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2 Toshiyuki Kobayashi

1 Introduction

In the late 80s, | was working on two “new” different topics of study:

(I) (geometry) actions of discrete groups pseudo-Riemanniahomogeneous

spacedIq,

(I) (representation theory) restriction of unitary representationsoiecompact
subgroupdI4],

and trying to find criteria for the setting that will assure the following “best proper-
ties”:

e properly discontinuous actions.$.ergodic actionsetc) for (1),

e discretely decomposable restrictionss(continuous spectrum) for (11),

respectively. The techniques in solving these problems were quite different.

Roger Howe visited Kyoto in 1994, and raised a question about how these two
topics are connected to each other in my mind. Philosophically, there is some sim-
ilarity in (I) and (I1): proper actions are “compact-like” actions on locally compact
topological spaces, whereas we could expect that there are also “compadtinlike”
ear actions on Hilbert spaces such as discretely decomposable unitary representa-
tions 23], see also Marguli€qg. The aim of this paper is to give another answer to
his question rigorously from the viewpoint of “analysis with hidden symmetries” by
extending the half-formed idea 4] which is based on the observation as below:
our first example of discretely decomposable restrictions of nonholomorphic dis-
crete series representatioig[ arose from the geometry of the three-dimensional
open complex manifoldl = P*2C (see SectioE.d) satisfying the following two
properties:

e the de Sitter grou”’ = Sp(1,1) ~ Spin(4, 1) acts properly onX, and con-
sequently, there exists a three-dimensional compact indefigitdelk manifold
as the quotient ok by a cocompact discrete subgroup@f[[Ig;

e any irreducible unitary representation of the conformal gréup: U (2, 2)(=
S1x SO(4,2)) that is realized in the regular representaticii X ) is discretely
decomposable when restricted to the subgreUfila [I7.

In this example, we se@dden symmetrgf X:
X is a homogeneous space@f, but also that of an overgrou@. (1.2)
Furthermore X = P'2C has a quaternionic Hopf fibration
F—-X-—>Y (1.2)

over the four-dimensional ball which is the Riemannian symmetric space associ-
ated toG’ with typical fiber ' ~ S? (see Sectiod.2).

More generally, we shall work with the settidfi.Q) of hidden symmetry for a
pair of real reductive Lie groupS > G’. The subject of this article is in three folds:
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(A) global analysis onX by using representations 6f;

(B) global analysis oX by using representations 6f;

(C) branching laws of representations@fvhen restricted td'.

A key role is played by a maximal reductive subgral/pof G’ containingH’,
which induces &’-equivariant fibration" — X — Y (see[21)).

In Sectiord we study (B) in two ways:

* (A) +(C),
e analysis of the fibeF' and the base spadg

and deduce a double fibration in Theof@f0for the “discrete part” of the unitary
representations of the grougs, G’ and L’ arising naturally whenX is G’-real
spherical (Definitiof2.7). Assuming a stronger condition that the complexification
X¢ is Gi--spherical (Definition-Theore@.1), we analyze the rin: (X¢) of G¢.-
invariant holomorphic differential operators on the complexification by three
natural subalgebraB, Q, andR defined in[BI0—EI13 which commute withG¢,
GG, and L¢, respectively (see TheorefBsgand3.6. Turning to real forms” —
X — Y, the relationship between (A), (B), and (C) is formulated utilizing the
algebrasP, 9, andR.

Moreover, an application of the relationship

(A) and (B) = (C)

will be discussed in Sectidh that includes a new branching law of Zuckerman’s
derived functor modulel, () with respect to a nonsymmetric pair (TheorB).
An application of the relationship

(A) and (C) = (B)

was studied il 422 for the existence problem of discrete series representation for
nonsymmetrihomogeneous spaces. Spectral analysis on hon-Riemannian locally
symmetric spaces is discussed in Sedfi@s an application of the relationship

(B) and (C) = (A).

This scheme explains the aforementioned example as a special case of the fol-
lowing general results:

H' is compact = (I) X admits compact Clifford-Klein forms (Propositifn2)
HRemar

Fis compact = (ll) discretely decomposable restrictions  (Theol&d)

The results of Sectiorfid3H and Sectiofg will be developed in the forthcoming
papers[IZ (for compact real forms) anf§ with F. Kassel, respectively.
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2 Analysis on homogeneous spaces with hidden symmetry

In this section, we introduce a general framework which relates branching problems
of unitary representations and global analysis on homogeneous spaces with hidden
symmetries.

2.1 Homogeneous space with hidden symmetry

Suppose tha& is a group, and>’ its subgroup. IfG acts on a sefX, then the
subgroupG’ acts onX by restriction broken symmetjy Conversely, if we regard
X as aG’-space, th&7-action onX is said to be aidden symmetryor G is an
overgroupof (G, X). In the setting that’ acts transitively orX, the action of the
overgroupG is automatically transitive. This happens wh&n= G/H for some
subgroupH of G such thatG = G'H.

We denote by, g¢, andhc the complexified Lie algebras of Lie grougs G,
and H, respectively.

To find the above setting for reductive groups, the following criterion is useful.

Lemma 2.1([I2 Lemma 5.1]). Suppose thati, G’, and H are real reductive
groups. We sefl’ := G’ N H and X = G/H. Then the following three condi-
tions on the triple(G, G’, H) are equivalent:
(i) the natural injectionG’/H’ — X is bijective;
(i) G’ has an open orbit inX;
(iii) g¢ + be = ge.
The implication (ii)=- (i) does not hold in general if we drop the assumption that

H is reductive.
We observe in the condition (iii) of LemniaT

e the role of G’ and H is symmetric;
e the condition is determined only by the complexification of the Lie algebras.

Hence, one example in the compact case yields a number of examples, as is illus-
trated by the following.

Example 2.2The unitary grougd/(n) acts transitively on the unit sphef&" ! in
C" ~ R?", and thus the inclusiofl (n) — SO(2n) induces the isomorphism:

U(n)/U(n—1) = SO(2n)/SO(2n — 1) ~ §?"~ 1,
From the implication (i}=- (iii) in Lemmal2.1, we have
gl(n,C) +s0(2n — 1,C) = so0(2n, C).

In turn, taking other real forms or switching’ and H, we get the following iso-
morphisms:
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SO(2n —1)/U(n —1) = SO(2n)/U(n),
GL(n,C)/GL(n—1,C) = S0(2n,C)/SO(2n —1,C),
SO(2n —1,C)/GL(n —1,C) = SO(2n,C)/GL(n,C),
U(p,q)/U(p—1,9) = SO(2p,2q)/SO(2p — 1,2q),
SO(2p —1,2q)/U(p,q) = SO(2p, 2q)/U(p, q),
GL(n,R)/GL(n —1,R) = S0(n,n)/SO(n — 1,n),
SO(n —1,n)/GL(n —1,R) = SO(n,n)/GL(n,R).

See[[7 Sect. 5] for further examples. See also T&hRin Sectiorid

We shall use the following notation and setting throughout this article.

Setting 2.3 (reductive hidden symmetry) Suppose a tripléG, G’, H) satisfies one
of (therefore any of) the equivalent three conditions in LerdaWe setH’ :=
G'NH andX := G'/H'. ThenX has a hidden symmetty and we have a natural
diffeomorphismX ~ G/H which respects the action 6F .

Similarly, we may consider settings for complex Lie groups or compact Lie
groups:

Setting 2.4 (complex reductive hidden symmetry)Let Gi. € G¢ D Hc be a
triple of complex reductive groups. Suppose that their Lie algebras satisfy the con-
dition (iii) in LemmdZJ, or equivalently,G{. acts transitively orG¢/Hc. We set

Hé: = G(C N Hec and X¢ := G(C/H(/C ~ Gc/H(c.

Setting 2.5 (compact hidden symmetry)Let G, C Gy D Hy be a triple com-

pact Lie groups. Suppose that their complexified Lie algebras satisfy the condi-
tion (iii) in Lemm&2.d or equivalently, Gy, acts transitively onGy /Hy. We set

H{J = G/U N Hy and Xy := G/U/H/U ~ GU/HU.

By “global analysis with hidden symmetries” we mean analysis of functions and
differential equations oX ~ G’/H’ ~ G/ H by using representation theory of two
groupsG andG’. To perform it, our key idea is based on the following observation.

Observation 2.6.In SettingZ.3 H’ is not necessarily a maximal reductive sub-
group of G’ even wherff is maximal inG.

We take a reductive subgroup of G’ which containsH’. (Later, we shall takd,
to be a maximal reductive subgroup.) We set

F:=L/H and Y :=G'/L.

Analogous notations will be applied to Settif@id andZ.8 Then we have the fol-
lowing fiber bundle structure oX (also of X¢ and Xy):
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F -X =Y (2.1)
N N N

F(C — X(C — Y(C

U U U

Fy — Xy — Yyu.

2.2 Preliminaries from representation theory

Let G be the unitary dual of7, i.e., the set of equivalence classes of irreducible
unitary representations of a Lie grodp Any unitary representatio/ of G is
decomposed into a direct integral of irreducible unitary representations:

€]
Hf:/é m(m)mwdu(n), (2.2)

wheredy. is a Borel measure ¥ endowed with the Fell topology, and the measur-
able functionm : G — N U {co} stands for the multiplicity. The decomposition
(22 is unique up to the equivalence of the measuré€'ifs a real reductive Lie
group.

Let H be the Hilbert space on which the unitary representafiois realized.
The discrete partil, of I is a subrepresentation defined on the maximal closed
G-invariant subspace{,; of H that decomposes discretely into irreducible unitary
representations. For an irreducible unitary representatiohG, we define ther-
isotypic componerdf the unitary representatiafi by

I [r] := Homg (7, H) ® T, (2.3)

whereHom¢( , ) stands for the space of continuo@ishomomorphisms. This is a
unitary representation realized in a closed subspadé ofand is a multiple ofr.
Then we have a unitary equivalence

wherez@ denotes the Hilbert completion of the algebraic direct sum/Lgabe the
G-submodule (“continuous part”) defined on the orthogonal complementary sub-
spaceH.. of Hy in H.

