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Abstract We wish to understand how irreducible representations of a gtbhp-

have when restricted to a subgroGp (the branching problerh Our primary con-

cern is with representations of reductive Lie groups, which involve both algebraic
and analytic approaches. We divide branching problems into three stages: (A) ab-
stract features of the restriction; (B) branching laws (irreducible decompositions of
the restriction); and (C) construction of symmetry breaking operators on geomet-
ric models. We could expect a simple and detailed study of branching problems in
Stages B and C in the settings that ar@riori known to be “nice” in Stage A,

and conversely, new results and methods in Stage C that might open another fruit-
ful direction of branching problems including Stage A. The aim of this article is to
give new perspectives on the subjects, to explain the methods based on some recent
progress, and to raise some conjectures and open questions.
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1 Program — ABC for branching problems

From the viewpoint of analysis and synthesis, one of the fundamental problems
in representation theory is to classify the smallest objects (e.g., irreducible repre-
sentations), and another is to understand how a given representation can be built
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up from the smallest objects (e.g., irreducible decomposition). A typical example
of the latter is thebranching problemby which we mean the problem of under-
standing how irreducible representationsf a groupG behave when restricted to
subgroups®’. We writer|¢- for a representation regarded as a representation of
G’. Our primary concern is with real reductive Lie groups. We propose a program
for branching problems in the following three stages:

Stage A. Abstract features of the restrictior:.
Stage B. Branching laws.
Stage C. Construction of symmetry breaking operators.

Here, by asymmetry breaking operatare mean a continuou’-homomorphism
from the representation spaceoto that of an irreducible representatiorof the
subgroup’’.

Branching problems for infinite-dimensional representations of real reductive
groups involve various aspects. Stage A involves several aspects of the branching
problem, among which we highlight that of multiplicity and spectrum here:

A.l. Estimates of multiplicities of irreducible representationsGfoccurring
in the restrictionr |/ of an irreducible representationof G. (There are several
“natural” but inequivalent definitions of multiplicities, see Sections 3.1 and 4.2.)
Note that:

e multiplicities of the restrictionr|; may be infinite even whe@” is a maximal
subgroup inG;

e multiplicities may be at most one (e.g., Howe’s theta correspondence [18],
Gross—Prasad conjecture [14], visible actions [39], etc.).

A.2. Spectrum of the restriction|q:

e (discretely decomposable case) branching problems may be purely algebraic
and combinatorial ([12, 13, 15, 26, 28, 29, 32, 49, 50, 59]);

e (continuous spectrum) branching problems may have analytic features [8, 52,
57, 63]. (For example, some special cases of branching laws of unitary represen-
tations are equivalent to a Plancherel-type theorem for homogeneous spaces.)

The goal of Stage A in branching problems is to analyze the aspects A.1 and A.2
in complete generality. A theorem in Stage A would be interesting on its own, but
might also serve as a foundation for further detailed study of the restrigtign
(Stages B and C). An answer in Stage A may also suggest an approach depending
on specific features of the restrictions. For instance, if we kagwiori that the
restrictionn|q: is discretely decomposable in Stage A, then one might use alge-
braic methods (e.g., combinatorid®;modules, etc.) to attack Stage B. If the re-
strictionr |- is knowna priori to be multiplicity-free in Stage A, one might expect

to find not only explicit irreducible decompositions (Stage B) but also quantitative
estimates such ak” — L7 estimates, and Parseval-Plancherel type theorems for
branching laws (Stage C).
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In this article, we give some perspectives of the subject based on a general theory
on A.1 and A.2, and recent progress in some classification theory:

o the multiplicities to be finite [bounded, one, ],
e the spectrum to be discrete / continuous.

We also discuss a new phenomentotélness theorepnTheorem 7.18) and open
questions.

Stage B concerns the irreducible decomposition of the restriction. For a finite-
dimensional representation such that the restrictipn is completely reducible,
there is no ambiguity on a meaning of the irreducible decomposition. For a unitary
representationr, we can consider Stage B by using the direct integral of Hilbert
spaces (Fact 3.1). However, we would like to treat a more general setting where
is not necessarily a unitary representation. In this case, we may consider Stage B as
the study of

HOIIIG/(W|G/,T) or HOIIIG/(T,W‘G/) (1.1)

for irreducible representationsandr of G andG’, respectively.

Stage C is more involved than Stage B as it asks for concrete intertwining opera-
tors (e.g., the projection operator to an irreducible summand) rather than an abstract
decomposition; it asks for the decomposition of vectors in addition to that of repre-
sentations. Since Stage C depends on the realizations of the representations; it often
interacts with geometric and analytic problems.

We organize this article not in the natural order, Stage-AStage B=- Stage
C, but in an opposite order, Stage=€ Stages A and B. This is because it is only
recently that a complete construction of all symmetry breaking operators has been
carried out in some special settings, and because such examples and new methods
might yield yet another interesting direction of branching problems in Stages A to
C. The two spaces in (1.1) are discussed in Sections 4-6 from different perspectives
(Stage A). The last section returns to Stage C together with comments on the general
theory (Stages A and B).

2 Two concrete examples of Stage C

In this section, we illustrate Stage C in the branching program with two recent ex-
amples, namely, an explicit construction and a complete classificatiifferential
symmetry breaking operators (Section 2.1) andtinuoussymmetry breaking op-
erators (Section 2.2). They have been carried out only in quite special situations
until now. In this section we examine these new examples by making some obser-
vations that may contain some interesting hints for future study. In later sections,
we discuss to what extent the new results and methods apply to other situations and
what the limitations of the general theory for Stage A would be.
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2.1 Rankin—Cohen bidifferential operators for the tensor products
of SLy-modules

Taking theSL,-case as a prototype, we explain what we have in mind for Stage C
by comparing it with Stages A and B. We focus differential symmetry breaking
operators in this subsection, and point out that there are some missing operators even
in the classicabL,-case ([9, 62], see also van Dijk—Pevzner [11], Zagier [76]).

First, we begin with finite-dimensional representations. For ewery N, there
exists the uniquém + 1)-dimensional irreducible holomorphic representation of
SL(2, C). These representations can be realized on the $paggz] of polynomi-
als inz of degree at most, by the following action oSL(2, C) with A = —m:

(@) = (e I tor g = (1), (@)

The tensor product of two such representations decomposes into irreducible repre-
sentations o8L(2, C) subject to the classical Clebsch—Gordan formula:

Pol,, [2] ® Pol,,[z] >~ Polyyyn 2] © Polyyn—2[2] © - - @ Poly,_p[2].  (2.2)

Secondly, we recall an analogous result for infinite-dimensional representations
of SL(2,R). For this, letH, be the Poincdr upper half planéz € C : Im z > 0}.
ThenSL(2,R) acts on the spac@(H) of holomorphic functions o ;. via
(A € Z). Further, we obtain an irreducible unitary representatiofilg®, R) on the
following Hilbert spacéV/, (theweighted Bergman spakeia ), for A > 1:

Vy = {f € O(H,) : / £ (2 + v/ =1y) Py 2dady < oo},

Hy
where the inner product is given by

flz+ \/—71y)g(x—|—7 V=1y)y* 2dzdy for f,g € Vi.
Hy

Repka [63] and Molchanov [57] obtained the irreducible decomposition of the
tensor product of two such unitary representations, namely, there is a unitary equiv-
alence between unitary representationSIof2, R):

Vi, &V, =~ Z@V)\1+x\2+2av (2.3)
a=0

where the symbols) andz63 denote the Hilbert completion of the tensor product
® and the algebraic direct sum, respectively. We then have:
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Observation 2.1.(1) (multiplicity) Both of the irreducible decompositioi2.2)
and(2.3) are multiplicity-free.

(2) (spectrum)There is no continuous spectrum in either of the decompositions
(2.2)or (2.3).

These abstract features (Stage A) are immediate consequences of the decomposition
formulae (2.2) and (2.3) (Stage B), however, one could tell these properties without
explicit formulee from the general theory of visible actions on complex manifolds
[34, 39] and a general theory of discrete decomposability [26, 28]. For instance, the
following holds:

Fact 2.2.Let 7 be an irreducible unitary highest weight representation of a real
reductive Lie grougs, andG’ a reductive subgroup aF.

(1) (multiplicity-free decomposition)The restrictionr|s- is multiplicity-free if
has a scalar minimakK -type and(G, G’) is a symmetric pair.

(2) (spectrum)The restrictionr |- is discretely decomposable if the associated Rie-
mannian symmetric spacéy K andG’/K’ carry Hermitian symmetric struc-
tures such that the embedding/ K’ — G/K is holomorphic.

Stage C asks for a construction of the following expliiit-intertwining opera-
tors symmetry breaking operatqrs
Pol,,[2z] ® Pol,,[2] = Polyn—24[7] for 0 < a < min(m,n),
V>\1 (/X\)V)\z — V,\1+)\2+2a fora € N,
for finite-dimensional and infinite-dimensional representations, respectively. We
know a priori from Stages A and B that such intertwining operators exist uniquely
(up to scalar multiplications) by Schur’'s lemma in this setting. A (partial) answer to

this question is given by the classical Rankin—Cohen bidifferential operator, which
is defined by

R fr, f2)(2)
=0

"D +a—1— DIy +1— 1) dzat 7 92

fora € N, A\, Ay € {2,3,4,...}, andf1, f» € O(H,). ThenRC} 52 +2% is an
operator which intertwineml@m2 andm, +a,+2a-

More generally, we treaton-unitaryrepresentations, on O(H.) of the uni-
versal covering groufL(2, R)~ of SL(2, R) by the same formula (2.1) for € C,
and consider a continuous linear map

T:O(H, x Hy) — O(H,) (2.4)

that intertwinesry, ® m», andmy,, whereSL(2,R)™ acts onO(H, x H.) via
T, ® T, Under the diagonal action. We denote By\;, A2, A3) the vector space
of symmetry breaking operato¥sas in (2.4).
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Question 2.3.(1) (Stage B) Find the dimension &f (A1, A2, A3) for (A1, A2, A3) €
C3.
(2) (Stage C) Explicitly construct a basis Hf(A1, A2, A3) when it is nonzero.
Even in theSL,-setting, we could not find a complete answer to Question 2.3 in the

literature, and thus we explain our solution below.
Replacingu! by I' (1 + 1), we can define

Yoo (M +a)(Aa+a) 07Ufy, O'fa
Z I a—l 'T'M4+a—0I (N +1) 9z07 Q 9zt (2),
(2.5)

RC? 5, (f1, f2)(

wherea := 1(A3 — A1 — A2) as long agA;, A2, A3) belongs to
2:={(M, 2, X3) €CP: X3 — A\ — X2 =0,2,4,...}.
We define a subsét;,, of {2 by
Osing = {(M1, A2, A3) € 2: A, 02, A3 €Z,  Az—|Ai—X2| > 2> Mi+Xa+ A3}

Then we have the following classification of symmetry breaking operators by using
the “F-method” ([51, Part ll]). Surprisingly, it turns out that any symmetry breaking
operator (2.4) is given by a differential operator.

Theorem 2.4.(1) H(A1, A2, A3) # {0} ifand only if (A1, A2, A3) € (2.

From now on, we assun{ai, A2, A3) € (2.

(2) dimg H(A1, A2, A3) = 1ifand only ifRC3® | +# 0, or equivalently,
(A1, A2, A3) € sing. In this caseH (A1, A2, As) = CRCY ..

(3) The following three conditions of\{, A2, A3) € (2 are equivalent:

(l) dlm(c H()\l, )\2, )\3) = 2.
(i) RCY? ,, = 0.
(”I) ()‘17>\2a)\3) S Qsmg

In this case, the two-dimensional vector sp&£€\;, A2, A3) is spanned by

0

a 1—Xo
821 ) )

A3
RC27>\1,)\2 o (( 97

)M @id)  and RCY,_,, o (id®(5—

Theorem 2.4 answers Question 2.3 (1) and (2). Here are some observations.

Observation 2.5.(1) (localness propertyAny symmetry breaking operator from
T, ® T, 10 Ty, IS given by a differential operator in the holomorphic real-
ization ofry; (j = 1,2,3).

