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Abstract Hidden symmetry of aG′-spaceX is defined by an extension of theG′-
action onX to that of a groupG containingG′ as a subgroup. In this setting, we
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Key words: reductive group, branching law, hidden symmetry, spherical variety,
locally symmetric space, invariant differential operator

MSC (2010):Primary 22E46; Secondary 53C35.

Contents
1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
2 Analysis on homogeneous spaces with hidden symmetry. . . . . . . . . . . . . . . . . . . . . . . 4
3 Invariant differential operators with hidden symmetry. . . . . . . . . . . . . . . . . . . . . . . . . . 12
4 Examples of relations among invariant differential operators. . . . . . . . . . . . . . . . . . . . 18
5 Applications to branching laws. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
6 Application to spectral analysis on non-Riemannian locally symmetric spaces

Γ\G/H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

Toshiyuki Kobayashi
Graduate School of Mathematical Sciences and Kavli IPMU, The University of Tokyo
e-mail:toshi@ms.u-tokyo.ac.jp

1

toshi@ms.u-tokyo.ac.jp


2 Toshiyuki Kobayashi

1 Introduction

In the late 80s, I was working on two “new” different topics of study:

(I) (geometry) actions of discrete groups onpseudo-Riemannianhomogeneous
spaces [15],

(II) (representation theory) restriction of unitary representations tononcompact
subgroups [17],

and trying to find criteria for the setting that will assure the following “best proper-
ties”:

• properly discontinuous actions (v.s.ergodic actions,etc.) for (I),
• discretely decomposable restrictions (v.s. continuous spectrum) for (II),

respectively. The techniques in solving these problems were quite different.
Roger Howe visited Kyoto in 1994, and raised a question about how these two

topics are connected to each other in my mind. Philosophically, there is some sim-
ilarity in (I) and (II): proper actions are “compact-like” actions on locally compact
topological spaces, whereas we could expect that there are also “compact-like”lin-
ear actions on Hilbert spaces such as discretely decomposable unitary representa-
tions [23], see also Margulis [29]. The aim of this paper is to give another answer to
his question rigorously from the viewpoint of “analysis with hidden symmetries” by
extending the half-formed idea of [24] which is based on the observation as below:
our first example of discretely decomposable restrictions of nonholomorphic dis-
crete series representations [16] arose from the geometry of the three-dimensional
open complex manifoldX = P1,2C (see Section4.2) satisfying the following two
properties:

• the de Sitter groupG′ = Sp(1, 1) ≃ Spin(4, 1) acts properly onX, and con-
sequently, there exists a three-dimensional compact indefinite Kähler manifold
as the quotient ofX by a cocompact discrete subgroup ofG′ [15];

• any irreducible unitary representation of the conformal groupG = U(2, 2)(≑
S1×SO(4, 2)) that is realized in the regular representationL2(X) is discretely
decomposable when restricted to the subgroupG′ [16, 17].

In this example, we seehidden symmetryof X:

X is a homogeneous space ofG′, but also that of an overgroupG. (1.1)

Furthermore,X = P1,2C has a quaternionic Hopf fibration

F → X → Y (1.2)

over the four-dimensional ballY which is the Riemannian symmetric space associ-
ated toG′ with typical fiberF ≃ S2 (see Section4.2).

More generally, we shall work with the setting (1.1) of hidden symmetry for a
pair of real reductive Lie groupsG ⊃ G′. The subject of this article is in three folds:
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(A) global analysis onX by using representations ofG;
(B) global analysis onX by using representations ofG′;
(C) branching laws of representations ofG when restricted toG′.
A key role is played by a maximal reductive subgroupL′ of G′ containingH ′,

which induces aG′-equivariant fibrationF → X → Y (see (2.1)).

In Section2, we study (B) in two ways:

• (A) + (C),
• analysis of the fiberF and the base spaceY ,

and deduce a double fibration in Theorem2.10for the “discrete part” of the unitary
representations of the groupsG, G′ andL′ arising naturally whenX is G′-real
spherical (Definition2.7). Assuming a stronger condition that the complexification
XC isG′

C-spherical (Definition-Theorem3.1), we analyze the ringDG′
C
(XC) of G′

C-
invariant holomorphic differential operators on the complexificationXC by three
natural subalgebrasP, Q, andR defined in (3.10)–(3.12) which commute withGC,
G′

C, andL′
C, respectively (see Theorems3.5 and3.6). Turning to real formsF →

X → Y , the relationship between (A), (B), and (C) is formulated utilizing the
algebrasP, Q, andR.

Moreover, an application of the relationship

(A) and (B) =⇒ (C)

will be discussed in Section5 that includes a new branching law of Zuckerman’s
derived functor moduleAq(λ) with respect to a nonsymmetric pair (Theorem5.5).
An application of the relationship

(A) and (C) =⇒ (B)

was studied in [17, 22] for the existence problem of discrete series representation for
nonsymmetrichomogeneous spaces. Spectral analysis on non-Riemannian locally
symmetric spaces is discussed in Section6 as an application of the relationship

(B) and (C) =⇒ (A).

This scheme explains the aforementioned example as a special case of the fol-
lowing general results:

H ′ is compact ⇒ (I) X admits compact Clifford-Klein forms (Proposition6.2)

=⇒ Remark5.2

F is compact ⇒ (II) discretely decomposable restrictions (Theorem5.1)

The results of Sections3–4 and Section6 will be developed in the forthcoming
papers [12] (for compact real forms) and [13] with F. Kassel, respectively.
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2 Analysis on homogeneous spaces with hidden symmetry

In this section, we introduce a general framework which relates branching problems
of unitary representations and global analysis on homogeneous spaces with hidden
symmetries.

2.1 Homogeneous space with hidden symmetry

Suppose thatG is a group, andG′ its subgroup. IfG acts on a setX, then the
subgroupG′ acts onX by restriction (broken symmetry). Conversely, if we regard
X as aG′-space, theG-action onX is said to be ahidden symmetry, or G is an
overgroupof (G′, X). In the setting thatG′ acts transitively onX, the action of the
overgroupG is automatically transitive. This happens whenX = G/H for some
subgroupH of G such thatG = G′H.

We denote bygC, g′C, andhC the complexified Lie algebras of Lie groupsG, G′,
andH, respectively.

To find the above setting for reductive groups, the following criterion is useful.

Lemma 2.1([17, Lemma 5.1]). Suppose thatG, G′, and H are real reductive
groups. We setH ′ := G′ ∩ H andX = G/H. Then the following three condi-
tions on the triple(G,G′,H) are equivalent:

(i) the natural injectionG′/H ′ ↪→ X is bijective;
(ii) G′ has an open orbit inX;

(iii) g′C + hC = gC.

The implication (ii)⇒ (i) does not hold in general if we drop the assumption that
H is reductive.

We observe in the condition (iii) of Lemma2.1:

• the role ofG′ andH is symmetric;
• the condition is determined only by the complexification of the Lie algebras.

Hence, one example in the compact case yields a number of examples, as is illus-
trated by the following.

Example 2.2.The unitary groupU(n) acts transitively on the unit sphereS2n−1 in
Cn ≃ R2n, and thus the inclusionU(n) ↪→ SO(2n) induces the isomorphism:

U(n)/U(n− 1)
∼→ SO(2n)/SO(2n− 1) ≃ S2n−1.

From the implication (i)⇒ (iii) in Lemma2.1, we have

gl(n,C) + so(2n− 1,C) = so(2n,C).

In turn, taking other real forms or switchingG′ andH, we get the following iso-
morphisms:
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SO(2n− 1)/U(n− 1)
∼→SO(2n)/U(n),

GL(n,C)/GL(n− 1,C) ∼→SO(2n,C)/SO(2n− 1,C),

SO(2n− 1,C)/GL(n− 1,C) ∼→SO(2n,C)/GL(n,C),

U(p, q)/U(p− 1, q)
∼→SO(2p, 2q)/SO(2p− 1, 2q),

SO(2p− 1, 2q)/U(p, q)
∼→SO(2p, 2q)/U(p, q),

GL(n,R)/GL(n− 1,R) ∼→SO(n, n)/SO(n− 1, n),

SO(n− 1, n)/GL(n− 1,R) ∼→SO(n, n)/GL(n,R).

See [17, Sect. 5] for further examples. See also Table4.3 in Section4.

We shall use the following notation and setting throughout this article.

Setting 2.3 (reductive hidden symmetry)Suppose a triple(G,G′,H) satisfies one
of (therefore any of) the equivalent three conditions in Lemma2.1. We setH ′ :=
G′ ∩H andX := G′/H ′. ThenX has a hidden symmetryG and we have a natural
diffeomorphismX ≃ G/H which respects the action ofG′.

Similarly, we may consider settings for complex Lie groups or compact Lie
groups:

Setting 2.4 (complex reductive hidden symmetry)Let G′
C ⊂ GC ⊃ HC be a

triple of complex reductive groups. Suppose that their Lie algebras satisfy the con-
dition (iii) in Lemma2.1, or equivalently,G′

C acts transitively onGC/HC. We set
H ′

C := G′
C ∩HC andXC := G′

C/H
′
C ≃ GC/HC.

Setting 2.5 (compact hidden symmetry)Let G′
U ⊂ GU ⊃ HU be a triple com-

pact Lie groups. Suppose that their complexified Lie algebras satisfy the condi-
tion (iii) in Lemma2.1, or equivalently,G′

U acts transitively onGU/HU . We set
H ′

U := G′
U ∩HU andXU := G′

U/H
′
U ≃ GU/HU .

By “global analysis with hidden symmetries” we mean analysis of functions and
differential equations onX ≃ G′/H ′ ≃ G/H by using representation theory of two
groupsG andG′. To perform it, our key idea is based on the following observation.

Observation 2.6.In Setting2.3, H ′ is not necessarily a maximal reductive sub-
group ofG′ even whenH is maximal inG.

We take a reductive subgroupL′ of G′ which containsH ′. (Later, we shall takeL′

to be a maximal reductive subgroup.) We set

F := L′/H ′ and Y := G′/L′.

Analogous notations will be applied to Settings2.4 and2.5. Then we have the fol-
lowing fiber bundle structure ofX (also ofXC andXU ):
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F → X → Y (2.1)

∩ ∩ ∩
FC → XC → YC

∪ ∪ ∪
FU → XU → YU .

2.2 Preliminaries from representation theory

Let Ĝ be the unitary dual ofG, i.e., the set of equivalence classes of irreducible
unitary representations of a Lie groupG. Any unitary representationΠ of G is
decomposed into a direct integral of irreducible unitary representations:

Π ≃
∫ ⊕

Ĝ

m(π)πdµ(π), (2.2)

wheredµ is a Borel measure of̂G endowed with the Fell topology, and the measur-
able functionm : Ĝ → N ∪ {∞} stands for the multiplicity. The decomposition
(2.2) is unique up to the equivalence of the measure ifG is a real reductive Lie
group.

