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Abstract

We raise a question if the Riesz transform on T
n or Zn is characterized

by the “maximal semigroup symmetry” that they satisfy? We prove that
this is the case if and only if the dimension n = 1, 2 or a multiple of
four. This generalizes a theorem of Edwards and Gaudry for the Hilbert
transform (i.e. the n = 1 case) on T and Z, and extends a theorem of
Stein for the Riesz transform on R

n. Unlike the R
n case, we show that

there exist infinitely many, linearly independent multiplier operators that
enjoy the same maximal semigroup symmetry as the Riesz transforms on
T

n and Z
n if n ≥ 3 and is not a multiple of four.
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1 Introduction

Classical multipliers such as the Hilbert transform on R or the Riesz transform
onRn are translation invariant operators with additional “symmetries” that can
be formulated in terms of group representations (see (1.1.1) below). E.M. Stein
proved that a covariance property under the conformal group characterizes the
Riesz transform on Rn up to scalar multiplication, see Fact 1.3. Extending his
idea, we provided in [KN1] a general framework to characterize specific operators
on Rn by a covariance property with respect to arbitrary (finite-dimensional)
representation of a subgroup of the affine transformation group. The object
of this paper is its discrete analog, concerning the characterization of bounded
translation invariant operators on Zn and Tn by means of algebraic conditions
(semigroup symmetry).

To be more explicit, we begin with a brief review on translation invariant
operators and symmetry for the Rn case. A bounded operator T : L2(Rn) →
L2(Rn) is said to be translation invariant if T ◦ τs = τs ◦ T for any s ∈ Rn,
where τs is the translation defined by (τsf)(x) := f(x− s) for f ∈ L2(Rn).

A further invariance is defined not for a single operator, but for a family
of operators. Suppose T = {T1, . . . , TN} is a family of linearly independent,
bounded translation invariant operators on L2(Rn). Then the “symmetry” of
T may be formulated as follows:
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Condition 1.1. Tj◦lg, (1 ≤ j ≤ N) is a linear combination of lg◦T1, . . . , lg◦TN

as long as g belongs to some subgroup of GL(n,R).

Here, (lgf)(x) := f(g−1x) for g ∈ GL(n,R) and f ∈ L2(Rn).
In a coordinate-free fashion, we regard T as a bounded translation invariant

operator
T : L2(Rn) → V ⊗ L2(Rn),

where V is an N -dimensional complex vector space. Suppose that H is a sub-
group of GL(n,R) and that π : H → GLC(V ) is a group homomorphism. Then
Condition 1.1 may be reformulated by means of the pair (H,π), as the following
covariance with respect to the group H:

(π(g)⊗ lg) ◦ T = T ◦ lg for any g ∈ H. (1.1.1)

We denote by BH(L2(Rn), V ⊗L2(Rn)) the vector space of bounded translation
invariant operators T satisfying (1.1.1).

The conformal group CO(n) of the Euclidean space Rn is defined by

CO(n) := {g ∈ GL(n,R) : tgg ∈ R× · In}.
It is isomorphic to the direct product group R+ ×O(n), and the projection to
the second factor is given by a group homomorphism

π : CO(n) → O(n), g 7→ | det g|−1/ng (1.1.2)

We recall the definition of the (classical) Riesz transform on Rn:

Definition 1.2. For 1 ≤ p < ∞, we define translation invariant operators on
Lp(Rn) by

Rj(f)(x) = lim
ǫ→0

cn

∫

|y|>ǫ

yj
|y|n+1

f(x− y)dy, for j = 1, . . . , n,

with cn = Γ(n + 1/2)/π(n+1)/2. Then the Riesz transform on Rn is defined to
be R = (R1, . . . , Rn).

Now, Stein’s characterization of Riesz transforms ([S, Section 3.1]) can be
formulated as follows:

Fact 1.3. Let H := CO(n) acting on V := Rn, and π : H → GL(n,C) as
in (1.1.2). Then the space BH(L2(Rn), V ⊗ L2(Rn)) is one-dimensional, and
spanned by the Riesz transform R on Rn.

We write (Rn)∧ (≃ Rn) for the dual space of Rn. In [KN1, Corollary 2.1.2],
Fact 1.3 is extended to the following:

Fact 1.4. Let H be a subgroup of GL(n,R) such that its contragredient action
has a dense orbit O in (Rn)∧. We write H1 for the stabilizer of H at a point p
in O. Then for any representation π : H → GLC(V ), we have

dimBH(L2(Rn), V ⊗ L2(Rn)) ≤ dimV H1 ,

where
V H1 := {v ∈ V : π(h)v = v for any h ∈ H1}.
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We note that dimV H1 is independent of the choice of p ∈ O.
In particular, a family of bounded operators is determined uniquely up to a

scalar multiple if dimV H1 ≤ 1. This assumption is fulfilled, for example, if

1) dimV = 1 (e.g. the translation invariant operator T is given by the
convolution with a kernel which is the Fourier transform of a bounded
relative invariant of a prehomogeneous vector space in the sense of M.
Sato, see [Sa])

or

2) (H,H1) is a reductive symmetric pair and V is an arbitrary (finite-dimensional)
irreducible representation of H.