(2) (multiplicity-two phenomenon)The dimension of the space of symmetry break-
ing operators jumps up exactly when the holomorphic continuation of the
Rankin—Cohen bidifferential operator vanishes.
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The localness property in Observation 2.5 (1) was recently proved in a more
general setting (see Theorem 7.18 and Conjecture 7.23).

Remark 2.6 (higher multiplicities at 2gng).

(1) From the viewpoint of analysis (or the “F-method” [40, 47, 51]), the multiplicity-
two phenomenon in Observation 2.5 (2) can be derived from the facfxhat

is of codimension two irf2 and from the fact thaf ;2-RC}? |, 32-RC3° .}

forms a basis i (A1, A2, A3) whenRCiiA2 = 0, namely, wherfA, \a, A3) €
Qsin .

(2) Thegbasis given in Theorem 2.4 (3) is different from the basis in Remark 2.6
(1), and clarifies the representation-theoretic reason for the multiplicity-two phe-
nomenon as it is expressed as the composition of two intertwining operators.

(3) Theorem 2.4 (3) implies a multiplicity-two phenomenon for Verma modules
M(u) = U(g) ®@u(e) C, for g = sl(2,C):

dim((j Homg(M(—)\g), M(—)\l) X M(_)\Q)) =2 for ()\1, )\2, )\3) S Qsing~

Again, the tensor produdt/ (—\1) ® M (—X\2) of Verma modules decomposes
into a multiplicity-free direct sum of irreduciblgmodules for generiga;, Ay €
C, but not for singular parameters. See [51, Part I1] for details.

(4) In turn, we shall get a two-dimensional space of differential symmetry breaking
operators aflg;,, for principal series representations with respe&li2, R) x
SL(2,R) | diag(SL(2,R)), see Remark 7.15 in Section 7.

2.2 Symmetry breaking in conformal geometry

In contrast to the localness property for symmetry breaking operators in the holo-
morphic setting (Observation 2.5 (1)), there exist non-local symmetry breaking op-
erators in a more general setting. We illustrate Stage C in the branching problem by
an explicit construction and a complete classification of all local and non-local sym-
metry breaking operators that arise from conformal geometry. In later sections, we
explain a key idea of the proof (Section 7) and present potential settings where we
could expect that this example might serve as the prototype of analogous questions
(Section 6). For full details of this subsection, see the monograph [52] joint with
Speh.

For A € C we denote byl (A)>° the smooth (unnormalized) spherical principal
series representation 6f = O(n + 1,1). In our parametrization\ € % + v—1R
is the unitary axisA € (0,n) gives the complementary series representations, and
I()\)®° contains irreducible finite-dimensional representations as submodules for
Ae{0,-1,-2,...} and as quotients fox € {n,n+1,n+2,... }.

We consider the restriction of the representati¢n)> and its subquotients to
the subgroug?’ := O(n, 1). As we did forZ(\)*°, we denote by/(v)*° for v € C,
the (unnormalized) spherical principal series representatioa8 ef O(n,1). For
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(\,v) € C%, we set
H(\v) :=Homg (I(N)>, J(v)™),

the space of (continuous) symmetry breaking operators. Similarly to Question 2.3,
we ask:

Question 2.7.(1) (Stage B) Find the dimension &f (A, v) for (\,v) € C2.
(2) (Stage C) Explicitly construct a basis féf(\, v).

(3) (Stage C) Determine whef (A, ) contains a differential operator.
The following is a complete answer to Question 2.7 (1).

Theorem 2.8.(1) For all A, v € C, we haveH (\,v) # {0}.

1 if (\v)€C?\ Leven,

2 it (\v) € Leven:

where the “exceptional setl..., is the discrete subset 6F defined by

(2) dime H(\, v) =

Leven :={(\,v) € Z?:A<v<0, A=v mod 2}.

The role of Leyen in Theorem 2.8 is similar to that ds;, in Section 2.1. For
Stage C, we use the/V-picture” of the principal series representations, namely,
realizel (\)>° and.J(v)> in C*°(R") andC>°(R"~1), respectively. For € R" 1,
we set|z| = (22 4+ --- +22_,)2. For (\,v) € C2 satisfyingRe(r — \) > 0
andRe(rv + A) > 0, we construct explicitly a symmetry breaking operator (i.e.,
continuous=’-homomorphism) fronf (\)*° to J(v)*° as an integral operator given

by

(Arnf)(y) = / a2 — g+ 02) " f (s an)dade,  (26)
Rn
=resty, —o 0|z, MY T (|22 + 22) 7Y *me f).

One might regard\, ,, as a generalization of the Knapp—Stein intertwining op-
erator ( = G’ case), and also as the adjoint operator of a generalization of the
Poisson transform.

The symmetry breaking operatar, ,, extends meromorphically with respect to
the parametef), v), and if we normalize\, , as

1

1—1( )\+u5n+1 )F(%)

A)\,V = A)\,Vv

then&w : I(\)*>® — J(v)* is a continuous symmetry breaking operator that
depends holomorphically of, v) in the entire complex plang?, and&w # 0 if
and only if (A, ) € Leyen ([52, Theorem 1.5]).

The singular sef..., iS most interesting. To construct a symmetry breaking
operator atleyven, We renormalizey , for v € —N, by
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A—vU
2

1

F( )\+V;n+1 )

1&,\’” = F( )1&)\’1, =

Ay .

In order to construdtifferentialsymmetry breaking operators, we recall that the
Gegenbauer polynomial;(t) for [ € N anda € C is given by

I'l—k+a) _

)= (—1)F 2t)! =2k,

Cr ) k:O( ) F(a)r(1—2k+1)k!( )

We note thaCy(t) = 0if I > 1 anda = 0,—1,-2,..., —[5%]. We renormalize
Ce(t) by settingCe (t) := L))Cﬁ (t), so thatCy(t) is a nonzero polynomial

I'(a+[H1]
int of degred for all « € C and! 62 N. We inflate it to a polynomial of two variables
u andv by

o k=a, U
Ci (u,v) == u> G (ﬁ)'
For instance(Cg (u,v) = 1, C¢(u,v) = 2v, C¢(u,v) = 2(a + 1)v? — u, etc.
Substitutingy = —Aga—1 = —Z;:ll % andv = 52, we get a differential
operator of orde®!: ’
~ ~y_n—1 0
Cx, :=resty, —go0 C;l (= Aga-1, 7).

0xy,

This closed formula of the differential opera@;\’y was obtained by Juhl [21]
(see also [47] for a short proof by the F-method, and [40] for yet another proof by
using the residue formula), and the closed formula (2.6) of the symmetry breaking
operatorA , was obtained by Kobayashi and Speh [52].

The following results answer Question 2.7 (2) and (3); see [52, Theorems 1.8 and
1.9]:

Theorem 2.9.(1) With notation as above, we have

CAx, if (\,) € C?\ Leyen

H\v)=4 = ~ :
CAy,®CC,, Iif (A, V) € Leven-
(2) H(A,v) contains a nontrivial differential operator if and only if — A =
0,2,4,6,....In this cased, , is proportional toC, _,, and the proportional-
ity constant vanishes if and only(ik, v) € Leyen-

From Theorem 2.9 (2) and Theorem 2.8 (1), we have the following:

Observation 2.10.(1) Unlike the holomorphic setting in Section 2.1, the localness
property fails.

(2) Even if an irreducible smooth representatiof? = I(\)*° is unitarizable as a
representation of7, the conditionHome (7>°|¢/, 7°°) # {0} does not imply
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that the irreducible smooth representatiof® = J(v)* is unitarizable as a
representation ofy’ (see Section 3.2 for the terminology).

ForA € {n,n+ 1,n + 2,...}, I(\)> contains a unique proper infinite-
dimensional closedz-submodule. We denote it byl (A — n)>°, which is the
Casselman—-Wallach globalization of Zuckerman’s derived functor mody(& —

n) (see [69, 71]) for somé-stable parabolic subalgebgaof g. It is unitarizable
([70, 74]) and has nonzer@, K )-cohomologies (Vogan—Zuckerman [73]).

By using the explicit formulae of symmetry breaking operators and certain identi-
ties involving these operators, we can identify precisely the images of every subquo-
tient of I(\)>° under these operators. In particular, we obtain the following corollary
for the branching problem af;(\) modules. We note that in this setting, the re-
striction A4(\)|4 is not discretely decomposable aggh, K’)-module (Definition
4.3).

Corollary 2.11 ([52, Theorem 1.2]).With notation as above, we have

. . _ 1 if ¢>j and i=j5 mod 2,
d H ’ A o0 /,A ’ ) = . -
ime Home: (44(1)%lar, Ay (1)) {0 if i<j and i%j mod?2
There are some further applications of the explicit formulse (2.6) (Stage C in
the branching problems). For instance, DblMrs and B. @rsted recently found an
interesting application of the explicit formulee (2.6)t6 — L? estimates of certain
boundary-value problems, and to some questions in automorphic forms [58].

3 Preliminary results and basic notation

We review quickly some basic results on (infinite-dimensional) continuous repre-
sentations of real reductive Lie groups and fix notation. There are no new results in
this section.

By a continuous representatiarof a Lie groupG on a topological vector space
V we shall mean that : G — GL¢ (V) is a group homomorphism frod into the
group of invertible endomorphisms &f such that the induced map x V" — V,
(g,v) — m(g)v is continuous. We say is a (continuous) Hilbert [Banach, &ehet,
-+ -] representation i is a Hilbert [Banach, Fchet,- - -] space. A continuous
Hilbert representatiom of G is said to be a unitary representation when all the
operatorsr(g) (g € G) are unitary.
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3.1 Decomposition of unitary representations

One of the most distinguished featuresuoftary representations is that they can be
built up from the smallest objects, namely, irreducible unitary representations. To
be precise, le€i be a locally compact group. We denote®@yhe set of equivalence
classes of irreducible unitary representation&dthe unitary dua), endowed with

the Fell topology.

Fact 3.1 (Mautner—Teleman). For every unitary representation of a locally com-
pact groupG, there exist a Borel measuré: on G and a measurable function
ny : G = N U {oo} such thatr is unitarily equivalent to the direct integral of
irreducible unitary representations:

o
T /A ny(o)o du(o), (3.1)
G
wheren, (c)o stands for the multiple of an irreducible unitary representatson
with multiplicity n (o).

The decomposition (3.1) is uniqued is of type | in the sense of von Neumann
algebras, in particular, i€7 (or G’ in later notation) is a real reductive Lie group
or a nilpotent Lie group. Then thaultiplicity functionn,. is well-defined up to a
measure zero set with respectdio. We say thatr is multiplicity-freeif n, (o) < 1
almost everywhere, or equivalently, if the ring of continuéagndomorphisms of
7 IS commutative.

The decomposition (3.1) splits into a direct sum of the discrete and continuous
parts:

e (W)disc S (ﬂ-)COl’lt7 (32)

where(m)qisc IS @ unitary representation defined on the maximal cl@égeavariant
subspace that is isomorphic to a discrete Hilbert sum of irreducible unitary repre-
sentations anir).ont is its orthogonal complement.

Definition 3.2. We say a unitary representatians discretely decomposabiler =
(W)disc-

3.2 Continuous representations and smooth representations

We would like to treat non-unitary representations as well for branching problems.
For this we recall some standard concepts of continuous representations of Lie
groups.

Supposer is a continuous representation @f on a Banach spacg. A vec-
tor v € V is said to besmoothif the mapG — V, g — w(g)v is of C>°-
class. LetV’>° denote the space of smooth vectors of the represent&tion).
Then V> carries a Fechet topology with a family of semi-normg||;,...;, =
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ldm(X;,) - - dm (X5, )v]l, where{X;, ..., X,,} is a basis of the Lie algebrg of

G. ThenV> is a G-invariant dense subspace Bf and we obtain a continuous
Fréchet representatiofr>, V°>°) of G. Similarly we can define a representation
7 on the spac&“ of analytic vectors.