Givent € G and a subgroug?’ of G, we may think ofr as a representation
of the subgroug’ by restriction, to be denoted by}-. The irreducible decompo-
sition of the restrictionr|- is called thebranching law We define a subset o’
by

Disc(r|a) := {9 € G’ : Home: (0, 7|r) # {0}}.
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Suchy contributes to the discrete pdrt|s- ), of the restrictionr|q:.

For a closed unimodular subgrouf, we endowG/H with a G-invariant
Radon measure and consider the unitary representatiGhasf the Hilbert space
L?*(G/H). The irreducible decomposition &f (G/ H) is called thePlancherel for-
mula We define a subset & by

Disc(G/H) := {r € G : Homg(m, L*(G/H)) # {0}}.

Suchr is called aiscrete series representatiéor G/ H. ForH = {e}, Disc(G/H)
consists of Harish-Chandra’s discrete series representatidiissiioncompact, el-
ements oDisc(G/H) are not necessarily tempered representatiors. of

These setdisc(w|g/) and Disc(G/H) may be empty. We shall denote by
Disc(r|g/) andDisc(G/ H) the multisets counted with multiplicities. Then the dis-
crete part of the unitary representatioris; of G’ and L?(G/H) of G are given
as

S5}
(7160 =2 e prgetaron™
(7]
Lz(G/H)d 2ZﬂeDisc(G/H)ﬂ-’

respectively.

Given a unitary representatignr, W) of H, we form aG-equivariant Hilbert
vector bundleV := G x gy W overG/H. Then we have a natural unitary represen-
tationInd$; 7 on the Hilbert spac&?(G// H, W) of L?-sections, and define a subset
Disc(G/H, ) of G and a multiseDisc(G/H, 7), similarly. They are reduced to
Disc(G/H) andDisc(G/H), respectively, if(r, W) is the trivial one-dimensional
representation off.

2.3 Double fibration forDisc(G’/H’)

Suppose we are in Settifgd namely, we have a bijection

~

X=G/H = G/H

induced by the inclusiod®’ — G. Then we may compare the three objects (A),
(B), and (C) in Introduction. We wish to obtain new information of the one from the
other two. A general framework that provides a relationship between (A), (B), and
(C) will be formulated by using the notion of real spherical homogeneous spaces,
which we recall from[[g.

Definition 2.7. A homogeneous space of a real reductive Lie groufy is said to
bereal sphericalif X admits an open orbit of a minimal parabolic subgroug-of

Example 2.8.(1) Any homogeneous space of a compact Lie grGypis real spher-
ical because a minimal parabolic subgroupf is the whole groug;.
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(2) Any reductive symmetric space is real spherical.

(3) Any real formX = G/ H of aG¢-spherical homogeneous spake = G¢/Hc
(see Definition-Theoref@.din Sectiord) is real sphericaldg Lemma 4.2].

(4) Let N be a maximal unipotent subgroup 6f ThenG/N is real spherical, as
is seen from the Bruhat decomposition.

The notion of “real sphericity” gives a geometric criterion f&ron which the
function space is under control by representation§ afi the following sense. Let
Gsmooth D€ the set of equivalence classes of irreducible admissible representations
of G of moderate growtid4d Ch. 11. Sect. 5.1].

Fact 2.9([24). Let X be an algebraic homogeneous space of a real reductive Lie
groupG. Then the following two conditions 0¥l are equivalent:

(i) Homg (w, C*° (X, W)) is finite-dimensional for any € Gemootn, and for any
G-equivariant vector bundl® — X of finite rank.
(i) X is real spherical.

The condition (i) in FadE.9remains the same if we replacg® by D’ (distribu-
tion) or if we replacélomg (m, C*° (X, W)) by Homg i (7x, C(X,W)), where
7k Stands for the underlyingy, K')-module ofr.

Highlighting the “discrete part” of the unitary representations that are involved,
we obtain a basic theorem on analysis with hidden symmetries that relates (A), (B),
and (C):

Theorem 2.10.Assume thakK = G’/H' is real spherical in Setting.3

(1) The multiplicity of any element Bisc(G’/H') is finite.

(2) Let L’ be a subgroup of’ which containsH’ (see Observatio@.g). Then, the
discrete part of the unitary representatidi? (G’/H’) has the following two
expressions:

L*(G'/H)q4

&) &3] ®
EZwem(G/H)(W'G/)d :Zwem(G/H)Zﬁemwc/)ﬁ
@ St et Re ®
_Zfe@(L//H’)L (G'/H',7)a _Zfemw/fmZﬂem@/vx)ﬁ'

(3) Assume further thdbisc(G’/H') is multiplicity-free, i.edim Homg (9, L*(X)) <
1 for anyd € G’. Then, there is a natural double fibration
Disc(G'/H')
K pe

Disc(G/H) Disc(L'/H")
such that the fibers are given by

K1 (7) = Disc(r|ar) for m € Disc(G/H),

K51(t) =Disc(G’'/L,7) fort € Disc(L'/H').
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Remark 2.11.(1) In the case wheré’ = L’/H’ is compact, the idea of Theorem
2. I0Qwas implicitly used in[[g] to find the branching law of some Zuckerman
Aq(X)-modules with respect to reductive symmetric pairs (B39 for the
definition of A;())). In the same spirit, we shall give a new example of branch-
ing laws of A4(\) with respect tamonsymmetriairs in Theorerp.3

(2) We shall see in Sectidfl that Theoren2. 10 serves also as a new method for
spectral analysis on non-Riemannian locally symmetric spaces in the setting
whereH' is compact and{ is noncompact.

(3) In 17, we shall give a proof of Theorerd&l3 and3.dbelow by using Theorem
EZI0in the special setting whel@ is compact.

As a direct consequence of TheorBm0(2), we obtain the following:

Corollary 2.12. Supposé&s’/H' is real spherical in Settinf.3and letL’ be a re-

ductive subgroup of’ containing H’. Then the following three subsets@f are
the same:

Dise(G'/H')= |  Disc(n|a) = U  Dise(G'/L,7).
w€Disc(G/H) T€Disc(L’/H’)

2.4 Proof of Theoren2.10

The first assertion of TheordthIQfollows from the finite-multiplicity theorem for
real spherical homogeneous spaces (sedZ8ct

In order to prove Theore.I0(2), we begin with the relation between the mul-
tisetsDisc(G’/H') andDisc(L'/H'). Suppose thal’ is a reductive subgroup of
G’ containingH’. ThenF' = L’/H’ carries anL’-invariant Radon measure. We
decompose the unitary representatio.bbn L2 (F) into the “discrete” and “con-
tinuous part”:

L*(F) ~ L*(F)y ® L*(F).,

where their irreducible decompositions are given by

@ . :
L*(F)y :ZTGM(L’/H’)T (Hilbert direct sum)

@

L*(F). :/A m(7)rdu(r) (direct integral)

The inclusive relatiorl’ ¢ L’ ¢ G’ induces a&’-equivariant map:
X=G'/H »Y =G/l

with typical fiberF = L'/ H'. Accordingly, the induction by stages gives a decom-
position of the regular representation@f:

LA(X) ~ L*(G'/L,L*(F)y) ® L*(G'/L, L*(F).). (2.4)
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We shall show that the spadéomg. (9, L?(G’/L',L*(F).)) is either zero or
infinite-dimensional for any € G

For a measurable sgtin L/, we define a subrepresentatior/dfon the following
closed subspace @f(F)..

®
H(S) ::/S m(7)Tdu(r).

In turn, we obtain a unitary representation @f defined on the closed subspace
L3*(G'/L', H(S)) of L32(G' /L', L*(F).).

Supposdlome (9, L*(G' /L', L3(F).)) # {0} for somed € G’. We claim that
there exist measurable subsstd) and S of L’ with ;(S™ N S®3) = 0 such
that

Home (9, L*(G' /L', H(SW))) # {0} forj=1,2.

Indeed, if not, we would have a countable family of measurable%ets Sz O - - -
in L’ such that

Home: (9, L*(G'/L', H(S5))) = {0} forall j,
lim p(S;) =0,
j—oo

whereS¢ := L'\ S; stands for the complement 6 in the unitary dualZ’. But
this were impossible because the discrete part of the unitary representatioi.
is zero.

Therefore, the second factor @&.4) does not contribute to discrete series repre-
sentations foG'/H'. Hence

I R(E); OV S Sl S 21 (c A0 s

m€Disc(G’/H') T€Disc(L//H')
Thus we have proved:

Proposition 2.13.Assume=’/H' is real spherical and.’ is a reductive subgroup
of G’ containingH’. ThenL?(G'/H')q ~ Z?EDiSC(L//H,) L*(G'/L',7)a, and we
have a natural bijection o

Disc(G'/H') ~ U Disc(G'/L', ).
T€Disc(L'/H')

Similarly to Propositiof2. 13 for the fibrationk,, one can prove the following
results for the fibratioC, : Disc(G’/H') — Disc(G/H):

Fact 2.14([I8 Theorem 2.1]). Suppose we are in Settifld If = € G is re-
alized as a discrete series representation fot(G/H) and if 9 € G’ satis-
fies Home (9, w|ar) # {0}, thend can be realized in a closed subspace of
L?>(G/H) = L*(G'/H’") and thusy € Disc(G’/H'). Moreover ifG’/H' is real
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spherical, then this correspondence induces a bijection between multisets:

Disc(G'/H') ~ U Disc(7|qr), (2.5)
m€Disc(G/H)

and in particular, a bijection between sets:

Disc(G'/H') = |  Disc(r|a).
m€Disc(G/H)

Remark 2.15A weaker form of Fad2.14holds in a more general setting wheré
does not act transitively ofi/ H. See[2 Theorems 5.1 and 8.6] for instance.

