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Abstract We consider the meromorphic continuation of an integral transform that
gives rise to a conformally covariargymmetry breaking operatak, , between

the natural family of representatiohn$A) and J(v) of the indefinite orthogonal
groupG = O(p+1,q+ 1) and its subgroug’ = O(p,q+ 1), respectively, realized

in function spaces on the conformal compactifications of flat pseudo-Riemannian
manifoldsRP9 > RP-19, In this article, we determine explicitly the image of the
renormalized operatak, , for all (A,v) € C?. In particular, the complex parame-
ters (A, v) for which the image ofy, , coincides with{0}, C, finite-dimensional
representations, the minimal representation, or discrete series representations for
pseudo-Riemannian space forms are explicitly classified. A graphic description of
the K-types of the image is also provided. Our results extend a part of the prior
results of Kobayashi and Speh [Memoirs of Amer. Math. Soc. 2015] in the Rieman-
nian case wherg= 0.
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2 Toshiyuki Kobayashi and Alex Leontiev

1 Introduction

Let (1, .5#7) be a representation of a gro@ and(1,.7#;,) the one of a subgroup
G'. A symmetry breaking operatés a linear map

T: ot — oy

that intertwines the actions of the subgroGh Then the image off is a G-
submodule oft’.

In the last decade, symmetry breaking operators for infinite-dimensional repre-
sentations of reductive grou@ > G’ have been actively studied as a new line of
investigation on branching problems of representation théfiyI2 22 23 and
also interacted with some other areas such as automorphic form theory or conformal
geometry among others, sé@[]].

1.1 Conformal representationgA) and J(v) associated with
pseudo-Riemannian manifold&Pd > RP~1.d

In this article we discuss symmetry breaking operators motivated from conformal
geometry. LeG = O(p+1,q+ 1) be the automorphism group of the quadratic form
onRP+9+2 of signature(p+1,q+ 1) defined by

2 2 2 2
Qp+1,g+1(X) =X5+ -+ +Xp = Xpy1— - — Xpigr1-

Let RP9 be the(p+ g)-dimensional vector spad@P*t? endowed with flat pseudo-
Riemannian structure

A€ =dG +- +dxg —dxg, g —-- — .

of signature(p,q). Then, the grougs acts isometrically ofiRP+14+1, and confor-
mally on the conformal compactification

X = (P x F)/{+1}

of RPY, which is the direct product op- and g-spheres equipped with pseudo-
Riemannian structurgsp @ (—gs), modulo the direct product of antipodal maps,
see Segal4, Chap. Il]. By the general theory of conformal groufi§[Sect. 2],
one has a natural family of representatidid) of G on C*(X) with parameter
A € C. We normalizel (A) such that (0) is the space of sections, ah@imX) is
the space of densities. Via the twisted pull-bagk C”(X) — C(RP9) of the con-
formal embedding : RP9 — X, we may realizé (A) on the subspacg (C”(X))
of C*(RPY), seel[d (2.8.6)].

Similarly, another grou’ := O(p, g+ 1) acts on the conformal compactification
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Y= (xS /{+1}

of the flat pseudo-Riemannian manifdkP~19, and one has a natural family of
representationd(v) of G onC*(Y) forv € C.

Thus we have &-modulel (A) and a modulg(v) of the subgrou&’ with com-
plex parameterd andv. The object of our study is symmetry breaking operators

I(A) = J(v)

with focus on their images.

1.2 Degenerate principal series representations

The representatioi(A) of G= O(p+1,q+ 1) defined in SectioL.A by using con-
formal geometry may be interpreted ademyenerate principal series representation
of the real reductive Lie grou@ as follows. LetP = MAN, be a maximal parabolic
subgroup ofG with Levi part MA ~ O(p,q) x {+1} x R. For a characte€, of
A~R, we regard it as that d? via the quotient map — P/MN; ~ A, and form a
G-equivariant line bundle

f)\ :GXPCA *)G/P

Then the (unnormalized) induced representatiof (it} ) is realized in the Fechet
space of smooth sections for the line bundt¢ — G/P. Our parametrization is
chosen in away that If§{C, ) contains a finite-dimensional submodule-ik € 2N
and a finite-dimensional quotientAif— (p+ q) € 2N. Then we have an isomorphism
of G-modules

I(A) ~ IndS(C,).

The realization om; (C*(X)) (C C*(RP*9)) is referred to as thM-pictureof I (A).
Similarly tol(A), we have an isomorphism &-modules

J(v) ~IndS (Cy),

where IncS,’ (Cy) is the (unnormalized) induced representatioGbfrom a charac-
ter C, of a maximal parabolic subgrog with Levi partO(p—1,q) x {+1} x R.

1.3 Construction of symmetry breaking operators

We realizeRP~19 as a submanifold dRP9 by lettingx, = 0. This determines the
embedding¥ — X between their conformal compactifications, @fd= O(p,q+
1) - G=0(p+1,q+1) between conformal groups. Applying the general results
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proven in Kobayashi—-Spe2 Chap. 3] to our specific setting, we see that, for
any symmetry breaking operat®r. 1(A) — J(v), there exists a distributioky €
2' (RPT9) such that for allf € 1(A)

T 00) =Resiy00 [ Kr(x-y)(5; H))dy )

wherex' = (X1, ,Xp,+* , Xp+q) € RP"14andx = (X1, ,Xp1q) € RPY,
The distribution kerneKy satisfies certain covariance properties, which characterize
thatT is a G'-intertwining operatori(e., T is a symmetry breaking operator), see
22, Thm. 3.16].

By [21 Lem. 2.22] T is adifferentialsymmetry breaking operator if Su@fr) =
{0}. In contrastT is called aregular symmetry breaking operatofdg Def. 3.3])
if Supp(Kr) contains an interior point, or equivalently, if Sui ) = RPT9 in our
setting. Differential symmetry breaking operatd(a ) — J(v) in our setting were
classified in[[9], by using the F-methodd] [, see also[IJ for a generalization.
On the other hand, there exists a unique holomorphic family of symmetry breaking
operators, to be denoted By, ,, up to scalar multiplication, such that, , is a
regular symmetry breaking operator for an open dense subgat of € C?, see
RemarkId below. It is constructed as follows. We set

Qpq(X) ==X+ +X5—X0 g — - — X5 .
Theorem 1 (regular symmetry breaking operator). Suppose thap,q > 1. We let
(G,G):=(O(p+1,g+1),0(p,a+1))

as before. The linear operatak, ,: I(A) — J(v), initially defined as the integral
operator(@) with locally integrable kernel function

1
r(2)r () r ()

on RPA for Rev <« 0 and Re(A 4 v) > 0, intertwines the action of the subgroup
G/, and extends to a family of symmetry breaking operators that depend holomor-
phically on(A,v) in the entireC2.