Suppose now that is a real reductive linear Lie groups a maximal compact
subgroup ofG, and g the complexification of the Lie algebrg of G. Let HC
denote the category of Harish-Chandra modules whose objects and morphisms are
(g, K)-modules of finite length angl, K')-homomorphisms, respectively.

Let 7 be a continuous representation(obn a Fechet spac¥ . Suppose that is
of finite length, namely, there are at most finitely many claSeidvariant subspaces
in V. We sayr is admissibldf

dim Homg (7, 7| i) < 00

for any irreducible finite-dimensional representatioof K. We denote by the
space ofK-finite vectors. Therl/x C V¥ C V°° and the Lie algebrg leaves
Vi invariant. The resultingg, K )-module onV is called the underlyingg, K)-
module ofr, and will be denoted by .

For any admissible representatioon a Banach spadé, the smooth representa-
tion (7°°, V°°) depends only on the underlyirig, K )-module. We sayn®°, V>°)
is anadmissible smooth representatidBy the Casselman—Wallach globalization
theory,(7°°, V*°) has moderate growth, and there is a canonical equivalence of cat-
egories between the categoiC of (g, K)-modules of finite length and the cate-
gory of admissible smooth representation&:q{74, Chapter 11]). In particular, the
Fréchet representatior is uniquely determined by its underlyirig, K )-module.
We sayr° is thesmooth globalizationf 7 € HC.

For simplicity, by anirreducible smooth representatiowe shall mean an irre-
ducible admissible smooth representationcofWe denote byGgo0tn the set of
equivalence classes of irreducible smooth representatiofis ding the category
HC of (g, K)-modules, we may regard the unitary ddGahs a subset afs,,00th-

4 Two spacesHomg (7, w|g) and Home (7|7, T)

Given irreducible continuous representationsf G and r of a subgroup&’, we
may consider two settings for branching problems:

Case |. (embedding) continuous’-homomorphisms from to 7|¢-;

Case Il. (symmetry breaking) continuous’-homomorphisms fromr|g to 7.

We write Home (7, 7|¢») and Homg (7|gr, 7) for the vector spaces of such
continuous=’-homomorphisms, respectively. Needless to say, the existence of such
G’-intertwining operators depends on the topology of the representation spaces of
mandr.

Cases | and Il are related to each other by taking contragredient representations:
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Homg (7, 7|¢') C Homg: (7V |G/, 7Y),
Home (7|gr, 7) CHomer (7Y, 7Y |r).

Thus they are equivalent in the category of unitary representations (see Theorem 4.1
(3)). Furthermore, we shall use a variant of the above duality in analyzing differen-
tial symmetry breaking operators (Case Il) by means of “discretely decomposable
restrictions” of Verma modules (Case 1); see the duality (7.3) for the proof of Theo-
rem 7.13 below.

On the other hand, it turns out that Cases | and Il are significantly different if
we confine ourselves to irreducible smooth representations (see Section 3.2). Such
a difference also arises in an analogous problem in the categ6rof Harish-
Chandra modules where no topology is specified.

Accordingly, we shall discuss some details for Cases | and Il separately, in Sec-
tions 5 and 6, respectively.

4.1 K-finite vectors andK’-finite vectors

Let G be a real reductive linear Lie group, agd a reductive subgroup. We take
maximal compact subgrougs and K’ of G andG’, respectively, such that”’ =
KnG'.

We recall that for an admissible representationf G on a Banach spac¥,
any K -finite vector is contained i *°, and the underlyindg, K)-modulen is
defined on

Vi = Vi finte  (C V™).
When we regardn, V) as a representation of the subgrablpby restriction, we
denote by(V |/ ) the space of smooth vectors with respect to@ection, and
write (7|¢+ ) for the continuous representation Gf on (V|g/)*°. In contrast to
the cases = G’, we remark thaf’-finite vectors are not necessarily contained in
(V]gr)™ if G" S G, because th€’-module(r|c, V) is usually not of finite
length. Instead, we can defind@, K’)-module on

Vier = Vi finie 0 (V)™

which we denote simply by . Obviously we have the following inclusion rela-
tions:

VK C VK'
N N (4.2)
Ve (Vig)>* cVv

None of them coincides in general (e s = Vi if and only if 7k is discretely

decomposable gg’, K’)-module, as we shall see in Theorem 4.5 below.
We set
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HK(T, 7T) :ZHOmgQK/(TK/,T&'Kb/),
Hyo(1,m) :=Homgy g/ (Tk', TK'|g’)-
According to the inclusion relation (4.1), for irreducible representatioosG’ we

have:
Hyg(r,7) C Hg/ (T, 7).

In the case where is a unitary representation 6f, the latter captures discrete sum-
mands in the branching law of the restrictiofy, (see, Theorem 4.1 (3)), whereas
the former vanishes even if the latter is nonzero when the continuou8t@r}cont

is not empty (see Theorem 4.5). The spaces of continGddmmomorphisms such
asHomg: (7, w|g/) or Homg: (7°°, 7| ) are in between.

We begin with a general result:

Theorem 4.1.Suppose that andr are admissible irreducible Banach representa-
tions of G andG’.

(1) We have natural inclusions and an isomorphism:

Hy(1,7) — Home (7°°, 7| )

— HomG/ (TOO, (7T|G/)OO) :> HK/(T, 7T). (42)
(2) There are canonical injective homomorphisms:

Homg/ (7|gr, 7) — Homeg (7°°|gr, 7°°)
— Homg (7TW|G/,TW) — H0m9/7[(/ (7TK, TK/). (43)
(3) (unitary case)f 7 and = are irreducible unitary representations 6 and G,

respectively, then we have natural isomorphisms (where the last isomorphism is
conjugate linear):

Hpy (1,7) < Homeg (7°°, (7] ar)™)
<: HomG/(T, W‘G/) >~ HOIHG/(W‘G/7 T). (4.4)
We writem, (7) for the dimension of one of (therefore, any of) the ternid is).

Then the discrete part of the restrictior);: (see Definition 3.2) decomposes
discretely as

(7]ar)dise = Z O (T)T.

TEEJ\’

Remark 4.2.Even if # andr are irreducible unitary representations@fandG’,
respectively, the canonical injective homomorphism

Homg: (7|gr, 7) — Homegr (7°°|qr, 7°°) (4.5)

is not surjective in general.
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In fact, we can give an example where the canonical homomorphism (4.5) is not
surjective by using the classification Bbmg: (7°°|¢, 7°°) for the pair(G,G’) =
(O(n+1,1),0(n,1)) in Section 2.2 as follows. Recadllomg: (I(\)*°|q/, J (1))

+ {0} for all (\,v) € C2 with the notation therein. However, for a fixade G,
there exist at most countably mamye G’ that occur in the discrete part of the
restrictionr|q/, and therefordr € G Homg (7|gr, ) # {0}} is an infinite set
because we have the following bijection:

{r € G : Home (n|er,7) # {0}} =~ {r € G’ : Home (1, 7|c) # {0}}.

Hence, by takingt> = I(\)* for a fixed A € § + +/—1R (unitary axis) or
A € (0,n) (complementary series), we see that the canonical homomorphism (4.5)
must be zero when we take™ to be a representatiaf(v)> for v € C such that

v¢ ">t +/—IRandv ¢ R.
Let us give a proof of Theorem 4.1.

Proof. (1) To see the first inclusion, we prove that afgy, K’)-homomorphism
L1 Tk — Tk |y extends to a continuous map® — 7°°|.. We may assume that
¢ is nonzero, and therefore, is injective. Sin¢ex/) C mx C 7°°, we can define a
Fréchet spacél’ to be the closure of(7x/) in 7, on whichG’ acts continuously.
Its underlying(g’, K’)-module is isomorphic to(7x /) ~ 7x.

Since the continuous representatichi of G is of moderate growth, the &chet
representatiofV’ of the subgroug’ is also of moderate growth. By the Casselman—
Wallach globalization theory, there is(d-homomorphismr®> = (1x/) (= W)
extending theg’, K')-isomorphism : 7 = 1(7x/). Hence we have obtained a
natural mafomy g/ (7, T |y ) — Home: (7°°, m°|q/), which is clearly injec-
tive because is dense inr°.

The second inclusion is obvious.

To see the third inclusion, it suffices to show that amyHomg: k' (Tx7, Tx|g’)
extends to a continuous’-homomorphism fromr to (w|g/)>°. SinceTk: is an
irreducible(g’, K')-module,. is injective unless is zero and (rx) is isomorphic
to i as(g’, K')-modules.

Let V' be the Banach space on whichacts viar, andW; and W, the clo-
sures of.(7x+) in the Banach spad€é and the Fechet spacéV |- ), respectively.
Then the underlyingg’, K’)-modules ofi¥; and W, are both isomorphic tex:.
Moreover, W, C Wy N (V|g)° by definition, and¥s is closed inW, N (V| g/ )™
with respect to the Fchet topology. Since the subspagey:) of W, is dense
in Wy N (Vl]gr)*°, we conclude thait¥, coincides withiV; N (V|g/)*°, which
is the Casselman-Wallach globalization of tg, K')-module (1) ~ 7k .
By the uniqueness of the Casselman—Wallach globalization [74, Chapter 11], the
(¢, K')-isomorphismry: = 1(7x/) extends to an isomorphism betweerg€het
G'-modulesr™ 5 Wa(= Wi N (V]g)®).

(2) If v: w|gr — T is a continuougs’-homomorphism, then

Umler) Cul(rle)™) €7,
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and thus we have obtained a continud@éshomomorphism> : 7|5 — 7
between Fechet representations. Furthermores> . is injective becaus® > is
dense inV/. This shows the first inclusive relation of the statement (2). The proof for
other inclusions are similar.

(3) The last isomorphism in (4.4) is given by taking the adjoint operator. The other
isomorphisms are easy to see. The last statement follows from the fact ¢hat if
Homg (1, 7| ) theng is a scalar multiple of aisometricG’-homomorphism. O

The terms in (4.2) do not coincide in general. In order to clarify when they coin-
cide, we recall from [29] the notion of discrete decomposability-ofiodules.

Definition 4.3. A (g, K)-module X is said to bediscretely decomposable as a
(¢/, K’)-moduleif there is a filtration{ X; };,cn of (¢’, K’)-modules such that

° UiGN X;=Xand
e X, is of finite length as dg’, K’)-module for anyi € N.

The idea was to exclude “hidden continuous spectrum” in an algebraic setting, and
discrete decomposability here does not imply complete reducibility. Discrete de-
composability is preserved by taking submodules, quotients, and the tensor product
with finite-dimensional representations.

Remark 4.4 (see [29, Lemma 1.3]).Suppose thatX is a unitarizable(g, K)-
module. ThenX is discretely decomposable asg, K’)-module if and only if
X is isomorphic to an algebraic direct sum of irreducifagle K')-modules.

We get much stronger results than Theorem 4.1 in this setting:

Theorem 4.5(discretely decomposable casefAssumer is an irreducible admis-
sible representation off on a Banach spac¥. Letr, be the underlyindg, K)-
module. Then the following five conditions on the trifle G’, =) are equivalent:

(i) There exists at least one irreducillg’, K’)-modulerx- such that
Homgy g/ (Tr7, 7K ) # {0}.

(i) mx is discretely decomposable ag@, K’)-module (see Definition 4.3).

(i) All the terms in(4.2) are the same for any irreducible admissible Banach rep-
resentationr of G’.

(iv) All the terms in(4.2) are the same for some irreducible admissible Banach
representatiorr of G'.

(V) Vi = Vi,

Moreover, if(7, V') is a unitary representation, then one of (therefore, any of) the
equivalent conditions (i) — (v) implies that the continuous patis:)cont Of the
restriction|q is empty.