Combining Fad2.14with Propositior2. 13 we have completed the proof of the
second statement of Theor&iQ -
To see the third statement of TheorBm(d assume that € G’ satisfies

dim Homg: (9, L*(X)) = 1.
By Theorenf.10(2), there exists a unique € G such that
dim Homg (, L*(X)) - dim Homeg: (9, 7| /) = 1,
and there exists a uniquec L’ such that
dim Homp, (7, L?(F)) - dim Homg. (9, L*(G' /L, 7)) = 1,

where we recall’ = L’'/H’. Then all the multiplicities involved are one, and we
have

L(X)[0) = (nle)[9) = L*(G' /L, 7)[¥) = 9. (2.6)
Hence the correspondenée— (K1 (), K2(¢)) = (m, 7) defines the desired double
fibration. Thus Theorei®.10(3) is proved. O

2.5 Perspectives of Theorefhl0

We shall enrich the double fibration in TheorBaiQby two general results:

¢ relations among the infinitesimal characters (or joint eigenvalues of invariant
differential operators) of three representations: = Iy (¢), andT = K2 ()
(Theorem.§and3.9),

o discretely decomposability of the restriction of a unitary representatightof
the subgroup=’ under the assumption that the fibBr= L’/H’ is compact

(Theorene]).

We note that the latter depends heavily on the real forms, whereas the former de-
pends only on the complexifications. This observation allows us to get useful results



12 Toshiyuki Kobayashi

on infinite-dimensional representations from computation of finite-dimensional rep-
resentations. We shall illustrate this idea by finding the branching rule of unitary
representations fo$0(8,8) | Spin(1,8) from finite-dimensional branching rules
for compact group$O(16) | Spin(9).

Remark 2.160ne may observe that there is some similarity between Howe’s theory
of dual pair B [d B and Theoren2.I0in the fibrationf” — X — Y (see]))

even though neither the fib& = L’/ H' nor the base spadé = G'/L’ is a group.
WhenF — X — Y is a Hopf bundle corresponding to the cases in T&Al§),

(i), and (v) or their noncompact real forms in Talf&) a part of Theorerf2.10

may be understood from this viewpoint.

3 Invariant differential operators with hidden symmetry

3.1 Spherical homogeneous spaces—revisited

We give a quick review on known results about spherical homogeneous spaces from
the three points of view—geometry, invariant differential operators, and representa-
tion theory.

Let G¢ be a complex reductive grouplc an algebraic reductive subgroup, and
Xc¢ := G¢/Hg. LetDg.(Xc) be theC-algebra ofG¢-invariant holomorphic dif-
ferential operators oX¢.

An algebraic subgrou@ of G¢ is areal formif Lie(G¢) ~ Lie(G) ®g C, where
Lie( ) denotes the functor from Lie groups to their Lie algebras. We say¢hatl )
is areal formof the pair(Gc¢, He) if G and its subgroug are real forms of7¢
and Hc, respectively. A real forl{G, H) is said to be &ompact real fornif G is
compact. In this case, we shall use the left&r;, Hy ) instead of G, H).

Definition-Theorem 3.1 The following seven conditions on the péi¥c, Hc) are
equivalent. In this caseX¢ = G¢/Hc is calledG¢-spherical.

(Geometry)

(i) Xc admits an open orbit of a Borel subgroup@f-.

(i) Hc has an open orbit in the flag variety 6fc.

(Ring structure oD¢.(X¢))
(i) Dg.(Xc) is commutative.
(iv) D¢ (Xc) is a polynomial ring.

(Representation theory)
(v) If (Gy, Hy) is a compact real form ofG, Hc), then

dim Homg, (7, C®(Gy /Hy)) <1 forall = € Gy.

(vi) There exist a real forniG, H) of (G¢, Hc) and a constan€ > 0 such that
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dim Homg (7, C*(G/H)) < C  forall 7 € (/G\)

adm*

(vii) There exists a constant > 0 such that

dim Homg(n, D'(G/H)) < C forall € (G)

adm’

for all real form (G, H) of (G¢, He).

Proof. The equivalence (i (ii), and the implications (iv}=- (iii), (v) = (vi), and
(vii) = (vi) are obvious. For the equivalence €} (iii), see BZ. The equivalence
(i) < (iv) was proved by KnodI4]. For a compact real forrt¥; of G¢, the equiv-
alence (i) (v) was proved in Vinberg—Kimelfeld@g. For noncompact real forms
(G, H), we need to take infinite-dimensional representatiors wfto account, and
the equivalence (¥ (vi) < (vii) is due to Eg.

Remark 3.2We have confined ourselves to reductive péi¥s, Hc) in this article,
however, the above equivalence extends to a more general setting ki ésenot
reductive. Seddd and the references therein for a precise statement.

Example 3.3Any complex reductive symmetric space:/Hc is Gc-spherical.
Their real formsG/ H were classified infinitesimally by Bergdd]|[ Typical exam-
ples are real form&'/H = SL(n,R)/SO(p,q) andSU(p,q)/SO(p,q) (p +q =
n) of the complex reductive symmetric spaceés/He = SL(n,C)/SO(n,C).
There are also nonsymmetric spherical homogeneous s@agd$: such as

GL(2n+1,C)/(C* x Sp(n,C)) or SO(2n + 1,C)/GL(n, C).

The homogeneous spacé%./H(. in Table[4d.d are also nonsymmetric spherical
homogeneous spacé¥./H{.. See also Kamer g, Brion [2], and Mikityuk
for the classification of spherical homogeneous spaces.

3.2 Preliminaries on invariant differential operators

This section summarizes classical results on the algebra of invariant differential op-
erators on homogeneous spaces of reductive groups. We let the complex Lie algebra
gc of G¢ act as holomorphic vector fields @#: in two ways:

: : . ) . d
a rightGc-invariant vector field given by z — di(Z), := pn 2y,
t=0
. . . . d
a left Ge-invariant vector field given by  z — dr(Z2), := p zet?,
t=0

for Z € gc. LetU(gc) be the enveloping algebra gf. Then the Lie algebra homo-
morphismsdl : gc — X(G¢) anddr : gc — X(G¢) extend to injectiveC-algebra
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homomorphisms fron/ (g ) into the ringD(G¢ ) of holomorphic differential oper-
ators onG¢, and we get &-algebra homomorphism:

dl®dr: U(ge) ® Ulge) — D(Ge). (3.1)

Let 3(gc) be the center o/ (gc). Then we have

dl(3(gc)) = dr(3(gc)) = di(U(gc)) Ndr(U(ge))-

Suppose thafic is a reductive subgroup dfic, and we setX¢ = G¢/Hc as
before. LetD(X¢) be the ring of holomorphic differential operators éfr.. We
write U (gc)*¢ for the subalgebra of/ (gc) consisting of Hc-invariant elements
under the adjoint action.

Then the homomorphisrZ{J) induces the following diagram.

3(gc) ®C = D (Xc) (3.2)
N n
dl® dr:U(ge) @ U(ge)™® — D(Xc)
U U
C® Ulge)™e = De.(Xe) (3.3)

These homomorphismB.@ and B4 map intoD¢,.(Xc), however, none of
them is very useful for the description of the ribg;. (X¢) whenX¢ = G¢/Hc is
a nonsymmetric spherical homogeneous space:

Remark 3.4.(1) 3(gc) is a polynomial algebra that is well-understood by the
Harish-Chandra isomorphisf&.0) below, but the homomorphisiB.Q) is rarely
surjective wherG¢/ He is nonsymmetrici(e., the “abstract Capelli problem”
a la Howe—-Umeddd has a negative answer).

(2) B3 is always surjective[], but the ringU (gc) ¢ is noncommutative and is
hard to treat in general.

In Sectior3.3 we shall consider simultaneously three rifiys. (Fc), De. (Xc),
andDg,, (Xc) with the notation therein, and Rem@H will be applied to the third
one, D¢ (Xc).

We review briefly the well-known structural results Bay. (Xc) when Xc is a
symmetric space.

Suppose thaK¢ = G¢/Hc is a complex reductive symmetric space, Hc
is an open subgroup of the grodf. of fixed points ofG¢ for some holomorphic
involutive automorphisnw. Let gc = hc + qc be the decomposition gfc into
eigenspaces afo, with eigenvalues-1, —1, respectively. Fix a maximal semisim-
ple abelian subspaee of qc. LetW be the Weyl group of the restricted root system
X(gc,ac) of ac in ge. Then there is a natural isomorphism@falgebras:

¥ De.(Xe) = S(ac)", (3.4)
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known as the Harish-Chandra isomorphism. In turn, amy af. /W gives rise to a
C-algebra homomorphism

xXe :Dg.(Xc) = C, D (¥(D),v).

Conversely, anyC-algebra homomorphisi¢,.(Xc) — C is written uniquely in
this form, and thus we have a natural bijection:

al/W 5 Home e (Da. (Xc),C), v xpC. (3.5)

In the special case thaf¢ is a group manifoldic ~ (Ge x Ge)/A(Ge) re-
garded as a symmetric space by the involuti¢n, y) = (y, z), the Harish-Chandra
isomorphism[8.4) amounts to the isomorphism

3(gc) ~ Daexae (Ge) ~ S(ic)™V @), (3.6)

wherejc is a Cartan subalgebra gf andWW (gc¢) denotes the Weyl group of the root
systemA(gc,jc). Then anyA € ji /W (gc) induces aC-algebra homomorphism
Xf‘c : 3(gc) — C, and the bijection33) reduces to:

](E/W(g(c) :> HomC_alg(S(g@), (C), A= Xfc. (37)

WhenX¢ = G¢/Hc is Ge-spherical, then by work of KnoflH, there is an iso-
morphism analogous to the Harish-Chandra homomorphism, but it is less explicit.