A4v—p— _
oy = x| TP YQpg) Y (2)

Remark 2 The Gamma factor i) is chosen in an optimal way in the sense that

e A, , depends holomorphically oid,v) € C?;
o the set of the zeros df, , is a discrete subset ii% (see Theoreid) below.

Remark 3 Theorenfl] gives a generalization of Kobayashi—Sp&#[Thm. 1.5]
which treated they= 0 case. We note that the normalizing Gamma factor is different
intheq =0 case.
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1.4 Image of the symmetry breaking operatafs ,,

The goal of this article is to determine the image of the holomorphic continuation
of the regular symmetry breaking operator

Ayyi1(A) =d(v)

forall (A,v) € C? given in Theorerfll We note that(A ) is aG-module and(v) is
aG'-module and thaG 2 G'. This sort of problem was first studied in Kobayashi—
Speh P23 Chap. 13], and a complete solution was given in the Riemannian case
whereq = 0. In this article, we shall consider a more general case wdner8. This
means thaRPY is of indefinite metric and the conformal gro@= O(p+1,q+1)

has real rank greater than one. For simplicity of the exposition, we confine ourselves
to the case > 1 in this article.

Our main theorem (Theorefid) will be formulated in Sectiol after preparing
some combinatorial notation. As an introduction, we avoid complicated definitions
in the general case, and focus on specific features of The@Bimstead, giving
explicit criteria for the parametén , v) to fulfill the following conditions:

(1) ImaggA, ,) = {0}, i.e, A, , vanishes (Theore@);

(2) Imag€A, ,) is finite-dimensional (Theore);

(3) ImaggA, ,) is the trivial one-dimensional representation (Corol[@ry

(4) ImaggA, ,) is the minimal representation (Theorfn

(5) Imag€A, ,) is a discrete series for the pseudo-Riemannian space form (Theo-

rem@).

(1) Vanishing condition of A, ,,.

In the theory of symmetry breaking operators, it is an important question to deter-
mine the zeros and poles of the meromorphic continuation of the regular symmetry
breaking operators. Once it is normalized as in Ref@ladk particular importance is
to find precisely the parameters for which the holomorphic continuation of the nor-
malized regular symmetry breaking operator vanishes. In those places, we expect
that the representations are reducible and that the dimension of symmetry breaking
operators jumps up, sd&g, Thm. 11.4] for instance.

In the casey = 0, it is proved in[E2 Thm. 8.1] that the zeros of the normalized
regular symmetry breaking operator are given by the following discrete set:

Leven:={(A,v)€Z?:A <v<0,A=v mod2. (3)
In the case > 1, the zeros oy, , are given as follows. For simplicity, we assume

p#1.

Theorem 4.Supposep > 2 and g > 1. Then the following two conditions on
(A,v) € C? are equivalent:

(i) Ay =0.

@iy (A,v)e//nlll.
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The definition of the subset§/ and ||| will be given C? in Section3.1 For here
we present a more concrete formula of the intersectjon||| by comparing it with
Leven For this, we consider the following discrete seCif

r:={(A,v)ez?:0<vandA <v}.

Then by [[2) and [[4) below, one sees
L 27)?) U (I N (27)? if qi
//m|||: ( evenm< ))l—l( r;( )) I qISOdd (4)
Levenl! (I N(2Z 4+ 1)9) if gis even

(2) WhenisimaggA, ,) finite-dimensional?

Whereas the vanishing condition of the symmetry breaking opergiqr de-
pends on the parity o in the previous theorem, sdd){ it turns out that the con-
dition on (A,v) € C? for ImaggA, ) to be a (nonzero) finite-dimensional vector
space is independent of the paritiegpaindq as below.

Theorem 5 (finite-dimensional image).Supposé > 2 andq > 1. Then the follow-
ing two conditions orfA,v) € C2 are equivalent.

(i) ImaggA, ,: 1(A) — J(v)) is nonzero and finite-dimensional.
(i) v € 2Z,v <0andA satisfies one of the following:

e A c2Zandv < A;
e A c(C—-27.

Graphically, Theorerl corresponds to the colored red left corner bounded by the
“pbarrier A™*" in Case A of TheoremBQ 28 31 and3Tin later sections. We note
that if one of (therefore both of) the equivalent conditions (i) and (ii) in Thedem
are fulfilled, then Image, , ) is an irreducible representation of the subgr@ip

Remark 6 See 3 Thm. 13.1] for an analogous theorem in the case 0 and
[22 Thm. 14.9] for some application.

(3) WhenislmaggA,) , ) isomorphic to the trivial one-dimensional representa-
tion?

The trivial one-dimensional representatiorGfoccurs as a subrepresentation of
the degenerate principal series representation with v = 0. Then the equivalence
(i) < (iii) in the following corollary is an immediate consequence of Theofgm
with v = 0. The equivalence (& (ii) follows from a trick in Kobayashi—-Spe@g
Chap. 14].

Corollary 7 Suppose > 2andq > 1. Then the following three conditions are C
are equivalent:

(i) ImaggA, o: 1(A) — J(0)) is the trivial one-dimensional representation@ft
(i) The regular symmetry breaking operatby o induces a nonzerG-intertwining
operator
[(A) = C*(G/G). (5)
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(i) AeC—{-2,—-4,-6,---}.
In Corollary[d the resultingG-intertwining operatorf) is nothing but a (gener-
alized) Poisson transform to the semisimple symmetric s@¢&, which is the

pseudo-Riemannian space fon‘vlﬁq+1 of signature(p,q+ 1) with positive con-
stant curvature.

(4) WhenisimaggA,) ,) isomorphic to the minimal representation?

