and V, V ′ irreducible finite-dimensional representations
of G and G′, respectively. By abuse of notation, we use the same symbols Π and
π to denote their underlying (g, K)-module and (g′, K ′)-module, respectively, when
we take (g, K)-cohomologies and (g′, K ′)-cohomologies. Suppose that there exists
a symmetry breaking operator T : Π ⊗ V → π ⊗ V ′. Then the symmetry breaking
operator T : Π⊗ V → π ⊗ V ′ induces for every j a morphism

T j : Hj(g, K; Π⊗ V ) → Hj(g′, K ′; π ⊗ V ′)
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on the (g, K)-cohomologies and a bilinear form

BT : H
j(g, K; Π⊗ V )×Hn−j(g′, K ′; (π ⊗ V ′)∨ ⊗ χ(−1)n+1) → C

where (π ⊗ V ′)∨ denotes the contragredient representation of π ⊗ V ′.
The induced morphism on the (g, K)-cohomologies may be zero, but in some

special cases we conclude that it is nonzero.

For 0 ≤ ` ≤ [n+1
2
] and δ ∈ {+,−}, we denote by Πℓ,δ the irreducible admissible

smooth representation of G = SO(n + 1, 1) with underlying (g, K)-module Aqℓ(0)δ
(see Theorem I.9 for notation). We also write simply Πℓ for Πℓ,δ if δ = +. We
recall from [11, Thm. 2.20] that Πℓ,δ is the unique submodule of the principal se-
ries representation Iδ(Λ

ℓ(Cn, `)) for ` ̸= n
2
(see (2.6) below), and is isomorphic to

Iδ(V+,
n
2
) ≃ Iδ(V−,

n
2
) for ` = n

2
where V+ and V− are irreducible SO(n)-modules

such that Λ
n
2 (Cn) = V+ ⊕ V−. We also recall from [11, Prop. 15.11] that the set

of irreducible admissible representations of G = SO(n + 1, 1) with the trivial Z(g)-
infinitesimal character ρ is classified as follows:

{Πℓ,δ : 0 ≤ ` ≤ n− 1

2
, δ ∈ {+,−}} ∪ {Πn+1

2
,+} if n is odd,

{Πℓ,δ : 0 ≤ ` ≤ n

2
, δ ∈ {+,−}} if n is even.

Analogous notation πj,ε is applied to the subgroup G′ = SO(n, 1).
Then the following theorem follows from [11, Cor. 12.19 and Lem. 15.10] for the

nonvanishing of BT and [11, Thm. 15.19] for the uniqueness of T .

Theorem I.12. Let (G,G′) = (SO(n + 1, 1), SO(n, 1)), 0 ≤ i ≤ n
2
, and δ ∈ {±}.

Let T be a nontrivial symmetry breaking operator Πi,δ → πi,δ.

(1) T induces bilinear forms

BT : H
j(g, K; Πi,δ)×Hn−j(g′, K ′; πi,(−1)n−1δ) → C for all j.

(2) The bilinear form BT is nonzero if and only if j = i and δ = (−1)i.

In Section VI, we also state a nonvanishing theorem for bilinear forms on the
(g, K)-cohomologies of principal series representations, see Theorem VI.1.

Remark I.13. If Π and π have trivial infinitesimal character ρ then V and V ′ are the
trivial representations and the theorem follows from [11, Chaps. 9 and 12].

Detailed proofs of the results will be published elsewhere [12].
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II Representations with nonsingular integral in-

finitesimal character

In this section we recall from [11] the results about principal series representations
and irreducible representations of G = SO(n + 1, 1) and introduce their height and
signature.

II.1 Notation

We are using the same notation and assumptions as in the book [11] except that we
do not use “bar” for subgroups of SO(n+ 1, 1), see Remark I.1. The proofs of most
of the results stated in this section can be found in Chapter 2 and Appendices I, II,
and III therein.

We first recall some notation which is up to small changes (see the comments in
Remark I.1) the same as the notation in the Memoir article [9].

Consider the standard quadratic form

x20 + x21 + · · ·+ x2n − x2n+1 (2.2)

of signature (n + 1, 1). We define G to be the indefinite special orthogonal group
SO(n+ 1, 1) that preserves the quadratic form (2.2) and the orientation. Let G′ be
the stabilizer of the vector en = t(0, 0, · · · , 0, 1, 0). Then G′ is isomorphic to SO(n, 1).
We set

K := O(n+ 2) ∩G = {
(
B

detB

)
: B ∈ O(n+ 1)} ≃ O(n+ 1), (2.3)

K ′ := K ∩G′ = {

B 1
detB

 : B ∈ O(n)} ≃ O(n).

Then K and K ′ are maximal compact subgroups of G and G′, respectively.

II.2 Principal series representations

Let g = so(n+ 1, 1) and g′ = so(n, 1) be the Lie algebras of G and G′, respectively.
We take a hyperbolic element H as

H := E0,n+1 + En+1,0 ∈ g′, (2.4)
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and set
a := RH and A := exp a.

Then the centralizers of H in G and G′ are given by MA and M ′A, respectively,
where

M :=


ε B

ε

 : B ∈ SO(n), ε = ±1

 ≃SO(n)×O(1),

M ′ :=



ε

B
1

ε

 : B ∈ SO(n− 1) : ε = ±1

 ≃SO(n− 1)×O(1).

We observe that ad(H) ∈ EndR(g) has eigenvalues −1, 0, and +1. Let

g = n− + (m+ a) + n+

be the corresponding eigenspace decomposition, and P a minimal parabolic subgroup
with Langlands decomposition P =MAN+. Likewise, P

′ :=M ′AN ′
+ is a compatible

Langlands decomposition of a minimal (also maximal) parabolic subgroup P ′ of G′

with Lie algebra

p′ = m′ + a+ n′+ = (m ∩ g′) + (a ∩ g′) + (n+ + g′). (2.5)

We note that we have chosen H ∈ g′ so that P ′ = P ∩G′ and A = exp(RH) is a
common maximally split abelian subgroup in P ′ and P .

The character group of O(1) consists of two characters. We write + for the
trivial character 1, and − for the nontrivial character. Since M ≃ SO(n) × O(1),
any irreducible representation of M is the outer tensor product of an irreducible
representation (σ, V ) of SO(n) and a character δ of O(1).