3.3 Three subalgebras idg, (Xc)

Suppose that the tripl&Gc, Gi-, Hc) of complex Lie groups are in Settiflg4 It
turns out that the subgroufi;. := G N Hc is not necessarily a maximal reductive
subgroup ofG{ even whenH¢ is maximal inGc. We take a complex reductive
subgroupL; of G¢. containingH., and setFr := Li/H¢ andYe = G /L.
Then we have a natural holomorphic fibration

Fc — X(c — Y(C. (3.8)

By using the geometnB(8), we shall give a detailed description of tBealgebra
Dg;, (X¢) that will enrich the double fibration for representations of the three groups
Gc, Li, andGy in Theoren2. 10 For this, we introduce the three subalgebPas
QandR in D¢, (Xc) as below.

First we extendLg-invariant differential operators on the fib&r can be ex-
tended toG(.-invariant ones onXc, as follows: for anyD < Dp; (F¢), for any
holomorphic functionf defined in an open sét of X¢, and for any € G, we set

(D) flgre = ((15)"" 0 D o I5)(flgre), (3.9
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wherel, : Xc — Xc is the left translation by, andl; : O(gV)) — O(V) is the
pull-back byl,. Then the right-hand side dB[) is independent of the representa-
tive g in gF¢ sinceD is Li-invariant, and thus(D) gives rise to aG-invariant
holomorphic differential operator oA ¢. Clearly, D = 0 if (D) = 0. Thus we
have obtained a natural injecti@&algebra homomorphism

v: Dy (Fe) = Dey (Xe).

We thus have the following three algebradli, (Xc):

P =D¢.(Xc), (3.10)
Q ::L(DL&(F(C», (311)
R :=dl(3(gl)). (3.12)

The subalgebr® reflects the hidden symmetry &fc = G-/ H(. by the overgroup
Gc. The subalgebr@ depends on the choice @f., and is interesting if the fiber
Ft is nontrivial, equivalently, ifL. satisfiesH¢ & L & Gi.. We shall takel;. to
be a maximal reductive subgroup@f. containingy..

Here is a description db¢ (Xc) by choosing any two of the three subalgebras
P, Q, andR: )

Theorem 3.5([12)). Assume thaK¢ is G(.-spherical in Settin@.4

(1) The polynomial algebrdc,. (Xc) is generated b> andR.

From now, we take a maximal reductive subgrdijpof G containingH(..
(2) D (Xc) is generated bP and Q.
(3) D (Xc) is generated by and R if G is simple.

It turns out from the classification (see TaB& below) thatX: = G¢/Hc
andF¢ = L /H are reductive symmetric spaces in most of the cases in Theorem
B3 In [17], we find explicitly generator®,, «(Qy), anddl(Ry) of P, Q, andR,
respectively, in the following theorem together with their relations.

Theorem 3.6.Assume thaK¢ is G{.-spherical in Settin@.4

(1) There exist element, of D¢ (X¢), and elements;, of 3(g;-) such that
Dg, (Xc) = ClPr, -+, Py dl(Ry), -+, dU(Ry)]

is a polynomial ring in theP, anddl(Ry,).

(2) Assume further thatic is simple. We také . to be a maximal reductive sub-
group of Gi. containing H¢.. Then there exist elementy, of D, (F¢), and
integerss, t € N withm +n = s + t such that )

D, (Xc) =C[P1, -+, Py t(Q1), -+, 1(Qn)]
:(C[L(Ql)a T 7L(Qs)7 dl(Rl)v e vdl(Rf)]
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is a polynomial ring in theP, and.(Q;), and in the.(Q) anddi(R;), respec-
tively.

The key ingredient of the proof for Theore@dand3.8is to provide explicitly

the map .
1 XK2

G, O Disce(Gly/H}) —= Gy x Ly, (3.13)
which is a special case of TheorBalQfor thecompacteal formXy = G}, /H{, ~
Gy /Hy as below.

Lemma 3.7.Suppose that we are in SettiZg8 We take a subgroup;, of G},
containingHy;. Assume thakc := G/ H¢. is Gi.-spherical.

(1) X¢ is G¢-spherical.

(2) Fc := Li/H( is Li-spherical.

(3) There is a canonical map

K1 x K2 : Disc(GYy,/H{;) — Disc(Gy /Hy) x Disc(Ly, /Hy;),
0 = (K1(9), K2(0))

characterized by
[’Cl(ﬁ)‘Gb 19] =1 and [19|LU : Kg(l?)] =1.

Theoremd43.3 and3.8 apply to analysis of real foomX = G/H = G'/H’
in TableL3 For this, we set up some notation. Suppose thas a real form of
G¢ which leaves a real fornX of X¢ invariant. ThenG¢-invariant holomorphic
differential operators oX induceG-invariant real analytic differential operators
on X by restriction. Lety; ¢ € Home e (De. (Xc), C). ForF = O, L2, or D/,
we define the space of joint eigenfunctions by

F(X;My) :={f € F(X): Df = x;°(D)f foranyD € D¢ (Xc)},

where solutions are understood in the weak senseffoe= L? or D’. Then
F(X; M,) areG-submodules of regular representationgiofn 7 (X).

—

Let (L), be the set of equivalence classes of irreducible finite-dimensional
(o}

holomorphic representations &f. with nonzeroHg-fixed vectors. By Weyl’s uni-
tary trick, there is a natural bijection

—

(L) g, = Disc(Ly/HY) (3.14)

if Fy = Ly /H{; is a real form of F. = Li/H¢ and if both L. and H;. are
connected.

Theorem 3.8.Suppose that we are in Settigdwith G¢ simple and withG{. and
H¢ maximal reductive subgroups. Assume that the complexificiorof X is
G{-spherical. LetL be a maximal complex reductive subgroupgif containing
Hy.
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(1) 3(1z) — Dr, (Fc) is surjective.
(2) There exists a natural map for everye (/L@ HL

| Z25 Homc_alg (DGC (Xq;), (C) — Hom«;_alg(f)(g(’c), (C) (315)

with the following property: in@@13 if # € Disc(Gy/Hy) is realized in
L?(Gy/Hy; M), then the infinitesimal character of any e G, belonging
to K ! (7)) N K5 (7) is given byv, ().

(3) Suppose that a quadruplé C G > G’ D H' is given as real forms ofl¢ C
Gc D Gy D H¢ such thatF = L'/H’ is compact and thaDisc(G'/H')
is multiplicity-free. Then, for any € Disc(L'/H') ~ (Lg)y, and form €
Disc(G/H) realized inL2(G/H; M), the infinitesimal character of any
belonging tokC; * () N KCy (1) is given byv, ()).

Remark 3.91n Sectiorld, we illustrate Theoref@.8by examples, and give explicitly
of the mapv,- (seel.d) and B.9), in the case where the rank of the nonsymmetric
homogeneous spacé: = G./H(. is 1 and2n + 1, respectively.

Proof (Sketch of proof of Theoref@8. By LemmalZd Gf. acts transitively

on Xc. Then the first statement follows from the classification of the quadruple
(He,Ge, Gi, H{.) (see Tablédd), and the second one from Theor@d (see
[12 for details). To see the third statement, 1&t. := L?(L'/H’)[r] be ther-
component (se@(3J) of the unitary representation &f on L?(L'/H'). Since3(I;)
surjects ontdDy, (Ft), every element oDy, (F¢) acts onW. as scalar. In turn,
«(Dr, (Fc)) acts as scalars ab?(G' /L', W), which is aG’-invariant closed sub-
space of.?(X). By (Z8), and by the assumption thBisc(G’/H') is multiplicity-
free,d in K (7) N KC; 1 (1) is realized onl?(X)[0] ~ L*(G'/H', W,)[9]. Hence

the third statement is deduced from (2).

4 Examples of relations among invariant differential operators

In this section, we illustrate Theorergs], 3.8 andB:8 on invariant differential
operators with hidden symmetries by some few examples. We shall carry @& in [
computations thoroughly for all the cases based on the classification (se€ble
of the fibration

F(C = L&/H{C — X(C = G{C/H(IC — Y(C = G{C/L&

of G--sphericalX¢ with hidden symmetry7c, whereH(. C L C G C G¢ and
G is a complex simple Lie group containig..

The following convention will be used in SectidAs]and4.4

Forgc = gl(n,C), we defineR;, € 3(gc) such that
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n

Xv(Rk) = Zyjk

j=1

forv = (11, -+ ,vn) € C"/6,, or equivalentlyR;, acts on the finite-dimensional
representatiod’(gc, \) with highest weightx = (A1, ,A,) € Z" (M > -+ >
An) as the scalay | (A; + 5(n + 1 —2j))F.

4.1 Hopf bundle: Xy = S* bundle overP™C

We begin with the underlying geometry of an examplelif][to find an explicit
branching law of the unitarizatioBY| of certain Zuckerman'’s derived functor mod-
ulesA4(\) (see Vogan3d or Vogan—Zuckermari3g| for the definition of44()\))
with respect to a reductive symmetric pair

(G,G") = (0(2p,29),U(p,q)).