For p+q odd (> 7), there exists an irreducible unitary representatiorof

= O(p,q+ 1), referred to as theninimal representationHere by minimal rep-
resentation we mean that the annihilator of the smooth representation the
enveloping algebrll (gc¢) is the Joseph idedB]. This is the unique irreducible uni-
tary representation d& whose Gelfand—Kirillov dimension is equal p+ q— 2,
which is smaller than that of any other infinite-dimensional unitary representation of
G'. Itis remarkable that our symmetry breaking operatgr, constructs the mini-
mal representation as itsimage whehrg=1 mod 4 by a specific choice Gk, v)
as follows.

Theorem 8 (minimal representation). Suppose thap+ g = 4k+ 1 for somek € Z
with k > 2. If we take
(A,v):=(2k+1,2k—-1),

then the underlyingg’, K’)-module ofimageA, ,,: 1(A) — J(v)) is isomorphic to
that of the minimal representatiow of the subgroupG’ = O(p,q+ 1). In par-
ticular, A ,f is a Yamabe harmonic on the pseudo-Riemannian manifotd
(P x ) /{£1} forany f € I(A).

The last statement of Theordifiollows from the geometric construction of the min-
imal representation proved ifi§ Thms. 3.4.2 and 3.6.1]. See Case E in Theorem
[2dfor a graphic interpretation of Theordgh

(5) When is ImaggA, ,) isomorphic to a discrete series representation for a
generalized hyperboloid?

LetMg 4 be the(p+q)-dimensional pseudo-Riemannian space form of signature
(p,q) of constant sectional curvatusel (€ = +) and—1 (¢ = —), referred also to
as a generalized hyperboloid from its realization as hypersurfadeth-1:

Mg ={x€RP*9: Qp 14(x) =1},
Mpq={x€RPH1:Qpqu1(x) = —1}.

For simplicity, we treat only the cage= — here. Then the grou@’ = O(p,g+1)
acts isometrically and transitively dvi; ;. As a homogeneous space, we have the
following diffeomorphism

Mpq = O(p,q+1)/O(p,q)

Let[pq be the Laplacian of the pseudo-Riemannian manikjg,. For p > 0 and
g> 0, the Laplaciaf], q is not an elliptic operator. In this case, there exist countably
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manyL2-eigenvalues ofl, q on Mp g

given explicitly by
{V(V—2p):veZ,p<V}, (6)

see Farauff] or Strichartz[Z5. Here we set
1
p:=5(P+q-1). ()

The isometry groufs’ acts irreducibly on the Hilbert space lot-eigenfunctions of
Op,q for each eigenvalue(v — 2p). Following the same notation as [fij Sect. 5],

we write nf’fﬂ,tlp for the resulting irreducible unitary representation. The represen-

tation nf:?fp is referred to as discrete series representatidar the generalized
hyperboloidM, .

Theorem 9 (discrete series for pseudo-Riemannian space formpupposep >
2andq> 1. Letv € Z satisfy p < v. Then the underlyingg,K)-module of
ImaggA, ,: 1(A) — J(v)) is isomorphic to that of a discrete series representa-
tion for the pseudo-Riemannian space foyq if and only ifv =q+1 mod 2
andA satisfies the following conditions.
Case 1.qis even.

(A€e2Zandv <A)or (A eC—2Z).
Case 2.qis odd.

(Ae2Z+1andv <A)or (A eC—(2Z2+1)).

To see Theoreif, we use a realization offfﬂ,tlp as a subrepresentationifv)
with K-typesE;f ~ given by the barrieA; qil_v: S€e Exampl@4 Then Theorerfd
follows from a graphic description of Imagg, , ) in

Cases E, Eand g in TheorenPQ
Cases G and & in Theoren2@with v > p;
Cases C and 6z in Theoren3with v > p;
Cases B, B and B, in Theoreni33

The paper is organized as follows. In Sect@we give brief comments on
our problem from a perspective on the general problem of restrictions of repre-
sentations, in particular, for pairs of reductive grops G'. In Sectiond, we
determine Imag@\, ,: 1(A) — J(v)) for all (A,v) € C? in TheoremId when
(G,G)=(O(p+1,9+1),0(p,q+1)) with p> 2 andqg > 1. A graphic description
of TheoreniIJis given in SectiondH7 depending on the parities gfandg, from
which theorems in Introduction follow. A detailed proof of Theol@Bwill appear
elsewhere.

Notation. N:={0,1,2,---}. For two subseté andB of a set, we writtA— B :=
{a€ A:a¢ B} rather than the usual notatién B.
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2 Branching program ABC for restriction of representations

In this section, we provide some brief comments on the topic treated here from a
perspective on the general problem of restriction of (infinite-dimensional) represen-
tations of real reductive Lie groups. SE&[[L]] for more details.

2.1 Finiteness criterion for multiplicities in branching of
representations

Supposés D G’ are a pair of reductive groups ards an irreducible representation
of G. The restriction ofrt to the subgrouf®’ is no more irreducible in general as a
representation of'. If G is compact, then any irreducibleis finite-dimensional
and splits into a finite direct sum

mg= P m(m )

wed

of irreduciblesm’ of G’ with multiplicities m(rt, 7). In this case, the multiplicity
m(rT, 1) is given by

dimHomg (17, 1Ml ) = dimHomg (1, 7). 8)

However, for noncompad®’ and for infinite-dimensionatr, the restrictiorn|g
is not always a direct sum of irreducible representations, eveisifi unitary repre-
sentation ofG. In general, we need the notion of direct integral of Hilbert spaces to
give an irreducible decomposition of the restrictimgig;. Sometimes there is no con-
tinuous spectrum in the irreducible decomposition of the restrigtign even when
G’ is noncompact. Se@|[[g for the condition that the restriction| is discretely
decomposable.

For the more general case wherés nonunitary, the equality§ does not hold:
both of the spaces Hag(+,-) depend on the underlying topologies on the represen-
tation spaces ofrand .

To clarify our formulation, we recall that, associated to a continuous represen-
tation 77 of a Lie group on a Banach spacé#, a continuous representatiarf is
defined on the Fchet space?’ of C*-vectors of the Banach representation on
. Given another representation of the subgrougs’, we consider the space of
continuousG'-intertwining operatorssymmetry breaking operatgrs

Homg (1 |a, (1)) (9)

If both T and 7' are admissible representations of finite length of reductive Lie
groupsG and G/, respectively, then the dimension of the spd8ei§ determined
by the underlying g, K)-moduleri of rmand the(g’,K’)-modulery, of 7, and is
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independent of the choice of Banach globalizations becatised(77)* are deter-
mined uniquely by andr,, respectively, by the Casselman—Wallach theBi [
Chap. 11]. We denote by(7, 77') the dimension off), and call it themultiplicity
of 17 in the restriction|g .

