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Abstract

Consider the restriction of an irreducible unitary representation π of a Lie group
G to its subgroup H. Kirillov’s revolutionary idea on the orbit method suggests
that the multiplicity of an irreducible H-module ν occurring in the restriction π|H
could be read from the coadjoint action of H on OG ∩ pr−1(OH), provided π and
ν are ‘geometric quantizations’ of a G-coadjoint orbit OG and an H-coadjoint orbit
OH , respectively, where pr :

√
−1g∗ →

√
−1h∗ is the projection dual to the inclusion

h ⊂ g of Lie algebras. Such results were previously established by Kirillov, Corwin
and Greenleaf for nilpotent Lie groups.

In this article, we highlight specific elliptic orbits OG of a semisimple Lie group G
corresponding to highest weight modules of scalar type. We prove that the Corwin–
Greenleaf number ♯(OG ∩ pr−1(OH))/H is either zero or one for any H-coadjoint
orbit OH , whenever (G,H) is a symmetric pair of holomorphic type. Furthermore,
we determine the coadjoint orbits OH with nonzero Corwin–Greenleaf number. Our
results coincide with the prediction of the orbit philosophy, and can be seen as
‘classical limits’ of the multiplicity-free branching laws of holomorphic discrete series
representations (T. Kobayashi [Progr. Math. 2007]).
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1 Introduction

The Kirillov–Kostant–Duflo orbit philosophy bridges the unitary dual Ĝ of a Lie group
G and the set

√
−1g∗/G of coadjoint orbits. The orbit method works perfectly for simply
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connected nilpotent Lie groups and certain solvable groups G, including the one-to-one
correspondence (Kirillov correspondence) between Ĝ and

√
−1g∗/G and the functorial

properties for inductions and restrictions (see [1, 5, 8, 9, 10] and the references therein).

Our interest is in the restriction of representations to subgroups and its counterpart
in the geometry of coadjoint orbits. First, we consider the representation-theoretic side.
Let π be an irreducible unitary representation of a Lie group G, and H a subgroup of
G. Then the restriction π|H is decomposed into the direct integral of irreducible unitary
representations of H:

π|H ≃
∫ ⊕

Ĥ

mπ(ν)νdµ(ν). (1.1)

Here µ is a Borel measure on the unitary dual Ĥ, and the measurable function mπ : Ĥ →
N ∪ {∞} stands for the multiplicity. The decomposition (1.1) is called branching law of
the restriction π|H . The irreducible decomposition (1.1) is unique up to equivalence if H
is of type I, e.g., if H is nilpotent or reductive. We denote by SuppH(π|H) the subset of

Ĥ that is the support of the direct integral (1.1).

Next, we consider the coadjoint orbit side. The Corwin–Greenleaf multiplicity function

n : (
√
−1g∗/G)× (

√
−1h∗/H) → N ∪ {∞},

counts the number of H-orbits in the intersection OG ∩ pr−1(OH), namely,

n(OG,OH) := ♯

((
OG ∩ pr−1(OH)

)
/H

)
, (1.2)

where pr :
√
−1g∗ →

√
−1h∗ is the natural projection. When G is a simply connected

nilpotent Lie group and H is a connected subgroup, Corwin and Greenleaf [1] proved that
the multiplicitymπ(ν) coincides with the geometric number n(OG

π ,OH
ν ) almost everywhere

if OG
π ⊂

√
−1g∗ and OH

ν ⊂
√
−1h∗ are the coadjoint orbits corresponding to π ∈ Ĝ and

ν ∈ Ĥ, respectively, under the Kirillov correspondence. Thus the result [1] is summarized
as

representation theory geometry of coadjoint orbits
mπ(ν) = n(OG

π ,OH
ν ).

In contrast to nilpotent groups, it has been observed by many specialists that the
orbit philosophy does not work very well for noncompact semisimple Lie groups G, see
e.g., [9, 10, 14]. Indeed, there does not exist a reasonable one-to-one correspondence

between Ĝ and
√
−1g∗/G: ‘missing’ of coadjoint orbits corresponding to complementary

series representations (cf . [6, Thm. 2.30]), missing of some ‘unipotent representations’
that are supposed to be attached to nilpotent coadjoint orbits, and failure of irreducibil-
ity or vanishing of nontempered Vogan–Zuckerman Aq(λ)-modules that are supposed to
be attached to elliptic coadjoint orbits even for ‘positive’ λ ([11, 32]) among others, and
consequently a rigorous formulation for ‘functional properties’ in the orbit method is not
obvious. Nevertheless, we still expect that Kirillov’s orbit philosophy provides useful
information and new insights on unitary representation theory and the geometry of coad-
joint orbits. In fact, some successful cases about the functorial properties of the orbit
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method for discretely decomposable restrictions to noncompact reductive subgroups H
include Kobayashi–Ørsted [22] for minimal representations attached to minimal coadjoint
orbits, Duflo–Vargas [3] for discrete series representations attached to strongly elliptic
orbits, and a recent work by Paradan [29] for holomorphic discrete series representations.