Let H be the Hilbert space on which the unitary representationΠ is realized.
The discrete partΠd of Π is a subrepresentation defined on the maximal closed
G-invariant subspaceHd of H that decomposes discretely into irreducible unitary
representations. For an irreducible unitary representationπ of G, we define theπ-
isotypic componentof the unitary representationΠ by

Π[π] := HomG(π,H)⊗ π, (2.3)

whereHomG( , ) stands for the space of continuousG-homomorphisms. This is a
unitary representation realized in a closed subspace ofHd, and is a multiple ofπ.
Then we have a unitary equivalence

Πd ≃
∑
π∈Ĝ

⊕
Πd[π],

where
∑⊕ denotes the Hilbert completion of the algebraic direct sum. LetΠc be the

G-submodule (“continuous part”) defined on the orthogonal complementary sub-
spaceHc of Hd in H.

Givenπ ∈ Ĝ and a subgroupG′ of G, we may think ofπ as a representation
of the subgroupG′ by restriction, to be denoted byπ|G′ . The irreducible decompo-
sition of the restrictionπ|G′ is called thebranching law. We define a subset of̂G′

by
Disc(π|G′) := {ϑ ∈ Ĝ′ : HomG′(ϑ, π|G′) ̸= {0}}.
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Suchϑ contributes to the discrete part(π|G′)d of the restrictionπ|G′ .
For a closed unimodular subgroupH, we endowG/H with a G-invariant

Radon measure and consider the unitary representation ofG on the Hilbert space
L2(G/H). The irreducible decomposition ofL2(G/H) is called thePlancherel for-
mula. We define a subset of̂G by

Disc(G/H) := {π ∈ Ĝ : HomG(π, L
2(G/H)) ̸= {0}}.

Suchπ is called adiscrete series representationforG/H. ForH = {e},Disc(G/H)
consists of Harish-Chandra’s discrete series representations. IfH is noncompact, el-
ements ofDisc(G/H) are not necessarily tempered representations ofG.

These setsDisc(π|G′) and Disc(G/H) may be empty. We shall denote by
Disc(π|G′) andDisc(G/H) the multisets counted with multiplicities. Then the dis-
crete part of the unitary representationsπ|G′ of G′ andL2(G/H) of G are given
as

(π|G′)d ≃
∑⊕

ϑ∈Disc(π|G′ )
ϑ,

L2(G/H)d ≃
∑⊕

π∈Disc(G/H)
π,

respectively.
Given a unitary representation(τ,W ) of H, we form aG-equivariant Hilbert

vector bundleW := G×H W overG/H. Then we have a natural unitary represen-
tationIndGH τ on the Hilbert spaceL2(G/H,W) of L2-sections, and define a subset
Disc(G/H, τ) of Ĝ and a multisetDisc(G/H, τ), similarly. They are reduced to
Disc(G/H) andDisc(G/H), respectively, if(τ,W ) is the trivial one-dimensional
representation ofH.

2.3 Double fibration forDisc(G′/H ′)

Suppose we are in Setting2.3, namely, we have a bijection

X = G′/H ′ ∼→ G/H

induced by the inclusionG′ ↪→ G. Then we may compare the three objects (A),
(B), and (C) in Introduction. We wish to obtain new information of the one from the
other two. A general framework that provides a relationship between (A), (B), and
(C) will be formulated by using the notion of real spherical homogeneous spaces,
which we recall from [18].

Definition 2.7. A homogeneous spaceX of a real reductive Lie groupG is said to
bereal sphericalif X admits an open orbit of a minimal parabolic subgroup ofG.

Example 2.8.(1) Any homogeneous space of a compact Lie groupGU is real spher-
ical because a minimal parabolic subgroup ofGU is the whole groupGU .
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(2) Any reductive symmetric space is real spherical.
(3) Any real formX = G/H of aGC-spherical homogeneous spaceXC = GC/HC

(see Definition-Theorem3.1 in Section3) is real spherical [26, Lemma 4.2].
(4) Let N be a maximal unipotent subgroup ofG. ThenG/N is real spherical, as

is seen from the Bruhat decomposition.

The notion of “real sphericity” gives a geometric criterion forX on which the
function space is under control by representations ofG in the following sense. Let
Ĝsmooth be the set of equivalence classes of irreducible admissible representations
of G of moderate growth [37, Ch. 11. Sect. 5.1].

Fact 2.9([26]). LetX be an algebraic homogeneous space of a real reductive Lie
groupG. Then the following two conditions onX are equivalent:

(i) HomG(π,C
∞(X,W)) is finite-dimensional for anyπ ∈ Ĝsmooth and for any

G-equivariant vector bundleW → X of finite rank.
(ii) X is real spherical.

The condition (i) in Fact2.9remains the same if we replaceC∞ byD′ (distribu-
tion) or if we replaceHomG(π,C

∞(X,W)) byHomg,K(πK , C∞(X,W)), where
πK stands for the underlying(g,K)-module ofπ.

Highlighting the “discrete part” of the unitary representations that are involved,
we obtain a basic theorem on analysis with hidden symmetries that relates (A), (B),
and (C):

Theorem 2.10.Assume thatX = G′/H ′ is real spherical in Setting2.3.

(1) The multiplicity of any element inDisc(G′/H ′) is finite.
(2) LetL′ be a subgroup ofG′ which containsH ′ (see Observation2.6). Then, the

discrete part of the unitary representationL2(G′/H ′) has the following two
expressions:

L2(G′/H ′)d

≃
∑⊕

π∈Disc(G/H)
(π|G′)d =

∑⊕

π∈Disc(G/H)

∑⊕

ϑ∈Disc(π|G′ )
ϑ

≃
∑⊕

τ∈Disc(L′/H′)
L2(G′/H ′, τ)d =

∑⊕

τ∈Disc(L′/H′)

∑⊕

ϑ∈Disc(G′/L′,τ)
ϑ.

(3) Assume further thatDisc(G′/H ′) is multiplicity-free, i.e.dimHomG′(ϑ,L2(X)) ≤
1 for anyϑ ∈ Ĝ′. Then, there is a natural double fibration

Disc(G′/H ′)

K1 ↙ ↘ K2

Disc(G/H) Disc(L′/H ′)

such that the fibers are given by

K−1
1 (π) =Disc(π|G′) for π ∈ Disc(G/H),

K−1
2 (τ) =Disc(G′/L′, τ) for τ ∈ Disc(L′/H ′).
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Remark 2.11.(1) In the case whereF = L′/H ′ is compact, the idea of Theorem
2.10was implicitly used in [16] to find the branching law of some Zuckerman
Aq(λ)-modules with respect to reductive symmetric pairs (see [34, 36] for the
definition ofAq(λ)). In the same spirit, we shall give a new example of branch-
ing laws ofAq(λ) with respect tononsymmetricpairs in Theorem5.5.

(2) We shall see in Section6 that Theorem2.10serves also as a new method for
spectral analysis on non-Riemannian locally symmetric spaces in the setting
whereH ′ is compact andH is noncompact.

(3) In [12], we shall give a proof of Theorems3.5and3.6below by using Theorem
2.10in the special setting whereG is compact.

As a direct consequence of Theorem2.10(2), we obtain the following:

Corollary 2.12. SupposeG′/H ′ is real spherical in Setting2.3 and letL′ be a re-
ductive subgroup ofG′ containingH ′. Then the following three subsets of̂G′ are
the same:

Disc(G′/H ′) =
∪

π∈Disc(G/H)

Disc(π|G′) =
∪

τ∈Disc(L′/H′)

Disc(G′/L′, τ).

2.4 Proof of Theorem2.10

The first assertion of Theorem2.10follows from the finite-multiplicity theorem for
real spherical homogeneous spaces (see Fact2.9).

In order to prove Theorem2.10(2), we begin with the relation between the mul-
tisetsDisc(G′/H ′) andDisc(L′/H ′). Suppose thatL′ is a reductive subgroup of
G′ containingH ′. ThenF = L′/H ′ carries anL′-invariant Radon measure. We
decompose the unitary representation ofL′ onL2(F ) into the “discrete” and “con-
tinuous part”:

L2(F ) ≃ L2(F )d ⊕ L2(F )c,

where their irreducible decompositions are given by

L2(F )d =
∑⊕

τ∈Disc(L′/H′)
τ (Hilbert direct sum),

L2(F )c ≃
∫ ⊕

L̂′
m(τ)τdµ(τ) (direct integral).

The inclusive relationH ′ ⊂ L′ ⊂ G′ induces aG′-equivariant map:

X = G′/H ′ → Y := G′/L′,

with typical fiberF = L′/H ′. Accordingly, the induction by stages gives a decom-
position of the regular representation ofG′:

L2(X) ≃ L2(G′/L′, L2(F )d)⊕ L2(G′/L′, L2(F )c). (2.4)
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We shall show that the spaceHomG′(ϑ,L2(G′/L′, L2(F )c)) is either zero or
infinite-dimensional for anyϑ ∈ Ĝ′.

For a measurable setS in L̂′, we define a subrepresentation ofL′ on the following
closed subspace ofL2(F )c:

H(S) :=

∫ ⊕

S

m(τ)τdµ(τ).

In turn, we obtain a unitary representation ofG′ defined on the closed subspace
L2(G′/L′,H(S)) of L2(G′/L′, L2(F )c).

SupposeHomG′(ϑ,L2(G′/L′, L2(F )c)) ̸= {0} for someϑ ∈ Ĝ′. We claim that
there exist measurable subsetsS(1) andS(2) of L̂′ with µ(S(1) ∩ S(2)) = 0 such
that

HomG′(ϑ,L2(G′/L′,H(S(j)))) ̸= {0} for j = 1, 2.

Indeed, if not, we would have a countable family of measurable setsS1 ⊃ S2 ⊃ · · ·
in L̂′ such that

HomG′(ϑ,L2(G′/L′,H(Sc
j ))) = {0} for all j,

lim
j→∞

µ(Sj) = 0,

whereSc
j := L̂′ \ Sj stands for the complement ofSj in the unitary dualL̂′. But

this were impossible because the discrete part of the unitary representationL2(F )c
is zero.

Therefore, the second factor of (2.4) does not contribute to discrete series repre-
sentations forG′/H ′. Hence

L2(G′/H ′)d =
∑⊕

π∈Disc(G′/H′)

π ⊂
∑⊕

τ∈Disc(L′/H′)

L2(G′/L′, τ).

Thus we have proved:

Proposition 2.13.AssumeG′/H ′ is real spherical andL′ is a reductive subgroup
of G′ containingH ′. ThenL2(G′/H ′)d ≃

∑⊕
τ∈Disc(L′/H′) L

2(G′/L′, τ)d, and we
have a natural bijection

Disc(G′/H ′) ≃
∪

τ∈Disc(L′/H′)

Disc(G′/L′, τ).

Similarly to Proposition2.13 for the fibrationK2, one can prove the following
results for the fibrationK1 : Disc(G′/H ′) → Disc(G/H):

Fact 2.14([16, Theorem 2.1]). Suppose we are in Setting2.3. If π ∈ Ĝ is re-
alized as a discrete series representation forL2(G/H) and if ϑ ∈ Ĝ′ satis-
fies HomG′(ϑ, π|G′) ̸= {0}, then ϑ can be realized in a closed subspace of
L2(G/H) = L2(G′/H ′) and thusϑ ∈ Disc(G′/H ′). Moreover ifG′/H ′ is real
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spherical, then this correspondence induces a bijection between multisets:

Disc(G′/H ′) ≃
∪

π∈Disc(G/H)

Disc(π|G′), (2.5)

and in particular, a bijection between sets:

Disc(G′/H ′) =
∪

π∈Disc(G/H)

Disc(π|G′).