In general, the multiplicityn(rt, ') may be infinite, even whe@' is a maximal
reductive subgroup d& andris irreducible. This happens even wh@h, G') is a
symmetric pair. By using the theory of real spherical spaces initiated in Kobayashi—
Oshimalgq], the criterion for finite-multiplicities is discovered B [2J] as follows.

Fact 10 Let (G,G’) be a pair of real reductive Lie groups, ari®c, G(.) its com-
plexification.

(1) The multiplicitym(rt, 77') is finite for all irreducible representations of G and
all irreducible representationg’ of G’ if and only if a minimal parabolic sub-
group of G’ has an open orbit on the real flag variety @f

(2) The multiplicitym(r, 77') is uniformly bounded if and only if a Borel subgroup
of G- has an open orbit on the complex flag varietyGof.

The complete classification of symmetric paifs,G') satisfying the above geo-
metric criteria was accomplished in Kobayashi-Mats{iE [The (G,G) = (O(p+
1,9+ 1),0(p,q+ 1)) satisfies the criterion in (2) (and in particular, the criterion in
(1), too), and thereforem(r, 17') is uniformly bounded. Furthermore, Sun—ZB|
proved tham(m, 1) < 1.

In the theory of symmetry breaking operators, we consider “quotient map” from
a representation of a growto that of the subgrou@’. On the other hand, one may
reverse arrows and consider “embedding map” from a representation of a subgroup
G’ to that of G, e.g., consider the following spaces:

Homg ((7)", 7°|&) or Homy (T, Tik| g 1) -

We observe that there are canonical injective maps:

Home: (7)), (7)"ler) < Homg (e, 77"),
Homy: i ((7)gr, (T )kl g kr) © HOMy o (il gr s Tier) »

where the symbol stands for the contragredient representation. The study of these
objects in the left-hand sides is closely related to the theory of discretely decompos-
able restrictions[§ ], which we do not discuss here. Concerning the right-hand
sides for symmetry breaking operators in the categorygoK)-modules and in

the category of admissible smooth representations of moderate growth, we raised a
question in[@ Sect. 10] about automatic continuity property for symmetry breaking
operators as a generalization of the theory of Casselman—WaltaelY case): it is
plausible that iff G, G') satisfies one of (therefore any of) the equivalent conditions

in FacfId (1), then the natural injection map below is surjective

HomG/ (Tloo‘g, Tlm) — Homg/’K/ (7'&(‘917K/7 Tl{«) s
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see@ Rem. 10.2 (4)].

2.2 Program ABC for branching

The study of restriction of representations (branching problem) is an important but
involves different types of difficult problems even in very special cases. The first
author analysed various (in faatjld) features and phenomena about restrictions
for reductive Lie groups, and proposedd] a program for studying the restriction

of representations of reductive groups, which may be summarized as follows:

Stage A. Abstract features of the restriction;
Stage B. Branching law ofrt|g/;
Stage C. Construction of symmetry breaking operators.

FactIQis an example for Stage A in branching problems. Stage A aims for devel-
oping the general theory of the restrictiamlgy (e.g, spectrum, multiplicity), which
would single out thggoodtriples (G,G', mr). In turn, we could expect concrete and
detailed study of those restrictiomgg in Stages B and C.

For instance, Faffd assures the following priori estimate:

m(7t, 1) is uniformly bounded

if the pair of Lie algebragg, g’) is a real form of(s{(n+1,C), gl(n,C)) or (o(n+
1,C),0(n,C)), in particular, if(G,G') is of the form

“Stage B” is a traditional question, however, it is often very difficult to compute
explicitly branching laws of infinite-dimensional representations of (noncompact)
reductive groups. The first systematic study of “Stage C” is given by a monograph
by Kobayashi—SpelPl], which corresponds to the cage= 0, more precisely, the
case

1. spherical principal series representation§ef O(n+1,1),
m': spherical principal series representation§of= O(n, 1),

Stage C includes the following subproblems.

(C1) construct symmetry breaking operators explicitly;

(C2) classify all symmetry breaking operators;

(C3) find residue formulae for symmetry breaking operators;

(C4) study functional equations among symmetry breaking operators;

(C5) determine the images of subquotients by symmetry breaking operators.
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The subprogram (C1)—(C5) was considered by Kobayashi—&hv[th a com-
plete answer for the pailG,G') = (O(n+1,1),0(n,1)) of real rank one groups

9.

In [I4], we discussed the subprograms (C1)—(C4) for degenerate spherical prin-
cipal series representations=1(A) of Gandmn’ = J(v) of G’ for the pair of higher
real rank groups. The (C5) is the main issue of this article.

3 Main theorem

In this section we determine the image of the meromorphic continuation of the reg-
ular symmetry breaking operator

A)\,V: |(A) —>J(V>

for all (A, v) € C2. The statement of the main results uses the following notation:

(1) subsety/,\\, |||, X andX, (see SectioB.),
(2) description ofG'-submodules of the target spati@) (see SectioB3).

Theorem@HJ are special cases of the main theorem of this section (ThdbEem

3.1 Subsetg/, |||, \\ and X in C?

We introduce some subsets@f. It should be noted that the symbgls, \\, ||, and
||| below are defined as subsetsi, and are not as binary relations.

Definition 11 We let

\\:={(A,v)eC?:p+gq—1-A —v e 2N}, (11)
/] ={(A,v)eC?:v—A 2N}, (12)
Xi=//0\\, (13)
| :={(A,v) e C?:v e —2NU(q+1+27)}. (14)

For the sety/, \\, andX, we have adopted the same notation with the one intro-
duced in[Z7 which dealt with theg = 0 case. It is easy to see

XN{(A,v)eC?:veZ}=0 ifandonlyifp+qiseven. (15)
As in [22, we define/ € N and anck € N by

20=v—Afor(A,v)e//, (16)
2k=p+q—1—-A—vfor(A,v)e\\. a7)
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We define two subsets & =\\n// by

Xp={A,v)eX:ip<vi={(p—~L—kp+l—Kk): L, ke N,{ >k},
Xe={(A,v)eX:ip>vi={(p—L—kp+l{—Kk): L, ke N ¢ <k}.