The holomorphic setting is given bYc = Gc/Hce ~ G/H andFe = L /Hg:
with

Gc¢ D) H¢
U U
Gt D Lg D Hi:

SO(2n +2,C) S SO(2n +1,C)
= U @]
GL(n+1,C) > GL(n,C) x GL(1,C) > GL(n,C)

In the compact form, the fibratioh,; — Xy — Yy amounts to the Hopf fibration
Sl — §2ntl _ prc,

In order to explain a noncompact form of the Hopf fibration, we set

p+1 q
P i={z € RPN "t =N "y = 1} = O(p+ 1,¢)/O(p,q).  (4.1)
j=1 k=1

The hypersurfacé?-? becomes a pseudo-Riemannian manifold of signafuire)
as a submanifold dRP+9*+! endowed with the flat pseudo-Riemannian metric

ds* = da? +---—|—dx12)+1 —dy} — -~-—dy§ onRPH4,

ThenS?:4 carries a constant sectional curvaturé. By switching signature of the
metric, SP*7 may be regarded also as a pseudo-Riemannian manifold of signature
(q, p), having a constant sectional curvaturt (see B8 Chapter 11]). We note that
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S14is the anti-de Sitter space, afél'! is the de Sitter space. Then the noncompact
form of the Hopf fibration” — X — Y with G = O(2p + 2,2¢) amounts to

St — §Ptl2a _, praC, (4.2)
where we define an open set®f 4C by
PPIC := {[z : w] € (CPT' @ C9)\ {0})/C* : |2? > |w|?}. (4.3)

ThenPP:4C carries an indefinite-&hler structure which is invariant by the natural
action ofU(p + 1,q). If p = 0, thenS?P+1.2¢ = §1.24 is the anti-de Sitter space,
andPP4C = PY4C is the Hermitian unit ball.
We take
P = dl(CD") S ]D)GC(Xc),

whereCp,, € 3(gc) is the Casimir element afc = so(2n + 2,C). Let E be a
generator of the second factorlpf= gl(n, C) & gl(1, C) such that the eigenvalues
of ad(E) in gl(n + 1,C) are0, £1. We set

Q1 :=dr(E), Qy:=Qj €D (Fc).
We takeR;, Ry € 3(gg) for gz = gl(n+1,C) as

n+1
Ry =) Ei,
i—1

R, :=the Casimir element (see the convention at the beginning of this section).

Then the three subalgebr®s Q, andR of D¢, (Xc) are polynomial algebras given
as

P =D¢.(Xc) = C[P],
Q =Dy, (Ft) = Clu(Q1)],

’

R =dl(3(g¢)) = CldI(R1),dI(Rz)].
The relations among generators are given by

dl(Rl) = — L(Ql), and P, = 2dl(R2) — dT(QQ)

Then TheorerB.8in this case is summarized by the following three descriptions of
D¢, (Xc) as polynomial algebras with explicit generators:

Dey, (Xc) = Cldl(P,), ((@Q1)] = Cldl(P2), dr(Ry)] = Cldl(Q1), dr(Ry)]. (4.4)
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4.2 X as anS2-bundle over the quaternionic unit ball

In this section, we reexamine the example in Introduction from The@@@&Gee
also [24] for an exposition on this example from a viewpoint of branching laws and
spectral analysis.

We begin with the geometric setting. L& andY be a three-dimensional com-
plex manifold and a quaternionic unit ball defined by

X :=PY2C = {[21: 22 : 23 : 24) €EPPC: |21 > + |22|* > |23)* + |24)},
Y :={C=a+iy+jutkvecH:a®+y*+u®+0v* <1}

ThenX is homotopic taS? by the quaternionic Hopf fibration
S? 5 X Y,

according to the following 5-tuple of real reductive groups:

G D H SU(2,2) > U(1,2)
U U= U U
G'>DL'DH Sp(1,1) D Sp(1) x Sp(1) D T x Sp(1)

There is a unique (up to a positive scalar multiplication) pseudo-Riemannian metric
h on X of signaturg+ + — — ——) on whichG acts as isometries. The manifald
does not admit &-invariant Riemannian metric but@'-invariant oneg induced
from —B(6-, -) whereB andf are the Killing form and a Cartan involution gf =
sp(1, 1), respectively.
Then the ring o7’ -invariant differential operators oi is generated by any two
of the following three second-order differential operators:

O :the Laplacian for th&-invariant pseudo-Riemannian metfion X,
A :the Laplacian for th&’-invariant Riemannian metrigon X,
(Ag2) :the Laplacian on the fibes?, extended toX .

Thus
Dg, (Xc) ~ Der(X) = C[O,A] = C[O, «(As2)] = C[A, 1(Ag2)].

We note thatd € P, .(Agz2) € Q, andA € R with the notation as in Theorelf13
or[3.8 These generators satisfy the following linear relation:

0= —24A + 12u(Ag2),

seelp4 (6.3)].
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4.3 (Ge, GL) = (SO(16,C), Spin(9, C))

The spin representation defines a prehomogeneous vectorGlawith the action
of the direct product grouf@* x Spin(9, C), where the unique open orbit is given
as a homogeneous spa@* x Spin(9,C))/Spin(7,C), see Igusdl]].

In this section, we consideé¥f¢c = G¢c/Hc ~ G/H andFg = Li. /H¢ defined

by
Ge o He S0(16,C) 5 50(15,C)
U U = U U .
Gt D L D H. Spin(9,C) D Spin(8,C) D Spin(7,C)

In the compact form, the fibratioh; — X — Yy amounts to
ST — 1% 5 88,

In the noncompact form witly = O(8, 8), the fibrationF' — X — Y amounts to
ST — 88T — HB,

whereH? is the simply-connected 8-dimensional hyperbolic space, from which we
deduced the existence of compact pseudo-Riemannian manifold of sig(tattye
of negative constant sectional curvaturdlfi|[ see alsoZ{] for a detailed proof by
utilizing the Clifford algebra oveR.

Similarly to the example in Secti@hl we shall see below that the rifily;, (X¢)
of invariant differential operators on the nonsymmetric spee = Gr./H. =
Spin(9,C)/Spin(7,C) is a polynomial ring of two generators, both of which are
given by second-order differential operators. Indeed, the three subalg&hpgsasnd
Rin D%(XC) are generated by a single differential opera®r 2, anddl(R»),
respectively as below and there is a linear relaf@f)(among them.

Let Cso(i6)s Cspin(s), @NAC s, (9) be the Casimir elements of the complex Lie
algebraso(16, C), spin(8, C), andspin(9, C), respectively. We set

P2 ::dl(CSO(IG)) S DG@(X(C)7
Qo :=dr(Cspin(s)) € Dr; (Fo),
R2 Z:CSpin(g) S 3(9&)

Proposition 4.1. (1) We have the following linear relations:
P2 = 4dl(R2) — 3L(Q2) (45)

(2) The ring of G--invariant holomorphic differential operators alic is a poly-
nomial algebra of two generators with the following three expressions:

Dy (Xc) = C[P,, 1(Q2)] = C[Pp, dI(R2)] = C[t(Q2), dI(Ry)].
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Remark 4.2Howe and Umeddd, Sect. 11.11] obtained a weaker from of Proposi-
tiond I for the prehomogeneous vector spé€e& x Spin(9, C), C%). In particular,

they proved that th€-algebra homomorphism : 3(g) — Dg-. (Xc) is not sur-
jective and that the “abstract Capelli problem” has a negative answer. The novelty
here is to introduce the operat@y, € ]DL/C(FC) coming from the fiberF¢ to de-
scribe the algebr@g, (Xc).

The proof of Propositiodrelies on an explicit computation of the double fibration
of Theoren2. I0(or Lemmd3.]). We briefly state some necessary computations.

We denote byF'(L;;, A) the irreducible finite-dimensional representation of a
connected compact Lie groud; with extremal weightx. We set

ﬁa,b = F(Spln(g)v %(av bv ba b))

fora > b > 0 with a = b mod 2, namely, for(a,b) € Z(0). Then the sets
of discrete series representations &y /Hy, Gi;/H{;, andL}; /H{; are given as
follows:

Lemma 4.3.
Disc(SO(16)/S0(15)) ={H (R') : j € N},
Disc(Spin(9)/Spin(7)) ={V;x : (j,k) € Z(0)},
Disc(Spin(8)/Spin(7)) ={H*(R®) : k € N}.

Proof. The first and third equalities follow from the classical theory of spherical
harmonics (see.qg.[H Intr. Thm. 3.1]), and the second equality fromaner 3.

We set

(84

(1) :={(m,n) EN*:m—-n>pu, m-n=p mod2}. (4.6)

Then the double fibration of Theord?ald(or Lemmd3.3) amounts to

—

{0k € Spin(9) : (4,k) € Z(0)}
Ky N Ko
{H/(R1®) : j € N} {H*(R®) : k € N}

We use the following normalization of Harish-Chandra isomorphisms:
Homc _ag(Dg. (Xc),C) =~ C/Za, X3 < A

by X3 (P2) = \* — 49.

Home g (3(gh), C) = C'/W(By) = C/(64 x (Zs)"), X§ e v
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such that thé (g¢ )-infinitesimal character of the trivial representatiorgpfis given
by x&" with v = 1(7,5,3,1). Via these identifications, for every = H*(R®) €
Disc(Spin(8)/Spin(7)), the map

Vr HOIH(C_a]g(]D)GC (XC)a C) — Hom(C —alg(?)(g&:)a C)7 Xi( = Xfl (47)

in Theoren3.8 amounts to

1
C/Zy — C*/W(By), )\»—>u:§()\,k+5,kz+3,kz+1). (4.8)

4.4 X¢c:=GL(2n +1,C)/Sp(n,C)

The last example treats the case whé&ieis of higher rank. We consideX¢ =
Gc/Hce ~ Gi/Hi andFe = L/ Hg. defined by

G(c D H¢
U U
G D L D H

GL(2n+2,C) D Sp(n+1,C)
= @] U
GL(2n+1,C) D GL(2n,C) x GL(1,C) > Sp(n,C)

This is essentially the case in Tald&d (iv) except thatG¢ contains a one-
dimensional center. We note that: is a nonsymmetric spherical homogeneous
space of ranRn + 1 if we regardX¢ ~ G/ H(, but is a symmetric space of rank
n + 1 if we regardX¢ ~ G¢/Hc.