In this article, we consider the case where (G,H) is a symmetric pair of holomorphic
type (see Definition 2.2 below). A typical example is (G,H) = (Sp(n,R),U(p, q)) and
(Sp(n,R), Sp(p,R)×Sp(q,R)) with p+q = n. We highlight on specific coadjoint orbits OG

(see (2.1)), and find explicitly the Corwin–Greenleaf function for an arbitrary coadjoint
orbit OH for any symmetric pair (G,H) of holomorphic type.

Our main results are Theorems A and C which are predicted by the orbit philosophy
as the ‘classical limit’ of multiplicity-free discretely decomposable restrictions of unitary
representations that were established earlier (see [13, 17]). Our results can be interpreted
also from the viewpoint of symplectic geometry, namely, the momentum map µ : OG →√
−1h∗ for the Hamiltonian action of the subgroup H on OG endowed with the Kirillov–

Kostant–Souriau symplectic form is a proper map (Corollary 2.5) with explicit description
of its image (Theorem D) indicating that the geometric quantization Q commutes with
reduction in this setting, symbolically written as

QH ◦ µ = Restriction ◦ QG.

Thus the main features are summarized as follows.

coadjoint orbits unitary representations

OG πG

OG ∩
√
−1([k, k] + p)⊥ ̸= {0} holomorphic rep. of scalar type

n(OG,OH) ≤ 1 (∀OH) Thm. A πG|H is multiplicity-free [13]
µ : OG →

√
−1h∗ is proper Cor. 2.5 πG|H is discretely decomposable [15]

OG ∩ pr−1(OH
ν ) ̸= ∅ Thm. C HomH(π

H
ν , πG|H) ̸= {0} [13]

Image(µ : OG →
√
−1h∗) Thm. D SuppH(π

G|H) (⊂ Ĥ) [13]

Theorems A, C and D for H = K (maximal compact subgroups) were proved in
the Ph. D. thesis [25] of S. Nasrin at The University of Tokyo in 2003, see also [26, 27].
Alternatively, Theorems A and C for H = K follow from a result of McDuff [24], extended
by Deltour [2] that the coadjoint orbit OG is symplectomorphic to the vector space p and
from Paradan [28, Prop. 5.5], too.

The results of this article for noncompactH were delivered at the workshop “Geometric
Quantization in the Non-compact Setting” organized by L. Jeffrey, X. Ma and M. Vergne
at Oberwolfach, Germany, 13–19 February 2011, and were collected in [19]. Theorem A
was announced earlier in [21].

2 Statement of main results

In this section we formulate our main results on the geometry of coadjoint orbits that
are predicted by the representation-theoretic results via the orbit method. Theorem A is
the counterpart of the multiplicity-freeness property of the restriction π|H (Fact 2.1), and
Theorem C is that of its explicit branching law (Fact 2.6).
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2.1 Orbit geometry for multiplicity-free representations

Let G be a noncompact, simple Lie group, K a maximal compact subgroup modulo
the center of G, θ the corresponding Cartan involution of G, and g = k + p for the
Cartan decomposition of the Lie algebra g of G. We say G is a Hermitian Lie group
if the associated Riemannian symmetric space G/K is a Hermitian symmetric space, or
equivalently, if the center c(k) of k is nonzero. In this case c(k) is actually one-dimensional.

An irreducible representation π of G is said to be a lowest weight module if its un-
derlying (g, K)-module is b-finite for some Borel subalgebra b of the complexified Lie
algebra gC = g ⊗R C. Moreover it is said to be of scalar type if the minimal K-type
of π is one-dimensional. There exists an infinite-dimensional irreducible lowest weight
representation of a simple Lie group G if and only if G is a Hermitian Lie group. For
any simply-connected Hermitian group G, there exist continuously many lowest weight
modules of G of scalar type.

Geometrically, any irreducible lowest weight representation π of scalar type can be
realized in the space of holomorphic sections for a G-equivariant holomorphic line bundle
over the Hermitian symmetric space G/K. This geometric observation is brought into
the orbit method: such π can be seen as a ‘geometric quantization’ of a coadjoint orbit
OG satisfying

OG ∩
√
−1([k, k] + p)⊥ ̸= ∅. (2.1)

We note that ([k, k] + p)⊥ ̸= {0} if and only if G is of Hermitian type. In this case the
coadjoint orbit OG satisfying (2.1) is isomorphic to the Hermitian symmetric space G/K
as G-spaces unless OG = {0}.