In Stein’s example (see Fact 1.3), (H,H1) = (CO(n),O(n − 1)) is a reductive
symmetric pair.

The Riesz transform on Tn and Zn is defined as translation invariant opera-
tor L2(Fn) → Cn⊗L2(Fn), (F = T,Z) in Definitions 2.5 and 4.10 respectively,
in an analogous fashion to the Rn case. We shall observe that for the Riesz
transform on T and Z, (i.e. the Hilbert transform on T and Z) the algebraic
structure to formulate the invariance condition (1.1.1) fits better with semi-
groups rather than groups.

In [EG], Edwards and Gaudry proved a discrete analog of Fact 1.3 for n = 1,
giving a characterization of the Hilbert transforms on T and Z by “semigroup
symmetry”.

The goal of this article is to formulate the maximal semigroup symmetry
for vector-valued translation invariant operators on Tn and Zn in general and
to investigate to what extent Edwards–Gaudry’s characterization works for the
Riesz transforms on Tn and Zn in higher dimensions.

As a higher dimensional generalization of Edwards and Gaudry’s results,
we need to adapt the general framework, Condition 1.1 in the Rn case. For
a formulation of “invariant multipliers” on Tn(= Rn/Zn) or Zn one natural
way is to use only injective linear transformations that preserve the lattice Zn.
Namely, the semigroup

Mreg(n,Z) := {g ∈ M(n,Z) : det g 6= 0}.

Unlike the R case, we note

Mreg(n,Z) % GL(n,Z) := {g ∈ M(n,Z) : g is an automorphism of Zn}.

In the introduction we discuss only Tn for simplicity of the exposition.
The semigroup Mreg(n,Z) acts on L2(Tn) by

(Lgf)(x) := f(tgx) for f ∈ L2(Tn).

Here we have used the operator Lg in the Tn case instead of the previous
lg : f(t) 7→ f(g−1t) in the Rn case because g−1t is not necessarily well-defined
for t ∈ Tn if det g 6= ±1.
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Definition 1.5 (semigroup symmetry). Let T : L2(Tn) → V ⊗ L2(Tn), be a
bounded linear operator. We say T is

translation invariant if T ◦ τα = (id⊗τα) ◦ T for all α ∈ Rn;

non-degenerate if C-span{Tf(t) : f ∈ L2(Tn), t ∈ Tn} is equal to V .

A semigroup symmetry for T is a pair (G, π) where G is a subsemigroup of
Mreg(n,Z), and π : G → GLC(V ) is a semigroup homomorphism such that

(π(g)⊗ Lg) ◦ T = T ◦ Lg, for any g ∈ G. (1.1.3)

We define a partial order of semigroup symmetries by (G′, π′) ≺ (G, π) if
G′ ⊂ G and π′ = π|G. By Zorn’s lemma, there exists a maximal element of this
partial order. Actually, it is unique as the following construction shows.

Definition-Proposition 1.6 (maximal semigroup symmetry). For a non-degenerate
translation invariant operator T : L2(Tn) → V ⊗ L2(Tn) there exists a unique
maximal semigroup symmetry. In fact, let G be a subset of Mreg(n,Z) consisting
of all g for which there exists A ∈ GLC(V ) satisfying (A⊗Lg)◦T = T ◦Lg. Then
G is a semigroup, and A is determined uniquely by g ∈ G. The correspondence
G → GLC(V ), g 7→ A defines a semigroup homomorphism, which we denote by
π. Then (G, π) is the maximal semigroup symmetry for the operator T .

Remark 1.7. An analogous notion is defined for l2(Zn), but it is slightly more
involved, see Section 4.2.

Example 1.8. Let GT = CO(n,Z) := CO(n) ∩ M(n,Z), GR = CO(n) and
π(g) = | det g|−1/ng. Let GZ = CO(n,Z) and ρ(g) = | det g|n+1/n tg−1. Then
(GT, π) and (GR, π) are the maximal semigroup symmetries for the Riesz trans-
forms on Tn and Rn respectively and the pair (GZ, ρ) is the maximal semigroup
symmetry for the Riesz transforms on Zn, see Propositions 2.6 and 4.11. Note
that GR is in fact a group, but GT and GZ are just semigroups.

Definition-Proposition 1.6 asserts that any non-degenerate translation in-
variant operator gives rise to the unique semigroup symmetry. Conversely, we
may ask:

Question 1.9. Does the maximal semigroup symmetry recover the original op-
erator?