Given (σ, V ) ∈ ŜO(n), δ ∈ {±} ≃ Ô(1), and a character eλ(exp(tH)) = eλt of A
for λ ∈ C, we define the (unnormalized) principal series representation

Iδ(V, λ) = IndG
P (V ⊗ δ, λ) (2.6)

of G = SO(n+ 1, 1) on the Fréchet space of smooth maps f : G→ V subject to

f(gmm′etHn) = σ(m)−1δ(m′)e−λtf(g)

for all g ∈ G, mm′ ∈M ≃ SO(n)×O(1), t ∈ R, n ∈ N+.
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By a result of R. Langlands [14] every irreducible nontempered representation
with nonsingular integral infinitesimal character is isomorphic to the unique subrep-
resentation of a principal series representation Iδ(V, λ) with λ <

n
2
. We denote it by

Πδ(V, λ), see also [11, Chap. 15, Sect. 7].

Definition II.1. We call the triple (V, δ, λ) the Langlands parameter of the irre-
ducible nontempered representation Πδ(V, λ).

II.2.1 The set A

Since we highlight in the article representations which are of interest in number
theory, we consider from now on a subset of irreducible representations of special
orthogonal groups. For results about irreducible representation of SO(n + 1, 1) in
the general case see [11, Chap. 15].

We start with irreducible finite-dimensional representations of SO(n+ 1, 1) that
are self-dual, or equivalently, that are obtained as the restriction of irreducible rep-
resentations of O(n + 1, 1). So for n = 2m we assume that the highest weight
(µ1, . . . , µm+1) of an irreducible finite-dimensional representation F of G = SO(2m+
1, 1) is of the form (µ1, . . . , µm, 0).

Assumption A. Suppose that Π is an irreducible representation of G = SO(n+1, 1)
with regular integral infinitesimal character, see [11, Chap. 2, Sect. 1.4]. We say
that a representation Π of G satisfies Assumption A if it has the same infinitesimal
character as a self-dual irreducible finite-dimensional representation of G. When n
is odd, Assumption A is automatically satisfied.

Notation II.2. The set of irreducible representations of G = SO(n+1, 1) satisfying
Assumption A is denoted by A.

For the convenience of the reader, we give a description of irreducible admissible
representations of G = SO(n+ 1, 1) satisfying Assumption A in Section II.2.2 for n
even and in Section II.2.3 for n odd.

II.2.2 Classification of the set A for n even

Suppose n = 2m. By using the highest weight, we write V ∈ ŜO(n) as V =
F SO(n)(σ) with σ = (σ1, · · · , σm) ∈ Zm satisfying σ1 ≥ · · · ≥ σm−1 ≥ |σm|. Then the
contragredient representation of V is given as

V ∨ ≃ F SO(n)(σ1, · · · , σm−1,−σm).

Hence V is self-dual if and only if σm = 0.
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Proposition II.3. For V = F SO(2m)(σ), we consider the following condition on λ:

λ ∈ Z, λ < m, λ ̸∈ {1− σ1, · · · ,m− σm}. (2.7)

Then irreducible admissible representations of SO(2m+ 1, 1) in A are classified as

• (nontempered case)

{Πδ(V, λ) : δ = ±, σm = 0, and λ satisfies (2.7)},

or

• (tempered case)
{Iδ(V,m) : δ = ±, σm > 0}.

We note that in the tempered case V ̸≃ V ∨ as SO(n)-modules because σm > 0,
whereas there is a G-isomorphism, see [11, Prop.15.5]:

Iδ(V,m) ≃ Iδ(V
∨,m).

II.2.3 Classification of the set A for n odd

Suppose n = 2m−1. We write V ∈ ŜO(n) as V = F SO(n)(σ) with σ = (σ1, · · · , σm−1) ∈
Zm−1 satisfying σ1 ≥ · · · ≥ σm−1 ≥ 0.

Proposition II.4. For V = F SO(2m−1)(σ), we consider the following conditions on
λ:

λ ∈ Z, λ ≤ m− 1, and λ ̸∈ {1− σ1, · · · ,m− 1− σm−1}. (2.8)

λ ∈ Z, m ≤ λ ≤ m− 1 + σm−1. (2.9)

All irreducible admissible representations of SO(2m, 1) belong to A, which are clas-
sified as

• (nontempered case)

{Πδ(V, λ) : δ = ±, λ satisfies (2.8)},

or

• (discrete series)

{Π+(V, λ) : σm−1 > 0, λ satisfies (2.9)}.

We note that in the discrete series case there is a G-isomorphism

Π+(V, λ) ≃ Π−(V, λ).
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II.3 The height of representations in A
In this section, we define a height

h : A → {0, 1, · · · , [n+ 1

2
]}

for irreducible representations of G = SO(n + 1, 1) that belong to A (see Section
II.2.1).

We recall that the i-th exterior representation
∧

i(Cn) of SO(n) is irreducible
if 2i ̸= n, and splits into two irreducible representations if 2i = n, which may be
written as ∧n

2 (Cn) ≃
∧n

2 (Cn)(+) ⊕
∧n

2 (Cn)(−).

We define a finite family of principal series representations of G = SO(n+ 1, 1) by

Iδ(i, i) :=

{
Iδ(

∧
i(Cn), i) for i ̸= n

2
,

Iδ(
∧

i(Cn)(ε), i) for i = n
2
.

Then Iδ(i, i) has the trivial infinitesimal character ρ, and it does not depend on the
choice ε = + or − when i = n

2
, see [11, (15.5)].

Suppose that Π is an irreducible nontempered representation of SO(n+1, 1) in A
with Langlands parameter (V, λ, δ). The principal series representation Iδ(V, λ) can
be obtained by using a translation functor from exactly one principal series repre-
sentation Iδ(i, i), i ∈ {0, 1, . . . , [n+1

2
]} without crossing a wall. See [11, Thm. 16.24].

Following [11, Chap. 14, Sect. 5 and Thm. 16.17], we say that the principal
series representation Iδ(V, λ) has height i if it can be obtained from a principal series
representations Iδ(i, i) by a translation functor without crossing walls.