Remark 2.15.A weaker form of Fact2.14holds in a more general setting whereG′

does not act transitively onG/H. See [22, Theorems 5.1 and 8.6] for instance.

Combining Fact2.14with Proposition2.13, we have completed the proof of the
second statement of Theorem2.10.

To see the third statement of Theorem2.10, assume thatϑ ∈ Ĝ′ satisfies

dimHomG′(ϑ,L2(X)) = 1.

By Theorem2.10(2), there exists a uniqueπ ∈ Ĝ such that

dimHomG(π, L
2(X)) · dimHomG′(ϑ, π|G′) = 1,

and there exists a uniqueτ ∈ L̂′ such that

dimHomL′(τ, L2(F )) · dimHomG′(ϑ,L2(G′/L′, τ)) = 1,

where we recallF = L′/H ′. Then all the multiplicities involved are one, and we
have

L2(X)[ϑ] ≃ (π|G′)[ϑ] ≃ L2(G′/L′, τ)[ϑ] ≃ ϑ. (2.6)

Hence the correspondenceϑ 7→ (K1(ϑ),K2(ϑ)) = (π, τ) defines the desired double
fibration. Thus Theorem2.10(3) is proved. ⊓⊔

2.5 Perspectives of Theorem2.10

We shall enrich the double fibration in Theorem2.10by two general results:

• relations among the infinitesimal characters (or joint eigenvalues of invariant
differential operators) of three representationsϑ, π = K1(ϑ), andτ = K2(ϑ)
(Theorems3.6and3.8),

• discretely decomposability of the restriction of a unitary representation ofG to
the subgroupG′ under the assumption that the fiberF = L′/H ′ is compact
(Theorem5.1).

We note that the latter depends heavily on the real forms, whereas the former de-
pends only on the complexifications. This observation allows us to get useful results
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on infinite-dimensional representations from computation of finite-dimensional rep-
resentations. We shall illustrate this idea by finding the branching rule of unitary
representations forSO(8, 8) ↓ Spin(1, 8) from finite-dimensional branching rules
for compact groupsSO(16) ↓ Spin(9).

Remark 2.16.One may observe that there is some similarity between Howe’s theory
of dual pair [6, 7, 8] and Theorem2.10 in the fibrationF → X → Y (see (2.1))
even though neither the fiberF = L′/H ′ nor the base spaceY = G′/L′ is a group.
WhenF → X → Y is a Hopf bundle corresponding to the cases in Table4.1 (i),
(iii), and (v) or their noncompact real forms in Table4.3) a part of Theorem2.10
may be understood from this viewpoint.

3 Invariant differential operators with hidden symmetry

3.1 Spherical homogeneous spaces—revisited

We give a quick review on known results about spherical homogeneous spaces from
the three points of view—geometry, invariant differential operators, and representa-
tion theory.

Let GC be a complex reductive group,HC an algebraic reductive subgroup, and
XC := GC/HC. Let DGC(XC) be theC-algebra ofGC-invariant holomorphic dif-
ferential operators onXC.

An algebraic subgroupG of GC is areal formif Lie(GC) ≃ Lie(G)⊗RC, where
Lie( ) denotes the functor from Lie groups to their Lie algebras. We say that(G,H)
is a real formof the pair(GC, HC) if G and its subgroupH are real forms ofGC
andHC, respectively. A real form(G,H) is said to be acompact real formif G is
compact. In this case, we shall use the letter(GU ,HU ) instead of(G,H).

Definition-Theorem 3.1 The following seven conditions on the pair(GC,HC) are
equivalent. In this case,XC = GC/HC is calledGC-spherical.
(Geometry)
(i) XC admits an open orbit of a Borel subgroup ofGC.
(ii) HC has an open orbit in the flag variety ofGC.

(Ring structure ofDGC(XC))
(iii) DGC(XC) is commutative.
(iv) DGC(XC) is a polynomial ring.

(Representation theory)
(v) If (GU ,HU ) is a compact real form of(GC, HC), then

dimHomGU
(π,C∞(GU/HU )) ≤ 1 for all π ∈ ĜU .

(vi) There exist a real form(G,H) of (GC,HC) and a constantC > 0 such that
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dimHomG(π,C
∞(G/H)) ≤ C for all π ∈ (̂G)adm.

(vii) There exists a constantC > 0 such that

dimHomG(π,D′(G/H)) ≤ C for all π ∈ (̂G)adm,

for all real form (G,H) of (GC,HC).

Proof. The equivalence (i)⇔ (ii), and the implications (iv)⇒ (iii), (v) ⇒ (vi), and
(vii) ⇒ (vi) are obvious. For the equivalence (i)⇔ (iii), see [32]. The equivalence
(i) ⇔ (iv) was proved by Knop [14]. For a compact real formGU of GC, the equiv-
alence (i)⇔ (v) was proved in Vinberg–Kimelfeld [33]. For noncompact real forms
(G,H), we need to take infinite-dimensional representations ofG into account, and
the equivalence (i)⇔ (vi) ⇔ (vii) is due to [26].

Remark 3.2.We have confined ourselves to reductive pairs(GC,HC) in this article,
however, the above equivalence extends to a more general setting whereHC is not
reductive. See [26] and the references therein for a precise statement.

Example 3.3.Any complex reductive symmetric spaceGC/HC is GC-spherical.
Their real formsG/H were classified infinitesimally by Berger [1]. Typical exam-
ples are real formsG/H = SL(n,R)/SO(p, q) andSU(p, q)/SO(p, q) (p + q =
n) of the complex reductive symmetric spacesGC/HC = SL(n,C)/SO(n,C).

There are also nonsymmetric spherical homogeneous spacesGC/HC such as

GL(2n+ 1,C)/(C× × Sp(n,C)) or SO(2n+ 1,C)/GL(n,C).

The homogeneous spacesG′
C/H

′
C in Table 4.2 are also nonsymmetric spherical

homogeneous spacesG′
C/H

′
C. See also Kr̈amer [28], Brion [2], and Mikityuk [30]

for the classification of spherical homogeneous spaces.

3.2 Preliminaries on invariant differential operators

This section summarizes classical results on the algebra of invariant differential op-
erators on homogeneous spaces of reductive groups. We let the complex Lie algebra
gC of GC act as holomorphic vector fields onGC in two ways:

a rightGC-invariant vector field given by x 7→ dl(Z)x :=
d

dt

∣∣∣∣
t=0

e−tZx,

a leftGC-invariant vector field given by x 7→ dr(Z)x :=
d

dt

∣∣∣∣
t=0

xetZ ,

for Z ∈ gC. LetU(gC) be the enveloping algebra ofgC. Then the Lie algebra homo-
morphismsdl : gC → X(GC) anddr : gC → X(GC) extend to injectiveC-algebra
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homomorphisms fromU(gC) into the ringD(GC) of holomorphic differential oper-
ators onGC, and we get aC-algebra homomorphism:

dl ⊗ dr : U(gC)⊗ U(gC) → D(GC). (3.1)

Let Z(gC) be the center ofU(gC). Then we have

dl(Z(gC)) = dr(Z(gC)) = dl(U(gC)) ∩ dr(U(gC)).

Suppose thatHC is a reductive subgroup ofGC, and we setXC = GC/HC as
before. LetD(XC) be the ring of holomorphic differential operators onXC. We
write U(gC)

HC for the subalgebra ofU(gC) consisting ofHC-invariant elements
under the adjoint action.

Then the homomorphism (3.1) induces the following diagram.

Z(gC) ⊗ C → DGC(XC) (3.2)

∩ ∩
dl ⊗ dr :U(gC) ⊗ U(gC)

HC → D(XC)

∪ ∪
C⊗ U(gC)

HC → DGC(XC) (3.3)

These homomorphisms (3.2) and (3.4) map intoDGC(XC), however, none of
them is very useful for the description of the ringDGC(XC) whenXC = GC/HC is
a nonsymmetric spherical homogeneous space:

Remark 3.4.(1) Z(gC) is a polynomial algebra that is well-understood by the
Harish-Chandra isomorphism (3.6) below, but the homomorphism (3.2) is rarely
surjective whenGC/HC is nonsymmetric (i.e., the “abstract Capelli problem”
à la Howe–Umeda [9] has a negative answer).

(2) (3.3) is always surjective [5], but the ringU(gC)
HC is noncommutative and is

hard to treat in general.

In Section3.3, we shall consider simultaneously three ringsDLC(FC),DGC(XC),
andDG′

C
(XC) with the notation therein, and Remark3.4will be applied to the third

one,DG′
C
(XC).

We review briefly the well-known structural results onDGC(XC) whenXC is a
symmetric space.

Suppose thatXC = GC/HC is a complex reductive symmetric space,i.e. HC
is an open subgroup of the groupGσ

C of fixed points ofGC for some holomorphic
involutive automorphismσ. Let gC = hC + qC be the decomposition ofgC into
eigenspaces ofdσ, with eigenvalues+1, −1, respectively. Fix a maximal semisim-
ple abelian subspaceaC of qC. LetW be the Weyl group of the restricted root system
Σ(gC, aC) of aC in gC. Then there is a natural isomorphism ofC-algebras:

Ψ : DGC(XC)
∼→ S(aC)

W , (3.4)
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known as the Harish-Chandra isomorphism. In turn, anyν ∈ a∗C/W gives rise to a
C-algebra homomorphism

χXC
ν : DGC(XC) → C, D 7→ ⟨Ψ(D), ν⟩.

Conversely, anyC-algebra homomorphismDGC(XC) → C is written uniquely in
this form, and thus we have a natural bijection:

a∗C/W
∼→ HomC -alg(DGC(XC),C), ν 7→ χXC

ν . (3.5)

In the special case thatXC is a group manifoldGC ≃ (GC × GC)/∆(GC) re-
garded as a symmetric space by the involutionσ(x, y) = (y, x), the Harish-Chandra
isomorphism (3.4) amounts to the isomorphism

Z(gC) ≃ DGC×GC(GC) ≃ S(jC)
W (gC), (3.6)

wherejC is a Cartan subalgebra ofgC andW (gC) denotes the Weyl group of the root
system∆(gC, jC). Then anyλ ∈ j∗C/W (gC) induces aC-algebra homomorphism
χGC
λ : Z(gC) → C, and the bijection (3.5) reduces to:

j∗C/W (gC)
∼→ HomC -alg(Z(gC),C), λ 7→ χGC

λ . (3.7)

WhenXC = GC/HC isGC-spherical, then by work of Knop [14], there is an iso-
morphism analogous to the Harish-Chandra homomorphism, but it is less explicit.

3.3 Three subalgebras inDG′
C
(XC)

Suppose that the triple(GC, G
′
C,HC) of complex Lie groups are in Setting2.4. It

turns out that the subgroupH ′
C := G′

C ∩HC is not necessarily a maximal reductive
subgroup ofG′

C even whenHC is maximal inGC. We take a complex reductive
subgroupL′

C of G′
C containingH ′

C, and setFC := L′
C/H

′
C andYC := G′

C/L
′
C.