Fact 1.3 asserts that this is the case for the Riesz transform on Rn for all
dimensions n. Edwards and Gaudry proved that this is also the case for the
Hilbert transform on the circle T and on Z (i.e. the Riesz transform on the
torus Tn and on Zn for n = 1), see Fact 2.1 and Fact 4.1, respectively.

Here are the main results of this article.

Theorem A. If the dimension n = 1, 2 or a multiple of four, then the maximal
semigroup symmetry (CO(n,Z), | det g|−1/ng) and (CO(n,Z), | det g|n+1/n tg−1)
characterizes the Riesz transforms on Tn and Zn respectively.
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Theorem B. Suppose n ≥ 3 and n 6≡ 0 (mod 4). Then there exist infinitely
many linearly independent multipliers on Tn and Zn respectively satisfying the
same semigroup symmetry with the Riesz transform.

Theorem A contains the aforementioned results of Edwards and Gaudry as
special cases when n = 1. Theorem B shows that the features of invariant
multipliers for Tn and Zn are very different from Stein’s theorem in the Rn

case.
In Section 5, we introduce a stronger invariance condition (saturated semi-

group symmetry), and prove that this condition characterizes the Riesz trans-
forms on Tn and Zn for arbitrary n.

Notation: N = {0, 1, 2, . . .}, N+ = {1, 2, . . .}, N− = {−1,−2, . . . }, R× =
{r ∈ R : r 6= 0}, R+ = {r ∈ R : r > 0}, Q× = Q ∩ R×, Q+ = Q ∩ R+,
and Mreg(n,Z) = {g ∈ M(n,Z) : det g 6= 0} (semigroup), CO(n,Z) = CO(n) ∩
M(n,Z) (semigroup).

2 Maximal semigroup symmetry of translation

invariant operators on Tn

In Sections 2 and 4, we shall appeal to the general framework in Introduction to
discuss if the maximal symmetry gives a characterization of the Riesz transforms
on Tn = Rn/Zn and Zn.

2.1 The Hilbert transform on the circle T

We begin with a quick review on Edwards and Gaudry’s characterization of the
Hilbert transform on T in the one-dimensional case.

We define the Fourier transform on T = R/Z, F : L2(T) → l2(Z) by

F(f)(α) :=

∫

T

f(t)e−2πiαt dt (α ∈ Z).

Given a bounded functionm on Z, we define amultiplier operator Tm : L2(T) →
L2(T) by

F(Tmf)(α) = m(α)F(f)(α).

Clearly the operator Tm is translation invariant, that is,

Tm ◦ τs = τs ◦ Tm for any s ∈ T,

where τsf(t) := f(t−s). Conversely, any translation invariant operator bounded
on L2(T), is of the form Tm for some m ∈ l∞(Z). In particular, the Hilbert
transform on T, to be denoted by H, is defined to be the multiplier operator
Tm with m defined by

m(α) :=





−i (α ∈ N+),

0 (α = 0),

i (α ∈ N−).
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Let us examine the additional invariance conditions that the Hilbert trans-
form H satisfies. For a ∈ Z \ {0}, we define dilations Da on L2(T) and l2(Z)
by

Daf(t) := f(at) if f ∈ L2(T) (2.1.1)

DaF (α) := F (aα) if F ∈ l2(Z) (2.1.2)

respectively. Then we have

Da ◦ F ◦Da = F . (2.1.3)

In other words, we have

(F ◦Daf)(β) =

{
(Ff)(a−1β) β ∈ aZ

0 β ∈ Z \ aZ.

Then it is easy to see that the Hilbert transform H on T satisfies the identity

H ◦Da = sgn(a)Da ◦H for any a ∈ Z \ {0}. (2.1.4)

Conversely, suppose that a multiplier operator Tm satisfies (2.1.4). By compo-
sition with Da ◦ F , we obtain the identity

Da ◦ F ◦ Tm ◦Da = sgn(a)F ◦ Tm

because of (2.1.3). In terms of the multiplier m, this amounts to

Da(m(α)F(Daf)(α)) = sgn(a)m(α)F(f)(α) for any f ∈ L2(T).

Using (2.1.3) again, we have

m(aα)F(f)(α) = sgn(a)m(α)F(f)(α),

for any f ∈ L2(T). Hence m(aα) = sgn(a)m(α) for any a ∈ Z \ {0} and α ∈ Z.
The substitution α = 0 and a = −1 shows that m(0) = 0 and substituting α = 1
shows that m is a constant multiple of the sign function. This is essentially the
argument of Edwards and Gaudry who proved:

Fact 2.1 ([EG, Theorem 6.8.3]). Suppose Tm is a multiplier operator on L2(T),
associated to m ∈ l∞(Z). If Tm satisfies the identity

Tm ◦Da = sgn(a)Da ◦ Tm for all a ∈ Z \ {0},

then m is a constant multiple of the sign function. Hence Tm is a constant
multiple of the Hilbert transform.