First, for the symmetric spacgc = GL(2n+2,C)/Sp(n+1,C), the restricted
root system¥(gc, ac) is of type A,,. We take the standard bagi&,, - - - , A, 41} Of
az such that

Y(gc,ac) ={hj —hp: 1 <j<k<n+1}

By these coordinates, the Harish-Chandra isomorphism amounts to:
Homc_alg(DGC (X(C)7 (C) ~ CL(?:/W(AH) ~ Cn+1/6n+1, Xi( A
Fork € N, we defineP;, € D¢ (Xc) by

n+1
XA (Pe) =D A ford= (A, Any1) € CF/S 4.
j=1

Second, the fibeF¢ of the bundleX¢c = G/Hi — G /Lt is also a symmetric
space:
Fc = L¢/Hi ~ (GL(2n,C)/Sp(n,C)) x GL(1,C).
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We define similarlyQ, Qx € Dy, (F¢) for k € N by
Xﬁ(Q) =Ho,

X, (Qr) ZMJ,

for = (p1,- -, pin; o) € (C* & C)/(S,, x {1}). Then the Harish-Chandra iso-
morphism gives the description of the polynomial algefiras(Xc) andDy, (Ft):

DG@(X(C) :(C[P17 e 7Pn+1]7
]D)L:,:(F(C) :(C[Q7Q1a T aQn]

In this case, Theoren&gand3.8amount to the following:

Proposition 4.4. (1) The generators’, @, @, and Ry, are subject to the following
relations:

Py +1(Qr) =2%dI(Ry,) forall k €N,
Py —(Q) =dl(Ry).

(2) The ring of G--invariant holomorphic differential operators ali¢c is a poly-
nomial algebra of 2n + 1)-generators with the following expressions:

Dg, (Xc) =C[P1, -+, Poy1,0(Q1), -, (Qn)]
=C[Py, -+, Ppy1,1(Q), t(Q1), -+, L(Qn)]
:(C[L(Ql) ,U(@n), d (Rl)a Al (Rpt1)]
:C[Plv o n+1adl( 1)7 (Rn)}
=C[Py, - Pmdl(Rl) ( Rpi1)].

(3) Form = F(U(2n), (k1, k1, k2, ko, -+, kn, kn))RE(U (1), ko) € Disc(L},/H},),
the mapv- in TheorenB8is given as

vy : Home -alg (]D)GC (X(C)» (C) — Hom(C—alg (3 (g(/(j)v (C)a
2 2

C" /&, — C"MGoni1, A (V)
where
>\1 >\n
v-(A) = (?, ,7,]{:1 +n—1,ka4+n—3,-- ky—n+1ko). (4.9
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4.5 List of examples

Toshiyuki Kobayashi

We give an exhaustive list of quadruples, , Hy, G;, H{;) in Tabldd Jup to finite
coverings of groups, subject to the following four conditions:

- Gy is a compact simple Lie group,
- Hy andGY; are maximal proper subgroups@f;,

- Gy = Hy Gy,

- G /H( is Gi-spherical.

In Table4.]], we also write a maximal proper subgrolify of G, that containg{y; .

The complexification$Gc, He, G-, H() of the quadruple$Gy, Hy, Gy, Hi;) in

TabledJ together withF¢ := L{./H{. are given in Tabl@.2 and their real forms

are in Tablé.3 up to finite coverings and finitely many disconnected components.

When two subgroup&’; and K>, commute each other arfd; N K is a finite group,

we write K - K, for the quotient grougK; x K3)/K; N K3 in Tabledd. A3
Theorem&E.Hand3.8 apply to Tabldd2 The pair(K;, K2) of maps in Lemma

B2 (the compact case of Theor&dd will be computed explicitly in[[Z] for all

the cases in Tablé1 TheorenEd for discretely decomposable restrictions apply

to those in Tabl@3with I = L’/H’ compact. Theoref.3for spectral analysis

on non-Riemannian locally symmetric spaces apply to those in FaBiwith H’

compact.

Table 4.1 compact case

Gy Hy Gy Hj, Ly,

@) |SO(2n+2)| SO@2n+1) U(n+1) U(n) U(n)-U(1)
(i) |SO(2n+2) Un+1) SO(2n +1) U(n) SO(2n)
(i) (SU(2n+2)| U(@2n+1) Sp(n+1) Sp(n) - U(1) Sp(n) - Sp(1)
(iv) |SU(2n+2)| Sp(n+1) U@2n+1) Sp(n) - U(1) U(2n)-U(1)
(V) |SO(4n +4)| SO(4n+3) |Sp(n+1)-Sp(1)| Sp(n) - A(Sp(1)) |Sp(n) - Sp(1)2
(vi) | SO(16) SO(15) Spin(9) Spin(7) Spin(8)
(vii) |  SO(8) Spin(7) SO(5) - SO(3) [SU(2)- A(SU(2))|SO(4) - SO(3)
(viii) SO(7) Ga(—14) SO(5) - SO(2) |SU(2)-A(SO(2))|S0O(4) - SO(2)
(ix) SO(7) Go(—14 SO(6) SU(3) U(3)

x) SO(7) S0(6) Ga(—14) SU(3) SU(3)

(xi) SO(8) Spin(T) SO(7) Ga(—14) Ga(—14)
(xii) | SO(8) S0(7) Spin(7) Ga(—14) Ga(—14)
(xii) |  SO(8) Spin(7) SO(6) - SO(2) [SU(3)-A(SO(2))| U(3) - SO(2)
xiv)| SO(8) |S0®6)-502)|  Spin(1)  |SUB)-ASO?2))|  Spin(6)

In Tablel4.2 we have used the following notation:

0G,(C) :=0(2n,C)/GL(n,C),
GS,(C) :=GL(2n,C)/Sp(n,C),

n+1

SE={(21,"+ ,2ns1) €EC"T: szz =1}.

Jj=1
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Table 4.2 Complexification of the quadruplés:y;, Hy, G, H{;) andFyy = L}, /H{; in Table

713
Ge He G, H], Fy
e |SO@n+2,C)| SO@2n+1,C) GL(n+1,C) GL(n,C) Cx
(i)e [SO@n+2,C)| GL(n+1,C) S0(2n+1,C) GL(n,C) 0G,(C)
(ii)c |[SL(2n+2,C)| GL(2n+1,C) Sp(n+1,C) Sp(n,C) - C% S2
(V)c |SL(2n+2,C)|  Sp(n+1,C) GL(2n+1,C) Sp(n,C) - C* GSn(C)
V)¢ [SO(Un+4,C)| SO(Un+3,C) |Sp(1,C)- Sp(n+1,C)| Sp(n,C) - A(Sp(1,C)) S
(vi)c | SO(16,C) S0(15,C) Spin(9, C) Spin(7,C) SE
(vi)c | SO(8,C) Spin(7,C) SO(5,C) - SO(3,C) |SL(2,C)-A(SL(2,C))| 82
(viiyo| SO(7,C) G2(C) 50(5,C) - SO(2,C) |SL(2,C)- A(SO(2,C))| S2
(iX)e | SO(7,C) G2(C) 50(6,C) SL(3,C) CX
®e | S0(7,C) 50(6,C) G2(C) SL(3,C) {pt}
Xi)e | SO(8,C) Spin(7,C) 50(7,C) Ga(C) {pt}
(xi)e | SO(8,C) 50(7,C) Spin(7,C) G2(C) {pt}
(xii)c| SO(8,C) Spin(7,C) S0(6,C) - SO(2,C) SL(3,C) - A(CX) Cx
xiv)e| SO(8,C) [SO(6,C)-SO(2,C) Spin(7,C) SL(3,C) - A(CX) |0Gs(C)
Table 4.3 Real forms of the quintuples in Tal{ed
G H el H' F
(g |SO(2p,2q)| SO(2p,2q — 1) U(p,q) Ulp,q—1) St
g | SO(n,n) SO(n,n —1) GL(n,R) GL(n — 1,R) R
(g [SO(2p,29) U(p,q) SO(2p,2q — 1) U(p,g—1) OUp,q—1
(i)g | SO(n,n) GL(n,R) SO(n,n —1) GL(n—-1,R) OGn_1
(i) [SU(2p,29)| U(2p,2q—1) Sp(p, q) Sp(p,q—1)-U(1) 52
(ii)g | SL(2n,R)| GL(2n —1,R) Sp(n,R) Sp(n —1,R) - GL(1,R)| St1!
(V) [SU(2p,2q) Sp(p,q) U(2p,2q—1) Sp(p,g—1)-U(1) |USp,q-1
(iV)g | SL(2n,R) Sp(n,R) GL(2n —1,R) |Sp(n—1,R)-GL(1,R)| GSy—1
(Vg |SO(4p,4q)| SO(4p,4g—1) | Sp(p,q)-Sp(1) |Sp(p,q—1) - A(Sp(1))| &3
(Vi)g | SO(8,8) SO(8,7) Spin(8, 1) Spin(7) S7
(vi)g | SO(8,8) SO(8,7) Spin(5, 4) Spin(3,4) 534
(vii)g | SO(4,4) Spin(4, 3) S0(4,1) - SO(3) SU(2) - A(SU(2)) S8
(viii)g| SO(4,3) G2(R) S0(4,1)-50(2) SU(2) - A(SO(2)) S3
(viii)g| SO(4,3) G2(R) S0(2,3) - SO(2) | SL(2,R) - A(SO(2)) S§2:1
(viii)g| SO(4,3) G2(R) S0O(3,2) - SO(1,1)| SL(2,R) - A(SO(1,1))| S*1
(iIX)g | SO(4,3) G2(R) S0(3,3) SL(3,R) R
(iX)r | SO(4,3) G2(R) S0O(4,2) SU(2,1) St
X)r | SO(4,3) S0(3,3) G2(R) SL(3,R) {pt}
X)r | SO4,3) S0(4,2) G2(R) SU(2,1) {pt}
Xi)g | SO(4,4) Spin(4, 3) S0(4,3) G2(R) {pt}
(xi)g | SO(4,4) S0(4,3) Spin(4, 3) G2(R) {pt}
(Xiii) g | SO(4,4) Spin(4, 3) S50(4,2)-S0(2) | SU(2,1)- A(S0(2)) St
(Xiii)g| SO(4,4) Spin(4, 3) S50(3,3)-SO(1,1)| SL(3,R) - A(SO(1,1)) R
XiV)g| SO(4,4) | SO4,2)-50(2) Spin(4,3) SU(2,1) - A(SO(2)) | OUax
Xiv)g | SO(4,4) |SO(3,3) - SO(1,1) Spin(4,3) SL(3,R) - A(SO(1,1))| 0G3

In Tabled.3 we have used the following notation:
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OU,. 4 :=0(2p,2q)/U(p, q),
OG,, :==0(n,n)/GL(n,R),

USyp,q =U(2p,2q)/Sp(p, q),
GS,, :=GL(2n,R)/Sp(n,R).