Proof. See [29] for the first statement, and [32] for the second statement. O
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4.2 Some observations dHomg (7°°, w°|5+) and
HOIIIG/(TFOO|G/, Too)

For a unitary representatigir, V') of G, Fact 3.1 gives an irreducible decomposi-
tion of the restrictionr|g- into irreducibleunitary representations a&’. However,
symmetry breaking operators may exist between unitary and non-unitary represen-
tations:

Observation 4.6.Supposer is a unitary representation af, and (7, W) an irre-
ducible admissible representation of a reductive subgiGup

(1) If Homg (7%°, 7%°|g) # {0}, thent>° is unitarizable. Actually; occurs as a
discrete part of 7| ) aisc (5€€(3.2)).

(2) It may well happen thatlomg: (7°°|g/, 7°°) # {0} even when° is not unita-
rizable.

In fact, the first assertion is obtained by taking the completiop@/>°) in the
Hilbert spaceV for ¢ € Homg (7°°, 7°°|¢) as in the proof of Theorem 4.1 (3),
where we considered the ca&e|g ) instead ofr>°|g.. Theorem 2.9 gives an
example of Observation 4.6 (2).

Here is another example that indicates a large difference between the two spaces,
Homg: (TOO, 7T°O|G/) andHomG/(w"O ‘G/v TOO).

Example 4.7.Supposé€ is a real simple connected Lie group, aktlis a noncom-
pact closed subgroup 6f. Let 7 be any irreducible unitary representation such that
dim 7 = co andHomg (7>, C>*(G/G")) # {0}. Then by Howe—Moore [20] we
have

HomG/(l,ﬂ“|G/) = {O} # HOII’IGW (7TOO|G/, 1).

5 Features of the restriction, | : Homg (7, 7w|¢/) (embedding)

In this section, we discuss Case | in Section 4, nani&fhomomorphisms from
irreducible G’-modulesT into irreducible G-modulesw. We put emphasis on its
algebraic analogue in the categ@dy of Harish-Chandra modules.

The goals of this section are

(1) (criterion) to find a criterion for the tripleG, G’, 7) such that
Homy i/ (T, 7K |g) # {0} for somer; (5.1)

(2) (classification theory) to classify the paif&,G’) of reductive groups for
which (5.1) occurs for at least one infinite-dimensionat G.

We also discuss recent progress in this direction as a refinement of (2):
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(2) (classification theory) Classify the tripl¢&, G’, ) for which (5.1) occurs in
typical cases (e.gnk is Zuckerman's4,(A) module, or a minimal represen-
tation).

In Section 7 we shall explain two new applications of discretely decomposable
restrictions: one is a dimension estimate of differential symmetry breaking operators
(Theorem 7.13), and the other is a proof of the “localness property” of symmetry
breaking operators (Theorem 7.18); see Observation 2.5 (1).

5.1 Criteria for discrete decomposability of restriction

We review a necessary and sufficient condition for the restriction of Harish-Chandra
modules to be discretely decomposable (Definition 4.3), which was established in
[28] and [29].

An associated variety;(X) is a coarse approximation of themodulesX,
which we recall now from Vogan [72]. We shall use the associated variety for the
study of the restrictions of Harish-Chandra modules.

Let {U,(g)},en be the standard increasing filtration of the universal enveloping
algebral/(g). SupposeX is a finitely generated-module. A filtration J, . X; =
X is called agood filtrationif it satisfies the following conditions:

e X is finite-dimensional for any € N;
o U;(9)X; C X;4,foranyi,j e N;
e There exists: such thalU;(g) X; = X, ; foranyi > n andj € N.

The graded algebrar U(g) := @jeN Uj;(g)/U;-1(g) is isomorphic to the sym-
metric algebraS(g) by the Poincag—Birkhoff-Witt theorem and we regard the
graded modulgr X := @, Xi/X;—1 as anS(g)-module. Define

Anngg)(gr X) := {f € S(g) : fv=0foranyv € gr X},
Vo(X):={zecg": f(x) =0foranyf € Anngg (gr X)}.

ThenV,(X) does not depend on the choice of good filtration and is calledghe-
ciated varietyof X. We denote byA/(g*) the nilpotent variety of the dual spagé.
We have then the following basic properties of the associated variety [72].

Lemmab5.1.Let X be a finitely generateg-module.

(1) If X is of finite length, the® (X)) C N(g*).

(2) Vy(X) = {0} if and only if X is finite-dimensional.

(3) Leth be a Lie subalgebra af. ThenV,(X) C b if b acts locally finitely onX,
whereht := {z € g* : z|, = 0}.

(1) and (3) imply that ifX is a (g, K)-module of finite length, theiy(X) is a
Kc-stable closed subvariety of (p*) becausé! = p*.
Dual to the inclusiory’ C g of the Lie algebras, we write
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pr:g” — (g)"

for the restriction map.

One might guess that irreducible summands of the restrictign would be
“large” if the irreducible representation of G is “large”. The following theorem
shows that such a statement holds if the restriction of the Harish-Chandra module is
discretely decomposable (Definition 4.3), however, it is false in general (see Coun-
terexample 5.4 below).

Fact 5.2.Let X be an irreducibleg(g, K')-module.
(1) If Yis anirreducible(g’, K’)-module such thadfomg (Y, X|y) # {0}, then

pr(Vg(X)) C Vg (V).

(2) If Y are irreducible(g’, K’)-modules such thdlom (Y9, X|y) # {0}
(j =1,2), then
Vo (Y1) = Vg (Ya).

In particular, the Gelfand—Kirillov dimensioK-dim(Y") of all irreducible
(¢, K')-submoduled” of X |, are the same.

(3) (necessary condition [29, Corollary 3.5[f) X is discretely decomposable as a
(¢/, K')-module, themr(V, (X)) € N((¢')*), whereN ((g’)*) is the nilpotent
variety of(g’)".

An analogous statement fails if we replademg: k- (7, Tk |4) Dy the space
Home (7, 7| ) of continuousa’-intertwining operators:

False Statement 5.3Letx be an irreducible unitary representation of a real reduc-
tive Lie groupG.

(1) If 7 € &' satisfiesHome (7, 7| ) # {0}, thenpr(Vy(7x)) C Vg (Ti7).

@) If 79 ¢ G satisfyHome: (), 71|e) # {0} (j = 1,2), thenVy () =
Vg (1i2)).
Here are counterexamples to the “False Statement 5.3":

Counterexample 5.4.(1) There are many triple§, G’, 7) such thatr € G satis-
fies (|G )cont # 0; S€€ [26, Introduction], [33, Section 3.3], and Theorem 5.14,
for instance. In this caser(Vy(7x)) ¢ Vg (Tk/) foranyr € G’ by Fact 5.2
(3).

(2) Let (G,G") = (G1 x G1,diag(G1)) with G1 = Sp(n,R) (n > 2). Take an
irreducible unitary spherical principal series representatioimduced from the
Siegel parabolic subgroup 6f;, and setr = w; X ;. Then there exist discrete
series representations?) andr(® of G’ (~ Sp(n,R)), wherer(!) is a holo-
morphic discrete series representation affd is a non-holomorphic discrete
series representation, such that

Home (790, 7) # {0} (j=1,2) and GK-dim(r™") < GK-dim(r®).
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In fact, it follows from Theorem 5.14 below th&ome. (7,7) # {0} if and
only if 7 is a discrete series representation for the reductive symmetric space
Sp(n,R)/GL(n,R). Then using the description of discrete series representations
[55, 71], we get Counterexample 5.4 (2).

We now turn to an analytic approach to the question of discrete decomposability
of the restriction. For simplicity, assuni€ is connected. We take a maximal torus
T of K, and writet, for its Lie algebra. Fix a positive systerr™ (&, t) and denote
by C.; (C v/—1t;) the dominant Weyl chamber. We regafds a subset of —1t;,
and setl, :=C,. N T. Then Cartan—Weyl highest weight theory gives a bijection

AJ’,:’I?, )\HT)\.

We recall for a subse§ of R, the asymptotic con§oc is the closed cone defined
by

Soo:={y € RY : there exists a sequengg,,e,) € S x Ry such that
lim e,y, =y and lim e, = 0}.
n—oo n—oo
The asymptotid<-supportAS (X)) of a K-moduleX is defined by Kashiwara and
Vergne [22] as the asymptotic cone of the highest weights of irredu&ibteodules
occurring inX:
ASk(X) = Suppg (X)oo,

whereSupp ;- (X) is the K -support ofX given by
Suppg(X) :={ € Ay : Homg (7, X) # {0}}.

For a closed subgrouf” of K, we write ¢, for its Lie algebra, and regard
(k) = Ker(pr : & — (&)*) as a subspace 6§ via a K -invariant inner product
onty. We set

Cr(K'):=Cy NvV—1Ad*(K) (€)™

An estimate of the singularity spectrum of the hyperfunctiércharacter ofX
yields a criterion of K’-admissibility” of X for a subgroupx” of K ([28, Theorem
2.8] and [33]):

Fact5.5.LetG D G’ be a pair of real reductive linear Lie groups with compatible
maximal compact subgrougé > K’, and X an irreducible(g, K)-module.

(1) The following two conditions on the tripl&7, G’, X) are equivalent:

(i) X is K’-admissible, i.edim Homg (7, X|) < oo forall 7 € K.
(i) Cx(K')NASk(X) = {0}.

(2) If one of (therefore either of) (i) and (ii) is satisfied, th&nis discretely decom-
posable as dg’, K')-module.
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5.2 Classification theory of discretely decomposable pairs

We begin with two observations.

First, for a Riemannian symmetric pair, that i§7,G’) = (G, K) where
G' = K' = K, the restrictionX |, is obviously discretely decomposable as a
(¢', K')-module for any irreduciblég, K )-module X, whereas the reductive pair
(G,G") = (SL(n,C),SL(n,R)) is an opposite extremal case as the restricdp
is never discretely decomposable aga K’)-module for any infinite-dimensional
irreducible (g, K)-module X ([29]). There are also intermediate cases such as
(G,G") = (SL(n,R),SO(p,n — p)) for which the restrictionX|, is discretely
decomposable for some infinite-dimensional irreducilglek’)-module X and is
not for some otheiX.

Secondly, Harish-Chandra’s admissibility theorem [16] asserts that

dim¢ Hompg (7, 7| k) < 00

foranyr € G andr € K.
This may be regarded as a statement for a Riemannian symmetriGhéit) =
(G, K). Unfortunately, there is a counterexample to an analogous statement for the
reductive symmetric paitG,G’') = (SO(5,C),S0(3,2)), namely, we proved in
[32] that

dim¢ Homg (7, 7|gr) = oo for somern € G andr € G'.

However, it is plausible [32, Conjecture A] to have a generalization of Harish-
Chandra’s admissibility in the catego®C of Harish-Chandra modules in the fol-
lowing sense:

dimHomg/’K/(TK/,ﬂK\g/) < 0

for any irreducible(g, K')-moduler i and irreduciblgg’, K’)-moduler: .
In view of these two observations, we consider the following conditions (a) — (d)
for a pair of real reductive Lie groufd$s, G’), and raise a problem:

Problem 5.6.Classify the pair§G, G’) of real reductive Lie groups satisfying the
condition (a) below (and also (b), (c) or (d)).

(a) there exist an infinite-dimensional irreducible unitary representatioinG and
an irreducible unitary representatiorof G’ such that

0< dimHOIl’lg/’K/(TK”ﬂ'K‘g/) < 00,

(b) there exist an infinite-dimensional irreducible unitary representatioinG and
an irreducible unitary representatierof G’ such that

0< dimHomg/)K/(TK/,ﬂ'Kb,);

(c) there exist an infinite-dimensional irreducig, K )-module X and an irre-
ducible(g’, K')-moduleY such that
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0< dimHOng/,K/(Y,Xb/) < oQ;

(d) there exist an infinite-dimensional irreduciklg, K)-module X and an irre-
ducible(g’, K')-moduleY such that

0< dimHomg/K/(K X‘g/).
Obviously we have the following implications:

(@) =(b)
¢l
(c) =(d)

The vertical (inverse) implications (¢} (a) and (d)=- (b) will mean finite-
multiplicity results like Harish-Chandra’s admissibility theorem.