Definition II.5 (height). (1) Suppose that the representation Π ∈ A is not tem-
pered and has Langlands parameter (V, λ, δ). If Iδ(V, λ) has height i, we say
that Π has height i.

(2) If n = 2m− 1 we say that a discrete series representation Π ∈ A has height m.

(3) If n = 2m and Π ∈ A is a tempered representation, then we say that it has
height m.

An explicit formula of the height can be derived from the case for O(n+ 1, 1) in
[11, Def. 14.26 and Chap. 15]:
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Proposition II.6 (height for nontempered representation). (1) Suppose n = 2m.
With notation as in Proposition II.3, the height i of the nontempered represen-
tation Πδ(V, λ) takes the value in {0, 1, · · · ,m − 1}, and is determined by the
following inequalities:

i− σi < λ < i+ 1− σi+1.

(2) Suppose n = 2m − 1. With notation as in Proposition II.4, the height of the
nontempered representation Πδ(V, λ) takes the value in {0, 1, · · · ,m− 1}, and
is determined by the following condition:

• for λ < m− 1− σm−1, we have 0 ≤ i ≤ m− 2 and

i− σi < λ < i+ 1− σi+1;

• for m− 1− σm−1 < λ < m, we have i = m− 1.

Example II.7. For Π ∈ A, the height of Π is zero if and only if Π is finite-
dimensional.

II.4 Signatures of representations in A
In this section, we define a signature

sgn: A → {+,−,±}

for irreducible representations of G = SO(n+1, 1) that belong to A. We shall impose
the condition

sgn(Π⊗ χ−) = − sgnΠ. (2.10)

II.4.1 Tempered Representations

We recall from Propositions II.3 and II.4 (see also [11, Thms. 13.7 and 13.9]) that
for every irreducible finite-dimensional representation F in A there exist irreducible
tempered representations with the same infinitesimal character.

Suppose G = SO(2m + 1, 1) and λ = m (= n
2
). The unitary principal series

representation Iδ(V,m) is tempered, and it has the same infinitesimal character as
an irreducible finite-dimensional representation of G if and only if V is not self-dual.
In this case, there is an isomorphism Iδ(V,m) ≃ Iδ(V

∨,m) as SO(2m+1, 1)-modules
as we saw in Section II.2.2. We define the signature of Iδ(V,m) to be δ.
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For G = SO(2m, 1), there is exactly one discrete series representation Π of G
having the same infinitesimal character as F (see Proposition II.4). Furthermore
there is an isomorphism

Π⊗ χ− ≃ Π

as G-modules, hence we define the signature of a discrete series representation Π to
be ±.

II.4.2 Nontempered representations

An irreducible representation Π in A of G = SO(n + 1, 1), which is not tempered,
is isomorphic to a subrepresentation of a principal series representation Iδ(V, λ) of
height i ∈ {0, 1, · · · , [n−1

2
]}, see Proposition II.6. It has a Langlands parameter

(V, δ, λ) where V is a self-dual representation of SO(n), λ < n
2
and δ ∈ {+,−}. We

refer to δ(−1)i−λ as the signature of the representation Π. Since the Langlands
parameter of a nontempered representation is unique, the signature is unique as far
as Π is not tempered.

Remark II.8. If a representation Π has signature δ, then one sees Π⊗χ− has signature
−δ.

Example II.9 (one-dimensional representations). There are two one-dimensional
representations of G = SO(n + 1, 1): we denote the trivial representation 1 by χ+

and the nontrivial one by χ−. The Langlands parameter of χ+ and χ− is (+,1, 0)
and (−,1, 0), respectively, and their height is 0. Hence the representation χ+ has
signature + and the representation χ− has signature −.

Example II.10 (irreducible representations with trivial infinitesimal character ρ). If
V is the representation of SO(n) on the i-th exterior tensor space

∧i(Cn) (2i ̸= n),
we write for simplicity Iδ(i, λ) instead of Iδ(V, λ). Then the SO(n)-isomorphism
on the exterior representations

∧i(Cn) ≃
∧n−i(Cn) leads us to the following G-

isomorphism:
Iδ(i, λ) ≃ Iδ(n− i, λ).

If n is even and n = 2i, the exterior representation
∧i(Cn) splits into two irreducible

representations of SO(n):∧n
2 (Cn) ≃

∧n
2
(Cn)+ ⊕

∧n
2
(Cn)−

with highest weights (1, · · · , 1, 1) and (1, · · · , 1,−1), respectively, with respect to a
fixed positive system for so(n,C). Accordingly, we have a direct sum decomposition
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of the induced representation:

IndG
P (
∧n

2 (Cn)⊗ δ, λ) = Iδ(
∧n

2
(Cn)+, λ)⊕ Iδ(

∧n
2
(Cn)−, λ),

which we shall write as

Iδ

(n
2
, λ

)
= I

(+)
δ

(n
2
, λ

)
⊕ I

(−)
δ

(n
2
, λ

)
. (2.11)

The representations I
(+)
δ

(
n
2
, λ

)
and I

(−)
δ

(
n
2
, λ

)
are isomorphic to each other and have

the signature δ.

Let Z(g) be the center of the enveloping algebra U(g) of the complexified Lie
algebra gC = g ⊗R C ≃ so(n + 2,C). Via the Harish-Chandra isomorphism, the
Z(g)-infinitesimal character of the trivial one-dimensional representation 1 is given
by

ρ =
(n
2
,
n

2
− 1, · · · , n

2
− [

n

2
]
)

in the standard coordinates of the Cartan subalgebra of gC = so(n+ 2,C), whereas
up to conjugation by the Weyl group the infinitesimal character of I

(±)
δ (i, λ) (when

2i ≤ n) is given by(
n

2
,
n

2
− 1, · · · , n

2
− i+ 1,

n̂

2
− i,

n

2
− i− 1, · · · , n

2
− [

n

2
], λ− n

2

)
. (2.12)

The irreducible representation Πi,δ has height min(i, n − i). Since λ = i, the
signature is equal to δ if 2i ≤ n and to δ(−1)n if 2i ≥ n. The irreducible tempered
representations are denoted by Πm if n = 2m − 1 and Πm,δ if n = 2m. See [11,
Chap. 2, Sect. 4.5] for O(n + 1, 1) and [11, Chap. 15, Sect. 5] for SO(n + 1, 1) in
detail.