Here we recall fromi) thatp = 3(p+q—1).
We decompose the sgf U\ \ into a disjoint union

/1NN =//UO\=X),

and further decompose the gétinto three subsets

/1= =EeuliHul//nlihu =11,

where we have use¥l,. C //. Combining these decompositions together, we have a
decomposition of the parameter €t of (A, v) into a disjoint union of five subsets
as follows

C2=(//V\VU(// = X lIDU(/NIDUEe= DU\ -X).  (18)

Here we se{//U\\)®:= C2—(//U\\). Then the image of the regular symme-
try breaking operator is described according to which subset the parameter
belongs to.

Remark 12 The support of the distribution kernef) , of the symmetry breaking
operatorA , does not contain an interior point, (A ,v) € //,\\, orif v € 1+ 2N,
respectively, whep,q > 1 ([I4 Thm. 6.3]).

3.2 Description of submodules of the principal seridgv)

The degenerate spherical principal series representationof the groupG' =
O(p,q+ 1) has at most four irreducible subquotients. The number of irreducible
subquotients depends enc C and on the parities gb andg. In this section, we
give a quick review of the socle filtration dfv) from Howe and TarZ]. We note
that our group i3’ = O(p,q+ 1) whereas their group il] is O(p,q).

Let K" = O(p) x O(g+ 1). ThenK’ is a maximal compact subgroup’ =
O(p,g+ 1), and theG'-module J(v) is multiplicity-free asK’-modules for any
v € C. To describe it¥’-types, it is convenient to use the notion of spherical har-
monics, which we recall now. The space of spherical harmonics of degreg is
defined by

H3(RP) :={F € Polxq,---,Xp] : Zp dz—i =0, ixde =aF}
&1 9% & 0%

~{feC”(P 1) :Agp.1f=—alat+p-2)f},
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where the second isomorphism is induced by the restrictionfnapf = F|gp-1.
Thens#3(RP) # {0} if p> 2 orif p=1andac {0,1}, and the orthogonal group
O(p) acts irreducibly os#3(RP).

With this notation, the spacKv)y: of K'-finite vectors is decomposed into the
multiplicity-free direct sum of irreducibl&’-modules as follows.

Ik~ @ A RP)RAPRIY), (19)
(a,b)€NZyen

where we set
Nijeni={(ab)cN’:a=b mod2.

Therefore, anyG'-submodule is characterized by K$-types, which, in turn, is
parametrized as a subsetg, ., via (I9). We introduce the following notation.

Definition 13 We set

Eft = {( b) € even: at+b<—v} if ve—-2N|
Naven if vg—2N|

Bl = {( b) € N3,en:a—b< —v+q—1} if 1-v+qe2Z,
Neven if 1-v+0q¢2Z,

E—t o {(a,b) € N3yen:a—b>v—p+2} if v—pe2z,

Vo Nen if v—p¢g2Z,

Eo- e {{(a b) €NZepia+b>v+3—p—q} if p+g—1-ve-2N,
Ngven if p+rg-1-v¢g—

Then theK’-types of any nonzer@’-submodules o8(v) are given by the inter-
section of somE&SE (8, & = +).
Example 14 In Sectionl.4 we discussed discrete series representatinﬁ%Jrl
(v € Zandv > p) for the pseudo-Riemannian space fdvig, = O(p,q+1)/0(p, ).

Then, ifv = q+1 mod 2 then the smooth representation® ") of 137 is

isomorphic to the subrepresentation Hfv) with K-types given b)EV —, see[[@
Sect. 5].

As in [2], we define functions oR? by

Alic(ab):=c—a-Db,

Algc(@b):=c-a+b+q-2,

Asic(@b) =cta-b+p-2
pac(@b) i=ct+a+b+p+qg-4

Then we may characteriZg* by the “barriers” as follows:

e whenv € 27,

E\err ={(a,b) € Ngven A:)rar-rl v(a> b) > 0};
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e whenl-v+4qe2Z,
- _ 2 at— .
E\;r - {(av b) € Neven' Ap,q+l,7v(a> b) > O}’

e whenv —pe 27,

E, " ={(ab) € Noven: Apd1,v(ab) > 0}
e whenp+q—-1-ve2Z,
E,~={(ab)e Ngven: AE,aJrl,—v(a’ b) > 0}.

In later sections, we use the symbt™ to refer to the line (or “barrier”) de-
fined by the zero locus of the functiods™ (x,y), indicating that the submodules
graphically given by the barrier.

3.3 Main theorem: image o,

As we mentioned, sinc&v) is multiplicity-free as &’-module, anyG'-submodule
of J(v) is characterized by it<’-types, or equivalently, the corresponding subset of

2 .
NgvenVia 03)

Theorem 15.Suppose > 2 andq > 1. Thenlmage(A, ,: 1(A) — J(v)) isaG'-
submodule of(v) which is characterized by it&’-types according to the decom-
position(I of the parameter space as follows:

E/"NE; - if (A,v) € C2—(//U\),
EjfNES~ if (A,v)e//—= (X Ull]),
0 it (A, v)e//nll,
Ef*NESf~NE; TNE,; ~ if (A, v)eX;—||],
ESTNES T NE,; TNE,; - if(A,v)e\\—-X.

3.4 Restatement of Theorefid

The conditions on the parametgr, v) in Theorenfld may look somewhat com-
plicated, however, the subsets ©f given in [[8) are of simpler forms when we
specify the parities op,q andv as follows.

Proposition 16 Letp = %(erqf 1) asin(@). Suppose € Z. Then the subsets in
(@3 reduce to the following sets in Talflewhen we impose conditions @ng and
v in the left two columns in the table.