We note thaOU,, , (or U S, 4) is compact if and only ip = 0 org = 0.

5 Applications to branching laws

Branching problems ask how irreducible representatiorts a groupG behave

(e.g, decompose) when restricted to its subgra@¥ip In general, branching prob-
lems of infinite-dimensional representations of real reductive Lie graips G’

are difficult: for instance, there is no general “algorithm” like the finite-dimensional
case. We apply the results on invariant differential operators (Thedg&insnd

B9 to branching problems. We shall see a trick transferring results for finite-
dimensional representations in the compact setting to those for infinite-dimensional
representations which are realized in the space of functions or distributions on real
forms X of G{.-spherical homogeneous spacésin the noncompact setting by the
following scheme:

Finite-dimensional representations of compact Lie gratipsand Gy,

$

Invariant differential operators ol for the complexified group&c andG¢:

(Theorem@B Jand3.9
$

Infinite-dimensional representations of noncompact real farnasid G’

5.1 Discrete decomposability of restriction of unitary
representations

Let G be a real reductive Lie group with maximal compact subgrBu (g, K)-
module(r g, V) is said to bediscretely decomposabikthere exists an increasing
filtration {V,, }.en such that’ = U,,enV;, and that eacly,, is a(g, K)-module of
finite length. If 7 is the underlying(g, K')-module of a unitary representatian
of G, then this condition implies that decomposes discretely into a Hilbert direct
sum of irreducible unitary representationg®{[23).
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In this section, as an application of “global analysis with hidden symmetry”((A)
and (B) in Introduction) to branching problems ((C) in Introduction), we give a geo-
metric sufficient condition for the restriction of an irreducible unitary representation
of a reductive Lie grougz not to have continuous spectrum when restricted to a
subgroupG’. In SettingZ.3, we take a maximal reductive subgroiipof G’ con-
taining H’, and setF' := L’'/H’ so that we have a fibratioh — X — Y (see

D).

Theorem 5.1 (discrete decomposability of restriction).Suppose we are in Setting
[23 Assume thaX¢ is G{--spherical and tha#" is compact.

(1) ((g, K)-modules)Any irreducible(g, K')-moduler occurring as a subquo-
tient of the regular representation 6f on the spac®’(X) of distributions on
X is discretely decomposable agg, K')-module.

(2) (unitary representatiorfor any irreducible unitary representation of G real-
ized inD’(X), the restrictionr|s, decomposes discretely into a Hilbert direct
sum of irreducible unitary representations@f.

(3) (discrete seriedp (2), if 7 is a discrete series representation {8y H, then any
irreducible summand of the restrictiati- is a discrete series representation
for G'/H'.

Remark 5.2.(1) In the case wheréf’ is compact, TheoreffJ will be discussed
in detail in L3 in connection to spectral analysis on non-Riemannian locally
symmetric spaces'\G/H, see Sectio@ We note that ifH’ is compact, we
can takeL’ to be a maximal compact subgroup @f containingH’ so that
F =1L'/H'is compact.

(2) A general criterion for discrete decomposability of the restrictions of irreducible
unitary representations was given[EQ[[2]] in terms of invariants of represen-
tations. Representationstreated in Theorers.d are much limited, however,
we can tella priori from TheorenE.] discrete decomposability of the restric-
tion 7| before knowing what the representationare.

Proof (Sketch of the proof of Theordsl).

(1) Supposerk is realized in a subspadé of D’'(X). (We remark thal” is au-
tomatically contained i0>°(X) by the elliptic regularity theorem.) Sinc€
is Ge-spherical Dg. (X¢) is finitely generated as & (3(gc))-module ({4]).
Since3(gc) acts onV as scalars, thBg, (X¢)-moduleV := D¢, (Xc) -V is
ID)GC (XC)-finite.
Now we consider thé&'-equivariant fibrationF — X — Y. Decomposing/
along the compact fibeF = L’/ H’, we see that there is an irreducible finite-
dimensional representatione Disc(L'/H’) such that the--component/; of
V from the right is nonzero.
Since3(I;) acts onr as scalars, the action of the subalgebra generatd by
D¢ (Xc) andQ = (D, (Fc)) factors through a finite-dimensional algebra,
and so does the action @fg;.) by Theorenf3.3(2). Since theg, K')-module
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V contains a3(g}.)-finite g’-moduleV;, V is discretely decomposable as a
(¢/, K')-module by [7].

(2) The statement follows from (1) an@3, Theorem 2.7].

(3) The third statement follows from (1) arl@d Theorem 8.6].

Example 5.3LetG = O(p,q), H = O(p — 1,¢) and
X :=G/H ~ 5P~ 1.

In what follows, 7 stands for any irreducible subquotient modulezbbf the reg-

ular representation on the spaP§ X) of distributions, andrg for the underlying

(g, K)-module.

(1) (O(2p',2¢") L U(p',q")) Supposep = 2p’ andq = 2¢' with p’, ¢’ € N. Let
G’ =U(p',q') be a natural subgroup 6f. As one can observe from Tab&d]
andd.3 (i),

F=L/H =U@,.¢-1)xUL)/U@Y,qd-1)=U(1)

is compact (see alsg). By Theorenb. ], anyrx is discretely decomposable
as a(g’, K')-module.

(2) (O(4p”,44") | Sp(p”,q")) Suppose = 4p” andq = 4¢” with p”,¢” € N.
Let G” := Sp(p”,q") be a natural subgroup ¢f. Then by TableEJand4.3
(V)R’

F :L///HI/
=(Sp(p",q" — 1) x Sp(1) x Sp(1))/Sp(®",q" — 1) x A(Sp(1)) =~ Sp(1)

is compact. By Theorefd anyr is discretely decomposable aggl, K”)-
module.

Remark 5.4.(1) In the setting of ExamplE.3, explicit branching laws were given
in [ in terms of Zuckerman derived functor modulds(\) whenr is a
discrete series representation f6r namely, whenr is an irreducible unitary
representation off which can be realized in a closed invariant subspace of the
Hilbert spacel.?(X).

(2) Any 7 in D/(X) occurs as a subquotient of the most degenerate principal
series representation 6f that was the main object of Howe—Td#,[and vice
versa The restrictionsD(2p’,2¢') L U(p',¢') andO(4p”,4¢") | Sp(p",q")
were discussed also ig][from the viewpoint of the “see-saw” dual pairs.

5.2 Branching lawSO(8, 8) | Spin(1,8)

We apply the previous results., Theorem&.10 3.8 and5.J) to find new branch-
ing laws of the restriction of unitary representations with respect to the nonsymmet-
ric pair
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(G,G") = (500(8,8), Spin(1,8))

when(G’ is realized inG via the spin representation. The subscript O stands for the
identity component.

The main results of this section is Theor&d, which might be interesting on its
own since not much is known about the restriction of Zuckerman'’s derived functor
moduleA,(\) with respect to pairéG, G”) of reductive groups except for the case
where(G, G’) is a symmetric pair or there is a subgradfy such thatz > G” > G’
is a chain of symmetric pairs (e.g7, G, G’) = (O(4p,4q),U(2p, 2q), Sp(p, q)).

(Cf. [A 18 02 3 2] for branching laws with respect to symmetric pairs).

In order to state Theorefid, we fix some notation. Let, (A € N,) be ir-
reducible unitary representations 6f = SOy (8,8) attached to minimal elliptic
orbits in the philosophy of orbit method. For the reader’'s convenience, we collect
some properties afy:

e The underlying(g, K)-module (7)) x of 7, is given by Zuckerman derived
functor moduleA, (A — 7) whereq is af-stable parabolic subalgebragsuch
that the normalizer of in G is SO(2) x SOy (6, 8). Concerning the-shift of
Aq(N), we adopt the same normalization as in Vogan—Zucker@@n |

e The 3(g)-infinitesimal character of is (), 6,5,4,3,2,1,0).

e The K-type formula ofry is given by

Mk~ @ H"R)RH(R),

(m,n)e=(A+1)

where we recall fromdg) the definition of the parameter s&{y).

Let us recall the classification of the Harish-Chandra discrete series represen-
tation for G’ = Spin(1,8). Fore = + andb = (by,bs,b3,by) € Z* or
Z* + 1(1,1,1,1) such thaty, > by > by > by > 1, we write 9§ for the discrete
series representation 6f with

. 1 1
Harish-Chandra parametéb; + g, ba + g, bs + §,b4 — 5),

Blattner parameterby, b, b3, cby).

Then any discrete series representatiotyols of this form. Fork > [ > 2 with
k=1 mod 2, we set

s

. 9t
Ukt = 19%<k,k,k,l)'

We are ready to state a branching law of the unitary representatian arith re-
spect to the nonsymmetric paitz, G') = (50(8, 8), Spin(1,38)).