For the group G′ = SO(n, 1), we shall use the notation Jε(j, ν) for the unnormal-
ized parabolic induction IndG′

P ′(
∧j(Cn−1)⊗ ε, ν) for 0 ≤ j ≤ n− 1, ε ∈ {+,−}, and

ν ∈ C. The irreducible representations are denoted by πj,ε respectively πj.

II.4.3 Hasse and Standard sequences

The notion of the height of representation in A is motivated by the Hasse sequences
in [11, Chap. 13], which were defined for the full orthogonal group O(n + 1, 1). We
adapt the definition for the special orthogonal group G = SO(n + 1, 1) as follows.
Let n = 2m or 2m− 1. For every irreducible finite-dimensional representation F of
the group G, there exists a unique sequence
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U0 , . . . , Um−1 , Um

of irreducible admissible smooth representations Ui ≡ Ui(F ) of G such that

1. U0 ≃ F ;

2. consecutive representations are composition factors of a principal series repre-
sentation;

3. Ui (0 ≤ i ≤ m) are pairwise inequivalent as G-modules.

Definition II.11 (Hasse sequence and standard sequence). We refer to the sequence

U0 , . . . , Um−1 , Um

as the Hasse sequence of irreducible representations starting with the finite-dimensional
representation U0 = F . We shall write Uj(F ) for Uj if we emphasize the sequence
{Uj(F )} starts with U0 = F , and we refer to

Π0 := U0 , . . . , Πm−1 := Um−1 ⊗ (χ−)
m−1 , Πm := Um ⊗ (χ−)

m

as the standard sequence of irreducible representations Πi = Πi(F ) starting with
Π0 = U0 = F , where χ− is the nontrivial one-dimensional representation of G defined
in Example II.9.

More details about the standard sequence for O(n + 1, 1) can be found in [11,
Chap. 13], from which the case for the normal subgroup G = SO(n+1, 1) is derived
as follows.

Theorem II.12. Let G = SO(n+ 1, 1).
(1) Suppose that Π ∈ A is not a discrete series representation of G, having height j
and signature δ. Then there exists exactly one irreducible finite-dimensional repre-
sentation F of G with signature δ so that Π is the j-th representation in the standard
sequence starting with F .
(2) Suppose that Π ∈ A is a discrete series representation with signature δ ∈ {±}.
Then n is odd, and there exists a unique irreducible finite-dimensional representation
F of G with signature +, so that Π is the n+1

2
-th representation in the standard

sequence starting with F and with F ⊗ χ−.

Remark II.13. The last representation in the standard sequence starting at an irre-
ducible finite-dimensional representation F ∈ A is tempered.
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II.4.4 The θ-stable and enhanced θ-stable parameters of irreducible rep-
resentations

We summarize the results in [11, Chap. 14] and give a parametrization of irreducible
subquotients of the principal series representations Iδ(V, λ) of the group G = SO(n+
1, 1) in terms of cohomological parabolic induction.

We recall quickly cohomological parabolic induction. A basic reference is Vogan
[19] and Knapp–Vogan [5]. We begin with a connected real reductive Lie group G.
Let K be a maximal compact subgroup, and θ the corresponding Cartan involution.
Given an element X ∈ k, the complexified Lie algebra

gC = Lie(G)⊗R C

is decomposed into the eigenspaces of
√
−1 ad(X), and we write

gC = u− + lC + u

for the sum of the eigenspaces with negative, zero, and positive eigenvalues. Then
q := lC + u is a θ-stable parabolic subalgebra with Levi subgroup

L = {g ∈ G : Ad(g)q = q}. (2.13)

The homogeneous space G/L is endowed with a G-invariant complex manifold struc-
ture such that its holomorphic cotangent bundle is given as G×L u. As an algebraic
analogue of Dolbeault cohomology groups for G-equivariant holomorphic vector bun-
dle over G/L, Zuckerman introduced a cohomological parabolic induction functor
Rj

q(· ⊗ Cρ(u)) (j ∈ N) from the category of (l, L ∩ K)-modules to the category of
(g, K)-modules. We adopt here the normalization of the cohomological parabolic
induction Rj

q from a θ-stable parabolic subalgebra q = lC + u so that the Z(g)-
infinitesimal character of the (g, K)-module Rj

q(F ) equals

the Z(l)-infinitesimal character of the l-module F

modulo the Weyl group via the Harish-Chandra isomorphism.

For each i with 0 ≤ i ≤ [n+1
2
], there are θ-stable parabolic subalgebras qi ≡ q+i

= (li)C + ui and q−i = (li)C + u−i in gC = Lie(G) ⊗R C such that qi and q−i contain
a fundamental Cartan subalgebra h. The Levi subgroup Li = NG(qi) of the θ-stable
parabolic subalgebra qi and q−i is isomorphic to Li = SO(2)i × SO(n− 2i+ 1, 1).

We set

Λ+(N) := {(λ1, · · · , λN) ∈ ZN : λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0}.
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For ν = (ν1, · · · , νi) ∈ Zi, µ ∈ Λ+([n
2
] − i + 1), and δ ∈ {+,−}, we consider an

irreducible finite-dimensional Li-module

FO(n−2i+1,1)(µ)δ ⊗ Cν

and define an admissible smooth representation of G of moderate growth, whose
underlying (g, K)-module is given by the cohomological parabolic induction

RSi
qi
(F SO(n−2i+1,1)(µ)δ ⊗ Cν+ρ(ui)) (2.14)

of degree Si, where we set

Si := dimC(ui ∩ kC) = i(n− i). (2.15)

It is denoted by
(ν1, · · · , νi || µ1, · · · , µ[n

2
]−i+1)δ.

We note that if i = 0 then (|| µ1, · · · , µ[n
2
]+1)δ is finite-dimensional.

Definition II.14. We call (ν1, · · · , νi || µ1, · · · , µ[n
2
]−i+1)δ the θ-stable parameter

of the representation RSi
qi
(FO(n−2i+1,1)(µ)δ ⊗ Cν+ρ(ui)).