Let τ be an involutive automorphism of G. We say that (G,H) is a symmetric pair if
H is an open subgroup of the fixed point group Gτ := {g ∈ G : τg = g}. In this article,
we shall assume H is connected for simplicity.

For the representation theory side, we recall the following multiplicity-free theorem:

Fact 2.1 ([17]). For any irreducible unitary lowest weight representation π of scalar type
of G and for any symmetric pair (G,H), the restriction π|H is multiplicity-free.

See [13, Thm. A] for the proof based on the theory of ‘visible actions’ on complex
manifolds.

Suppose τ is an involutive automorphism of Hermitian Lie group G such that τθ = θτ .
Then, τ stabilizes the center c(k) of k. Since dim c(k) = 1 for a Hermitian Lie group G,
τ |c(k) is either id or − id. On the other hand, since τ(K) = K, τ also acts on G/K as
a diffeomorphism. This action is either holomorphic or anti-holomorphic according to
τ |c(k) = id or − id.

Definition 2.2. The involution τ (or the corresponding symmetric pair (G,H)) is said
to be holomorphic or anti-holomorphic, if τ |c(k) = id or −id, respectively.

The Cartan involution θ is always of holomorphic type.

Example 2.3. Let G = Sp(n,R). Then the pair (G,H) is of holomorphic type if H =
U(p, q) or Sp(p,R) × Sp(q,R) (p + q = n), whereas it is of anti-holomorphic type if
H = GL(n,R)). See [17, Tables 3.4.1 and 3.4.2] for the list of all the irreducible symmetric
pairs (G,H) on the Lie algebra level that are of holomorphic and anti-holomorphic types.
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In this article, we shall treat the case where τ is of holomorphic type. This implies that
the branching law (1.1) of the restriction π|H does not contain any continuous spectrum,
and is discretely decomposable for any lowest weight module π ([12, 15]).

The first main result of this article is to give the counterpart of Fact 2.1 in terms of
the Corwin–Greenleaf function (1.2) in the geometry of coadjoint orbits.

Theorem A. Let G be a Hermitian Lie group, (G,H) a symmetric pair of holomorphic
type, and OG a coadjoint orbit in

√
−1g∗ of G satisfying (2.1). Then

n(OG,OH) ≤ 1

for any coadjoint orbit OH in
√
−1h∗.

It should be noted that the Corwin–Greenleaf function n(OG, OH) may be infinite in
general even for a symmetric pair (G,H) if we drop the assumption (2.1) (see [21] for
such an example).

Since H is connected, Theorem A implies the following topological result:

Corollary B. The intersection OG ∩ pr−1(OH) is connected for any coadjoint orbit OG

in
√
−1g∗ satisfying (2.1) and for any coadjoint orbit OH in

√
−1h∗.

In the special case H = K, the connectedness of the intersection OG∩pr−1(OH) could
be derived also from a general theorem concerning Hamiltonian actions of connected
compact group on symplectic manifolds with proper moment maps (see [29, 31]). On the
other hand, OG ∩ pr−1(OH) can be disconnected when the momentum map µ : OG →√
−1h∗ is not proper (see [21, Fig. 4.6] for such an example).

2.2 Nonvanishing condition for the Corwin–Greenleaf function

The second main result of this article is a necessary and sufficient condition for the
Corwin–Greenleaf function n(OG, OH) to be nonzero. In order to establish it, we need
to fix a parametrization of OG and OH .

Suppose G is a simple Lie group of Hermitian type. Then the center c(k) of k is
one-dimensional, and there exists a characteristic element Z ∈

√
−1c(k) such that

gC := g⊗R C = kC + p+ + p− (2.2)

is the direct sum decomposition of the eigenspaces of ad(Z) with eigenvalues 0, +1 and
−1, respectively. Then G/K carries a G-invariant complex structure with holomorphic
tangent bundle G×K p+ → G/K.

Suppose τ is an involutive automorphism of G commuting with the Cartan involution
θ. We use the same letters τ , θ to denote the complex linear extensions of their differ-
entials. We take a maximal abelian subspace of kτ = h ∩ k, and extend it to a maximal
abelian subspace t of k. Then tτ = h∩t is a Cartan subalgebra of kτ . Let ∆(k, t) (⊂

√
−1t∗)

and ∆(kτ , tτ ) (⊂
√
−1(tτ )∗) be the root systems of the pair (kC, tC) and (kτC, t

τ
C), respec-

tively. Then we can choose compatible positive systems ∆+(k, t) and ∆+(kτ , tτ ) in the
sense that

α|tτ ∈ ∆+(kτ , tτ ) for any α ∈ ∆+(k, t). (2.3)
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We write
√
−1(t∗)+ for the dominant Weyl chamber with respect to the positive system

∆+(k, t), and
√
−1(tτ )∗+ to ∆+(kτ , tτ ).