To be precise about Tallg we use the following convention. Under the conditions
on p,q andv described in the left two columns, the symbol in each box gives the
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/[ = U lD/N X = TN =X
v even
S 0 /] e |
peven—-———
geven | g // 0 0 \\
v odd 0
v even
e 0 /1] 0 \-x
podd v even
qeven0<v<p // 0 Xp NN\ -X
v even
p<v /] —X; 0 Xy 0
v odd 0 0 —-X
v even
p even v<p 0 // 0 N\\-—-X
g odd v even 0 / 0 0
p<sv /
podd| v odd // 0 0 \\
godd| veven 0 0

Table 1: Decomposition ¢f? — (//U\\) in @8

same subset @\, v) with that of the 0-th row above the box. For examplé;- X,
in the sixth row in the left column means thafiis odd andj is even, then

(// =XV =(//-Xull))nV,

whereV := {(A,v) € C x 2Z: p < v}. Propositiorfl8is a set-theoretic assertion,
and is easy to be verified. For the sake of completeness, we provide a quick proof for
PropositiofIgin SectiongH7, depending on the parities pfandg. We shall give
graphic description of Theordi@in Section®H7 from which we can easily derive
Theorem@H3in Sectiorll The proof of Theore3will be given elsewhere.

4 Graphic description of the image of the regular symmetry
breaking operators: Casep even andg even

In SectionddH7l we give a graphic description of Theord according to the
parities ofp andg. In this section, we treat the case where bp#ndq are even.

4.1 Socle filtration of the target spac¥Vv)

The image of the symmetry breaking operafgr, : 1(A) — J(v) isaG'-submodule
of the (degenerate) principal series representation) of G’ = O(p,q+ 1). Since
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the G'-moduleJ(v) is of finite length, there are at most finitely many candidates
for Image(A,\)V). In our setting, the structure & -submodulesdocle filtratior) of
J(v) is known for allv € C, see[]]. Although we do not need the results & for
the proof of Theorerffd it is helpful to use the socle filtration of th&'-module
J(v) when we “visualize” Theoreffid

SinceJ(v) is K'-multiplicity free, anyG’-submodule ofl(v) is characterized by
its K’-types. By abuse of notation, we use the symEgis(8, € = +), see Definition
[I3 to denote thé&'-submodule of the principal series representafion) of G' =
O(p,q+ 1) havingK’-types parametrized by the sub&¥ of N2 ., However, we
keep the notatio§0} andJ(v) instead of 0 and3, ., respectively.

We review from[P] the socle filtration of the principal series representatiijg
of G’ with p even andj even.

Fact 17 Suppose andq are even. Lep = %(er g—1) asin(@.

(1) TheG'-modulel(v) is irreducible if and only ifv € C —Z.
(2) Suppose € Z. ThenG'-submodules ai(v) are classified by theiK’-types as
follows.

e Forv even,
{0} SESTCE, TCI(v) ifv<o,
{0} GE TG I(v) if v>0.
e Forv odd,
{0} GE;T S I(v) if v<2p,
{0} CES~CE,~CI(v) ifv>2p.

The following lemma is readily seen from Definitifii@ set theoretically, and fits
well with Fac{l2

Lemma 18 Suppose thap andq are even. Fow € Z, theG’-modules with thé’-
typesee(+) EJ® of Nsecqsy EQ2¢ are given as follows. By abuse of notation, we
identify G'-modules ofl(v) with their K’-types parametrized by subsetdNg .,

ESfTNEST|ESfTNES " NE,; TNE; ™
v even? =2 B E
v>0 J(v) E, "
v odd ES” Ef~

4.2 Reduction of the parameter set foA , v)

In this section we discuss the parameter spgatef (A,v). We recall the disjoint
union [[® of C2? and analyze its main part, namely, the following disjoint decom-
position.
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//UN\ = (// =X ulHu (/DU E =N\ -X). (20)

Lemma 19 For p andq both even, Propositidfid holds.

Proof. By (I8, XN (C x Z) = 0 because+ q is even. Hence, under the condition
that v € Z, the four sets in the right-hand side @0 amount to the sets in the
second row of the tabl@{)) below. Here we have used the same convention as in
PropositiorlI@
[/ = EUlD)//0 X = N\ =X (21)
R

Sinceq is even, the definition of| (see[[d)) shows:

(A,v) €l]|ifand only if v < 0 whenv is even;
(A,v) €]| for any odd integev.

Therefore the first two set§/— ||| and//N ||| in the second row off]) reduce to
the sets in the following table according to conditionsvoa Z.

//=/ /0]
veven’= 0 0 [/
v>0 // 0
v odd o | //
Thus LemmdQis proved. O

4.3 Description of the image of symmetry breaking operatops (
even,g even)

For p andq both even, the critical cases are whgnv) € Z2. We divide the pa-
rameter spacg? into the following regions (see TheordZfl below for the precise
definition). Here, we follow the convention of Kobayashi—Sii&} fhat v is for the
x-axis and is for they-axis.

ve2z ve2Z+1
Al
A €2z ’¢¢,;: B E
h CIE
' B/
Ae2Z+1]  ATN, E
N F
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We are ready to describe graphically the image of the regular symmetry breaking
operators foip andq both even as follows.

Theorem 20.Let p andg be both even.

(1) Supposev ¢ Z. Then the regular symmetry breaking operatoy ,: [(A) —
J(v) is surjective for any € C.
(2) Suppose € 27.

(2-a)For A € 2Z, theK'-types of the image af, , are given by the subsets of
N2, nin the following colored red regions vi9).

Case A: At
{vgo, N 0
_U —
V<A p_u At
-
A+
Case B: 1 ﬂ
Case C: . At
{VSO, 2/
A<v. V+P_y At
—n

(2-b) For A € 2Z + 1, we divide the parameter sét,v) € (2Z+ 1) x (2Z) into

the following three cases.

Case A v <0,

CaseB O0<V,A+Vv>p+q-—1,

CaseD: 0cv,A+v<p+g-1
Then the image o, , in Cases Aor B' is described graphically by the
same diagram with the one in Cases A or B, respectively, whereas the one
in Case D is given as follows.

—+

Case D: A

—v+p—2

(2-c) For A ¢ Z, we divide the parameter spa¢€ — Z) x 2Z into two cases.
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Case Ajs: v <0,

Case Bis: O < v.
Then the image of the regular symmetry breaking operatpy, in Cases
Ayis Or Byjs is described graphically by the same diagram with the one in
Cases A or B, respectively.

(3) Suppose € 2Z + 1. We divide the parameter spa€ex (2Z + 1) into the fol-
lowing four cases:
CaseE: A €27,
CaseE A e€2Z+1,v<A,
CaseF:. Ae€2Z+1,v>A,
Case gisz: A € C—Z.
Then the image ok, , is described graphically by the following diagram.