Remark II.15. By [11, Chaps. 14 and 16], the double bars || in the θ-stable parameter
of a representation in A of height i are before the i+ 1-th entry.

Remark II.16. In the introduction we refer to (µ, i, δ) as the enhanced θ-stable pa-
rameter of the representation with θ-stable parameter (µ1, · · · , µi || µi+1, · · · , µ[n

2
]+1)δ

Example II.17. (1) An irreducible finite-dimensional representation FG(µ)δ has
the θ-stable parameter (||µ1, µ2, . . . , µ[n

2
]+1)δ.

(2) The θ-stable parameter of a representation of height i with trivial infinitesimal
character ρ is

(0, 0, . . . , 0 || 0, . . . , 0)δ
where the double bars || are before the i + 1-th zero (see [11, Chap. 14,
Sect. 9.3]).

(3) The representations Π in A with θ-stable parameter (λ1, λ2, . . . , λi || 0, . . . , 0)δ
are unitary and are often referred to as Aq(λ)δ. There exists a finite-dimensional
representation V of G so that H∗(g, K; Π⊗ V ) ̸= {0}, see [21].
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II.4.5 The Hasse and Standard sequences in θ-stable parameters.

We set m := [n+1
2
], namely n = 2m − 1 or 2m. Let F = FG(s0, . . . , s[n

2
])δ be an

irreducible finite-dimensional representation of G = SO(n + 1, 1), and Ui ≡ Ui(F )
(0 ≤ i ≤ [n+1

2
]) be the Hasse sequence with U0 ≃ F . In [11, Chap. 14] we show:

Theorem II.18. Let n = 2m and 0 ≤ i ≤ m.

(1) (Hasse sequence) Ui(F ) ≃ (s0, · · · , si−1||si, · · · , sm)(−1)i−siδ.

(2) (standard sequence) Ui(F )⊗ χi
− ≃ (s0, · · · , si−1|| si, · · · , sm)(−1)siδ.

The case n odd is given similarly as follows.

Theorem II.19. Let n = 2m− 1, and 0 ≤ i ≤ m− 1.

(1) (Hasse sequence) Ui(F ) ≃ (s0, · · · , si−1|| si, · · · , sm−1)(−1)i−siδ.

(2) (standard sequence) Ui(F )⊗ χi
− ≃ (s0, · · · , si−1|| si, · · · , sm−1)(−1)siδ.

III The restriction of representations of SO(n+1, 1)

in A to the subgroup SO(n, 1)

In this section we discuss the branching law for the restriction of irreducible rep-
resentations Π ∈ A of SO(n + 1, 1) to the subgroup SO(n, 1). We state it for
infinite-dimensional representations in Langlands parameter and θ-stable parame-
ters as well in the language of height and signature.A branching law for irreducible
representations without the assumption Π ∈ A will appear in [12].

III.1 Branching laws for finite-dimensional representations

We first recall the branching laws for finite-dimensional representations. As in the
classical branching law for SO(N) ↓ SO(N − 1) the irreducible decomposition
of finite-dimensional representations of SO(N, 1) when restricted to the subgroup
SO(N − 1, 1) is as follows:
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Theorem III.1 (branching rule for SO(N, 1) ↓ SO(N − 1, 1)). Let N ≥ 2. Sup-
pose that (λ1, · · · , λ[N+1

2
]) ∈ Λ+([N+1

2
]) and δ ∈ {+,−}. Then the irreducible finite-

dimensional representation FO(N,1)(λ1, · · · , λ[N+1
2

])δ of SO(N, 1) decomposes into a

multiplicity-free sum of irreducible representations of SO(N − 1, 1) as follows:

F SO(N,1)(λ1, · · · , λ[N+1
2

])δ|SO(N−1,1) ≃
⊕

F SO(N−1,1)(ν1, · · · , ν[N
2
])δ,

where the summation is taken over (ν1, · · · , ν[N
2
]) ∈ Z[N

2
] subject to

λ1 ≥ ν1 ≥ λ2 ≥ · · · ≥ νN
2
≥ 0 for N even,

λ1 ≥ ν1 ≥ λ2 ≥ · · · ≥ νN−1
2

≥ λN+1
2

for N odd.

Example III.2. We proved the branching rule for the restriction of the representa-
tions of SO(n, 1) on the space of harmonic polynomials in [9, Prop. 2.3].

III.2 Symmetry breaking operators

Irreducible infinite-dimensional representations of G typically do not decompose into
a direct sum of irreducible representations of G when restricted to a noncompact
subgroup G′, see [7] for details. To obtain information about the restriction and the
branching laws we have to proceed differently.

For a continuous representation Π of G on a complete, locally convex topological
vector space H, the space H∞ of C∞-vectors of H is naturally endowed with a
Fréchet topology, and (Π,H) induces a continuous representation Π∞ of G on H∞.
If Π is an admissible representation of finite length on a Banach space H, then
the Fréchet representation (Π∞,H∞), which we refer to as an admissible smooth
representation, depends only on the underlying (g, K)-module HK . In the context of
asymptotic behaviour of matrix coefficients, these representations are also referred
to as an admissible representations of moderate growth [22, Chap. 11]. We shall
work with these representations and write simply Π for Π∞. We denote by Irr(G)
the set of equivalence classes of irreducible admissible smooth representations. We
also sometimes call these representations “irreducible admissible representations” for
simplicity.

Given another admissible smooth representation π of a reductive subgroup G′,
we consider the space of continuous G′-intertwining operators (symmetry breaking
operators)

HomG′(Π|G′ , π).
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If G = G′ then these operators include the Knapp–Stein operators [4] and the differ-
ential intertwining operators studied by B. Kostant [13]. Including the general case
where G ̸= G′, we define now the multiplicity of π occurring in the restriction Π|G′

as follows.

Definition III.3 (multiplicity). For G ⊃ G′, we say

m(Π, π) := dimC HomG′(Π|G′ , π)

the multiplicity of π occurring in the restriction Π|G′ .

A finiteness criterion and a uniformly boundedness criterion are proved in [8,
Thms. C and D]. Moreover, by a result of B. Sun and C. B. Zhu [17], our assumptions
imply that the multiplicities are either 0 or 1. These multiplicities yield important
information of the restriction of Π to G′, as we will see in the applications in the
next part of the article.