Then we have a natural holomorphic fibration

FC ↪→ XC ↠ YC. (3.8)

By using the geometry (3.8), we shall give a detailed description of theC-algebra
DG′

C
(XC) that will enrich the double fibration for representations of the three groups

GC, L′
C, andG′

C in Theorem2.10. For this, we introduce the three subalgebrasP,
Q andR in DG′

C
(XC) as below.

First we extendL′
C-invariant differential operators on the fiberFC can be ex-

tended toG′
C-invariant ones onXC, as follows: for anyD ∈ DL′

C
(FC), for any

holomorphic functionf defined in an open setV of XC, and for anyg ∈ G′
C, we set

(ι(D)f)|gFC := ((l∗g)
−1 ◦D ◦ l∗g)(f |gFC), (3.9)
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wherelg : XC → XC is the left translation byg, andl∗g : O(gV ) → O(V ) is the
pull-back bylg. Then the right-hand side of (3.9) is independent of the representa-
tive g in gFC sinceD is L′

C-invariant, and thusι(D) gives rise to aG′
C-invariant

holomorphic differential operator onXC. Clearly,D = 0 if ι(D) = 0. Thus we
have obtained a natural injectiveC-algebra homomorphism

ι : DL′
C
(FC) → DG′

C
(XC).

We thus have the following three algebras inDG′
C
(XC):

P :=DGC(XC), (3.10)

Q :=ι(DL′
C
(FC)), (3.11)

R :=dl(Z(g′C)). (3.12)

The subalgebraP reflects the hidden symmetry ofXC = G′
C/H

′
C by the overgroup

GC. The subalgebraQ depends on the choice ofL′
C, and is interesting if the fiber

FC is nontrivial, equivalently, ifL′
C satisfiesH ′

C ⫋ L′
C ⫋ G′

C. We shall takeL′
C to

be a maximal reductive subgroup ofG′
C containingH ′

C.
Here is a description ofDG′

C
(XC) by choosing any two of the three subalgebras

P, Q, andR:

Theorem 3.5([12]). Assume thatXC is G′
C-spherical in Setting2.4.

(1) The polynomial algebraDG′
C
(XC) is generated byP andR.

From now, we take a maximal reductive subgroupL′
C of G′

C containingH ′
C.

(2) DG′
C
(XC) is generated byP andQ.

(3) DG′
C
(XC) is generated byQ andR if GC is simple.

It turns out from the classification (see Table4.2 below) thatXC = GC/HC
andFC = L′

C/H
′
C are reductive symmetric spaces in most of the cases in Theorem

3.5. In [12], we find explicitly generatorsPk, ι(Qk), anddl(Rk) of P, Q, andR,
respectively, in the following theorem together with their relations.

Theorem 3.6.Assume thatXC is G′
C-spherical in Setting2.4.

(1) There exist elementsPk ofDGC(XC), and elementsRk of Z(g′C) such that

DG′
C
(XC) = C[P1, · · · , Pm, dl(R1), · · · , dl(Rn)]

is a polynomial ring in thePk anddl(Rk).
(2) Assume further thatGC is simple. We takeL′

C to be a maximal reductive sub-
group ofG′

C containingH ′
C. Then there exist elementsQk of DL′

C
(FC), and

integerss, t ∈ N with m+ n = s+ t such that

DG′
C
(XC) =C[P1, · · · , Pm, ι(Q1), · · · , ι(Qn)]

=C[ι(Q1), · · · , ι(Qs), dl(R1), · · · , dl(Rt)]
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is a polynomial ring in thePk andι(Ql), and in theι(Qk) anddl(Rl), respec-
tively.

The key ingredient of the proof for Theorems3.5and3.6 is to provide explicitly
the map

Ĝ′
U ⊃ Disc(G′

U/H
′
U )

K1×K2

−−−→ ĜU × L̂′
U , (3.13)

which is a special case of Theorem2.10for thecompactreal formXU = G′
U/H

′
U ≃

GU/HU as below.

Lemma 3.7.Suppose that we are in Setting2.5. We take a subgroupL′
U of G′

U

containingH ′
U . Assume thatXC := G′

C/H
′
C isG′

C-spherical.

(1) XC is GC-spherical.
(2) FC := L′

C/H
′
C isL′

C-spherical.
(3) There is a canonical map

K1 ×K2 : Disc(G′
U/H

′
U ) →Disc(GU/HU )×Disc(L′

U/H
′
U ),

ϑ 7→ (K1(ϑ),K2(ϑ))

characterized by

[K1(ϑ)|G′
U
: ϑ] = 1 and [ϑ|LU

: K2(ϑ)] = 1.

Theorems3.5 and 3.6 apply to analysis of real formsX = G/H = G′/H ′

in Table4.3. For this, we set up some notation. Suppose thatG is a real form of
GC which leaves a real formX of XC invariant. ThenGC-invariant holomorphic
differential operators onXC induceG-invariant real analytic differential operators
onX by restriction. LetχXC

λ ∈ HomC -alg(DGC(XC),C). ForF = C∞, L2, orD′,
we define the space of joint eigenfunctions by

F(X;Mλ) := {f ∈ F(X) : Df = χXC
λ (D)f for anyD ∈ DGC(XC)},

where solutions are understood in the weak sense forF = L2 or D′. Then
F(X;Mλ) areG-submodules of regular representations ofG onF(X).

Let (̂L′
C)H′

C
be the set of equivalence classes of irreducible finite-dimensional

holomorphic representations ofL′
C with nonzeroH ′

C-fixed vectors. By Weyl’s uni-
tary trick, there is a natural bijection

(̂L′
C)H′

C

∼→ Disc(L′
U/H

′
U ) (3.14)

if FU = L′
U/H

′
U is a real form ofF ′

C = L′
C/H

′
C and if bothL′

C andH ′
C are

connected.

Theorem 3.8.Suppose that we are in Setting2.3with GC simple and withG′
C and

HC maximal reductive subgroups. Assume that the complexificationXC of X is
G′

C-spherical. LetL′
C be a maximal complex reductive subgroup ofG′

C containing
H ′

C.
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(1) Z(l′C) → DL′
C
(FC) is surjective.

(2) There exists a natural map for everyτ ∈ (̂L′
C)H′

C
,

ντ : HomC -alg(DGC(XC),C) → HomC -alg(Z(g
′
C),C) (3.15)

with the following property: in(3.13) if π ∈ Disc(GU/HU ) is realized in

L2(GU/HU ;Mλ), then the infinitesimal character of anyϑ ∈ Ĝ′
U belonging

toK−1
1 (π) ∩ K−1

2 (τ) is given byντ (λ).
(3) Suppose that a quadrupleH ⊂ G ⊃ G′ ⊃ H ′ is given as real forms ofHC ⊂

GC ⊃ G′
C ⊃ H ′

C such thatF = L′/H ′ is compact and thatDisc(G′/H ′)

is multiplicity-free. Then, for anyτ ∈ Disc(L′/H ′) ≃ (̂L′
C)H′

C
and for π ∈

Disc(G/H) realized inL2(G/H;Mλ), the infinitesimal character of anyϑ
belonging toK−1

1 (π) ∩ K−1
2 (τ) is given byντ (λ).

Remark 3.9.In Section4, we illustrate Theorem3.8by examples, and give explicitly
of the mapντ (see (4.7) and (4.9)), in the case where the rank of the nonsymmetric
homogeneous spaceXC = G′

C/H
′
C is 1 and2n+ 1, respectively.

Proof (Sketch of proof of Theorem3.8). By Lemma 2.1, G′
C acts transitively

on XC. Then the first statement follows from the classification of the quadruple
(HC, GC, G

′
C,H

′
C) (see Table4.2), and the second one from Theorem3.5 (see

[12] for details). To see the third statement, letWτ := L2(L′/H ′)[τ ] be theτ -
component (see (2.3)) of the unitary representation ofL′ onL2(L′/H ′). SinceZ(l′C)
surjects ontoDL′

C
(FC), every element ofDL′

C
(FC) acts onWτ as scalar. In turn,

ι(DL′
C
(FC)) acts as scalars onL2(G′/L′,Wτ ), which is aG′-invariant closed sub-

space ofL2(X). By (2.6), and by the assumption thatDisc(G′/H ′) is multiplicity-
free,ϑ in K−1

1 (π) ∩K−1
2 (τ) is realized onL2(X)[ϑ] ≃ L2(G′/H ′,Wτ )[ϑ]. Hence

the third statement is deduced from (2).

4 Examples of relations among invariant differential operators

In this section, we illustrate Theorems3.5, 3.6, and3.8 on invariant differential
operators with hidden symmetries by some few examples. We shall carry out in [12]
computations thoroughly for all the cases based on the classification (see Table4.2)
of the fibration

FC = L′
C/H

′
C → XC = G′

C/H
′
C → YC = G′

C/L
′
C

of G′
C-sphericalXC with hidden symmetryGC, whereH ′

C ⊂ L′
C ⊂ G′

C ⊂ GC and
GC is a complex simple Lie group containingG′

C.
The following convention will be used in Sections4.1and4.4.
ForgC = gl(n,C), we defineRk ∈ Z(gC) such that
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χν(Rk) =
n∑

j=1

νkj

for ν = (ν1, · · · , νn) ∈ Cn/Sn, or equivalentlyRk acts on the finite-dimensional
representationF (gC, λ) with highest weightλ = (λ1, · · · , λn) ∈ Zn (λ1 ≥ · · · ≥
λn) as the scalar

∑n
j=1(λj +

1
2 (n+ 1− 2j))k.

4.1 Hopf bundle:XU = S1 bundle overPnC

We begin with the underlying geometry of an example in [16] to find an explicit
branching law of the unitarization [35] of certain Zuckerman’s derived functor mod-
ulesAq(λ) (see Vogan [34] or Vogan–Zuckerman [36] for the definition ofAq(λ))
with respect to a reductive symmetric pair

(G,G′) = (O(2p, 2q), U(p, q)).

The holomorphic setting is given byXC = GC/HC ≃ G′
C/H

′
C andFC = L′

C/H
′
C

withGC ⊃ HC
∪ ∪
G′

C ⊃ L′
C ⊃ H ′

C


:=

SO(2n+ 2,C) ⊃ SO(2n+ 1,C)
∪ ∪

GL(n+ 1,C) ⊃ GL(n,C)×GL(1,C) ⊃ GL(n,C)

 .

In the compact form, the fibrationFU → XU → YU amounts to the Hopf fibration

S1 → S2n+1 → PnC.

In order to explain a noncompact form of the Hopf fibration, we set

Sp,q := {x ∈ Rp+q+1 :

p+1∑
j=1

x2
j −

q∑
k=1

y2k = 1} ≃ O(p+ 1, q)/O(p, q). (4.1)

The hypersurfaceSp,q becomes a pseudo-Riemannian manifold of signature(p, q)
as a submanifold ofRp+q+1 endowed with the flat pseudo-Riemannian metric

ds2 = dx2
1 + · · ·+ dx2

p+1 − dy21 − · · · − dy2q onRp+1,q.