It should be noted that the above relative invariance is the maximal semi-
group symmetry with the subgroup Mreg(1,Z) ∼= Z\{0} in the sense of Definition-
Proposition 1.6.
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2.2 Covariance of vector-valued multipliers on Zn

In this subsection, we translate the semigroup symmetry of translation invariant
operators on Tn into a covariance of vector-valued multipliers on Zn ∼= (Tn)̂

by using the Fourier transform.
Let Tn be the n-torus Rn/Zn. Then the standard inner product on Rn

induces a pairing

〈 , 〉 : Zn ×Tn → T, (α, x) 7→
n∑

i=1

αixi.

We define the Fourier transform

F : L2(Tn) → l2(Zn) (2.2.1)

by (Ff)(α) :=
∫
Tn f(x)e−2πi〈α,x〉dx for α ∈ Zn. The Fourier transform F is a

unitary operator between the two Hilbert spaces up to scaling.
Let V be a finite-dimensional vector space over C. Given a bounded function

m : Zn → V, we define a linear operator

l2(Zn) → V ⊗ l2(Zn), g 7→ (α 7→ g(α)m(α)),

which is obviously a bounded operator. Via the Fourier transform, we get a
bounded linear operator

Tm : L2(Tn) → V ⊗ L2(Tn), f 7→ F−1(mFf),

The operator Tm is called a multiplier operator, and is translation invariant.
Conversely, any translation invariant bounded operator is of the form Tm with
some bounded function (multiplier) m : Zn → V by the general theory of
translation invariant operators. By definition, we have F(Tmf)(α) = m(α) ⊗
Ff(α). By abuse of notation we shall write simply F(Tmf) = m⊗Ff.

Proposition 2.2. Let H be a subsemigroup of Mreg(n,Z) and π : H → GLC(V )
a semigroup homomorphism. The multiplier operator Tm : L2(Tn) → V ⊗
L2(Tn) satisfies the condition (1.1.3) for the pair (H,π) if and only if the mul-
tiplier m : Zn → V satisfies

m(gα) = π(g)m(α) for all α ∈ Zn and all g ∈ H. (2.2.2)

For the proof of Proposition 2.2, we use the following two lemmas. (An
alternative proof will also be given at the end of this subsection.) We denote by tg
the transposed matrix of g. Clearly tg ∈ Mreg(n,Z) if and only if g ∈ Mreg(n,Z).

Lemma 2.3. For g ∈ Mreg(n,Z) and α ∈ g−1Zn,

∑

m∈Zn/tgZn

e−2πi〈α,m〉 =

{
| det g| if α ∈ Zn,

0 if α /∈ Zn.

8



Proof. Since m 7→ e−2πi〈α,m〉 is a character of the finite group Z/tgZn, the for-
mula follows from Schur’s orthogonality relation and from the identity ♯(Zn/tgZ) =
| det g|.

The formula of F ◦ Lg on Tn for g ∈ GL(n,Z) can be obtained easily as
the formula of the Fourier transform on Rn for affine transforms. However, for
g ∈ Mreg(n,Z), we need to note that Lg : L2(Tn) → L2(Tn) is not surjective.

Lemma 2.4. For g ∈ Mreg(n,Z) and β ∈ Zn,

F(Lgf)(β) =

{
(Ff)(g−1β) if β ∈ gZn

0 if β /∈ gZn

Proof.

F(Lgf)(β) =

∫

Rn/Zn

f(tgx)e−2πi〈β,x〉dx

= | det g|−1

∫

Rn/tgZn

f(y)e−2πi〈β,tg−1y〉dy

= | det g|−1
∑

m∈Zn/tgZn

∫

Rn/Zn

f(y +m)e−2πi〈g−1β,y+m〉dy.

= | det g|−1
∑

m∈Zn/tgZn

e−2πi〈g−1β,m〉

∫

Rn/Zn

f(y)e−2πi〈g−1β,y〉dy.

By using Lemma 2.3, we get the lemma.

Proof of Proposition 2.2. Via the Fourier transform, we see that the condition
(1.1.3) is equivalent to the following condition by Lemma 2.4:

π(g)h(g−1β)m(g−1β) = m(β)h(g−1β) for any β ∈ gZn and h ∈ l2(Zn),

for all g ∈ H. This is clearly equivalent to the condition (2.2.2).

Alternative proof of Proposition 2.2. Assume that Tm satisfies (1.1.3). Then
specializing to the function f(t) := e2πi〈α,t〉 and setting t = 0 we obtain

π(g)(Tm(e2πi〈α,·〉)(0)) = Tm(e2πi〈α,
tg·〉)(0) = Tm(e2πi〈gα,·〉)(0).