III.3 Branching laws for representations in A :
First formulation

Theorem III.4. Let F be an irreducible finite-dimensional representations of G =
SO(n + 1, 1), and {Πi(F )} be the standard sequence starting at Π0(F ) = F . Let F ′

be an irreducible finite-dimensional representation of the subgroup G′ = SO(n, 1),
and {πj(F ′)} the standard sequence starting at π0(F

′) = F ′. Assume that

HomG′(F |G′ , F ′) ̸= {0}.

Then symmetry breaking for the representations Πi(F ), πj(F
′) in the standard se-

quences is presented graphically in Diagrams III.1 and III.2. In the first row are rep-
resentations of G, in the second row are representations of G′. Nontrivial symmetry
breaking operators are represented by arrows, namely, there exist nonzero symmetry
breaking operators between 2 representations if and only if there are arrows in the
Diagrams III.1 and III.2.

III.4 Branching laws for representations in A:
Second formulation

Let FG(µ)δ and FG′
(ν)δ be irreducible finite-dimensional representations in A of

G = SO(n+1, 1), respectively of the subgroup G′ = SO(n, 1), where µ ∈ Λ+([n+2
2
]),

ν ∈ Λ+([n+1
2
]), and δ ∈ {+,−}.
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Diagram III.1: Symmetry breaking for SO(2m+ 1, 1) ↓ SO(2m, 1)

Π0(F ) Π1(F ) . . . Πm−1(F ) Πm(F )
↓ ↙ ↓ ↙ ↙ ↓ ↙ ↓

π0(F
′) π1(F

′) . . . πm−1(F
′) πm(F

′)

Diagram III.2: Symmetry breaking for SO(2m+ 2, 1) ↓ SO(2m+ 1, 1)

Π0(F ) Π1(F ) . . . Πm−1(F ) Πm(F ) Πm+1(F )
↓ ↙ ↓ ↙ ↙ ↓ ↙ ↓ ↙

π0(F
′) π1(F

′) . . . πm−1(F
′) πm(F

′)

Suppose that
HomG′(FG(µ)δ|G′ , FG′

(ν)δ) ̸= {0}.
If n = 2m, then µ = (µ0, · · · , µm+1) ∈ Λ+(m+ 1) and ν = (ν0, · · · , νm) ∈ Λ+(m)

and
µ0 ≥ ν1 ≥ µ2 ≥ · · · ≥ µn ≥ νn ≥ µn+1 = 0. (3.16)

If n = 2m + 1, then µ = (µ0, · · · , µm+1) ∈ Λ+(m + 1) and ν = (ν0, · · · , νm) ∈
Λ+(m+ 1) and

µ0 ≥ ν1 ≥ µ2 ≥ · · · ≥ µn ≥ νn ≥ 0. (3.17)

We represent the result graphically in the following theorem by representing non-
trivial symmetry breaking operators by arrows connecting the θ-stable parameters
of the representations.

Theorem III.5. Two representations in the standard sequences of FG(µ)δ respec-
tively FG′

(ν)δ have a nontrivial symmetry breaking operator if and only if the θ-stable
parameters of the representations satisfy one of the following conditions:
First case: n = 2m.

Case A

(µ0, . . . , µi || µi+1, . . . , µm+1)δ

⇓
(ν0, . . . , νi || νi+1, . . . , νm)δ
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or Case B

(µ0, . . . , µi || µi+1, . . . , µm+1)δ

⇓
(ν0, . . . , νi−1 || νi, νi+1, . . . , νm)δ

Second case: n = 2m+ 1.

Case A

(µ0, . . . , µi || µi+1, . . . , µm+1)δ

⇓
(ν0, . . . , νi || νi+1, . . . , νm+1)δ

or Case B

(µ0, . . . , µi || µi+1, . . . , µm+1)δ

⇓
(ν0, . . . , νi−1 || νi, . . . , νm+1)δ

III.5 Branching laws for representations in A:
Third formulation

We summarize the results as follows:

Theorem III.6 (branching law). Let Π and π be irreducible representations in A of
SO(n+ 1, 1) respectively SO(n, 1).

(1) Suppose first that n = 2m. Then

HomSO(n,1)(Π|SO(n,1), π) ̸= {0}

if and only if the enhanced θ-stable parameters of the representations satisfy
the following conditions:
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(a) Π and π have the same signature δ;

(b) hπ ∈ {hΠ, hΠ − 1};
(c) µ0 ≥ ν0 ≥ µ1 ≥ · · · ≥ µn ≥ νn ≥ µn+1.

(2) Suppose that n = 2m+ 1. Then

HomSO(n,1)(Π|SO(n,1), π) ̸= {0}

if and only if the enhanced θ-stable parameters of the representations satisfy
the following conditions:

(a) they have the same signature δ;

(b) hπ ∈ {hΠ, hΠ − 1};
(c) µ0 ≥ ν0 ≥ µ1 ≥ · · · ≥ µn ≥ νn ≥ 0.

IV Gross–Prasad conjectures for tempered repre-

sentations of (SO(n + 1, 1), SO(n, 1))

In this section we discuss the Gross–Prasad conjectures for irreducible tempered
representations in A which are nontrivial on the center. This is a generalization
of the results for irreducible tempered representations with infinitesimal character ρ
which are nontrivial on the center in [11, Chap. 11]. For simplicity we discuss here
only the case n = 2m.

Recall that for n = 2m, tempered representations Πm of G = SO(n + 1, 1) in A
are irreducible unitary principal series representations [11, Prop. 15.5], with height
m, signature δ and θ-stable parameter

(µ1, µ2, . . . , µm || 0)δ.

The tempered representations πm of G′ = SO(n, 1) in A are discrete series represen-
tations with height m. Their signature is not unique and their θ-stable parameter
is

(ν1, ν2, . . . , νm ||)δ.

We now assume that the representation Π = Πm is nontrivial on the center. These
data determine Vogan packets V P (Πm) and V P (πm) of the representations Π of G,

24



respectively π of the subgroup G′. By Theorem III.6, there is a nontrivial symmetry
breaking operator

B : Π → π

if and only if the interlacing conditions are satisfied. Following exactly the steps
of the algorithm by Gross and Prasad outlined in [10], see also [11, Chap. 11], we
conclude that the Gross–Prasad conjecture predicts correctly that the pair (Π, π) in
(V P (Πm), V P (πm)) has a nontrivial symmetry breaking operator.