ThenSp,q carries a constant sectional curvature+1. By switching signature of the
metric,Sp,q may be regarded also as a pseudo-Riemannian manifold of signature
(q, p), having a constant sectional curvature−1 (see [38, Chapter 11]). We note that
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S1,q is the anti-de Sitter space, andSp,1 is the de Sitter space. Then the noncompact
form of the Hopf fibrationF → X → Y with G = O(2p+ 2, 2q) amounts to

S1 → S2p+1,2q → Pp,qC, (4.2)

where we define an open set ofPp+qC by

Pp,qC := {[z : w] ∈ ((Cp+1 ⊕ Cq) \ {0})/C× : |z|2 > |w|2}. (4.3)

ThenPp,qC carries an indefinite-K̈ahler structure which is invariant by the natural
action ofU(p + 1, q). If p = 0, thenS2p+1,2q = S1,2q is the anti-de Sitter space,
andPp,qC = P0,qC is the Hermitian unit ball.

We take
P2 := dl(CDn) ∈ DGC(XC),

whereCDn ∈ Z(gC) is the Casimir element ofgC = so(2n + 2,C). Let E be a
generator of the second factor ofl′C = gl(n,C)⊕ gl(1,C) such that the eigenvalues
of ad(E) in gl(n+ 1,C) are0, ±1. We set

Q1 :=dr(E), Q2 := Q2
1 ∈ DL′

C
(FC).

We takeR1, R2 ∈ Z(g′C) for g′C = gl(n+ 1,C) as

R1 :=
n+1∑
i=1

Eii,

R2 :=the Casimir element (see the convention at the beginning of this section).

Then the three subalgebrasP,Q, andR of DG′
C
(XC) are polynomial algebras given

as

P =DGC(XC) = C[P2],

Q =DL′
C
(FC) = C[ι(Q1)],

R =dl(Z(g′C)) = C[dl(R1), dl(R2)].

The relations among generators are given by

dl(R1) =− ι(Q1), and P2 = 2dl(R2)− dr(Q2).

Then Theorem3.6in this case is summarized by the following three descriptions of
DG′

C
(XC) as polynomial algebras with explicit generators:

DG′
C
(XC) = C[dl(P2), ι(Q1)] = C[dl(P2), dr(R1)] = C[dl(Q1), dr(R2)]. (4.4)
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4.2 X as anS2-bundle over the quaternionic unit ball

In this section, we reexamine the example in Introduction from Theorem3.6. See
also [24] for an exposition on this example from a viewpoint of branching laws and
spectral analysis.

We begin with the geometric setting. LetX andY be a three-dimensional com-
plex manifold and a quaternionic unit ball defined by

X :=P1,2C = {[z1 : z2 : z3 : z4] ∈ P3C : |z1|2 + |z2|2 > |z3|2 + |z4|2},
Y :={ζ = x+ iy + ju+ kv ∈ H : x2 + y2 + u2 + v2 < 1}.

ThenX is homotopic toS2 by the quaternionic Hopf fibration

S2 → X → Y,

according to the following 5-tuple of real reductive groups:G ⊃ H
∪ ∪
G′ ⊃ L′ ⊃ H ′

 :=

SU(2, 2) ⊃ U(1, 2)
∪ ∪

Sp(1, 1) ⊃ Sp(1)× Sp(1) ⊃ T× Sp(1)

 .

There is a unique (up to a positive scalar multiplication) pseudo-Riemannian metric
h onX of signature(++−−−−) on whichG acts as isometries. The manifoldX
does not admit aG-invariant Riemannian metric but aG′-invariant oneg induced
from −B(θ·, ·) whereB andθ are the Killing form and a Cartan involution ofg′ =
sp(1, 1), respectively.

Then the ring ofG′-invariant differential operators onX is generated by any two
of the following three second-order differential operators:

□ :the Laplacian for theG-invariant pseudo-Riemannian metrich onX,

∆ :the Laplacian for theG′-invariant Riemannian metricg onX,

ι(∆S2) :the Laplacian on the fiberS2, extended toX.

Thus

DG′
C
(XC) ≃ DG′(X) = C[□,∆] = C[□, ι(∆S2)] = C[∆, ι(∆S2)].

We note that□ ∈ P, ι(∆S2) ∈ Q, and∆ ∈ R with the notation as in Theorem3.5
or 3.6. These generators satisfy the following linear relation:

□ = −24∆ + 12ι(∆S2),

see [24, (6.3)].
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4.3 (GC, G
′
C) = (SO(16,C), Spin(9,C))

The spin representation defines a prehomogeneous vector spaceC16 with the action
of the direct product groupC× × Spin(9,C), where the unique open orbit is given
as a homogeneous space(C× × Spin(9,C))/Spin(7,C), see Igusa [10].

In this section, we considerXC = GC/HC ≃ G′
C/H

′
C andFC = L′

C/H
′
C defined

by GC ⊃ HC
∪ ∪
G′

C ⊃ L′
C ⊃ H ′

C

 :=

SO(16,C) ⊃ SO(15,C)
∪ ∪

Spin(9,C) ⊃ Spin(8,C) ⊃ Spin(7,C)

 .

In the compact form, the fibrationFU → XU → YU amounts to

S7 → S15 → S8.

In the noncompact form withG = O(8, 8), the fibrationF → X → Y amounts to

S7 → S8,7 → H8,

whereH8 is the simply-connected 8-dimensional hyperbolic space, from which we
deduced the existence of compact pseudo-Riemannian manifold of signature(8, 7)
of negative constant sectional curvature in [19], see also [27] for a detailed proof by
utilizing the Clifford algebra overR.

Similarly to the example in Section4.1, we shall see below that the ringDG′
C
(XC)

of invariant differential operators on the nonsymmetric spaceXC = G′
C/H

′
C =

Spin(9,C)/Spin(7,C) is a polynomial ring of two generators, both of which are
given by second-order differential operators. Indeed, the three subalgebrasP,Q and
R in DG′

C
(XC) are generated by a single differential operatorP2, Q2, anddl(R2),

respectively as below and there is a linear relation (4.5) among them.
LetCSO(16), CSpin(8), andCSpin(9) be the Casimir elements of the complex Lie

algebrasso(16,C), spin(8,C), andspin(9,C), respectively. We set

P2 :=dl(CSO(16)) ∈ DGC(XC),

Q2 :=dr(CSpin(8)) ∈ DL′
C
(FC),

R2 :=CSpin(9) ∈ Z(g′C).

Proposition 4.1. (1) We have the following linear relations:

P2 = 4dl(R2)− 3ι(Q2). (4.5)

(2) The ring ofG′
C-invariant holomorphic differential operators onXC is a poly-

nomial algebra of two generators with the following three expressions:

DG′
C
(XC) = C[P2, ι(Q2)] = C[P2, dl(R2)] = C[ι(Q2), dl(R2)].
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Remark 4.2.Howe and Umeda [9, Sect. 11.11] obtained a weaker from of Proposi-
tion 4.1for the prehomogeneous vector space(C××Spin(9,C),C16). In particular,
they proved that theC-algebra homomorphismdl : Z(g′C) → DG′

C
(XC) is not sur-

jective and that the “abstract Capelli problem” has a negative answer. The novelty
here is to introduce the operatorQ2 ∈ DL′

C
(FC) coming from the fiberFC to de-

scribe the algebraDG′
C
(XC).

The proof of Proposition4.1relies on an explicit computation of the double fibration
of Theorem2.10(or Lemma3.7). We briefly state some necessary computations.

We denote byF (L′
U , λ) the irreducible finite-dimensional representation of a

connected compact Lie groupL′
U with extremal weightλ. We set

ϑa,b := F (Spin(9),
1

2
(a, b, b, b))

for a ≥ b ≥ 0 with a ≡ b mod 2, namely, for(a, b) ∈ Ξ(0). Then the sets
of discrete series representations forGU/HU , G′

U/H
′
U , andL′

U/H
′
U are given as

follows:

Lemma 4.3.

Disc(SO(16)/SO(15)) ={Hj(R16) : j ∈ N},
Disc(Spin(9)/Spin(7)) ={ϑj,k : (j, k) ∈ Ξ(0)},
Disc(Spin(8)/Spin(7)) ={Hk(R8) : k ∈ N}.

Proof. The first and third equalities follow from the classical theory of spherical
harmonics (seee.g.[5, Intr. Thm. 3.1]), and the second equality from Krämer [28].

We set

Ξ(µ) := {(m,n) ∈ N2 : m− n ≥ µ, m− n ≡ µ mod 2}. (4.6)

Then the double fibration of Theorem2.10(or Lemma3.7) amounts to

{ϑj,k ∈ ̂Spin(9) : (j, k) ∈ Ξ(0)}
K1 ↙ ↘ K2

{Hj(R16) : j ∈ N} {Hk(R8) : k ∈ N}

We use the following normalization of Harish-Chandra isomorphisms:

HomC -alg(DGC(XC),C) ≃ C/Z2, χX
λ ↔ λ

by χX
λ (P2) = λ2 − 49.

HomC -alg(Z(g
′
C),C) ≃ C4/W (B4) = C4/(S4 ⋉ (Z2)

4), χG′

ν ↔ ν
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such that theZ(g′C)-infinitesimal character of the trivial representation ofg′C is given
by χG′

ν with ν = 1
2 (7, 5, 3, 1). Via these identifications, for everyτ = Hk(R8) ∈

Disc(Spin(8)/Spin(7)), the map

ντ : HomC -alg(DGC(XC),C) → HomC -alg(Z(g
′
C),C), χX

λ 7→ χG′

ν (4.7)

in Theorem3.8amounts to

C/Z2 → C4/W (B4), λ 7→ ν =
1

2
(λ, k + 5, k + 3, k + 1). (4.8)

4.4 XC := GL(2n + 1,C)/Sp(n,C)

The last example treats the case whereXC is of higher rank. We considerXC =
GC/HC ≃ G′

C/H
′
C andFC = L′

C/H
′
C defined byGC ⊃ HC

∪ ∪
G′

C ⊃ L′
C ⊃ H ′

C


:=

GL(2n+ 2,C) ⊃ Sp(n+ 1,C)
∪ ∪

GL(2n+ 1,C) ⊃ GL(2n,C)×GL(1,C) ⊃ Sp(n,C)

 .

This is essentially the case in Table4.2 (iv) except thatGC contains a one-
dimensional center. We note thatXC is a nonsymmetric spherical homogeneous
space of rank2n+ 1 if we regardXC ≃ G′

C/H
′
C, but is a symmetric space of rank

n+ 1 if we regardXC ≃ GC/HC.
First, for the symmetric spaceXC = GL(2n+2,C)/Sp(n+1,C), the restricted

root systemΣ(gC, aC) is of typeAn. We take the standard basis{h1, · · · , hn+1} of
a∗C such that

Σ(gC, aC) = {hj − hk : 1 ≤ j < k ≤ n+ 1}.

By these coordinates, the Harish-Chandra isomorphism amounts to:

HomC -alg(DGC(XC),C) ≃ a∗C/W (An) ≃ Cn+1/Sn+1, χX
λ ↔ λ.