Sincem(α) = Fκ(α) = (κ∗e2πi〈α,·〉)(0) = Tm(e2πi〈α,·〉)(0), we obtain π(g)m(α) =
m(gα). Conversely, if π(g)m(α) = m(gα). Then the same argument gives

π(g)(Tm(e2πi〈α,·〉)(0)) = Tm(e2πi〈α,
tg·〉)(0). (2.2.3)

By definition, Tm(Lge
2πi〈α,·〉)(s) = Tm(e2πi〈α,

tg·〉)(s) = τ−sTm(e2πi〈α,
tg·〉)(0).

Since Tm is translation invariant this is Tm(τ−se
2πi〈α,tg·〉)(0) = Tm(e2πi〈α,

tg·+tgs〉)(0)
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Using the linearity of Tm we can rewrite this as e2πi〈α,
tgs〉Tm(e2πi〈α,

tg·〉)(0). By

(2.2.3) we obtain e2πi〈α,
tgs〉π(g)Tm(e2πi〈α,·〉)(0). By linearity we have

π(g)Tm(e2πi〈α,·+
tgs〉)(0) = π(g)Tm(τ−tgse

2πi〈α,·〉)(0).

Using the translation invariance again, we see that this equals

π(g)τ−tgsTm(e2πi〈α,·〉)(0) = π(g)Tm(e2πi〈α,·〉)(tgs) = π(g)LgTm(e2πi〈α,·〉)(s).

Thus we have proved the identity Tm ◦ Lg = π(g)Lg ◦ Tm for functions of the
type e2πi〈α,·〉. By linearity and continuity of Tm this implies that the identity
holds in general since trigonometric polynomials are dense in L2(Tn).

2.3 Riesz transform on Tn

As a higher dimensional generalization of the Hilbert transform, the Riesz trans-
forms R1, . . . , Rn on the n-torus Tn = Rn/Zn are defined as below.

Definition 2.5 ([SW, Section VII.3]). We define Rj : L
2(Tn) → L2(Tn) (1 ≤

j ≤ n) to be the multiplier operator Tmj
where

mj(α) =

{
−i

αj

‖α‖ α 6= 0,

0 α = 0.

The resulting bounded linear operator R = (R1, . . . , Rn) : L2(Tn) → Cn ⊗
L2(Tn) is said to be the Riesz transform on Tn. It is a discrete analogue of the
Riesz transform on Rn.

Let us find what kind of symmetry the Riesz transform satisfies, and then
discuss whether or not such an invariance condition recovers the Riesz transform
up to scalar.

We recall that CO(n,Z) is the semigroup given by CO(n) ∩M(n,Z).

Proposition 2.6. The maximal symmetry of the Riesz transform R on Tn is
given by the pair (H,π) where

H := CO(n,Z),

π : H → GL(n,C), g 7→ | det g|− 1
n g.

Proof. It is easy to see that the Riesz transform satisfies the condition:

Lg ◦R = | det g|− 1
n g ◦R ◦ Lg for any g ∈ CO(n,Z), (2.3.1)

namely, (π(g) ⊗ Lg) ◦ R = R ◦ Lg for all g ∈ CO(n,Z). It remains to prove
that (H,π) is the maximal semigroup symmetry. For this we use Proposition
2.2. Let g ∈ Mreg(n,Z) and suppose that there exists A ∈ GL(n,C) such
that mR(gα) = AmR(α), for all α ∈ Zn. We shall show that g ∈ CO(n,Z).
Indeed, as mR(α) = −i α

‖α‖ we obtain gα
‖gα‖ = A α

‖α‖ . Taking norms, this implies
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in particular that A ∈ O(n) since ‖Aα‖ = ‖α‖, for all α ∈ Zn. We write

g = (~g1, . . . , ~gn) and A = ( ~A1, . . . , ~An). Then for α = ei we obtain ~Ai =
~gi

‖~gi‖
,

i.e. A = (λ1~g1, . . . , λn~gn). Now, by putting α = ei + ej we find that λi = λj

because ~g1, . . . , ~gn are linearly independent. So A = λg, but it is also in O(n)

hence λ = | det g|− 1
n . Hence g ∈ CO(n)∩M(n,Z) = H, and A = π(g). Therefore

(H,π) is the maximal semigroup symmetry of the Riesz transform.

3 Proof of main theorems for Tn

In this section, we complete the proof of Theorems A and B for the n-torus Tn.

3.1 From semigroup to group invariance

Owing to Proposition 2.2 the analytic problem (Question 1.9) reduces to an
algebraic invariance of multipliers m : Zn → V. Under certain mild conditions,
we can extend this algebraic semigroup symmetry to a larger group invariance.

In this subsection, we formulate this in Lemma 3.5 which includes the fol-
lowing proposition as a special case:

Proposition 3.1. Let π : CO(n,Z) → GLC(V ) be a semigroup homomorphism
and m : Zn → V a function satisfying

m(gα) = π(g)m(α) for all g ∈ CO(n,Z) and α ∈ Zn.