Together with the results about tempered principal series representations in [11,
Chap. 11, Sect. 4] this completes the proof of the following:

Theorem IV.1. The Gross–Prasad conjectures are correct for tempered representa-
tions of the pair (G,G′) = (SO(n+1, 1), SO(n, 1)) which are nontrivial on the center
of G and G′.

Remark IV.2. The third formulation of the branching laws (Theorem III.6) shows
that branching for representations in A “interpolate” between the classical branching
laws of finite-dimensional representations and the branching laws of Gross–Prasad
for tempered representations.

V Distinguished representations and periods.

We discuss periods of a pair of irreducible representations Π of G = SO(n+1, 1) and
π of the subgroup G′ = SO(n, 1). Using the branching law (Theorem III.4), we see in
this section that we can prove that the representations Aq(λ) ∈ A are distinguished
for some orthogonal group H.

V.1 Periods

We recall from [11, Thm. 5.4] that for representations Π, π of a real reductive Lie
group G, respectively of a reductive subgroup G′, the space of symmetry breaking
operators

HomG′(Π|G′ , π∨)

and the space of G′-invariant continuous linear functionals

HomG′(Π⊠ π,C)
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are naturally isomorphic to each other. Thus we may use symmetry breaking oper-
ators to construct G′-invariant continuous linear functionals. This technique allows
us to obtain G′-invariant continuous linear functionals not only for unitary represen-
tations but also for nonunitary representations.

Definition V.1. A nontrivial linear functional F on Π⊠π is called a period of Π⊠π
if F is invariant under the diagonal G′-action, i.e., F ∈ HomG′(Π⊠ π,C).

We say that vector Φ⊗φ ∈ Π⊠ π is a test vector for the period F if Φ⊗φ is not
in the kernel of F . If the period is nontrivial on a test vector Φ⊗ φ, we refer to its
image as the value of the period on Φ⊗ φ.

Remark V.2. If (Π, π) is a pair of discrete series representations for the symmetric
pairs (G1(R), G2(R)) we may consider a realization of Π⊠ π in L2(G1(R)×G2(R)).
The integral ∫

G2(R)
Φ(h)φ(h)dh

converges for some smooth vectors (Φ, φ) ∈ Π⊠π in the minimal K-types and so if it
is nonzero it defines a period integral for the discrete series representations Π⊠π [18].
If the representation Π ⊠ π is not tempered the integral usually does not converge,
but nevertheless we can consider periods via symmetry breaking operators.

The next theorem describes for the pair (G,G′) = (SO(n + 1, 1), SO(n, 1)) the
θ-stable parameters of the representations in A which have a nontrivial period
HomG′(Π ⊠ π,C). Recall that the θ-stable parameter of a representation Π ∈ A
of height i is of the form

1. (µ1, . . . , µi || µi+1, . . . , 0)δ if G = SO(2m+ 1, 1),

2. (µ1, . . . , µi || µi+1, . . . , µm)δ if G
′ = SO(2m, 1).

Theorem V.3. Suppose that Π and π are representations of G, respectively G′ in
A of height i respectively j. The following statements are equivalent:

(i) The representation Π⊠ π has a nontrivial G′-period;

(ii) Π and π have the same signature, j = i or i− 1 and their θ-stable parameters
satisfy the interlacing conditions of the branching result in Theorem III.6.

In [11, Props. 10.12 and 10.30] we proved furthermore for (O(n+ 1, 1), O(n, 1)).
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Theorem V.4. If Π and π are representations of O(n+1,1) respectively O(n,1) with
trivial infinitesimal character ρ such that Π ⊗ π has a nontrivial G′-period. Then
there is a test vector for a nonzero period in the minimal K-type Π⊠ π.

Remark V.5. We expect that Theorem V.4 also holds for unitary representations in
A.

Remark V.6. Similar results for cohomologically induced representations of other
pairs (G,G′) of reductive groups were obtain by B. Sun [16].

V.2 Distinguished representations

Let G be a reductive group, and H a reductive subgroup. We regard H as a subgroup
of the direct product group G×H via the diagonal embedding H ↪→ G×H.

Definition V.7. Let ψ be a one-dimensional representation of H. We say an ad-
missible smooth representation Π of G is (H,ψ)-distinguished if

HomH(Π⊠ ψ∨,C) ≃ HomH(Π|H , ψ) ̸= {0}.

If the character ψ is trivial, we say Π is H-distinguished.

Repeated application of Theorem III.6 proves

Theorem V.8. Suppose that Π = Aq(λ) ∈ A is a representation of SO(n+ 1, 1) of
height h. Then Π is SO(n+ 1− h, 1)-distinguished.

Remark V.9. For a different proof and perspective of this theorem see [6].

Since the representations Πi,+ have height i (see Example II.10), this generalizes
the following theorem proved in [11, Thm. 12.4].

Theorem V.10. Let 0 ≤ i ≤ n
2
. Then the representations Πi,δ (δ ∈ {+,−}) of

G = SO(n+ 1, 1) are SO(n+ 1− i, 1)-distinguished.

In the remainder of the section we recall a formula for the period of representations
with trivial infinitesimal character ρ of the pair

(G,H) = (SO(n+ 1, 1), SO(m+ 1, 1)) for m ≤ n.
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We use here the notation of Example II.10 in Section II.4.2.
The period can be computed by applying the composition of the regular symmetry

breaking operators that we constructed in [11, Chap. 12, Sect. 1] with respect to the
chain of subgroups

G = SO(n+ 1, 1) ⊃ SO(n, 1) ⊃ SO(n− 1, 1) ⊃ · · · ⊃ SO(m+ 1, 1) = H, (5.18)

to test vectors. We write simply Πi for Πi,+. We recall from [11, Prop. 14.44] that

Πi ≡ Πi,+ has a minimal K-type Kmin(i,+) =
∧i(Cn+1

)⊠ 1.
Let v ∈

∧i(Cn+1) be the image of 1 ∈ C via the following successive inclusions:∧i(Cn+1) ⊃
∧i−1(Cn) ⊃ · · · ⊃

∧i−ℓ(Cn+1−ℓ) ⊃ · · · ⊃
∧0(Cn+1−i) ≃ C ∋ 1,

and we regard v as an element of the minimal K-type Kmin(i,+) of Πi.