For symmetric pairs, Problem 5.6 has been solved in [50, Theorem 5.2]:

Theorem 5.7.Let (G, G’) be a reductive symmetric pair defined by an involutive
automorphisnm of a simple Lie grougs. Then the following five conditions (a),
(b), (c), (d), and

of #—pB (5.2)

are equivalent. Heres is the highest noncompact root with respect to (&4)-
compatible” positive system. (See [50] for a precise definition.)

Example 5.8.(1) o = 0 (Cartan involution). Then (5.2) is obviously satisfied be-
causd) = (. Needless to say, the conditions (a)—(d) hold wbén- K.

(2) The reductive symmetric pait&’, G') = (SO(p1 +p2, q), SO(p1) X SO(pe2, q)).
(SL(2n,R),Sp(n,C)), (SL(2n,R), T - SL(n,C)) satisfy (5.2), and therefore
(a)—(d).

The classification of irreducible symmetric pa(cs, G') satisfying one of (therefore

all of) (a)-(d) was given in [50]. It turns out that there are fairly many reductive
symmetric paird G, G’) satisfying the five equivalent conditions in Theorem 5.7
whenG does not carry a complex Lie group structure, whereas there are a few such
pairs (G, G’) whenG is a complex Lie group. As a flavor of the classification, we
present a list in this particular case. For this, we use the following notation, which
is slightly different from that used in the other parts of this article. Getbe a
complex simple Lie group, andy a real form. Take a maximal compact subgroup
KR of Gg, and letK ¢ be the complexification oK in G¢. We denote by, ¢, and

gr the Lie algebras ofi¢, K¢, andGg, respectively, and writg = £ + p for the
complexified Cartan decomposition.

Example 5.9([50, Corollary 5.9]). The following five conditions on the pairs
(Gc, Gr) are equivalent:

() (Gc, K¢) satisfies (a) (or equivalently, (b), (c), or (d)).
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(i) (G¢, Gr) satisfies (a) (or equivalently, (b), (c), or (d)).

(iif) The minimal nilpotent orbit off does not intersegiz.

(iv) The minimal nilpotent orbit o does not intersegt.

(v) The Lie algebrag, ¢, andggr are given in the following table:

g |sl(2n,C)  so(m,C) sp(p+¢,C) f§ ¢
t|sp(n,C) so(m—1,C) sp(p,C)+sp(q,C) s0(9,C) fi
gr|su*(2n) so(m —1,1) sp(p,q) fa(—20) €6(—26)

wherem > 5 andn, p,q > 1.

Remark 5.10.The equivalence (iv) and (v) was announced by Brylinski—-Kostant

in the context that there is no minimal representation of a Lie g@wpwith the

Lie algebraggr in the above table (see [7]). The new ingredient here is that this
condition on the Lie algebras corresponds to a question of discretely decomposable
restrictions of Harish-Chandra modules.

For nonsymmetric pairs, there are a few nontrivial cases where (a) (and therefore
(b), (c), and (d)) holds, as follows.

Example 5.11([26]). The nonsymmetric pair6s,G’) = (SO(4,3), Gy(2y) and
(SO(7,C), GY) satisfy (a) (and also (b), (c), and (d)).

Once we classify the pair§G,G’) such that there exists at least one irre-
ducible infinite-dimensionalg, K')-module X which is discretely decomposable
as a(g’, K')-module, then we would like to find all suctis.

In [49] we carried out this project faK = A, () by applying the general cri-
terion (Facts 5.2 and 5.5) to reductive symmetric p&i¥sG’). This is a result in
Stage A of the branching problem, and we think it will serve as a foundational result
for Stage B (explicit branching laws). Here is another example of the classification
of the triples(G, G’, X) whenG ~ G’ x G’, see [50, Theorem 6.1]:

Example 5.12(tensor product). Let G be a noncompact connected simple Lie
group, and letX; (j = 1, 2) be infinite-dimensional irreducibl@, £)-modules.

(1) SupposeG is not of Hermitian type. Then the tensor product representation
X1 ® X5 is never discretely decomposable agak )-module.

(2) Suppose is of Hermitian type. Then the tensor product representatipn X
is discretely decomposable agga K )-module if and only if bothX; and X, are
simultaneously highest weigld, K')-modules or simultaneously lowest weight
(g, K)-modules.

5.3 Two space$lome (7, 7|¢’) and Homy g/ (Tk7, Tk |g)

There is a canonical injective homomorphism

Homg/’K/ (TK/77TK|9/) — HOIDG/ (T77T|G/),
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however, it is not bijective for € G’ andr € G. In fact, we have:

Proposition 5.13.Suppose that is an irreducible unitary representation @éf. If

the restrictionr|g/ contains a continuous spectrum and if an irreducible unitary
representationr of G’ appears as an irreducible summand of the restrictida
then we have

Homgy g/ (Trr, Ti|g) = {0} # Home (7, 7| ).

Proof. If Homy (7x/, Tk |g) = Homgy g/ (Tk’, TK|g) Were nonzero, then the

(g, K)-moduler ik would be discretely decomposable gga K’)-module by The-
orem 4.5. In turn, the restriction|s: of the unitary representation would de-
compose discretely into a Hilbert direct sum of irreducible unitary representations
of G’ by [32, Theorem 2.7], contradicting the assumption. Hence we conclude

Homgy g/ (Trr, Ti|g) = {0}. m]

An example of Proposition 5.13 may be found in [45, Part Il] wheris the
minimal representation af = O(p, ¢) andr is the unitarization of a Zuckerman
derived functor modulel,(\) for G = O(p', ¢') x O(p”, ¢"") with p = p’ +p” and
=4 +q" (@' q¢,p",¢" > 1andp + g even).

Here is another example of Proposition 5.13:

Theorem 5.14.Let G be a real reductive linear Lie group, and let= Ind%(C,)
be a spherical unitary degenerate principal series representatigniafiuced from
a unitary characterC, of a parabolic subgrou@® = LN of G.

(1) For any irreducible(g, K')-modulerx, we have
HOHIQJ((TK, TK X 7TK) = {0}

(2) Suppose nowr is a classical group. IfV is abelian andP is conjugate to the
opposite parabolic subgroup = LN, then we have a unitary equivalence of
the discrete part:

L*(G/L)aise ~ Y _® dime Homg (7, 7@m) 7. (5.3)
TE@

In particular, we have
dim¢ Homg (1, 7®7) < 1

for any irreducible unitary representatianof G. Moreover there exist countably
many irreducible unitary representationsof G such that

dim¢ Homg (7, 7®7) = 1.

A typical example of the setting in Theorem 5.14 (2) is the Siegel parabolic sub-
groupP = LN = GL(n,R) x Sym(n,R) in G = Sp(n, R).
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Proof. (1) This is a direct consequence of Example 5.12.

(2) Takewy € G such thatwyLw,' = L andwoNw, ' = N. Then theG-orbit
through(wo P, e P) in G/ P x G/ P under the diagonal action is open dense, and
therefore Mackey theory gives a unitary equivalence

L*(G/L) ~ m\®m» (5.4)

becauseAd* (wg)X = —\, see [30] for instance. Sinck is abelian,(G, L)
forms a symmetric pair (see [64]). Therefore the branching law of the tensor
product representation® reduces to the Plancherel formula for the regu-
lar representation on the reductive symmetric sga¢é€, which is known; see
[10]. In particular, we have the unitary equivalence (5.3), and the left-hand side
of (5.3) is nonzero if and only ifank G/L = rank K/L N K due to Flensted-
Jensen and Matsuki—Oshima [55]. By the description of discrete series repre-
sentation forG/ L by Matsuki—Oshima [55] and Vogan [71], we have the con-
clusion.

O

5.4 Analytic vectors and discrete decomposability

Supposer is an irreducible unitary representation®bn a Hilbert spac&’, andG’

is a reductive subgroup @ as before. AnyG’-invariant closed subspad& in V/
containsG’-analytic vectors (hence, al€e/-smooth vectors) as a dense subspace.
However, W may not contain nonzer&-smooth vectors (hence, alge-analytic
vectors). In view of Theorem 4.5 in the categ@ty¢ of Harish-Chandra modules, we
think that this is related to the existence of a continuous spectrum in the branching
law of the restrictionr|.. We formulate a problem related to this delicate point
below. As beforer> andr°° denote the space 6f-smooth vectors an@’-smooth
vectors for representationsandr of G andG’, respectively. An analogous notation
is applied tor* andr>.

Problem 5.15.Let (7, V') be an irreducible unitary representation®fandG’ a
reductive subgroup afi. Are the following four conditions on the tripleg7, G, )
equivalent?

(i) There exists an irreduciblg’, K’)-moduler, such that
Homg (77, 7k |g) # {0}
(i) There exists an irreducible unitary representatiaf G’ such that
Home: (7%, 7%| 1) # {0}.
(iii) There exists an irreducible unitary representatiaf G’ such that

HOIDG/ (TOC, WOO‘GI) 75 {0}
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(iv) The restrictionr|s. decomposes discretely into a Hilbert direct sum of irre-
ducible unitary representations @f.

Here are some remarks on Problem 5.15.

Remark 5.16.(1) In general, the implication (i (iv) holds ([32, Theorem 2.7]).

(2) If the restrictionr| k- is K’'-admissible, then (i) holds by [29, Proposition 1.6]
and (iv) holds by [26, Theorem 1.2].

(3) The implication (iv)=- (i) was raised in [32, Conjecture D], and some affirmative
results has been announced by Duflo and Vargas in a special setting where
is Harish-Chandra’s discrete series representation (cf. [12]). A related result is
given in [77].

(4) Even when the unitary representatinfy;y decomposes discretely (i.e., (iv) in
Problem 5.15 holds), it may happen thé&t® S (V|q/)>°. The simplest example
for this is as follows. Lef{n’, V') and (7", V") be infinite-dimensional unitary
representations of noncompact Lie grougsand G”, respectively. Se; =
G’ x G", with G’ realized as a subgroup 6fasG’ x {e}, and setr = 7' K «".
ThenV> G (V|g:)>™ becausgV"”)> G V.

6 Features of the restriction, Il : Homg (7|7, ) (Symmetry
breaking operators)

In the previous section, we discussed embeddings of irreduGibiaodulesr into
irreducibleG-modulesr (or the analogous problem in the categ@ty of Harish-
Chandra modules); see Case | in Section 4. In contrast, we consider the opposite
order in this section, namely, continuoG$-homomorphisms from irreduciblé™-
modulesr to irreducibleG’-modulesr, see Case Il in Section 4. We highlight the
case wherer and 7 are admissible smooth representations (Casselman—Wallach
globalization of modules in the catego®C). Then it turns out that the spaces
Homg (7|, 7°°) or Homg g+ (Tk|g/, Ti) are much larger in general than the
spacedlomg (7°°, 7 |¢r) or Homy g/ (Tk+, Tk |) cOnsidered in Section 5. Thus
the primary concern here will be with obtaining an upper estimate for the dimen-
sions of those spaces.

It would make reasonable sense to find branching laws (Stage B) or to construct
symmetry breaking operators (Stage C) if we krmriori the nature of the mul-
tiplicities in branching laws. The task of Stage A of the branching problem is to
establish a criterion and to give a classification of desirable settings. In this section,
we consider:

Problem 6.1.(1) (finite multiplicities) Find a criterion for when a pajtz, G') of
real reductive Lie groups satisfies

dim Homg (7°°|gr, 7°) < 0o for anyn™ € Ggmooth aNAT™° € G smooth -

Classify all such pair$G, G").
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(2) (uniformly bounded multiplicities) Find a criterion for when a p&i¥, G') of
real reductive Lie groups satisfies

sup sup dim Homg: (7%°|gr, 7°7) < oo.

. —
T EGsmooth T €G’ smooth

Classify all such pair$éG, G").