Then there exist unique extensions π̃ : CO(n,Q) → GLC(V ) (group homomor-
phism) and m̃ : Qn → V of π and m, respectively, satisfying

m̃(gα) = π̃(g)m̃(α) for all g ∈ CO(n,Q) and α ∈ Qn.

In order to deal with a general setting, letH be a subsemigroup in Mreg(n,Z)
and define H̃ to be the subgroup in GL(n,Q) generated by g and g−1 for g ∈ H.

Example 3.2. 1) ˜Mreg(n,Z) = GL(n,Q).

2) ˜CO(n,Z) = CO(n,Q)

Proof. The first statement follows from the fact that kIn ∈ Mreg(n,Z) for any
k ∈ N+. To see the second statement, we first observe an obvious inclusion:
˜CO(n,Z) ⊂ CO(n,Q). Conversely, let g ∈ CO(n,Q). Then there exists k ∈ Z

such that kg ∈ CO(n,Z). It follows that g = (kIn)
−1(kg) ∈ ˜CO(n,Z).

Here is the universality for the extension H  H̃ : any semigroup homomor-
phism π : H → GLC(V ) extends to a group homomorphism π̃ : H̃ → GLC(V )
(see [B, Chapter 1 §2.4, Theorem 1 and Remark 2]).

Suppose that H is a subsemigroup of Mreg(n,Z). Since H̃ is a subgroup of
GL(n,Q), we can define a subset UH of Qn by

UH := H̃Zn = {hv : h ∈ H̃, v ∈ Zn}.
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We note that Zn ⊂ UH .

Lemma 3.3. Let H be a subsemigroup of Mreg(n,Z), π : H → GLC(V ) a
semigroup homomorphism, and m : Zn → V a function satisfying (2.2.2). We
further assume that there is a map A : N+ → GLC(V ) satisfying the following
two conditions: for any k ∈ N+,

A(k)π(g) = π(g)A(k) for all g ∈ H,

m(kα) = A(k)m(α) for all α ∈ Zn. (3.1.1)

Then m extends uniquely to a function m̃ : UH → V satisfying

m̃(gα) = π̃(g)m̃(α) for all g ∈ H̃ and α ∈ UH . (3.1.2)

Remark 3.4. The extension m̃ is not necessarily bounded even though we as-
sume the multiplier m to be bounded.

Proof of Lemma 3.3. We set

Y := {(g, α) ∈ H̃ × Zn : gα ∈ Zn}.

We have an obvious inclusion H × Zn ⊂ Y because H ⊂ Mreg(n,Z).
First let us prove

m(gα) = π̃(g)m(α) (3.1.3)

for (g, α) ∈ Y with g−1 ∈ H. Since g−1 ∈ H and gα ∈ Zn, we have from the
identity (2.2.2) that

m(α) = m(g−1gα) = π(g−1)m(gα).

As π(g−1) is invertible, this can be rewritten as π̃(g)m(α) = m(gα). Hence
(2.2.2) holds under the assumption g ∈ H or g ∈ H−1.

For the general case, let (g, α) ∈ Y. We write g ∈ H̃ as g = g1 · · · gN
(g1, . . . , gN ∈ H ∪ H−1), and will show (3.1.3) by induction on N . Suppose
(g, α) ∈ Y . We set g′ := g2 · · · gN . Since g′ ∈ GL(n,Q), we can find k ∈ N+

such that kg′α ∈ Zn. Since both (g1, g
′kα) and (g′, kα) belong to Y , we have

from the inductive hypothesis that

m(g1g
′kα) = π̃(g1)m(g′kα),

m(g′kα) = π̃(g′)m(kα).

Therefore we have

m(kgα) = m(g1g
′kα) = π̃(g1)π̃(g

′)m(kα) = π̃(g)m(kα).

By the assumption (3.1.1), this implies A(k)m(gα) = π̃(g)A(k)m(α). As A(k)
commutes with π(g) for all g ∈ H, it commutes also with π̃(g) for all g ∈ H̃.
Hence we get the identity A(k)m(gα) = A(k)π̃(g)m(α). Since A(k) is invertible
we obtain m(gα) = π̃(g)m(α). Thus we have shown that (3.1.3) holds for all
(g, α) ∈ Y .

12



We are ready to define m̃ by the relative invariance

m̃(gα) = π̃(g)m(α)

for α ∈ Zn and g ∈ H̃. To see that m̃ is well-defined, let gα = hβ. Then
α = g−1hβ, hence m(α) = m(g−1hβ) = π(g−1h)m(β) because (g−1h, β) ∈ Y.
Thus we have m̃(gα) = π̃(g)m(α) = π̃(h)m(β) = m̃(hβ), which proves that m̃ is
well-defined. In this way, m̃ is defined for all elements in UH and the invariance
(3.1.2) is now clear.