Hereafter we assume that τ is of holomorphic type (Definition 2.2). Since τZ =
Z, the direct sum decomposition (2.2) is stable under τ . Thus we have a direct sum
decomposition

p+ = pτ+ + p−τ
+ ,

where we set
p±τ
+ := {X ∈ p+ : τX = ±X }.

For a tτ -stable subspace F in p+, let ∆(F ) denote the set of weights of F with respect
to tτ . It is a finite set in

√
−1(tτ )∗.

The subgroup Gτθ is locally isomorphic to the direct product of a compact normal
subgroup G(0) and noncompact simple Lie subgroups G(i) (1 ≤ i ≤ L). Correspondingly,
the Lie algebra gτθ is decomposed into the direct sum:

gτθ ≃ g(0) ⊕ g(1) ⊕ · · · ⊕ g(L). (2.4)

Remark 2.4. By the classification [17, Table 3.4.1], we see

L = 1 or 2.

For example, when G = Sp(p+ q,R), L = 1 if H = U(p, q) and L = 2 if H = Sp(p,R)×
Sp(q,R).

Two roots α and β are called strongly orthogonal if neither α+ β nor α− β is a root.
For each i (1 ≤ i ≤ L), we denote by ri (≥ 1) the real rank of g(i), and take a maximal

set of strongly orthogonal roots {ν(i)
1 , · · · , ν(i)

ri } in ∆(p+ ∩ g(i)) (⊂
√
−1(tτ )∗) such that

1) ν
(i)
1 is the highest in ∆(p+ ∩ g(i)).

2) ν
(i)
k is the highest in the set of all ν in ∆(p+∩g(i)) such that ν is strongly orthogonal

to ν
(i)
1 , · · · , ν(i)

k−1 (2 ≤ k ≤ ri).

We note that the split rank of the semisimple symmetric space G/H equals the real
rank of Gτθ, which is given by r := r1 + · · ·+ rL.

We set, for 1 ≤ i ≤ L,

C
(i)
+ := {(t(i)j )1≤j≤ri ∈ Rri : t

(i)
1 ≥ · · · ≥ t(i)ri

≥ 0},

Λ(i) := C
(i)
+ ∩ Zri ,

and define a closed convex cone in
√
−1(tτ )∗ by

Cone(p−τ
+ ) := {

L∑
i=1

ri∑
j=1

t
(i)
j ν

(i)
j : (t

(i)
j )1≤j≤ri ∈ C

(i)
+ for all i (1 ≤ i ≤ L)}. (2.5)

By using the Killing form, we identify
√
−1g with

√
−1g∗, and regard

√
−1c(k)∗ ⊂

√
−1(tτ )∗ ⊂

√
−1t∗ ⊂

√
−1k∗ ⊂

√
−1g∗
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corresponding to the inclusion c(k) ⊂ tτ ⊂ t ⊂ k ⊂ g. Via the identification
√
−1g∗ ≃√

−1g, the condition (2.1) for a coadjoint orbit OG is equivalent to the condition

OG ∩
√
−1c(k) ̸= ∅

for an adjoint orbit OG (by abuse of notation) because
√
−1([k, k] + p)⊥ =

√
−1c(k)∗.

A coadjoint orbit OG is said to be an elliptic orbit if OG ∩
√
−1k∗ ̸= ∅. In particular,

OG is elliptic if (2.1) is satisfied. If OG is an elliptic coadjoint orbit, then OG meets at
a single point, say µ, in the dominant Weyl chamber

√
−1(t∗)+ with respect to ∆+(k, t).

We shall write OG
µ for OG if OG ∩

√
−1(t∗)+ = {µ}. Likewise, an elliptic coadjoint orbit

OH is written as OH
µ = Ad∗(H)µ for some dominant element µ ∈

√
−1(tτ )∗+.

The coadjoint orbit OG satisfying (2.1) is a special case of elliptic orbits. In this case,
OG is of the form OG

λ for some λ ∈
√
−1c(k)∗. If λ ̸= 0 then we have either

⟨λ, β⟩ > 0 for any β ∈ ∆(p+) (2.6)

or
⟨λ, β⟩ < 0 for any β ∈ ∆(p+).