Fork ∈ N, we definePk ∈ DGC(XC) by

χX
λ (Pk) =

n+1∑
j=1

λk
j for λ = (λ1, · · · , λn+1) ∈ Cn+1/Sn+1.

Second, the fiberFC of the bundleXC = G′
C/H

′
C → G′

C/L
′
C is also a symmetric

space:
FC = L′

C/H
′
C ≃ (GL(2n,C)/Sp(n,C))×GL(1,C).
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We define similarlyQ,Qk ∈ DL′
C
(F ′

C) for k ∈ N by

χF
µ (Q) =µ0,

χF
µ (Qk) =

n∑
j=1

µk
j ,

for µ = (µ1, · · · , µn;µ0) ∈ (Cn ⊕ C)/(Sn × {1}). Then the Harish-Chandra iso-
morphism gives the description of the polynomial algebrasDGC(XC) andDL′

C
(FC):

DGC(XC) =C[P1, · · · , Pn+1],

DL′
C
(FC) =C[Q,Q1, · · · , Qn].

In this case, Theorems3.6and3.8amount to the following:

Proposition 4.4. (1) The generatorsPk,Q, Qk andRk are subject to the following
relations:

Pk + ι(Qk) =2kdl(Rk) for all k ∈ N,

P1 − ι(Q) =dl(R1).

(2) The ring ofG′
C-invariant holomorphic differential operators onXC is a poly-

nomial algebra of(2n+ 1)-generators with the following expressions:

DG′
C
(XC) =C[P1, · · · , Pn+1, ι(Q1), · · · , ι(Qn)]

=C[P2, · · · , Pn+1, ι(Q), ι(Q1), · · · , ι(Qn)]

=C[ι(Q1), · · · , ι(Qn), dl(R1), · · · , dl(Rn+1)]

=C[P1, · · · , Pn+1, dl(R1), · · · , dl(Rn)]

=C[P1, · · · , Pn, dl(R1), · · · , dl(Rn+1)].

(3) For τ = F (U(2n), (k1, k1, k2, k2, · · · , kn, kn))⊠F (U(1), k0) ∈ Disc(L′
U/H

′
U ),

the mapντ in Theorem3.8 is given as

ντ : HomC -alg(DGC(XC),C) →HomC -alg(Z(g
′
C),C),

≃ ≃

Cn+1/Sn+1 → C2n+1/S2n+1, λ 7→ ντ (λ),

where

ντ (λ) := (
λ1

2
, · · · , λn

2
, k1 + n− 1, k2 + n− 3, · · · , kn − n+ 1, k0). (4.9)
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4.5 List of examples

We give an exhaustive list of quadruples(GU ,HU , G
′
U ,H

′
U ) in Table4.1up to finite

coverings of groups, subject to the following four conditions:

· GU is a compact simple Lie group,
· HU andG′

U are maximal proper subgroups ofGU ,
· GU = HUG

′
U ,

· G′
C/H

′
C isG′

C-spherical.

In Table4.1, we also write a maximal proper subgroupL′
U of G′

U that containsH ′
U .

The complexifications(GC,HC, G
′
C,H

′
C) of the quadruples(GU ,HU , G

′
U , H

′
U ) in

Table4.1 together withFC := L′
C/H

′
C are given in Table4.2, and their real forms

are in Table4.3 up to finite coverings and finitely many disconnected components.
When two subgroupsK1 andK2 commute each other andK1∩K2 is a finite group,
we writeK1 ·K2 for the quotient group(K1 ×K2)/K1 ∩K2 in Tables4.1-4.3.

Theorems3.5 and3.6 apply to Table4.2. The pair(K1,K2) of maps in Lemma
3.7 (the compact case of Theorem2.10) will be computed explicitly in [12] for all
the cases in Table4.1. Theorem5.1 for discretely decomposable restrictions apply
to those in Table4.3 with F = L′/H ′ compact. Theorem6.3 for spectral analysis
on non-Riemannian locally symmetric spaces apply to those in Table4.3 with H ′

compact.

Table 4.1 compact case

GU HU G′
U H′

U L′
U

(i) SO(2n+ 2) SO(2n+ 1) U(n+ 1) U(n) U(n) · U(1)

(ii) SO(2n+ 2) U(n+ 1) SO(2n+ 1) U(n) SO(2n)
(iii) SU(2n+ 2) U(2n+ 1) Sp(n+ 1) Sp(n) · U(1) Sp(n) · Sp(1)
(iv) SU(2n+ 2) Sp(n+ 1) U(2n+ 1) Sp(n) · U(1) U(2n) · U(1)
(v) SO(4n+ 4) SO(4n+ 3) Sp(n+ 1) · Sp(1) Sp(n) ·∆(Sp(1)) Sp(n) · Sp(1)2
(vi) SO(16) SO(15) Spin(9) Spin(7) Spin(8)
(vii) SO(8) Spin(7) SO(5) · SO(3) SU(2) ·∆(SU(2)) SO(4) · SO(3)
(viii) SO(7) G2(−14) SO(5) · SO(2) SU(2) ·∆(SO(2)) SO(4) · SO(2)

(ix) SO(7) G2(−14) SO(6) SU(3) U(3)

(x) SO(7) SO(6) G2(−14) SU(3) SU(3)

(xi) SO(8) Spin(7) SO(7) G2(−14) G2(−14)

(xii) SO(8) SO(7) Spin(7) G2(−14) G2(−14)

(xiii) SO(8) Spin(7) SO(6) · SO(2) SU(3) ·∆(SO(2)) U(3) · SO(2)

(xiv) SO(8) SO(6) · SO(2) Spin(7) SU(3) ·∆(SO(2)) Spin(6)

In Table4.2, we have used the following notation:

OGn(C) :=O(2n,C)/GL(n,C),
GSn(C) :=GL(2n,C)/Sp(n,C),

Sn
C :={(z1, · · · , zn+1) ∈ Cn+1 :

n+1∑
j=1

z2j = 1}.
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Table 4.2 Complexification of the quadruples(GU , HU , G′
U , H′

U ) andFU = L′
U/H′

U in Table
4.1
GC HC G′

C H′
C FU

(i)C SO(2n+ 2,C) SO(2n+ 1,C) GL(n+ 1,C) GL(n,C) C×

(ii)C SO(2n+ 2,C) GL(n+ 1,C) SO(2n+ 1,C) GL(n,C) OGn(C)
(iii) C SL(2n+ 2,C) GL(2n+ 1,C) Sp(n+ 1,C) Sp(n,C) · C× S2

C
(iv)C SL(2n+ 2,C) Sp(n+ 1,C) GL(2n+ 1,C) Sp(n,C) · C× GSn(C)
(v)C SO(4n+ 4,C) SO(4n+ 3,C) Sp(1,C) · Sp(n+ 1,C) Sp(n,C) ·∆(Sp(1,C)) S3

C
(vi)C SO(16,C) SO(15,C) Spin(9,C) Spin(7,C) S7

C
(vii)C SO(8,C) Spin(7,C) SO(5,C) · SO(3,C) SL(2,C) ·∆(SL(2,C)) S3

C
(viii) C SO(7,C) G2(C) SO(5,C) · SO(2,C) SL(2,C) ·∆(SO(2,C)) S3

C
(ix)C SO(7,C) G2(C) SO(6,C) SL(3,C) C×

(x)C SO(7,C) SO(6,C) G2(C) SL(3,C) {pt}
(xi)C SO(8,C) Spin(7,C) SO(7,C) G2(C) {pt}
(xii)C SO(8,C) SO(7,C) Spin(7,C) G2(C) {pt}
(xiii) C SO(8,C) Spin(7,C) SO(6,C) · SO(2,C) SL(3,C) ·∆(C×) C×

(xiv)C SO(8,C) SO(6,C) · SO(2,C) Spin(7,C) SL(3,C) ·∆(C×) OG3(C)

Table 4.3 Real forms of the quintuples in Table4.2

G H G′ H′ F

(i)R SO(2p, 2q) SO(2p, 2q − 1) U(p, q) U(p, q − 1) S1

(i)R SO(n, n) SO(n, n− 1) GL(n,R) GL(n− 1,R) R
(ii)R SO(2p, 2q) U(p, q) SO(2p, 2q − 1) U(p, q − 1) OUp,q−1

(ii)R SO(n, n) GL(n,R) SO(n, n− 1) GL(n− 1,R) OGn−1

(iii) R SU(2p, 2q) U(2p, 2q − 1) Sp(p, q) Sp(p, q − 1) · U(1) S2

(iii) R SL(2n,R) GL(2n− 1,R) Sp(n,R) Sp(n− 1,R) ·GL(1,R) S1,1

(iv)R SU(2p, 2q) Sp(p, q) U(2p, 2q − 1) Sp(p, q − 1) · U(1) USp,q−1

(iv)R SL(2n,R) Sp(n,R) GL(2n− 1,R) Sp(n− 1,R) ·GL(1,R) GSn−1

(v)R SO(4p, 4q) SO(4p, 4q − 1) Sp(p, q) · Sp(1) Sp(p, q − 1) ·∆(Sp(1)) S3

(vi)R SO(8, 8) SO(8, 7) Spin(8, 1) Spin(7) S7

(vi)R SO(8, 8) SO(8, 7) Spin(5, 4) Spin(3, 4) S3,4

(vii)R SO(4, 4) Spin(4, 3) SO(4, 1) · SO(3) SU(2) ·∆(SU(2)) S3

(viii) R SO(4, 3) G2(R) SO(4, 1) · SO(2) SU(2) ·∆(SO(2)) S3

(viii) R SO(4, 3) G2(R) SO(2, 3) · SO(2) SL(2,R) ·∆(SO(2)) S2,1

(viii) R SO(4, 3) G2(R) SO(3, 2) · SO(1, 1) SL(2,R) ·∆(SO(1, 1)) S2,1

(ix)R SO(4, 3) G2(R) SO(3, 3) SL(3,R) R
(ix)R SO(4, 3) G2(R) SO(4, 2) SU(2, 1) S1

(x)R SO(4, 3) SO(3, 3) G2(R) SL(3,R) {pt}
(x)R SO(4, 3) SO(4, 2) G2(R) SU(2, 1) {pt}
(xi)R SO(4, 4) Spin(4, 3) SO(4, 3) G2(R) {pt}
(xii)R SO(4, 4) SO(4, 3) Spin(4, 3) G2(R) {pt}
(xiii) R SO(4, 4) Spin(4, 3) SO(4, 2) · SO(2) SU(2, 1) ·∆(SO(2)) S1

(xiii) R SO(4, 4) Spin(4, 3) SO(3, 3) · SO(1, 1) SL(3,R) ·∆(SO(1, 1)) R
(xiv)R SO(4, 4) SO(4, 2) · SO(2) Spin(4, 3) SU(2, 1) ·∆(SO(2)) OU2,1

(xiv)R SO(4, 4) SO(3, 3) · SO(1, 1) Spin(4, 3) SL(3,R) ·∆(SO(1, 1)) OG3

In Table4.3, we have used the following notation:
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OUp,q :=O(2p, 2q)/U(p, q),

OGn :=O(n, n)/GL(n,R),
USp,q :=U(2p, 2q)/Sp(p, q),

GSn :=GL(2n,R)/Sp(n,R).