Theorem V.11 ([11, Thm. 12.5]). Let Πi be the irreducible representation of G =
SO(n + 1, 1), with infinitesimal character ρ, height i and signature +. Let v be the
normalized element of its minimal K-type as above. For 0 ≤ i ≤ n, the value F (v)
of the SO(n+ 1− i, 1)-period F on v ∈ Πi is

π
1
4
i(2n−i−1)

((n− i)!)i−1
×

{
1

(n−2i)!
if 2i < n+ 1,

(−1)n+1(2i− n− 1)! if 2i ≥ n+ 1.

VI Bilinear forms on (g, K)-cohomologies induced

by symmetry breaking operators

Consider now the induced map by a symmetry breaking operator

T : Π → π

on (g, K)-cohomologies of a pair of representations Π and π. In what follows, by
abuse of notation, we denote an admissible smooth representation and its underlying
(g, K)-module by the same letter when we discuss their (g, K)-cohomologies.

Recall that a theorem of Vogan–Zuckerman [21] states that every irreducible
unitary representation Π of SO(n+ 1, 1) with

H∗(g, K; Π⊗ V ) ̸= {0}
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for a finite-dimensional representation V is of the form Π = Aq(λ). If we assume
that

H∗(g, K; Π) ̸= {0}
then Π is isomorphic to a unitary irreducible representation with infinitesimal char-
acter ρ i.e., it is of the form Aq. See [11, Chap. 14, Sect. 9.4] for O(n+ 1, 1).

Note also that an irreducible representation Π with

H∗(g, K; Π⊗ V ) ̸= {0}

for some finite-dimensional representation V is not always unitarizable.

Suppose that Π is a principal series representation of a connected reductive Lie
group with nonsingular integral infinitesimal character. If the (g, K)-cohomology of
Π ⊗ V is nonzero the highest weight of V satisfies the conditions in [1, Chap. III,
Thm. 3.3]. For representations of O(n+ 1, 1) the situation is more complicated and
the finite-dimensional representation V is also described in [11, Chap. 16, Sect. 4].
Using the results in [11, Chap. 15] about the restriction of representations of O(n+
1, 1) to SO(n+ 1, 1) we obtain a formula for the representation V for SO(n+ 1, 1).

Let (G,G′) = (SO(n+1, 1), SO(n, 1)), and Π, π be representations of G and G′,
respectively with

H∗(g, K; Π⊗ V ) ̸= {0}
and

H∗(g′, K ′; π ⊗ V ′) ̸= {0},
where V and V ′ are irreducible finite-dimensional representations of G and G′, re-
spectively. Suppose in addition that

1. HomG′(V |G′ , V ′) ̸= {0};

2. Π and π have the same height i;

3. Π and π have the same signature δ.

A nontrivial symmetry breaking operator T : Π ⊗ V → π ⊗ V ′ induces a canonical
homomorphism

T ∗ : Hj(g, K; Π⊗ V ) → Hj(g′, K ′; π ⊗ V ′) (6.19)

and a bilinear form

BT : H
j(g, K; Π⊗ V )×Hn−j(g′, K ′; (π ⊗ V ′)∨ ⊗ χ(−1)n) → C for all j.

where (π ⊗ V ′)∨ denotes the contragredient representation of π ⊗ V ′.

The formulas in [11, Chap. 16, Sect. 3] and [1, Chap. III, Thm. 3.3] imply
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Theorem VI.1. Suppose that Π and π are principal series representations and that

1. H∗(g, K,Π⊗ V ) ̸= {0} and H∗(g′, K ′, π ⊗ V ′) ̸= {0};

2. HomG′(V |G′ , V ′) ̸= {0};

3. Π and π have the same height i;

4. Π and π have the same signature δ;

5. there exists a nontrivial symmetry breaking operator T : Π → π.

The symmetry breaking operator T induces a nontrivial homomorphism

T i : H i(g, K; Π⊗ V ) → H i(g′, K ′; π ⊗ V ′)

and hence a nontrivial bilinear form

BT : H
i(g, K; Π⊗ V )×Hn−i(g′, K ′; (π ⊗ V ′)∨χ(−1)n) → C.

The following theorem provides a criterium for the nonvanishing of this bilinear
form on the (g, K)-cohomology of representations with trivial infinitesimal character.

Theorem VI.2 ([11, Thm. 12.11]). Let T : X → Y be a (g′, K ′)-homomorphism,
where X is a (g, K)-module Aq and Y is a (g′, K ′)-module Aq′. Let U be the repre-
sentation space of the minimal K-type µ in X, and U ′ that of the minimal K ′-type
µ′ in Y . We define a K ′-homomorphism by

ϕT := pr ◦ T |U : U → U ′. (6.20)

(1) If ϕT is zero, then the homomorphisms T∗ : H
j(g, K;X) → Hj(g′, K ′;Y ) and

the bilinear form BT vanish for all degrees j ∈ N.

(2) If ϕT is p-nonvanishing at degree j, then T∗ and the bilinear forms BT are
nonzero for this degree j.

This theorem together with our results [11] implies

Theorem VI.3 (cf. [11, Thm. 12.13]). Let (G,G′) = (SO(n + 1, 1), SO(n, 1)),
0 ≤ i ≤ n, and δ ∈ {+,−}. Let T be the symmetry breaking operator Πi,δ → πi,δ
given in Theorem III.4

30



(1) T induces bilinear forms

BT : H
j(g, K; Πi,δ)×Hn−j(g′, K ′; πn−i,(−1)nδ) → C for all j.

(2) The bilinear form BT is nonzero if and only if j = i and δ = (−1)i.

Remark VI.4. A theorem similar to Theorem VI.3 was proved by B. Sun [15] for
the (g, K)-cohomology with nontrivial coefficients of irreducible tempered represen-
tations of the pair

(GL(n,R), GL(n− 1,R)).
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