Without loss of generality, we may and do assume that the condition (2.6) is satisfied.
We shall see in Proposition 3.4 below that if OG satisfies (2.1) and OH is a coadjoint

orbit in
√
−1h∗ such that n(OG

λ ,OH) ̸= 0 then OH must be an elliptic orbit, equivalently,
OH is of the form OH

µ = Ad∗(H)µ for some µ ∈
√
−1(tτ )∗+. Then we determine elliptic

coadjoint orbits OH with n(OG
λ ,OH) ̸= 0 as follows:

Theorem C. Let G be a Hermitian Lie group, and (G,H) a symmetric pair of holo-
morphic type. Suppose OG

λ = Ad∗(G)λ with λ satisfying (2.6). Then the following three
conditions on µ ∈

√
−1(tτ )∗+ are equivalent:

(i) n(OG
λ ,OH

µ ) ̸= 0;

(ii) n(OG
λ ,OH

µ ) = 1;

(iii) µ ∈ λ+ Cone(p−τ
+ ).

The restriction of the projection pr :
√
−1g∗ →

√
−1h∗ to a coadjoint orbit OG is

identified with the momentum map µ : OG →
√
−1h∗ for the Hamiltonian action on the

symplectic manifold OG. Then the following corollary is deduced readily from Theorem
C.

Corollary 2.5. Let G be a Hermitian Lie group, and (G,H) a symmetric pair of holo-
morphic type. Suppose OG is a coadjoint orbit satisfying (2.6). Then the momentum
map

µ : OG →
√
−1h∗

is proper.
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The representation-theoretic counterpart for Theorem C is branching laws of scalar
holomorphic discrete series representations πG(λ) with respect to symmetric pairs (G,H)
of holomorphic type, and that for Corollary 2.5 is discrete decomposability of the re-
striction πG(λ)|H . To describe the branching law explicitly, we fix some notation. A
holomorphic discrete series representation of G is parametrized by its minimal K-type.
We denote by πG(λ) if its minimalK-type has highest weight λ with respect to ∆+(kC, tC),
see also [17, Sect. 8.1] for the convention when G is not simple. Similar notation is applied
to holomorphic discrete series representations πH(µ) of H.

Fact 2.6 (Hua–Kostant–Schimd–Kobayashi, [13]). Suppose (G,H) is a symmetric pair
of holomorphic type. Assume λ ∈

√
−1c(k)∗ satisfies (2.6). Then the restriction of πG(λ)

to H is decomposed into a multiplicity-free direct sum of irreducible representation of H:

πG(λ)|H ≃
∑⊕

πH(λ|tτ +
L∑
i=1

ri∑
j=1

a
(i)
j ν

(i)
j ), (2.7)

where the sum is taken over the following countable set:

(a
(i)
j )1≤j≤ri ∈ Λ(i) (1 ≤ i ≤ L). (2.8)

WhenH is a maximal compact subgroupK, each summand in (2.7) is finite-dimensional,
and the formula (2.7) was known by Hua [7] (classical groups), Kostant (unpublished),
and Schmid [30]. The general case for noncompact H was given in Kobayashi [13] with
detailed proof in [17, Thm. 8.3]. See also [20, Cor. 3.12] for a formulation in the category
O.

In comparison to Fact 2.6, Theorem C may be restated as follows:

Theorem D. Suppose λ satisfies (2.6). Then n(OG
λ , OH

µ ) ̸= 0 if and only if

µ ∈ Conv
(
SuppH

(
πG(λ)|H

))
,

where Conv(S) denotes the convex hull of a set S, and OG
λ := Ad∗(G) · λ and OH

µ :=
Ad∗(H) · µ.

In Theorem D, we have regarded SuppH(π
G(λ)|H) as a subset of dominant integral

weights with respect to the positive system ∆+(kτ , tτ ) = ∆+(h ∩ k, tτ ), namely,

SuppH(π
G(λ)|H) =

∪
{λ|tτ +

L∑
i=1

ri∑
j=1

a
(i)
j ν

(i)
j }, (2.9)

where the union is taken over the countable set (2.8).

3 Proof of the main theorems

This section gives the proof of Theorems A and C.
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3.1 (G,Gτ) and its associated symmetric pair (G,Gτθ)

In general, it is not easy to describe H-coadjoint orbits on the intersection

OG ∩ pr−1(OH)

for a pair (G,H) of reductive Lie groups. When (G,H) is a symmetric pair, our key idea
is to use another symmetric pair (G,Ha), referred to as the associated symmetric pair,
defined as follows.

Let τ be an involutive automorphism of G commuting with the Cartan involution θ.
Then, the composition τθ is also an involutive automorphism. We set

H := (Gτ )0, Ha := (Gτθ)0

the identity components of the fixed point groups Gτ and Gτθ, respectively. Then the
reductive groups H and Ha have the following Cartan decompositions

H = (H ∩K) exp(pτ ), Ha = (H ∩K) exp(p−τ ),

respectively. We observe that both H and Ha have the same maximal compact subgroups
H ∩K, and that the ‘noncompact part’ is complementary to each other, namely,

p = pτ + p−τ (direct sum decomposition).