One may also think of variants of Problem 6.1. For instance, we may refine Problem
6.1 by considering it as a condition on the trip{&, G’, ) instead of a condition on
the pair(G, G'):

Problem 6.2.(1) Classify the triplesG, G’, 7°°) with G D G’ and7*> € ésmooth
such that

dim Home/ (7°°|gr, 7°°) < 0o foranyr™ € @\’Smooth. (6.1)
(2) Classify the triplesG, G’, ) such that

sup  dim Homg (7| g7, 7°°) < 0. (6.2)

T EG smooth

Problem 6.1 has been solved recently for all reductive symmetric @&irs”);
see Sections 6.3 and 6.4. On the other hand, Problem 6.2 has no complete solution
even when(G, G’) is a reductive symmetric pair. Here are some partial answers to
Problem 6.2 (1):

Example 6.3.(1) If (G, G’) satisfies (PP) (see the list in Theorem 6.14), then the
triple (G, G, 7) satisfies (6.1) wheneveare ¢ @smooth.

(2) If 7 is K'-admissible, then (6.1) is satisfied. A necessary and sufficient condition
for the K'-admissibility of 7|k, Fact 5.5, is easy to check in many cases. In
particular, a complete classification of the trip{és G’, 7) such thair| k- is K-
admissible was recently accomplished in [49] in the setting whgre= A, ()
and whergG, G’) is a reductive symmetric pair.

We give a conjectural statement concerning Problem 6.2 (2).

Conjecture 6.4.Let (G, G’) be a reductive symmetric pair. if is an irreducible
highest weight representation Gfor if 7 is a minimal representation @f, then the
uniform boundedness propei(.2) would hold for the triple(G, G’, 7°°).

Some evidence was given in [35, Theorems B and D] and in [45, 46].

6.1 Real spherical homogeneous spaces

A complex manifoldX ¢ with an action of a complex reductive grodfy is called
sphericalif a Borel subgroup ofz¢ has an open orbit iX¢. Spherical varieties have
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been studied extensively in the context of algebraic geometry and finite-dimensional
representation theory. In the real setting, in search of a broader framework for global
analysis on homogeneous spaces than the usual (e.g., reductive symmetric spaces),
we propose the following:

Definition 6.5 ([27]). Let G be a real reductive Lie group. We say a connected
smooth manifoldX with G-action isreal sphericalif a minimal parabolic subgroup
P of G has an open orbit itX, or equivalently#(P\X) < oc.

The equivalence in Definition 6.5 was proved in [5] by using Kimelfeld [23] and
Matsuki [54]; see [48, Remark] and references therein for related earlier results.

Here are some partial results on the classification of real spherical homogeneous
spaces.

Example 6.6.(1) If G is compact then all--homogeneous spaces are real spherical.

(2) Any semisimple symmetric spad&/H is real spherical. The (infinitesimal)
classification of semisimple symmetric spaces was accomplished by Berger [3].

(3) G/N is real spherical wherd’ is a maximal unipotent subgroup 6f.

(4) For G of real rank one, real spherical homogeneous spacésark classified
by Kimelfeld [23].

(5) Any real formG/ H of a spherical homogeneous spég&e/ H is real spherical
[48, Lemma 4.2]. The latter were classified byaldrer [53], Brion, [6], and Mik-
ityuk [56]. In particular, ifG is quasi-split, then the classification problem of real
spherical homogeneous spacesH reduces to that of the known classification
of spherical homogeneous spaces.

(6) The triple product spac&s x G x G)/ diag G is real spherical if and only if
G is locally isomorphic to the direct product of compact Lie groups and some
copies ofO(n, 1) (Kobayashi [27]).

(7) Real spherical homogeneous spaces of the f@ehn G’)/ diag G’ for sym-
metric pairs(G, G’) were recently classified. We review this in Theorem 6.14
below.

The second and third examples form the basic geometric settings for analysis on
reductive symmetric spaces and Whittaker models. The last two examples play a
role in Stage A of the branching problem, as we see in the next subsection.

The significance of this geometric property is that the gréugpntrols the space
of functions onX in the sense that the finite-multiplicity property holds for the
regular representation 6f on C>°(X):

Fact 6.7 ([48, Theorems A and C]).Supposé&- is a real reductive linear Lie group,
and H is an algebraic reductive subgroup.

(1) The homogeneous spaGe H is real spherical if and only if
Homg (7™, C*°(G/H)) is finite-dimensional for alr™ € ésmwh.

(2) The complexificatiolc / Hc is spherical if and only if
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sup  dim¢ Homg (7, C*°(G/H)) < .

T° €Gsmooth

See [48] for upper and lower estimates of the dimension, and also for the non-
reductive case. The proof uses the theory of regular singularities of a system of
partial differential equations by taking an appropriate compactification with normal
crossing boundaries.

6.2 A geometric estimate of multiplicities : (PP) and (BB)

Suppose thaf’ is an algebraic reductive subgroup®f For Stage A in the branch-
ing problem for the restrictiod’ | G’, we apply the general theory of Section 6.1
to the homogeneous spa@@ x G’)/ diag G’

Let P be a minimal parabolic subgroup 6f, and P’ a minimal parabolic sub-
group ofG".

Definition-Lemma 6.8 ([48]). We say the pai(G, G’) satisfies the property (PP) if
one of the following five equivalent conditions is satisfied:

(PP1) (G x G")/ diag G’ is real spherical as 4G x G’)-space.

(PP2) G/ P' is real spherical as & '-space.

(PP3) G/P is real spherical as &'-space.

(PP4) G has an open orbit iz /P x G/ P’ via the diagonal action.

(PP5) #(P'\G/P) < oc.

Since the above five equivalent conditions are determined by the Lie algehnals
g’, we also say that the palg, g’) of reductive Lie algebras satisfies (PP), whgre
andg’ are the Lie algebras of the Lie grou@gsandG’, respectively.

Remark 6.9.If the pair (g, g’) satisfies (PP), in particular, (PP5), then there are
only finitely many possibilities foSupp 7" for symmetry breaking operatof :
C*(G/P,V) — C>=(G'/P',W) (see Definition 7.9 below). This observation has
become a guiding principle to formalise a strategy in classifying all symmetry break-
ing operators used in [52], as we shall discuss in Section 7.2

Next we consider another property, to be denoted (BB), which is stronger than
(PP). LetG¢ be a complex Lie group with Lie algebgge = g ®z C, andG;. a
subgroup ofG¢ with complexified Lie algebra;. = ¢’ ® C. We do not assume
eitherG C G¢ or G’ C G¢. Let B¢ and B be Borel subgroups afic and Gy,
respectively.

Definition-Lemma 6.10.We say the pai{G, G’) (or the pair (g, ¢g')) satisfies the
property(BB) if one of the following five equivalent conditions is satisfied:
(BB1) (Gc¢ x Gt)/ diag G is spherical as dG¢ x G)-space.

(BB2) G¢ /B is spherical as a7 c-space.
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(BB3) G¢/Bc is spherical as a7--space.
(BB4) G¢ has an open orbit inic /Be x G¢/Bg via the diagonal action.
(BBS5) #(BL\Gc/Bc) < oo

The above five equivalent conditions (BB1) — (BB5) are determined only by the
complexified Lie algebragc andgp..

Remark 6.11.(1) (BB) implies (PP).
(2) If both G andG’ are quasi-split, then (BB} (PP).

In fact, the first statement follows immediately from [48, Lemmas 4.2 and 5.3],
and the second statement is clear.

6.3 Criteria for finiteness/boundedness of multiplicities

In this and the next subsections, we give an answer to Problem 6.1. The follow-
ing criteria are direct consequences of Fact 6.7 and a careful consideration of the
topology of representation spaces, and are proved in [48].

Theorem 6.12.The following three conditions on a pair of real reductive algebraic
groupsG D G’ are equivalent:

() (Symmetry breaking)Homg: (7°°|g+, 7°°) is finite-dimensional for any pair
(w*°, 7°°) of irreducible smooth representations@fandG’.

(ii) (Invariant bilinear form) There exist at most finitely many linearly independent
G’-invariant bilinear forms onr°°|g/<§w°°, foranyn®> € Ggmootn &aNAT®° €

G/smooth-
(iii) (Geometry) The pair(G, G’) satisfies the condition (PP) (Definition-Lemma
6.8).

Theorem 6.13.The following three conditions on a pair of real reductive algebraic
groupsG D G’ are equivalent:

(i) (Symmetry breaking)There exists a constant such that
dimq; HomG/ (7TOO|G/ y TOO> S C

f0r anyﬂ-oo S ésmooth andToo S Z:\Ismooth-
(i) (Invariant bilinear form) There exists a constant such that

dim¢ Home (7TOO|G/®TOO,(C) <C
for anyﬂ.oo € CVYsmooth andToo S G/smooth-

(iii) (Geometry)The pair (G, G’) satisfies the condition (BB) (Definition-Lemma
6.10).
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6.4 Classification theory of finite-multiplicity branching laws

This section gives a complete list of the reductive symmetric f&¥s’) such

that dim Homeg/ (7|, 7°°) is finite or bounded for allr> ¢ @smoom and

T € @Smooth. Owing to the criteria in Theorems 6.12 and 6.13, the classi-
fication is reduced to that of (real) spherical homogeneous spaces of the form
(G x G")/ diag G’, which was accomplished in [44] by using an idea of “lineariza-
tion” :

Theorem 6.14.Suppos€G, G') is a reductive symmetric pair. Then the following
two conditions are equivalent:

() Homg/ (7%°|qr, 7°°) is finite-dimensional for any paifr>, 7°°) of admissible
smooth representations 6f andG’.

(i) The pair(g, g’) of their Lie algebras is isomorph{zp to outer automorphisms
to a direct sum of the following pairs:

A) Trivial case;g = g¢'.
B) Abelian caseg = R, g’ = {0}.
C) Compact casgqj is the Lie algebra of a compact simple Lie group.
D) Riemannian symmetric paiy’ is the Lie algebra of a maximal compact
subgroupK of a noncompact simple Lie group.
E) Split rank one case{nkg G = 1):
E1) (o(p + ¢,1),0(p) + 0(q,1)) (p+q>2),
E2) (su(p+ ¢, 1),s(u(p) +u(g.1))) (p+q=1),
E3) (sp(p+4¢,1).8p(p) +5p(¢;1)) (p+g=>1),
E4) (fa(-20),0(8,1)).
F) Strong Gelfand pairs and their real forms:
F1) (sl(n +1,C), gl(n,C)) (n>2),
F2) (o(n+1,C),0(n,C)) (n>2),
F3) (sl(n+ 1,R), gl(n,R)) (n>1),
F4) (su(p+1,9),u(p,q)) (+qg=>1),
F5) (o(p+1,9),0(p,q))  (p+q>2).
G) Group casefg, g') = (g1 + g1, diag g1) where
G1) g1 is the Lie algebra of a compact simple Lie group,
G2) (o(n,1) + o(n,1),diago(n,1)) (n > 2).
H) Other cases:

H1) (o(2n,2),u(n, 1)) (n>1).
H2) (su*(2n + 2),5u(2) + su*(2n) + R) (n>1).
H3) (0*(2n + 2),0(2) + 0*(2n)) (n>1).

(
(
H4) (sp(p + 1,9),5p(p, q) + sp(1)).
H5) (26(,26),50(9, 1) + R).

Among the pairg(g, g’) in the list (A)—(H) in Theorem 6.14 describing finite
multiplicities, those pairs having uniform bounded multiplicities are classified as
follows.
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Theorem 6.15.Suppos€G, G') is a reductive symmetric pair. Then the following
two conditions are equivalent:

(i) There exists a constant such that
dim¢ Homg: (7%°|gr, 7°) < C

for anyﬂ'oo S ésmooth andr> € Z;’\/smooth-
(i) The pair of their Lie algebra&g, g’) is isomorphiqup to outer automorphisms
to a direct sum of the pairs i(A), (B) and (F1)— (F5).

Proof. Theorem 6.14 follows directly from Theorem 6.12 and [44, Theorem 1.3].
Theorem 6.15 follows directly from Theorem 6.13 and [44, Proposition 1.6]0

Example 6.16.In connection with branching problems, some of the pairs appeared
earlier in the literature. For instance,

(F1), (F2) - - - finite-dimensional representations (strong Gelfand pairs) [53];
(F2), (F5) - - - tempered unitary representations (Gross—Prasad conjecture) [14];
(G2) - - - tensor product, trilinear forms [8, 27];

(F1)—(F5) - - - multiplicity-free restrictions [2, 68].