Theorem 5.5(S0(8,8) | Spin(1,8)). For any A € N, the irreducible unitary
representationr, of G = SOy(8,8) decomposes discretely as a representation of
G’ = Spin(1,8) in accordance with the following branching rule.
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(o]
-\ @
T|ar ~ E Y2041, 2+1-
=0

Remark 5.6In general, ifr is a Harish-Chandra discrete series representation of a
real reductive Lie grou, then any irreducible summand of the restrictiojg:

to a reductive subgrou@’ is a Harish-Chandra discrete series representatia# of
(22). Theoren.Fshows that the converse statement is not always true begause
is a nontempered representatior(hivhereas anyy, ; is a Harish-Chandra discrete
series ofG’.

For the proof of Theorefa.B we compute explicitly the double fibration in Theorem
[2.10 We begin with an explicif{-type formula ofds:

Lemma 5.7.Suppose); is the (Harish-Chandra) discrete series representation of
G' = Spin(1,8) with Blattner parametefb,, bs, b3, ebs). Then the restriction of
Y% to a maximal compact subgroup = Spin(8) of G’ decomposes as

@ .
19§|Spin(8) = Z F(Spin(8), (1, p2, i3, €414))
neZ(b)
where, forb = (by, b, bs, bs), we set
Z0) = {pn € Z* +b:py > by > pg > by > 3 > by > pug > by}

Fork € N, we setr;, := F(Spin(8), 5(k, k, k, k)). The unitary representation
of L’ on L?(L'/H') = L?(Spin(8)/Spin(7)) is multiplicity-free, and we have

Disc(L'/H') = Disc(L'/H') = {r}, : k € N}.

Let W,, = G’ x 7, be the homogeneous vector bundle over the 8-dimensional
hyperbolic spac& := G'/L’ = Spin(1,8)/Spin(8).

Proposition 5.8.Letk € N. There are at most finitely many discrete series represen-
tations forL?(Y, W;, ), and they are given as follows, where the sum is multiplicity-
free:

LY, Wy,) = b Vet

2<i<k,=k mod 2

Proof. By Lemmalk.d 7, occurs iny; as aK-type if and only ife = + and
b= %(k,k,k,l) for somel € 2Z + k with 2 <[ < k, namely,J; = 9, ;. Thus the
proposition follows from the Frobenius reciprocity.

We have thus shown
Kot(me) = {9, :2<1<kil=k mod 2}, (5.2)

Dise(@/H') = | K3 (m) = (0o : (k1) € Z(2)},
keN
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where we recall fromi4.6) for the definition of=(x). In particular, discrete series
for G’/H' is multiplicity-free,i.e, Disc(G’/H') = Disc(G/H).

On the other hand, we recall the geomelfy= G/H whereH = SOq(7,8)
and a realizatiomry, in the regular representatidi? (X ):

e Disc(G/H) ={mx: A e N.}.

e X := G/H ~ S%7 carries a pseudo-Riemannian metric of signai#e),
normalized so that the sectional curvature is constant equal ttsee 7).
Then@ acts isometrically on the pseudo-Riemannian space férmy $37,
and the Laplaciaily acts as the scala? — 49 on the representation space of
Ty in L? (X)

Therefore, the double fibration of Theor@Ldamounts to

—

{0k, € Spin(L,8) : (k,1) € Z(2)}
Kl / \l IC?

-

{7y € SO0(8,8) : A € Ny} (s € Spin(8) : k € N}.

We already know the maig, explicitly by &J). Let us find the maj; explicitly
by using Theorer8.8 We recall that the branching law of the restrictiog ¢ is
nothing but to determine the fiber of the projection.

Supposel;; € Kfl(m). SinceKy(Vr,1) = 7k, the 3(g¢)-infinitesimal charac-
ter of ¥y, ; is subject to Theore@.8 By (.9), we have

(A, k+5,k+3,k+1) mod W(B,) ~ G4x(Za)*.

DN | =

1
5 (B +5, k43, k+1,1-1) =

Hencel =1 — 1, andkC; (Vx,x+1) = ma. Thus the fiber ofC; is given by
Kit(my) = {1 : A+ 1<k,k=XA+1 mod 2}.

Now TheorenE.3is proved.

6 Application to spectral analysis on non-Riemannian locally
symmetric spacesI’\G/H

In this section we discuss briefly an application of TheofZhto the analysis on
non-Riemanniatocally symmetric spaceS\G/H = I'\ X, for which we initiated
a new line of investigation idd[]] by a different approach.

We begin with a brief review on the geometry. Suppose that a discrete group
acts continuously oX . We recall that the action is said to pmperly discontinuous
if any compact subset oX meets only finitely many of itg -translates. Ifl" acts
properly discontinuously and freely, the quotiéhtX is of Hausdorff topology and
carries a natural’>°-manifold structure such that
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X —>I\X

is a covering map. The quotient\ X = I'\G/ H is said to be &lifford—Klein form
of X =G/H.

SupposeX = G/H with H noncompact. Then not all discrete subgroups
of G act properly discontinuously: for instance, de Sitter spsté = O(n +
1,1)/0(n, 1) does not admit any infinite properly discontinuous action of isome-
tries (Calabi—-Markus phenomendg))[ Also, infinite subgroups ofdf never act
properly discontinuously oiX, because the origin:= eH € X is a fixed point. In
fact, determining which subgroups act properly discontinuously is a delicate ques-
tion, which was first considered in full generality [ in the late 1980s; we refer
to [27] for a survey.

A large and important class of examples is constructed as followsISpe [

Definition 6.1 (standard Clifford—Klein form). The quotientI"\ X of X by a
discrete subgroup’ of G is said to bestandardif I" is contained in some reductive
subgroup’’ of G acting properly onX.

Any Gc-invariant holomorphic differential operator ot defines a&-invariant
(in particular,I"-invariant) differential operator oX by restriction, and hence in-
duces a differential operator, to be denoted’yy on I"\ X

Given\ € Homc.ag(Dg. (Xc), C), we set the space of joint eigenfunctions

C=(I\X; M) i= {f € C®(I'\X) : Drf = \(D)f forall D € Dg.(Xc)}.

There has been an extensive study on spectral andlyisiswhenX is a reductive
symmetric spacé&’/H under additional assumptions:

o I'={e},or
e H is a maximal compact subgroup.

However, not much is known abo@> (I"'\X; M,) whenX = G/H with H
noncompact. In fact, if we try to attack a problem of spectral analysis'\af/ H
in the general case whefé is noncompact and’ is infinite, then new difficulties
may arise from several points of view:

(1) Geometry. The7-invariant pseudo-Riemannian structureXn= G/H is not
Riemannian anymore, and discrete groups of isometriés @6 not always act
properly discontinuously on sucki as we discussed above.

(2) Analysis. The Laplaciad\ x on "\ X is not an elliptic differential operator.
Furthermore, it is not clear ik x has a self-adjoint extension dit (I"\ X).

(3) Representation theory. If acts properly discontinuously ok = G/H with
H noncompact, then the volume 6A\G is infinite, and the regular represen-
tation L2(I"\G) may have infinite multiplicities. In turn, the group may not
have a good control of functions dn\G.

Let us discuss a connection of the spectral analysis on a non-Riemannian locally
homogeneous spadé X with the results in the previous section.
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Suppose that we are in SettiBg@d This means that a reductive subgratipof
G acts transitively onY andX ~ G’'/H' whereH' = G’ N H. Then we have:

Proposition 6.2 ([IH)). If H’ is compact, ther?’ acts properly onX, and conse-
quently, any torsion-free discrete subgrofipof G’ acts properly discontinuously
and freely, yielding a standard Clifford—Klein fori\ X . In particular, there exists
a compact standard Clifford—Klein form &f by taking a torsion-free cocompatt
inG'.
From now, we assume thaf’ is compact and that the complexificatidfit is G-
spherical. (We can read from Taled the list of quadruple$G, H, G’, H') satis-
fying these assumptions.)

Take a maximal compact subgro#g of G’ containingH’. The groupK” plays
the same role witl’ in Sectior2.J and we se¥ := K’/H’. For each(, W) €
K, we form a vector bundle

WT = F\G’ XK/W

over the Riemannian locally symmetric spdceY := I'\G' /K.
For a C-algebra homomorphism : 3(gz) — C, we define a subspace of
C(I\Y, W) by

CO(D\Y, Wi N,) = {f € C®(I\Y,W,) : dl(z)f =v(z)f forallz e 3(ge)},

which may be regarded agE-submodule®> (I"\G’; NV,,) of the regular represen-
tation of G’ onC>=(I'\@).
Suppose novwr, W) € Disc(K’/H'). By Lemmd3.3 we have

dim¢ Homg (1, C*(K'/H')) = 1,
and therefore there is a natural map
iy C(O\Y,W,;) = C*(I'"\X).

Here is another application of Theor@8 to the fiber bundles” — IM\X —
I'\Y (seelL3 for details).

Theorem 6.3.Suppose we are in Settif§3 Assume thafi¢ is simple andX¢ is
G{-spherical. LetI” be a torsion-free discrete subgroup @f so that the locally
homogeneous spadé\ X is standard.

() Letv, be the map
Vr Homc_alg(DGC (X(C)7 C) — Homc_alg(S(gé:), (C), A 1/7-(>\)

given in Theore@.8for r € Disc(K'/H’). Then, the following two conditions
ony € C>*(I'\Y,W;) are equivalent:

(i) ir(p) € C=(I'\X; M,),
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(”) Y E OOO(F\Ya WT;NI/T()\))'

(2) For every X € Homgc.a14(D(X),C), the joint eigenspac€ > (I"\X; M)
contains
@ iT(COO(va WT;NV(T)))
‘reﬁ

as a dense subspace.
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