This observation will be crucial in the proof of Theorems A and C below.

3.2 Hermitian symmetric space Ha/Ha ∩K

We return to our previous setting where τ is of holomorphic type, equivalently, τZ = Z.
Since θZ = Z, the involution τθ is also of holomorphic type, and consequently, τθ pre-
serves the decomposition (2.2). Therefore, we have a compatible direct sum decomposition
of the complexified Lie algebra gτθC of Ha:

gτθC = (kτC) + (p−τ
+ ) + (p−τ

− ).

This decomposition makes Ha/(Ha∩K) a Hermitian symmetric space, which is naturally
embedded into the Hermitian symmetric space G/K.

We first prepare notation when Ha = (Gτθ)0 contains only one noncompact simple
factor, namely, L = 1 by applying the structural results of Hermitian symmetric spaces
[23] to Ha/(Ha ∩ K). In this case we shall write {ν1, · · · , νr} for the maximal set of

strongly orthogonal roots in ∆(p−τ
+ ) instead of {ν(i)

1 , · · · , ν(i)
ri } as in Section 2.2. For each

j, we define an sl2-triple {Hj, Ej, E−j} in gτθC as follows:

Ej ∈ (gτθC )νj , E−j ∈ (gτθC )−νj , and Hj ∈
√
−1tτθ.

Here (gτθC )νj denotes the root space in gτθC corresponding to νj ∈
√
−1(tτ )∗, and Hj :=

2νj
⟨νj ,νj⟩ if we identify

√
−1t∗ with

√
−1t by the Killing form. Furthermore, we may and
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do choose Ej and E−j such that the following elements Xj and Yj belong to the real Lie
algebra g:

Xj := Ej + E−j, Yj := −
√
−1(Ej − E−j).

Then Xj, Yj ∈ pτθ = p−τ . Next, let us define the following two subspaces:

a :=
r⊕

j=1

RXj ⊂ pτθ(= p−τ ), (3.1)

t− :=
√
−1

r⊕
j=1

RHj ⊂ tτθ(= tτ ).

Let t+ be the orthogonal complement of t− in tτ with respect to the Killing form. Then
t+ + a is a maximally split Cartan subalgebra of gτθ.

For the general case where L may be greater than 1, we write X
(i)
j instead of Xj

(1 ≤ j ≤ ri, 1 ≤ i ≤ L). We take a positive system Σ+(gτθ, a) such that the corresponding
dominant Weyl chamber a+ is given by

a
(i)
+ := {

ri∑
j=1

t
(i)
j X

(i)
j : (t

(i)
j )1≤j≤ri ∈ C

(i)
+ } (1 ≤ i ≤ L),

a+ := {
L∑
i=1

ri∑
j=1

t
(i)
j X

(i)
j : (t

(i)
j )1≤j≤ri ∈ C

(i)
+ for 1 ≤ i ≤ L}. (3.2)

Correspondingly, we define a subset of the connected abelian group A = exp(a) by

A+ = exp(a+) = exp(a
(1)
+ ) · · · exp(a(L)+ ). (3.3)

Via the Killing form, the projection pr :
√
−1g∗ →

√
−1k∗ is identified with the map

prθ :
√
−1g →

√
−1k, X 7→ 1

2
(X + θX) (3.4)

We recall from [27, Prop. 2.4 and Lem. 2.5] an explicit formula for prθ
(
Ad(a)Z

)
applied

to each noncompact simple factor G(i) of Ha.

Lemma 3.1. Suppose 1 ≤ i ≤ L. Let Z(i) ∈
√
−1c(k(i)) be the characteristic element of

the simple Hermitian Lie algebra g(i) = k(i) + p(i). For t
(i)
1 , · · · , t(i)ri ∈ R, we define an

element a(i) of A by

a(i) := exp(

ri∑
j=1

t
(i)
j X

(i)
j ).

Then we have

(1) prθ(Ad(a(i))Z(i)) = Z(i) +
∑ri

j=1(sinh t
(i)
j )2H

(i)
j ;

(2) prθ(Ad(a(i))Z(i)) ∈
√
−1(tτ )∗+;

(3) a(i) 7→ prθ(Ad(a(i))Zi) is injective when restricted to A
(i)
+ := exp(a

(i)
+ ).