We note thatOUp,q (orUSp,q) is compact if and only ifp = 0 or q = 0.

5 Applications to branching laws

Branching problems ask how irreducible representationsπ of a groupG behave
(e.g., decompose) when restricted to its subgroupG′. In general, branching prob-
lems of infinite-dimensional representations of real reductive Lie groupsG ⊃ G′

are difficult: for instance, there is no general “algorithm” like the finite-dimensional
case. We apply the results on invariant differential operators (Theorems3.5 and
3.6) to branching problems. We shall see a trick transferring results for finite-
dimensional representations in the compact setting to those for infinite-dimensional
representations which are realized in the space of functions or distributions on real
formsX of G′

C-spherical homogeneous spacesXC in the noncompact setting by the
following scheme:

Finite-dimensional representations of compact Lie groupsGU andG′
U

⇝

Invariant differential operators onXC for the complexified groupsGC andG′′
C

(Theorems3.5and3.6)

⇝

Infinite-dimensional representations of noncompact real formsG andG′

5.1 Discrete decomposability of restriction of unitary
representations

Let G be a real reductive Lie group with maximal compact subgroupK. A (g,K)-
module(πK , V ) is said to bediscretely decomposableif there exists an increasing
filtration {Vn}n∈N such thatV = ∪n∈NVn and that eachVn is a(g,K)-module of
finite length. IfπK is the underlying(g,K)-module of a unitary representationπ
of G, then this condition implies thatπ decomposes discretely into a Hilbert direct
sum of irreducible unitary representations ofG ([23]).
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In this section, as an application of “global analysis with hidden symmetry”((A)
and (B) in Introduction) to branching problems ((C) in Introduction), we give a geo-
metric sufficient condition for the restriction of an irreducible unitary representation
of a reductive Lie groupG not to have continuous spectrum when restricted to a
subgroupG′. In Setting2.3, we take a maximal reductive subgroupL′ of G′ con-
tainingH ′, and setF := L′/H ′ so that we have a fibrationF → X → Y (see
(2.1)).

Theorem 5.1(discrete decomposability of restriction).Suppose we are in Setting
2.3. Assume thatXC isG′

C-spherical and thatF is compact.

(1) ((g,K)-modules)Any irreducible(g,K)-moduleπK occurring as a subquo-
tient of the regular representation ofG on the spaceD′(X) of distributions on
X is discretely decomposable as a(g′,K ′)-module.

(2) (unitary representation)For any irreducible unitary representationπ ofG real-
ized inD′(X), the restrictionπ|G′ decomposes discretely into a Hilbert direct
sum of irreducible unitary representations ofG′.

(3) (discrete series)In (2), if π is a discrete series representation forG/H, then any
irreducible summand of the restrictionπ|G′ is a discrete series representation
for G′/H ′.

Remark 5.2.(1) In the case whereH ′ is compact, Theorem5.1 will be discussed
in detail in [13] in connection to spectral analysis on non-Riemannian locally
symmetric spacesΓ\G/H, see Section6. We note that ifH ′ is compact, we
can takeL′ to be a maximal compact subgroup ofG′ containingH ′ so that
F = L′/H ′ is compact.

(2) A general criterion for discrete decomposability of the restrictions of irreducible
unitary representations was given in [20, 21] in terms of invariants of represen-
tations. Representationsπ treated in Theorem5.1 are much limited, however,
we can tella priori from Theorem5.1 discrete decomposability of the restric-
tion π|G′ before knowing what the representationsπ are.

Proof (Sketch of the proof of Theorem5.1).

(1) SupposeπK is realized in a subspaceV of D′(X). (We remark thatV is au-
tomatically contained inC∞(X) by the elliptic regularity theorem.) SinceXC
is GC-spherical,DGC(XC) is finitely generated as adl(Z(gC))-module ([14]).
SinceZ(gC) acts onV as scalars, theDGC(XC)-moduleṼ := DGC(XC) · V is
DGC(XC)-finite.
Now we consider theG′-equivariant fibrationF → X → Y. Decomposing̃V
along the compact fiberF = L′/H ′, we see that there is an irreducible finite-
dimensional representationτ ∈ Disc(L′/H ′) such that theτ -component̃Vτ of
Ṽ from the right is nonzero.
SinceZ(l′C) acts onτ as scalars, the action of the subalgebra generated byP =
DGC(XC) andQ = ι(DLC(FC)) factors through a finite-dimensional algebra,
and so does the action ofZ(g′C) by Theorem3.5 (2). Since the(g,K)-module
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Ṽ contains aZ(g′C)-finite g′-module Ṽτ , Ṽ is discretely decomposable as a
(g′,K ′)-module by [21].

(2) The statement follows from (1) and [23, Theorem 2.7].
(3) The third statement follows from (1) and [22, Theorem 8.6].

Example 5.3.LetG = O(p, q), H = O(p− 1, q) and

X := G/H ≃ Sp−1,q.

In what follows,π stands for any irreducible subquotient module ofG of the reg-
ular representation on the spaceD′(X) of distributions, andπK for the underlying
(g,K)-module.

(1) (O(2p′, 2q′) ↓ U(p′, q′)) Supposep = 2p′ andq = 2q′ with p′, q′ ∈ N. Let
G′ = U(p′, q′) be a natural subgroup ofG. As one can observe from Tables4.1
and4.3(i)R,

F = L′/H ′ = (U(p′, q′ − 1)× U(1))/U(p′, q′ − 1) ≃ U(1)

is compact (see also (4.2)). By Theorem5.1, anyπK is discretely decomposable
as a(g′,K ′)-module.

(2) (O(4p′′, 4q′′) ↓ Sp(p′′, q′′)) Supposep = 4p′′ andq = 4q′′ with p′′, q′′ ∈ N.
Let G′′ := Sp(p′′, q′′) be a natural subgroup ofG. Then by Tables4.1and4.3
(v)R,

F =L′′/H ′′

=(Sp(p′′, q′′ − 1)× Sp(1)× Sp(1))/Sp(p′′, q′′ − 1)×∆(Sp(1)) ≃ Sp(1)

is compact. By Theorem5.1, anyπK is discretely decomposable as a(g′′,K ′′)-
module.

Remark 5.4.(1) In the setting of Example5.3, explicit branching laws were given
in [17] in terms of Zuckerman derived functor modulesAq(λ) whenπ is a
discrete series representation forX, namely, whenπ is an irreducible unitary
representation ofG which can be realized in a closed invariant subspace of the
Hilbert spaceL2(X).

(2) Any πK in D′(X) occurs as a subquotient of the most degenerate principal
series representation ofG that was the main object of Howe–Tan [8], andvice
versa. The restrictionsO(2p′, 2q′) ↓ U(p′, q′) andO(4p′′, 4q′′) ↓ Sp(p′′, q′′)
were discussed also in [8] from the viewpoint of the “see-saw” dual pairs.

5.2 Branching lawSO(8, 8) ↓ Spin(1, 8)

We apply the previous results (e.g., Theorems2.10, 3.8, and5.1) to find new branch-
ing laws of the restriction of unitary representations with respect to the nonsymmet-
ric pair
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(G,G′) = (SO0(8, 8), Spin(1, 8))

whenG′ is realized inG via the spin representation. The subscript 0 stands for the
identity component.

The main results of this section is Theorem5.5, which might be interesting on its
own since not much is known about the restriction of Zuckerman’s derived functor
moduleAq(λ) with respect to pairs(G,G′) of reductive groups except for the case
where(G,G′) is a symmetric pair or there is a subgroupG′′ such thatG ⊃ G′′ ⊃ G′

is a chain of symmetric pairs (e.g.(G,G′′, G′) = (O(4p, 4q), U(2p, 2q), Sp(p, q)).
(Cf. [4, 16, 17, 25, 31] for branching laws with respect to symmetric pairs).

In order to state Theorem5.1, we fix some notation. Letπλ (λ ∈ N+) be ir-
reducible unitary representations ofG = SO0(8, 8) attached to minimal elliptic
orbits in the philosophy of orbit method. For the reader’s convenience, we collect
some properties ofπλ:

• The underlying(g,K)-module(πλ)K of πλ is given by Zuckerman derived
functor moduleAq(λ− 7) whereq is aθ-stable parabolic subalgebra ofg such
that the normalizer ofq in G is SO(2) × SO0(6, 8). Concerning theρ-shift of
Aq(λ), we adopt the same normalization as in Vogan–Zuckerman [36].

• TheZ(g)-infinitesimal character ofπλ is (λ, 6, 5, 4, 3, 2, 1, 0).
• TheK-type formula ofπλ is given by

(πλ)K ≃
⊕

(m,n)∈Ξ(λ+1)

Hm(R8)⊠Hn(R8),

where we recall from (4.6) the definition of the parameter setΞ(µ).

Let us recall the classification of the Harish-Chandra discrete series represen-
tation for G′ = Spin(1, 8). For ε = ± and b = (b1, b2, b3, b4) ∈ Z4 or
Z4 + 1

2 (1, 1, 1, 1) such thatb1 ≥ b2 ≥ b3 ≥ b4 ≥ 1, we writeϑε
b for the discrete

series representation ofG′ with

Harish-Chandra parameter:(b1 +
5

2
, b2 +

3

2
, b3 +

1

2
, b4 −

1

2
),

Blattner parameter:(b1, b2, b3, εb4).

Then any discrete series representation ofG′ is of this form. Fork ≥ l ≥ 2 with
k ≡ l mod 2, we set

ϑk,l := ϑ+
1
2 (k,k,k,l)

.

We are ready to state a branching law of the unitary representation onπλ with re-
spect to the nonsymmetric pair(G,G′) = (SO0(8, 8), Spin(1, 8)).

Theorem 5.5(SO0(8, 8) ↓ Spin(1, 8)). For anyλ ∈ N+, the irreducible unitary
representationπλ of G = SO0(8, 8) decomposes discretely as a representation of
G′ = Spin(1, 8) in accordance with the following branching rule.
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πλ|G′ ≃
∞∑
l=0

⊕ϑλ+2l+1,λ+1.

Remark 5.6.In general, ifπ is a Harish-Chandra discrete series representation of a
real reductive Lie groupG, then any irreducible summand of the restrictionπ|G′

to a reductive subgroupG′ is a Harish-Chandra discrete series representation ofG′

([22]). Theorem5.5shows that the converse statement is not always true becauseπλ

is a nontempered representation ofG whereas anyϑk,l is a Harish-Chandra discrete
series ofG′.

For the proof of Theorem5.5, we compute explicitly the double fibration in Theorem
2.10. We begin with an explicitK-type formula ofϑε

b:

Lemma 5.7.Supposeϑε
b is the (Harish-Chandra) discrete series representation of

G′ = Spin(1, 8) with Blattner parameter(b1, b2, b3, εb4). Then the restriction of
ϑε
b to a maximal compact subgroupL′ = Spin(8) ofG′ decomposes as

ϑε
b|Spin(8) ≃

∑
µ∈Z(b)

⊕
F (Spin(8), (µ1, µ2, µ3, εµ4))

where, forb = (b1, b2, b3, b4), we set

Z(b) := {µ ∈ Z4 + b : µ1 ≥ b1 ≥ µ2 ≥ b2 ≥ µ3 ≥ b3 ≥ µ4 ≥ b4}.