7 Construction of symmetry breaking operators

Stage C in the branching problem asks for an explicit construction of intertwining
operators. This problem depends on the geometric models of representations of a
groupG and its subgrougg’. In this section we discuss symmetry breaking opera-
tors in two models, i.e., in the setting of real flag manifolds (Sections 7.1-7.3) and
in the holomorphic setting (Sections 7.4—7.5).

7.1 Differential operators on different base spaces

We extend the usual notion of differential operators between two vector bundles on
the samebase space to those differentbase spaceX andY with a morphism
p:Y — X as follows.

Definition 7.1.Let ¥V — X and W — Y be two vector bundles, ang :
Y — X a smooth map between the base manifolds. A continuous linear map
T:C®(X,V) = C=(Y,W) is said to be aifferential operatorif

p(Supp(T'f)) C Suppf forall f € C*(X,V), (7.1)

whereSupp stands for the support of a section.
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The condition (7.1) shows th&t is a local operator in the sense that for any open
subseU of X, the restriction7'f)|,-1 (v is determined by the restrictiof]y .

Example 7.2.(1) If X = Y andp is the identity map, then the condition (7.1) is
equivalent to the condition th&t is a differential operator in the usual sense,
due to Peetre’s theorem [61].

(2) If p: Y — X is animmersion, then any operafBrsatisfying (7.1) is locally of
the form

glol+18]

(e, B)ENTFT z1="=2,=0
where{(y1, ..., Ym,21,- .., 2,)} are local coordinates of such thal” is given
locally by the equatiore; = --- = z, = 0, andg.g(y) are matrix-valued

functions onY’.

7.2 Distribution kernels for symmetry breaking operators

In this section, we discuss symmetry breaking operators in a geometric setting,
where representations are realized in the space of smooth sections for homogeneous
vector bundles.

Let G be a Lie group, and — X a homogeneous vector bundle, namely, a
G-equivariant vector bundle such that theaction on the base manifold is tran-
sitive. Likewise, letW — Y be a homogeneous vector bundle for a subgr@up
The main assumption of our setting is that there@-@®quivariantmap : ¥ — X.

For simplicity, we also assume thais injective, and do not assume any relationship
betweerp*V andW. Then we have continuous representation§ @i the Féchet
spaceC>° (X, V) and of the subgrou@’ onC*° (Y, W), but it is not obvious if there
exists a nonzero continuods-homomorphism (symmetry breaking operator)

T:C®(X,V) = C®(Y,W).
In this setting, a basic problem is:

Problem 7.3.(1) (Stage A) Find an upper and lower estimate of the dimension of
the space
Home (C*(X, V), C*(Y,W)) of symmetry breaking operators.

(2) (Stage A) When iglomg/ (C* (X, V), C>=(Y, W)) finite-dimensional for any
G-equivariant vector bundl® — X and anyG’-equivariant vector bundle
W —Y?

(3) (Stage B) Given equivariant vector bundiés— X andWW — Y, determine
the dimension oHomg (C® (X, V), C(Y, W)).

(4) (Stage C) Construct explicit elementsHom (C*° (X, V), C=(Y,W)).
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Here are some special cases:

Example 7.4.Suppose= = G’, X is a (full) real flag manifold=/P whereP is a
minimal parabolic subgroup @¥, andY is algebraic.

(1) In this setting, Problem 7.3 (1) and (2) were solved in [48]. In particular, a nec-
essary and sufficient condition for Problem 7.3 (2) is #ias real spherical, by
Fact 6.7 (1) (or directly from the original proof of [48, Theorem A]).

(2) Not much is known about precise results for Problem 7.3 (3), even when
G = G'. On the other hand, Knapp-Stein intertwining operators or Poisson
transforms are examples of explicit intertwining operators whes a real flag
manifold or a symmetric space, respectively, giving a partial solution to Problem
7.3 (4).

Example 7.5.Let G be the conformal group of the standard sph¥re- S™, let G’

be the subgroup that leaves the totally geodesic submariifold S*~! invariant,

and lety — X, W — Y be G-, G’-equivariant line bundles, respectively. Then

VY andW are parametrized by complex numbarandv, respectively, up to signa-
tures. In this setting Problem 7.3 (3) and (4) were solved in [52]. This is essentially
the geometric setup for the classificationtfmo ,, 1) (1(A)>°, J(v)>°) which was
discussed in Section 2.2.

We return to the general setting. LAt be an algebraic subgroup &f, (A, V)
a finite-dimensional representation Bf, andV := G xg V — X := G/H the
associated7-homogeneous bundle. Likewise, let, W) be a finite-dimensional
representation off’ := HNG',andW := G’ xyg W = Y := G'/H' the asso-
ciatedG’-equivariant bundle. Denote I}, the one-dimensional representation of
H defined byh — | det(Ad(h) : g/b — g/h)|~L. Then the volume density bundle
2, Of G/H is given as a homogeneous bundle< ; Cs,,. Let (XY, V) be the
contragredient representation of the finite-dimensional representatj®f of H.
Then the dualizing bundig* := V¥ @ ¢, is given byV* ~ G x 7 (VY @ Cy,)
as a homogeneous vector bundle.

By the Schwartz kernel theorem, any continuous operator C>°(X,V) —
C>(Y, W) is given by a distribution kernélr € D'(X x Y, V* X W). We write

m:GxG =G, (9791) — (g/)_lg’

for the multiplication map. If" intertwinesG’-actions, therkr is G’-invariant un-
der the diagonal action, and therefdre is of the formm* K1 for some Ky €
D'(X,V*) @ W. We have shown in [52, Proposition 3.1] the following proposition:

Proposition 7.6.SupposeX is compact. Then the corresponderite— K in-
duces a bijection:

Home (C°(X,V),C®(Y,W)) 5 (D/(X,V*) @ W)AUH),
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Using Proposition 7.6, we can give a solution to Problem 7.3 (2) wkiés a real
flag manifold:

Theorem 7.7.SupposeP is a minimal parabolic subgroup @, X = G/P, and
Y = G'/(G' N P). ThenHomg (C*(X, V), C>*(Y,W)) is finite-dimensional for
any G-equivariant vector bundl®’ — X and anyG’-equivariant vector bundle
W — Y ifand only if G/(G’' N P) is real spherical.

Proof. We setY := G/(G' N P) andW = @ X(a'npy W. Then Proposition 7.6
implies that there is a canonical bijection:

Home (C™®(X, V), C= (Y, W)) = Home: (C®(X, V), C=(Y,W)).

We apply [48, Theorem A] to the left-hand side, and get the desired conclusion for
the right-hand side. O

The smallerX is, the more likely it will be that there exisi$ satisfying the finite-

ness condition posed in Problem 7.3 (2). Thus one might be interested in replacing
thefull real flag manifold by gartial real flag manifold in Theorem 7.7. By apply-

ing the same argument as above to a generalization of [48] to a partial flag manifold
in [41, Corollary 6.8], we get

Proposition 7.8.SupposeP is a (not necessarily minimal) parabolic subgroup of
G and X = G/ P. Then the finiteness condition for symmetry breaking operators in
Problem 7.3 (2) holds only if the subgrogff N P has an open orbit iz / P.

Back to the general setting, we endow the double coset sfacg/H with the
quotient topology via the canonical quotigiit— H’'\G/H. Owing to Proposition
7.6, we associate a closed subsetiéf G/ H to each symmetry breaking operator:

Definition 7.9. Given a continuous symmetry breaking operdfor C>°(X,V) —
C>=(Y, W), we define a closed subs®ipp T in the double coset spad&'\G/H
as the support ok € D' (X, V*) @ W.

Example 7.10.1f H = P, a minimal parabolic subgroup @, and if H' has an
open orbit inG/P, then#(H'\G/P) < oo. In particular, there are only finitely
many possibilities foBupp 7.

Definition 7.11.Let T : C*(X,V) — C*(Y,W) be a continuous symmetry
breaking operator.

1) We sayT is aregular symmetry breaking operator$fupp 7' contains an interior
point of H'\G/H. We sayT is singularif T is not regular.

2) We sayT! is adifferentialsymmetry breaking operator$fupp 7' is a singleton in
H'\G/H.

Remark 7.12.The terminology “differential symmetry breaking operator” in Defi-
nition 7.11 makes reasonable sense. In fAds a differential operator in the sense
of Definition 7.1 if and only ifSupp T is a singleton inH'\G/H (see [51, Part I,
Lemma 2.3]).
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The strategy of [52] for the classification all symmetry breaking operators for
(G, G") satisfying (PP) is to use the stratificationféf-orbits inG/ H by the closure
relation. To be more precise, the strategy is:

e to obtain all differential symmetry breaking operators, which corresponds to the
singleton inH'\G/H, or equivalently, to solve certain branching problems for
generalized Verma modules (see Section 7.3 below) via the duality (7.3),

e to construct and classifyT’ € H(\,v) : SuppT C S} modulo{T € H(\,v) :
SuppT C 85} for S € G'\G/H inductively.

The “F-method” [38, 40, 47, 51] gives a conceptual and a practical tool to construct
differential symmetry breaking operators in Step 1. The second step may involve
analytic questions such as the possibility of an extension df amvariant distri-
bution on anH’-invariant subset of7/H satisfying a differential equation to an
H'-invariant distribution solution on the whole 6f/ H (e.g., [52, Chapter 11, Sect.

4]), and an analytic continuation and residue calculus with respect to some natural
parameter (e.g., [52, Chapters 8 and 12]).

We expect that the methods developed in [52] for the classification of symmetry
breaking operators for the p&i&Z, G') = (O(n + 1,1),O(n, 1)) would work for
some other pairéGG, G’) such as those satisfying (PP) (see Theorem 6.14 for the
list), or more strongly those satisfying (BB) (see Theorem 6.15 for the list).

7.3 Finiteness criterion for differential symmetry breaking
operators

As we have seen in Theorem 7.7 and Proposition 7.8, it is a considerably strong
restriction on the>’-manifold Y for the spacdlomg (C* (X, V), C=(Y,W)) of
symmetry breaking operators to be finite-dimensional, which would be a substantial
condition for further study in Stages B and C of the branching problem. On the other
hand, if we consider onlgifferentialsymmetry breaking operators, then it turns out
that there are much broader settings for which the finite-multiplicity property (or
even the multiplicity-free property) holds. The aim of this subsection is to formulate
this property.

In order to be precise, we wrildomg, (C* (X, V), C>° (Y, W)) for the space of
continuous symmetry breaking operators, and . (C> (X, V), C>(Y,W)) for
that of differential symmetry breaking operators. Clearly we have

Diff o/ (C™(X, V), C=(Y,W)) C Home (C®(X,V),C®(Y,W)).  (7.2)

We now consider the problem analogous to Problem 7.3 by replacing the right-
hand side of (7.2) with the left-hand side.

For simplicity, we consider the case whéte— X is aG-equivariant line bundle
over a real flag manifolds/ P, and writeL, — X for the line bundle associated



A program for branching problems in the representation theory of real reductive groups 37

to a one-dimensional representatibof P. We use the same lettarto denote the
corresponding infinitesimal representation of the Lie alggbend writeA > 0 if
(Alj,a) > 0 for all @ € A(n,j) wherej is a Cartan subalgebra contained in the
Levi part! of the parabolic subalgebpa= [ +n™.

We say a parabolic subalgehraf g is g’-compatibleif p is defined as the sum
of eigenspaces with nonnegative eigenvalues for some hyperbolic elemght in
Thenp’ := p N g’ is a parabolic subalgebra gf and we have compatible Levi
decompositiong = [+ nt andp’ = (INg') + (n™ N g’). We are ready to state an
answer to a question analogous to Problem 7.3 (1) and (2jfferentialsymmetry
breaking operators (cf. [40]).

Theorem 7.13(local operators).LetG’ be a reductive subgroup of a real reductive
linear Lie groupG, X = G/P andY = G’/P’ whereP is a parabolic subgroup
of G and P’ = P N G’ such that the parabolic subalgebm= [ + n* of g is
g’-compatible.