A+ A+

v—p—g+3 v—p—g+3
Cases E, £and By Case F

Remark 21 In each case, the arrangement of the barri&fs" may vary.

Assuming Theorerfld, we complete the proof of Theord2@
Proof of TheorenPQ By LemmadI8 andIg Theoreni2Qd follows readily from
Theorenfl8 0

5 Graphic description of the image of the regular symmetry
breaking operator: Casep odd (> 3) and g even

In this section we give a graphic description of TheofE#in the case where is
odd ¢ 3) andq is even.

5.1 Socle filtration of the target spac¥v)

In this section we give a graphic description of TheofE@in the case wher@
is odd ¢ 3) andq is even. We review fronfd] the socle filtration of the principal
series representatiod$v) of G’ = O(p,q+ 1) with p odd (> 3) andq even as in
FacilZ We keep the notation frorfy)( thatp = %(p+q— 1).

Fact 22 Suppose is odd(> 3) andqis even.
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(1) The G'-moduleJ(v) is irreducible if and only ifv € C—Z or v is an even
integer satisfyind < v < 2p.
(2) Forv e Z, G'-submodules of(v) are classified by theik’-types as follows:

e For v even,
{OySESTCI(v) ifv<O,

{0} S J(v) if 0<v<2p,
{O}SE,~SI(v) if2p<v.

e For v odd,

{0} SES NE, T CESLE;TCI(v) ifv<p,
{0} GES LB, TG I(v) if v=p,
{0} CESE, T CE; @E, T CJ(v) ifp<uv.

The following lemma formulated with the same convention as in Lef@ia read-
ily seen from DefinitiofL3 set theoretically, and fits well with Fd2R

Lemma 23 Suppose thap is odd (> 3) and g is even. We retain the notation
that p = 3(p+q—1). For v € Z, the G'-modules with th&’-types,c ) E;

Or s eci+) EQ¢ are given in the following table.

ES"NES|ESTNES NE, TNE, ~
v<0 Ej* Ej "
vevenO<v<2p| J(V) J(v)
2p<v | ) =
v<p [Sha [Shaal =
vodd| v=p ES - {0}
p<v SH {0}

5.2 Reduction of the parameter set foA, v)

For p+ g odd, we use the following observation:
Lemma 24 Suppose+ qis odd.

(1) If 2v > p+qg—1, then(A,v) € \\ implies(A,v) € //.
(2) If2v < p+q—1,then(A,v) € // implies(A,v) € \\.

Proof. Clear from the definition. O
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Then the four sets in the decompositi@@)( have a simpler form as follows.
Lemma 25 For p odd (> 3) andq even, Propositioffg holds.

Proof. As in the proof of Lemmf3 we have

(A,v) €l|| ifand only if v < 0 whenv is even;
(A,v) €||| for any odd integev,

becausey is even. We also note th&t, N{(A,v): v < p} = 0 by definition. Now
Lemmd28is clear from Lemm&4 0

5.3 Description of the image of symmetry breaking operatops (
odd> 3, qeven)

For p odd andq even, the critical cases are whéh, v) € (2Z)? or (2Z+1)2. In

each case, we divide the parameter space into the following four regions (see The-
orem28below for the precise definition). We remind again thas for thex-axis,

andA is for they-axis, as in Sectiod.3

We are ready to describe the image of the regular symmetry breaking operators
for podd (> 3) andq even.

Theorem 26.Let p be odd(> 3) andq be even.

(1) Supposev ¢ Z. Then the regular symmetry breaking operatoy ,,: [(A) —
J(v) is surjective for anyA € C. '

(2) Supposer € 2Z. For A € 2Z, theK'-types of the image @, , are given by the
subsets oN3,,in the following colored red regions vi@9).
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-~

Case A:
v<0
= ) —V
{ V<A, m Att
—U
Case B: N

O<v<p+g-1

Case C: 1
p+gq-1<v. v—p—q+3 ([N

v—-p—q+3
Case D: *
v <0,
A<v. - A+t
—v

For A ¢ 27, we divide of the parameter sgf — 27) x 27 into three cases.

Case Ajs: v <0,

Case Bis: 0<v < 3(p+q-1),

Case Gis: 3(p+q—1) <v.
Then the image of the regular symmetry breaking operatpy, in Case Tis
(T=A, B, or C) is described graphically by the same diagram with the one in
Case TT =A, B, or C, respectively).

(3) Supposey € 2Z + 1. For A € 2Z + 1, the K'-types of the image of, , are

described graphically as follows.
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Case E:

—+
{/\+v§p+q—1, A
V<A
—vFfg-—1
Case F:
—+
{V<é(p+q—1)7 .
A+v>p+q-1 .
v+p Qﬁ At
—v+g—1
Case G:
At
{%(p"*‘q—l)SVa Jlsly
V<A
v—g+1 At
V—;+2
Case H: A+
A <v.
—y+p—2 A_I__
—vFqg—1

For A ¢ 27+ 1, we divide the parameter st — (2Z + 1)) x (2Z + 1) into the two
cases.
Case bis: V< 3(p+qg-1),
Case Gis: 3(p+q—1) < v.
Then the image of the regular symmetry breaking operatpy in Cases kjs or
Gpis is described graphically by the same diagram with the one in Cases F or G,
respectively.

Remark 27 The arrangement of the barrie/ss"~ and A~ may vary in Case H.

Proof of TheorenP8 By Lemmad23 and25, TheoreniZd follows readily from
Theorenil3 0
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6 Graphic description of the image of regular symmetry
breaking operators: Casep even andq odd

In this section we give a graphic description of TheofE#in the case where is
even andy is odd.

6.1 Socle filtration of the target spac¥Vv)

We review from [J] the socle filtration of the (degenerate) principal series repre-
sentations)(v) of G’ = O(p,q+ 1) with p even andy odd as in Factdd and22

Fact 28 Suppose is even andj is odd. We recalp = %(p+ g-1).

(1) TheG'-modulel(v) is irreducible if and only ifv € C — 2Z.
(2) Forv € 2Z, G'-submodules af(v) are classified by theik’-types as follows:

{0y CE;"CETNE, T CETLE;TCI(v) ifv<O,

{0} CE;NE, T CET,E;TSI(V) ifo<v<p,
{0} SES,E;T S I(v) ifv=p,
{0}SE/ BT CE T ®E, T SI(v) if p<v<2p,

{0} CES,E, " CES ®E, T CE, T GI(v) if2p<v.