In (2) we have identified
√
−1g with

√
−1g∗ via the Killing form.
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3.3 The formula for pr
(
Ad(a)λ

)
Suppose λ ∈

√
−1([k, k] + p)⊥. By identifying

√
−1g∗ with

√
−1g we see that λ is of the

form λ = cZ for some c ∈ R.
Similarly to the map prθ : g → k (see (3.4)), we define a linear map

prτ :
√
−1g →

√
−1h, X 7→ 1

2
(X + τX),

which is identified with the projection pr :
√
−1g∗ →

√
−1h∗. Then we have:

Proposition 3.2. Suppose λ = cZ with c > 0. Recall from (2.5) the definition of the
closed cone Cone(p−τ

+ ) in
√
−1(tτ )∗. Then,

prτ
(
Ad(A+)λ

)
= prθ

(
Ad(A+)λ

)
= λ+ Cone(p−τ

+ ).

Proof. We recall that a+ ⊂ g−τ ∩ g−θ ⊂ gτθ. Since τ is of holomorphic type, we have
τλ = λ, and therefore, Ad(A+)λ ⊂

√
−1gτθ. Since τ = θ on gτθC , we have

prτ =
1

2
(id+τ) =

1

2
(id+θ) = prθ on gτθC . (3.5)

In particular, we have

prτ
(
Ad(A+)λ

)
= prθ

(
Ad(A+)λ

)
.

Therefore, we shall focus on prθ(Ad(A+)λ) from now. According to the direct sum de-
composition (2.4), the characteristic element Z ∈ c(k) is decomposed as

Z = Z(0) + Z(1) + · · ·+ Z(L),

where Z(i) ∈
√
−1c(k(i)) for 0 ≤ i ≤ L, and Z(i) (1 ≤ i ≤ L) are the characteristic

elements for the Hermitian Lie algebra g(i). We apply Lemma 3.1 (1) for the computation
of prθ

(
Ad(a)λ

)
with a = a(1) · · · a(L) ∈ A+, and get

prθ
(
Ad(A+)λ

)
=c {Z(0) +

L∑
i=1

(Z(i) +

ri∑
j=1

(sinh t
(i)
j )2H

(i)
j ) : (t

(i)
j )1≤j≤ri ∈ C

(i)
+ (1 ≤ i ≤ L)}

=c {Z +
L∑
i=1

ri∑
j=1

(sinh t
(i)
j )2H

(i)
j : (t

(i)
j )1≤j≤ri ∈ C

(i)
+ (1 ≤ i ≤ L)}.

Hence we have proved Proposition 3.2

Next we prove the following proposition.

Proposition 3.3. Fix λ = cZ with c > 0. Then the following three conditions on
a, a′ ∈ A+ are equivalent:

(i) prτ (Ad(a)λ) and prτ (Ad(a′)λ) are conjugate by the adjoint action of H;
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(ii) prτ (Ad(a)λ) and prτ (Ad(a′)λ) are conjugate by the adjoint action of H ∩K;

(iii) a = a′.

Proof. Since prτ
(
Ad(a)λ

)
= prθ

(
Ad(a)λ

)
for any a ∈ A, we see that prτ (Ad(a)λ) ∈√

−1(tτ )∗+ from Lemma 3.1 (2). Since two elements in
√
−1(tτ )∗+ is conjugate under

H = (Gτ )0 if and only if they coincide, we get the implications (i)⇒ (ii)⇒ (iii) by Lemma
3.1 (3). The implication (iii) ⇒ (i) is obvious. Thus Proposition 3.3 is proved.

3.4 Proof of Theorems A and C

Since a is a maximal abelian subspace of g−τ ∩ g−θ, we have the generalized Cartan
decomposition [4, Thm. 4.1] for the semisimple symmetric pair (G,H):

G = HA+K. (3.6)

Suppose λ ∈
√
−1c(k)∗. Since K stabilizes λ, the decomposition (3.6) implies

OG
λ = Ad(G)λ = Ad(H)Ad(A+)λ. (3.7)

Proof of Theorem A. We take any two elements x, x′ ∈ OG ∩ (prτ )−1(OH). We shall
prove that x′ ∈ Ad(H)x. It follows from the generalized Cartan decomposition (3.6) that
there exist a, a′ ∈ A+ and h, h′ ∈ H such that

x = Ad(h)Ad(a)λ, x′ = Ad(h′)Ad(a′)λ. (3.8)

Since the projection prτ : g → h respects H-action, we have

prτ (x) = Ad(h) prτ (Ad(a)λ), prτ (x′) = Ad(h′) prτ (Ad(a′)λ).

By our assumption, both prτ (x) and prτ (x′) are contained in the sameH-orbitOH . There-
fore, prτ (Ad(a)λ) and prτ (Ad(a′)λ) are conjugate by an element of H. By Proposition
3.3, we conclude a = a′. Using (3.8) again, we see that x is conjugate to x′ under H. This
is what we wanted to prove.

Finally, we shall determine H-coadjoint orbits OH such that n(OG,OH) ̸= 0. The
first step is to show that OH must be an elliptic orbit.