Lemma 3.5. Let H be a subsemigroup of Mreg(n,Z), π : H → GLC(V ) a
semigroup homomorphism, and m : Zn → V a map satisfying (2.2.2). If H
contains kIn for all k ∈ N+ then there exists a unique extension m̃ : Qn → V
of m satisfying

m̃(gα) = π̃(g)m̃(α) for all g ∈ H̃ and α ∈ Qn.

Proof. The assumption of Lemma 3.3 is fulfilled by putting A(k) := π(kI).
Then m̃ extends to Qn = H̃Zn.

3.2 Reduction to number theory

Let
pn : CO(n,Q) → Qn \ {0} (3.2.1)

be the projection by taking the first column vector. We prove that the conclusion
of Theorem A holds if pn is surjective. In the next subsection we determine
explicitly for which n, pn is surjective.

Lemma 3.6. Let T : L2(Tn) → Cn⊗L2(Tn) be a bounded translation invariant
operator satisfying (2.3.1). If pn is surjective then T is a constant multiple of
the Riesz transform on Tn.

Proof. Owing to Proposition 2.2, Lemma 3.6 is reduced to the following combi-
natorial lemma with ν = −1/n.

Lemma 3.7. Let ν ∈ C. Suppose m : Zn → Cn satisfies

m(gα) = | det g|νgm(α) (3.2.2)

for any α ∈ Zn and g ∈ CO(n,Z). Let e1 := t(1, 0, . . . , 0). Then
1) m(0) = 0 and m(e1) ∈ Ce1.
2) If pn : CO(n,Q) → Qn \ {0} is surjective, then there exists c ∈ C such

that
m(α) = c ‖α‖nνα (α ∈ Zn \ {0}).

Proof of Lemma 3.7. 1) For j = 1, 2, . . . , n, we denote by g(j) the diagonal ma-
trix diag(1, . . . , 1,−1, 1, . . . , 1) whose j th entry is −1. Then g(j) ∈ CO(n,Z)
and g(j)e1 = e1 (2 ≤ j ≤ n). Applying g = g(j) to (3.2.2), we get m(e1) =
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m(g(j)e1) = g(j)m(e1). Hence the jth entry of m(e1) vanishes for 2 ≤ j ≤ n.
Thus we have shown m(e1) = ce1 for some c ∈ C. The same argument with
1 ≤ j ≤ n applied to m(0) shows m(0) = 0.

2) By 1), we have m(e1) = ce1 for some c ∈ C. By Proposition 3.1, m
extends uniquely to a function m̃ : Qn → Cn satisfying (3.2.2) for any g ∈
CO(n,Q) and α ∈ Qn. Take any α ∈ Qn \ {0}. If pn is surjective, we can find
g ∈ CO(n,Q) such that pn(g) = α, that is, ge1 = α. Applying (3.2.2), we get

m̃(α) = | det g|νgm̃(e1) = c | det g|νge1 = c | det g|να.

On the other hand, taking the norms of the identity ge1 = α, we have | det g| =
‖α‖n because g ∈ CO(n,Q). Thus m̃(α) is of the form c ‖α‖nνα. Now taking
m = m̃|Zn , we get the second statement.

3.3 Proof of Theorem A for Tn

In this subsection, we classify all the positive integers n such that pn : CO(n,Q) →
Qn \ {0} is surjective (see Proposition 3.8). In particular, the equivalence of (i)
and (ii) completes the proof of Theorem A by virtue of Lemma 3.6. To state the
invariance conditions in Proposition 3.8 we introduce an equivalence relation ∼
on Qn by

x ∼ y ⇔ x = gy for some g ∈ CO(n,Q).

This equivalence relation on Qn induces the one on its subset Zn \ {0}, and we
write Zn \ {0}/∼ for the set of equivalence classes.

Proposition 3.8. The following four conditions on n ∈ N+ are equivalent:

(i) n = 1, 2 or a multiple of four.

(ii) pn : CO(n,Q) → Qn \ {0} is surjective.

(iii) #(Zn \ {0}/∼) = 1.

(iv) #(Zn \ {0}/∼) < ∞.

The rest of this subsection is devoted to the proof of Proposition 3.8. We
define a subgroup Λ of Q× by

Λ := {| det g| 2
n : g ∈ CO(n,Q)}. (3.3.1)

Lemma 3.9. For x, y ∈ Qn \ {0}, the following two conditions are equivalent:

(i) x ∼ y, i.e. there exists g ∈ CO(n,Q) such that y = gx.

(ii)
‖y‖2
‖x‖2 ∈ Λ.
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Proof. The key to the proof is the understanding of the image of det : CO(n,Q) →
Q×. Suppose g ∈ CO(n,Q). Then tgg = αIn for some α > 0. Taking the de-
terminant, we get | det g|2 = αn. Therefore for x ∈ Qn, we have

‖gx‖2 = | det g| 2
n ‖x‖2. (3.3.2)

Now the implication (i) ⇒ (ii) is clear.