The following lemma is readily seen from Definiti@d set theoretically, and fits
well with Faci28

Lemma 29 Suppose thap is even andj is odd. Forv € 27, the G’-modules with
the K'-typesNec v} Ev® OF N5 ecqsy ES¢ are given in the following table. Here
we identify, as beforei’-submodules od(v) with their K-types parametrized by
subsets oN3,ep,

ESftNES|ESfTNE; " NE,; TNE; ™
v<0 EfF EST
O<v<p| Ej E,j NE,; T
p<v S {0}

6.2 Reduction of the parameter set foA , v)

The four sets in the decompositidZj have a simpler form as follows.

Lemma 30 For p even andy odd, Propositiofff@ holds.
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Proof. Since we are dealing witk € 2Z, (A,v) belongs automatically td/| by
definition 1) for everyA € C. Now Lemmd3Qis clear from Lemm&4 O

6.3 Description of the image of symmetry breaking operatops (
even,q odd)

For p even andy odd, the critical case is whefd,v) € (2Z)°. We divide the pa-
rameter spac(aZZ)2 into the following five regions (see Theorgi below for the
precise definition). We remind thatis for thex-axis andA is for they-axis as in

2.

N

(A,v) € (22)?

We are ready to describe the image of the regular symmetry breaking operators
for p even andj odd.

Theorem 31.Let p be even and, odd.

(1) Supposev ¢ 2Z. Then the symmetry breaking operatdy ,,: 1(A) — J(v) is
surjective for any € C.
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(2) SupposéA , V) € (2Z)2. Then thek'-types of the image af, , are given by the
subsets oN3,,in the following colored regions Vi@l9).

Case A: At
v <0, /
V<A —v+p—2
—VE ATt AT~
[
-Mq—l
Case B:
-+
{0<v<§(p+q1), i
A+v>p+g-1 _ _
v+p 2n At
—vFfqg—1
Case C: At
3(p+a-1)<v,
V<A v—g+1
vV—p—g+3NaA" AT

v—p—gqg+3 v—p+2

Case D:
o<v, At
V<A,
A+v<p+g-L —vtp—2 At
—v+qg-—1
Case E: At
A<v.
v—g+1
v—p—qg+3f\ad— AT

v—-p—qg+3 v—p+2
(3) Suppose € 2Z andA € C — 2Z.

Case Ajs: v <0;
Case Bis: 0<v < 3(p+q-1);
Case Gis: 3(p+q—1) <v.
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The image of the regular symmetry breaking operator for Cage(T=A, B
or C) is described graphically by the same diagram for Case T (T=A, B, or C,
respectively).

Remark 32 The arrangement of the barrigk~~ in Case C and also that of the
barriersAt—, A-—, andA~" may vary in cas& according to the value of.

Proof of TheorenB1 By Lemmad29 and3d Theoreni3] follows readily from
TheoreniI3 O

7 Graphic description of the image of regular symmetry
breaking operators: Casep odd (> 3) and g odd

In this section we give a graphic description of TheofE#in the case where is
odd ¢ 3) andq is odd.

7.1 Socle filtration of the target spac¥ V)

We review from [P] the socle filtration of the principal series representatidng
of G’ = O(p,g+ 1) with p odd (> 3) andq odd as in Fac@q 22 andZ3

Fact 33 Suppose is odd(> 3) andq is odd. We recalp = %(p+q— 1).

(1) TheG'-moduled(v) is irreducible if and only ifv € C —Z.
(2) Forv € Z, G'-submodules a¥(v) are classified by theiK’-types as follows:

e For v even,
{0} CESTCESSI(v) ifv<o,
{0} S E; TS I(v) if 0< v.
e For v odd,
{0} SE, TS I(v) if v<2p,

{0} CE;FCE, " SI(v) f2o<v.
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7.2 Reduction of the parameter set foA, v)

The four sets in the decompositidZj have a simpler form as follows.
Lemma 34 For p odd andq odd, Propositioffd holds.

Proof. By (I3, XN (C x Z) = 0 because + q is even. Hence, we have the same
table with ) in this case. Sincq is odd, it follows from the definitiord) of |||
that(A,v) €]|| <= v € 2Z. Now Lemmd34is clear from ). 0

7.3 Description of the image of the symmetry breaking operators
Ay v (podd> 3, qodd)

For p and g both odd, the interesting cases are wkignv) € Z2. We divide the
parameter spacg into the following regions (see Theor@Hbelow for the precise
definition).

ve2Z vez2z+1

D
Ae2z

Ae2Z+1 Al B D’

Theorem 35.Let p be odd ¢ 3) andq odd.

(1) Supposev ¢ Z. Then the regular symmetry breaking operatoy ,: 1(A) —
J(v) is surjective for anyA € C.
(2) Suppose € 27.

(2-a)For A € 2Z, theK'-types of the image of, , are given by the subsets of
NZ,enin the following red regions vigl9).
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Case A:
v <0, _uh AT At
V<A, “ku
—v v+ g-1
Case B: 1
0< v, 4
{V<A. A
—v+qg—1
Case C:
vza. _uN ATt At
—v —V+g-—1

In Case C, the barrieA™ " does not appear when> 0.
(2-b) For A € (2Z+1) U (C —Z) = C— 2Z, we use the following decomposition
of the parameter setA,v) € (C —2Z) x (2Z).
Case AUAis. v <0,
Case BUBpis: 0 < v.
Then the image of, , in Case TUTys (T=A or B) is described graphically
by the same diagram with the one in Case A or Case B, respectively.

(3) Suppose € 27 + 1.
(3-a)For A € 2Z, the image of\) , is described graphically as follows.

Case D:
A+v>p+qg-1 v—p—q+3 A+
v—-p—q+3 v—p+2
Case E: T
A+v<p+qg-1
v—p—qt+3 A At
v—p—q+§ v—zp+2

In each case the barrieh™— does not appear when< p+q— 1.
(3-b) The remaining case far € 2Z + 1 is the following.
CaseD A €2Z+1.
Case Ris: A € C—7Z.
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Inboth cases, the image &, , is the same asin Case D, thatis, ,,: [(A) —
J(v) is surjective. Again the barrieA~~ does not appear whem <
p+q-—1.
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