For k ∈ N, we setτk := F (Spin(8), 1
2 (k, k, k, k)). The unitary representation

of L′ onL2(L′/H ′) = L2(Spin(8)/Spin(7)) is multiplicity-free, and we have

Disc(L′/H ′) = Disc(L′/H ′) = {τk : k ∈ N}.

Let Wτk = G′ ×L′ τk be the homogeneous vector bundle over the 8-dimensional
hyperbolic spaceY := G′/L′ = Spin(1, 8)/Spin(8).

Proposition 5.8.Letk ∈ N. There are at most finitely many discrete series represen-
tations forL2(Y,Wτk), and they are given as follows, where the sum is multiplicity-
free:

L2
d(Y,Wτk) ≃

⊕
2≤l≤k,l≡k mod 2

ϑk,l.

Proof. By Lemma5.7, τk occurs inϑε
b as aK-type if and only if ε = + and

b = 1
2 (k, k, k, l) for somel ∈ 2Z+ k with 2 ≤ l ≤ k, namely,ϑε

b = ϑk,l. Thus the
proposition follows from the Frobenius reciprocity.

We have thus shown

K−1
2 (τk) = {ϑk,l : 2 ≤ l ≤ k, l ≡ k mod 2}, (5.1)

Disc(G′/H ′) =
∪
k∈N

K−1
2 (τk) = {ϑk,l : (k, l) ∈ Ξ(2)},
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where we recall from (4.6) for the definition ofΞ(µ). In particular, discrete series
for G′/H ′ is multiplicity-free,i.e., Disc(G′/H ′) = Disc(G/H).

On the other hand, we recall the geometryX = G/H whereH = SO0(7, 8)
and a realizationπλ in the regular representationL2(X):

• Disc(G/H) = {πλ : λ ∈ N+}.
• X := G/H ≃ S8,7 carries a pseudo-Riemannian metric of signature(8, 7),

normalized so that the sectional curvature is constant equal to−1 (see (4.1)).
ThenG acts isometrically on the pseudo-Riemannian space formX ≃ S8,7,
and the Laplacian□X acts as the scalarλ2 − 49 on the representation space of
πλ in L2(X).

Therefore, the double fibration of Theorem2.10amounts to

{ϑk,l ∈ ̂Spin(1, 8) : (k, l) ∈ Ξ(2)}
K1 ↙ ↘ K2

{πλ ∈ ̂SO0(8, 8) : λ ∈ N+} {τk ∈ ̂Spin(8) : k ∈ N}.

We already know the mapK2 explicitly by (5.1). Let us find the mapK1 explicitly
by using Theorem3.8. We recall that the branching law of the restrictionπλ|G′ is
nothing but to determine the fiber of the projectionK1.

Supposeϑk,l ∈ K−1
1 (πλ). SinceK2(ϑk,l) = τk, theZ(g′C)-infinitesimal charac-

ter ofϑk,l is subject to Theorem3.8. By (4.8), we have

1

2
(k+5, k+3, k+1, l−1) ≡ 1

2
(λ, k+5, k+3, k+1) mod W (B4) ≃ S4⋉(Z2)

4.

Henceλ = l − 1, andK1(ϑk,λ+1) = πλ. Thus the fiber ofK1 is given by

K−1
1 (πλ) = {ϑk,λ+1 : λ+ 1 ≤ k, k ≡ λ+ 1 mod 2}.

Now Theorem5.5 is proved.

6 Application to spectral analysis on non-Riemannian locally
symmetric spacesΓ\G/H

In this section we discuss briefly an application of Theorem3.8 to the analysis on
non-Riemannianlocally symmetric spacesΓ\G/H = Γ\X, for which we initiated
a new line of investigation in [11] by a different approach.

We begin with a brief review on the geometry. Suppose that a discrete groupΓ
acts continuously onX. We recall that the action is said to beproperly discontinuous
if any compact subset ofX meets only finitely many of itsΓ -translates. IfΓ acts
properly discontinuously and freely, the quotientΓ\X is of Hausdorff topology and
carries a naturalC∞-manifold structure such that
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X → Γ\X

is a covering map. The quotientΓ\X = Γ\G/H is said to be aClifford–Klein form
of X = G/H.

SupposeX = G/H with H noncompact. Then not all discrete subgroups
of G act properly discontinuously: for instance, de Sitter spaceSn,1 = O(n +
1, 1)/O(n, 1) does not admit any infinite properly discontinuous action of isome-
tries (Calabi–Markus phenomenon [3]). Also, infinite subgroups ofH never act
properly discontinuously onX, because the origino := eH ∈ X is a fixed point. In
fact, determining which subgroups act properly discontinuously is a delicate ques-
tion, which was first considered in full generality in [15] in the late 1980s; we refer
to [27] for a survey.

A large and important class of examples is constructed as follows (see [15]):

Definition 6.1 (standard Clifford–Klein form). The quotientΓ\X of X by a
discrete subgroupΓ of G is said to bestandardif Γ is contained in some reductive
subgroupG′ of G acting properly onX.

Any GC-invariant holomorphic differential operator onXC defines aG-invariant
(in particular,Γ -invariant) differential operator onX by restriction, and hence in-
duces a differential operator, to be denoted byDΓ onΓ\X.

Givenλ ∈ HomC-alg(DGC(XC),C), we set the space of joint eigenfunctions

C∞(Γ\X;Mλ) := {f ∈ C∞(Γ\X) : DΓ f = λ(D)f for all D ∈ DGC(XC)}.

There has been an extensive study on spectral analysisΓ\X whenX is a reductive
symmetric spaceG/H under additional assumptions:

• Γ = {e}, or
• H is a maximal compact subgroup.

However, not much is known aboutC∞(Γ\X;Mλ) whenX = G/H with H
noncompact. In fact, if we try to attack a problem of spectral analysis onΓ\G/H
in the general case whereH is noncompact andΓ is infinite, then new difficulties
may arise from several points of view:

(1) Geometry. TheG-invariant pseudo-Riemannian structure onX = G/H is not
Riemannian anymore, and discrete groups of isometries ofX do not always act
properly discontinuously on suchX as we discussed above.

(2) Analysis. The Laplacian∆X on Γ\X is not an elliptic differential operator.
Furthermore, it is not clear if∆X has a self-adjoint extension onL2(Γ\X).

(3) Representation theory. IfΓ acts properly discontinuously onX = G/H with
H noncompact, then the volume ofΓ\G is infinite, and the regular represen-
tationL2(Γ\G) may have infinite multiplicities. In turn, the groupG may not
have a good control of functions onΓ\G.

Let us discuss a connection of the spectral analysis on a non-Riemannian locally
homogeneous spaceΓ\X with the results in the previous section.
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Suppose that we are in Setting2.3. This means that a reductive subgroupG′ of
G acts transitively onX andX ≃ G′/H ′ whereH ′ = G′ ∩H. Then we have:

Proposition 6.2([15]). If H ′ is compact, thenG′ acts properly onX, and conse-
quently, any torsion-free discrete subgroupΓ of G′ acts properly discontinuously
and freely, yielding a standard Clifford–Klein formΓ\X. In particular, there exists
a compact standard Clifford–Klein form ofX by taking a torsion-free cocompactΓ
in G′.

From now, we assume thatH ′ is compact and that the complexificationXC is G′
C-

spherical. (We can read from Table4.3 the list of quadruples(G,H,G′,H ′) satis-
fying these assumptions.)

Take a maximal compact subgroupK ′ of G′ containingH ′. The groupK ′ plays
the same role withL′ in Section2.1, and we setF := K ′/H ′. For each(τ,W ) ∈
K̂ ′, we form a vector bundle

Wτ := Γ\G′ ×K′ W

over the Riemannian locally symmetric spaceΓ\Y := Γ\G′/K ′.
For a C-algebra homomorphismν : Z(g′C) → C, we define a subspace of

C∞(Γ\Y,Wτ ) by

C∞(Γ\Y,Wτ ;Nν) := {f ∈ C∞(Γ\Y,Wτ ) : dl(z)f = ν(z)f for all z ∈ Z(g′C)},

which may be regarded as aG′-submoduleC∞(Γ\G′;Nν) of the regular represen-
tation ofG′ onC∞(Γ\G′).

Suppose now(τ,W ) ∈ Disc(K ′/H ′). By Lemma3.7, we have

dimC HomK′(τ, C∞(K ′/H ′)) = 1,

and therefore there is a natural map

iτ : C∞(Γ\Y,Wτ ) → C∞(Γ\X).

Here is another application of Theorem3.8 to the fiber bundleF → Γ\X →
Γ\Y (see [13] for details).

Theorem 6.3.Suppose we are in Setting2.3. Assume thatGC is simple andXC is
G′

C-spherical. LetΓ be a torsion-free discrete subgroup ofG′ so that the locally
homogeneous spaceΓ\X is standard.

(1) Letντ be the map

ντ : HomC -alg(DGC(XC),C) → HomC -alg(Z(g
′
C),C), λ 7→ ντ (λ)

given in Theorem3.8for τ ∈ Disc(K ′/H ′). Then, the following two conditions
onφ ∈ C∞(Γ\Y,Wτ ) are equivalent:

(i) iτ (φ) ∈ C∞(Γ\X;Mλ),
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(ii) φ ∈ C∞(Γ\Y,Wτ ;Nντ (λ)).

(2) For everyλ ∈ HomC -alg(DG(X),C), the joint eigenspaceC∞(Γ\X;Mλ)
contains ⊕

τ∈F̂

iτ (C
∞(YΓ ,Wτ ;Nν(τ)))

as a dense subspace.
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pp. 85–177.

2. M. Brion, Classification des espaces homogènes sph́eriques, Compos. Math.63, (1986), pp.
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1981.

35. D. A. Vogan, Jr., Unitarizability of certain series of representations, Ann. of Math.,120,
(1984), pp. 141–187.

36. D. A. Vogan, Jr., G. J. Zuckerman, Unitary representations with nonzero cohomology, Com-
positio Math.53, (1984), pp. 51–90.

37. N. R. Wallach, Real Reductive Groups. II, Pure and Applied Mathematics,132, Academic
Press, Inc., Boston, MA, 1988.

38. J. A. Wolf,Spaces of Constant Curvature, sixth edition, AMS Chelsea Publishing, Providence,
RI, 2011. xviii+424.

http://dx.doi.org/10.1007/BF01443517
http://projecteuclid.org/euclid.pja/1195511349
http://dx.doi.org/10.1007/BF01232239
http://dx.doi.org/10.2307/120963
http://dx.doi.org/10.1007/s002220050203
http://dx.doi.org/10.1006/jfan.1997.3128
http://www.ms.u-tokyo.ac.jp/~toshi/pub/57.html
http://www.ms.u-tokyo.ac.jp/~toshi/pub/tk2008d.html
http://www.ams.org/books/conm/557/11024
http://dx.doi.org/10.1016/j.jfa.2010.12.008