Proposition 3.4. Let OG and OH be coadjoint orbits in
√
−1g∗ and

√
−1h∗, respectively.

Suppose OG satisfies (2.1). If OG ∩ pr−1(OH) ̸= ∅, then OH is an elliptic orbit.

Proof. If OG = {0}, then the condition OG ∩ pr−1(OH) ̸= ∅ obviously implies OH = {0}.
Hence OH is an elliptic orbit.

From now, we assume that OG ̸= {0}. Without loss of generality, we may assume
OG = Ad(G)λ where λ = cZ (c > 0) via the identification of

√
−1g with

√
−1g∗ as

before. If OG ∩ pr−1(OH) ̸= ∅, we find g ∈ G such that

pr
(
Ad(g)λ

)
∈ OH . (3.9)
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We write
g = hak ∈ G (h ∈ H, a ∈ A+, k ∈ K)

according to (3.6). Then it follows from (3.9) that pr
(
Ad(a)λ

)
∈ OH because Ad(k)λ = λ.

By Proposition 3.2, we have pr
(
Ad(a)λ

)
∈

√
−1(tτ )∗+. Hence

√
−1(tτ )∗+ ∩ OH ̸= ∅.

Therefore, OH must be an elliptic orbit.

Proof of Theorem C. Suppose OG = OG
λ with λ = cZ (c > 0). Then the proof of

Proposition 3.4 asserts that if OG
λ ∩ pr−1(OH) ̸= ∅, then pr

(
Ad(a)λ

)
∈ OH for some a ∈

A+. Clearly, the opposite implication also holds. Thus we have shown that n(OG
λ ,OH) ̸= 0

if and only if OH ∩
(
λ+ Cone(p−τ

+ )
)
̸= ∅ because

pr
(
Ad(A+)λ

)
= λ+ Cone(p−τ

+ )

by Proposition 3.4. Hence we have the equivalence (i) ⇔ (iii) in Theorem C. The equiv-
alence (i) ⇔ (ii) follows from Theorem A. .

4 Visible actions on coadjoint orbits

We end this article with discussion about another aspect on the geometry of the coadjoint
orbits.

A holomorphic action of a Lie group H on a connected complex manifold M is said
to be strongly visible if there exist a totally real submanifold S, referred to as a slice,
and an anti-holomorphic diffeomorphism σ of M which preserves every H-orbit in M
such that generic H-orbits meet S and σ|S = id, see [16, Def. 3.3.1]. The proof of the
multiplicity-free theorem (Fact 2.1) is based on the following fact:

Fact 4.1 ([18]). Let G be a Hermitian Lie group. For any symmetric pair (G,H), the
H-action on G/K is strongly visible.

Any nonzero coadjoint orbit OG satisfying the condition (2.1) is isomorphic to the
Hermitian symmetric space G/K. Hence Fact 4.1 may be seen as a result on the geometry
of coadjoint orbits:

Fact 4.2. Let OG be a coadjoint orbit satisfying (2.1). For any symmetric pair (G,H),
the H-action on the coadjoint orbit OG is strongly visible.

In this case, the slice S can be taken to be
◦
A+ · o, where

◦
A+ denotes the set of interior

points of A+ and o is the fixed point of K with notation for the generalized Cartan
decomposition (3.6).

In turn, the Cayley transform of A+ for the subgroup Ha = (Gτθ)0 (not for H = (Gτ )0)
followed by the shift of λ|tτ gives the support SuppH(π

G|H), as is seen in (2.9), where πG

is the irreducible unitary representation of G attached to the coadjoint orbit OG and λ is
determined by OG by the condition OG ∩

√
−1c(k)∗ = {λ}. This viewpoint from visible

actions provides yet another perspective of Theorem D on the Kirillov correspondence
between branching laws of unitary representations and coadjoint orbits with momentum
map µ : OG →

√
−1h∗ for the Hamiltonian action of the subgroup H on OG.
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[18] Kobayashi, T., Visible actions on symmetric spaces, Transform. Groups, 12 (2007),
671–694.

[19] Kobayashi, T. Geometric quantization, limits, and restrictions—some examples for
elliptic and nilpotent orbits, In:Geometric Quantization in the Non-compact Setting
(eds. L. Jeffrey, X. Ma and M. Vergne), Oberwolfach Reports Volume 8, Issue 1,
2011, European Mathematical Society, Publishing House. 466–469.

[20] Kobayashi, T., Restrictions of generalized Verma modules to symmetric pairs,
Transform. Group, 17 (2012), 523–546.

[21] Kobayashi, T. and Nasrin, S., Multiplicity one theorem in the orbit method,
Lie Groups and Symmetric Spaces: In memory of Professor F. I. Karpelevič (ed.
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