(1) (finite multiplicity) For any finite-dimensional representatioisand W of the
parabolic subgroup$” and P/, respectively, we have

dime Diff g (C*(X, V), C* (Y, W)) < oo,

whereV = G xp V andW = G’ xp, W are equivariant vector bundles ovef
andY, respectively.

(2) (uniformly bounded multiplicity)If (g,g’) is a symmetric pair anch™ is
abelian, then for any finite-dimensional representafidof P,

Cy := supdim¢ Diff ¢/ (C* (X, V), C*(Y,W)) < cc.
w

HereW runs over all finite-dimensional irreducible representationg’6f Further-
more,Cy = 1if V is a one-dimensional representatiarof P with A > 0.

Proof. The classical duality between Verma modules and principal series represen-
tations in the cas&' = G’ (e.g., [17]) can be extended to the context of the restric-
tion of reductive groups: | G’, and the following bijection holds (see [51, Part |,
Corollary 2.9]):

Homy pry(U(g") @uipry WY, U(g) @ugy V)
~ Difi: (C(G/P,V),C¥(G' [P/, W)). (7.3)

Here(\Y, V") denotes the contragredient representatiomo’). The right-hand

side of (7.3) concerns Case Il (symmetry breaking) in Section 4, whereas the left-
hand side of (7.3) concerns Case | (embedding) in the BGG catéyoiyn analo-

gous theory of discretely decomposable restriction in the Harish-Chandra category
HC (see Sections 4 and 5) can be developed more easily and explicitly in the BGG
category®, which was done in [37]. In particular, thg-compatibility is a suffi-

cient condition for the “discrete decomposability” of generalized Verma modules
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U(g) ®u(py F when restricted to the reductive subalgebfaThus the proof of
Theorem 7.13 is reduced to the next proposition.

Proposition 7.14.Let g’ be a reductive subalgebra gf Suppose that a parabolic
subalgebrg = [+ n™ is g’-compatible.
(1) For any finite-dimensiongl-moduleF’ andp’-moduleF”’,

dim Homg/(U(g') QU (pr) F’, Ul(g) QU (p) F) < 0.
(2) If (g,g') is a symmetric pair and™ is abelian, then

b;l/p dim Homg (U(g") @u(py F',U(8) @u(p) Ca) =1
for any one-dimensional representatiarof p with A\ < 0. Here the supremum is
taken over all finite-dimensional simplémodulesr”.

Proof. (1) The proofis parallel to [37, Theorem 3.10] which treated the case where
F andF’ are simple modules aP and P/, respectively.
(2) See [37, Theorem 5.1]. ad

Hence Theorem 7.13 is proved. O

Remark 7.15.If we drop the assumption > 0 in Theorem 7.13 (2) oA < 0

in Proposition 7.14 (2), then the multiplicity-free statement may fail. In fact, the
computation in Section 2.1 gives a counterexample wiigrg’) = (sl(2,C) +
sl(2,C), diag(sl(2,C))); see Remark 2.6 (3).

Remark 7.16.(1) (Stage B) In the setting of Proposition 7.14 (2), Stage B in the
branching problem (finding explicit branching laws) have been studied in [35,
37] in the BGG category generalizing earlier results by Kostant and Schmid
[65].

(2) (Stage C) In the setting of Theorem 7.13 (2), one may wish to find an explicit
formula for the uniqudlifferential symmetry breaking operators. So far, this
has been done only in some special cases; see [9, 11] for the Rankin—Cohen
bidifferential operator, Juhl [21] in connection with conformal geometry, and
[47, 51] using the Fourier transform (“F-method” in [38]).

We end this subsection by applying Theorem 7.13 and Theorem 6.12 to the re-
ductive symmetric paitG, G') = (GL(n1 +n2, R), GL(n1,R) x GL(n2,R)), and
observe a sharp contrast between differential and continuous symmetry breaking
operators, i.e., the left-hand and right-hand sides of (7.2), respectively.

Example 7.17.Let n = ny + ne with ny, ne > 2. Let P, P/ be minimal parabolic
subgroups of

(G,G") = (GL(n,R), GL(n1,R) x GL(ng,R)),

respectively, and sef = G/P andY = G'/P’. Then:
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(1) For all finite-dimensional representatiovisof P andW of P,
dime Diff (Ind$(V)>, Ind$, (W)>®) < oo.

Furthermore ifV/ is a one-dimensional representati@Ry with A > 0 in the
notation of Theorem 7.13, then the above dimension is 0 or 1.
(2) For some finite-dimensional representatiénhsf P andW of P/,

dime Homey (Ind$ (V) Ind&, (W)>) = oo.

7.4 Localness theorem in the holomorphic setting

In the last example (Example 7.17) and also Theorem 2.9 in Section 2.2, we have
seen in the real setting that differential symmetry breaking operators are “very spe-
cial” among continuous symmetry breaking operators. In this subsection we ex-
plain the remarkable phenomenon in the holomorphic framework that any continu-
ous symmetry breaking operator between two representations under certain special
geometric settings is given by a differential operator; see Observation 2.5 (1) for the
SL(2,R) case. A general case is formulated in Theorem 7.18 below. The key idea
of the proof is to use the theory of discretely decomposable restrictions [26, 28, 29],
briefly explained in Section 5. A conjectural statement is given in the next subsec-
tion.

Let G D G’ be real reductive linear Lie groupk, O K’ their maximal compact
subgroups, an@'c D G connected complex reductive Lie groups contairthg
G’ as real forms, respectively. The main assumption of this subsection X that
G/K andY := G’/K’ are Hermitian symmetric spaces. To be more precis€)det
and Q¢ be parabolic subgroups 6fc and G- with Levi subgroupskc and K¢,
respectively, such that the following commutative diagram consists of holomorphic
maps:

Y=G/K' cX= G/K
Borel embedding N N Borel embedding (7.4)
Ge/Qc C Ge/Qc.

Theorem 7.18([51, Part 1]). LetV — X, W — Y be G-equivariant, G’-
equivariant holomorphic vector bundles, respectively.

(1) (localness theorenAny G’-homomorphism fror® (X, V) to O(Y, W) is given
by a holomorphic differential operator, in the sense of Definition 7.1, with re-
spect to a holomorphic embeddifig— X.

We extend’ and W to holomorphic vector bundles ovétc /Qc and G-/ Q¢, re-
spectively.
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(2) (extension theoreminy differential symmetry breaking operator in (1) defined
on Hermitian symmetric spaces extends t@@equivariant holomorphic dif-
ferential operatorO(Gc/Qc, V) — O(G/Qr, W) with respect to a holomor-
phic map between the flag varieti€$./ Q. — Gc/Qc.

Remark 7.19.The representation on the Féchet spac®(G/K,V) is a maxi-

mal globalization of the underlyingy, K)-modulerx in the sense of Schmid [66],
and contains some other globalizations having the same undef(ly;ifg)-module

7k (€.9., the Casselman—Wallach globalizatiéf). One may ask whether an anal-
ogous statement holds if we replate, O(G/K,V)) and (1, O(G'/K',W)) by
other globalizations such as° andr°°. This question was raised by D. Vogan dur-
ing the conference at MIT in May 2014. We gave an affirmative answer in [51, Part
1] by proving that the natural inclusions

Homg/(ﬂ',’r) C HOHIGW(’]TOO,TOC) C Homg/_’K/(’/TK7TK/)

are actually bijective in our setting.

7.5 Localness conjecture for symmetry breaking operators on
cohomologies

It might be natural to ask a generalization of Theorem 7.18 to some other holo-
morphic settings, from holomorphic sections to Dolbeault cohomologies, and from
highest weight modules td,(\) modules.

Problem 7.20.To what extent does the localness and extension theorem hold for
symmetry breaking operators between Dolbeault cohomologies?

In order to formulate the problem more precisely, we introduce the following as-
sumption on the paifG, G') of real reductive groups:

K has a normal subgroup of positive dimension which is containéd in (7.5)

Here, K and K’ = K N G’ are maximal compact subgroups @fand G’, re-
spectively, as usual. We writ& (?) for the normal subgroup in (7.5552) for the
corresponding Lie algebra, atP) for its complexification. Then the assumption
(7.5) means that we have direct sum decompositions

E — E(l) @ 9(2)) E/ —_ E/(l) @ E(Q)

for some idealg™® of £ and¥’!) of ¥, respectively. The point here is the®) is
common to bottt and¥’.
We takeH € \/—1982), define &-stable parabolic subalgebragby

q=q(H)=1+u
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as the sum of eigenspacesaef( H) with nonnegative eigenvalues, and det=
GNQc whereQc = Ng.(q) is the parabolic subgroup 6fc. ThenL is a reductive
subgroup ofG with complexified Lie algebr& and we have an open embedding
X := G/L C G¢/Qc through whichG/L carries a complex structure. The same
elementH defines complex manifolds” := G'/L’ C G{/Q¢ with the obvious
notation.

In summary, we have the following geometry that generalizes (7.4):

Y=G/L cX= G/L
open N M open
Ge/Qc C Ge/Qc.

It follows from the assumption (7.5) that the compact manifGldZ N K coincides
with K'/L' N K'. Let S denote the complex dimension of the complex compact
manifoldsK/LNK ~ K'/L' N K'.

Example 7.21.(1) (Hermitian symmetric spaces) Suppose tha) is abelian.
ThenY C X are Hermitian symmetric spaces,= 0, and we obtain the geo-
metric setting of Theorem 7.18.

() (G,G") = (U(p,¢; F), U(p'; F) xU(p", ¢; F)) withp = p' +p” forF =R, C, or
H, andK ?) = U(g; F). Then neitheG /L nor G’ /L’ is a Hermitian symmetric
space but the assumption (7.5) is satisfied. Thus the conjecture below applies.

For a finite-dimensional holomorphic representafionf ¢, we define a holomor-
phic vector bundle€Zc x . V over the generalized flag varieGc /Qc, and write
V := G x V for the G-equivariant holomorphic vector bundle ovgr= G/L as
the restriction(Gc xq. V)|e/z- Then the Dolbeault cohomology? (X, V) natu-
rally carries a Rechet topology by the closed range theorem ofdtvaperator, and
gives the maximal globalization of the underlyitg K')-modules, which are iso-
morphic to Zuckerman’s derived functor modufe$(V @ C_,) [69, 75]. Similarly
for G, given a finite-dimensional holomorphic representairof )¢, we form a
G'-equivariant holomorphic vector bund&’ := G’ x . W overY = G'/L" and
define a continuous representatiorcfon the Dolbeault cohomologie#} (Y, W).
In this setting we have the discrete decomposability of the restriction by the general
criterion (see Fact 5.5).

Proposition 7.22.The underlyingg, K)-moduleng(X, V) are K'-admissible.
In particular, they are discretely decomposable(gs K’)-modules.

Explicit branching laws in some special cases (in particular, whenl” = 1)
of Example 7.21 (1) and (2) may be found in [35] and [15, 25], respectively.

We are now ready to formulate a possible extension of the localness and exten-
sion theorem for holomorphic functions (Theorem 7.18) to Dolbeault cohomologies
that gives geometric realizations of Zuckerman'’s derived functor modules.

Conjecture 7.23.Suppose we are in the above setting, andleind W be finite-
dimensional representations Qf: and Q¢, respectively.
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(1) (localness theoremAny continuoug:’-homomorphism
HE(X,V) — HS(Y,WV)

is given by a holomorphic differential operator with respect to a holomorphic
embedding” — X.

(2) (extension theoremAny such operator in (1) defined on the open subsets
Y C X of G./Qr C Gc/Qc, respectively, extends toG--equivariant holo-
morhic differential operator with respect to a holomorphic map between the flag
varietiesG/Q¢ — Ge/Qc.

The key ingredient of the proof of Theorem 7.18 for Hermitian symmetric spaces
was the discrete decomposability of the restriction of the representation (Fact 2.2
(2)). Proposition 7.22 is a part of the evidence for Conjecture 7.23 in the general
setting.
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