(ii) ⇒ (i) We take g ∈ CO(n,Q) such that | det g| 2
n = ‖y‖2

‖x‖2 . This implies

‖y‖ = ‖gx‖ by (3.3.2). By Witt’s theorem (see [Se, Section IV.1 Theorem 3] for
instance), there exists h ∈ O(n,Q) such that y = hgx. Hence x ∼ y.

We say that two quadratic forms on Qn are equivalent if they are conjugate
by an element in GL(n,Q). The following elementary lemma clarifies the role
of the set Λ in our context.

Lemma 3.10. For a ∈ Q×, the following two conditions are equivalent:

(i) a ∈ Λ.

(ii) The quadratic forms ‖x‖2 =
∑n

i=1 x
2
i and a‖x‖2 on Qn are equivalent.

Proof. (i) ⇒ (ii) Let a ∈ Λ. By the definition (3.3.1) of Λ : a = | det g| 2
n for

some g ∈ CO(n,Q). This implies tgIng = aIn, and therefore the quadratic
forms ‖x‖2 and a‖x‖2 on Qn are conjugate by g ∈ CO(n,Q).

(ii) ⇒ (i) Suppose the quadratic form a‖x‖2 is conjugate to ‖x‖2, that is,
aIn = tgIng for some g ∈ GL(n,Q), which implies that g ∈ CO(n,Q). Then we

have a = | det g| 2
n ∈ Λ.

Proposition 3.11. Let

A :=
{ ∏

pj :prime

ej∈Z

p
ej
j : ej is odd only if pj = 2 or ≡ 1 (mod 4)

}
.

Then we have the following characterization of Λ

Λ =





(Q×)2 if n is odd,

A if n ≡ 2 (mod 4),

Q+ if n ≡ 0 (mod 4).

Proof. Owing to Lemma 3.10, it suffices to find a necessary and sufficient con-
dition on a ∈ Q× such that the quadratic forms ‖x‖2 and a‖x‖2 are equivalent
on Qn. For this, we recall that the Hasse–Minkowski theorem says that two
quadratic forms over Q are equivalent if and only if they have the same signa-
ture, discriminant modulo the squares (Q×)2 in Q× and invariants ǫp for all
prime numbers p, see [Se, IV, 3.3, Corollary to Theorem 9]. We recall that the
Hilbert symbol (a, b)p is defined to be 1 if the equation z2 − ax2 − by2 = 0
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has a non-trivial solution in Q3
p, and −1 otherwise. Then ǫp is defined by

ǫp(f) =
∏

i<j(ai, aj)p for a quadratic form f ∼ a1X
2
1 + · · ·+ anX

2
n.

The signatures of ‖x‖2 and a‖x‖2 coincide if and only if a > 0 because ‖x‖2
is positive definite.

The discriminants of ‖x‖2 and a‖x‖2 are given by 1 and an, respectively.
They coincide in Q×/(Q×)2 if and only if an ∈ (Q×)2. For n odd this means
that a itself must be a square. For n even this does not give any restriction.

Finally, we consider the invariants ǫv. For ‖x‖2 we have ǫv = 1 and for a‖x‖2
it is (a, a)

n(n−1)/2
v .

Case I: n is odd. Then we have seen above that a is a square, thus (a, a) = 1
according to [Se, Section III.1.1 Proposition 2 i)]. Hence for n odd the only
condition is that a is a square. Therefore Λ = (Q×)2.

Case II: n ≡ 0 (mod 4). Since n(n−1)
2 is even, so (a, a)

n(n−1)/2
v = 1. Thus all

the invariants are the same as long as a > 0. Thus we have Λ = Q+.

Case III: n ≡ 2 (mod 4). Since n(n−1)
2 is odd, (a, a)

n(n−1)/2
v = (a, a)v. Let

a = 2α0 · pα1

1 · · · · · pαk

k . For a prime number p, we have

(a, a)p =





(−1)αiǫ(p) if p = pi for some i (1 ≤ i ≤ k),

(−1)ǫ(p
α1
1

· ...p
αk
k

) if p = 2,

1 otherwise

where ǫ is defined by ǫ(u) = (u− 1)/2 (mod 2), see [Se, III, 1.2 Theorem 1] for
instance. Thus to have (a, a)p = 1 for all prime numbers p, it is necessary and
sufficient to have

{
αi ≡ 0 (mod 2) whenever pi ≡ 3 (mod 4) (1 ≤ i ≤ k),

pα1

1 · · · · · pαk

k ≡ 1 (mod 4).

None of the conditions give any restriction on α0 and the last condition follows
from the first because 32 ≡ 1 (mod 4). Hence we conclude that the set Λ consists
of all rational numbers of the form 2α0 · pα1

1 · · · · · pαk

k where the powers αi are
even if pi ≡ 3 (mod 4). Therefore Λ = A.

Alternative proof of Proposition 3.11. We would like to present a second proof
based on some results by Dieudonné, see [D]. This proof of Proposition 3.11
is shorter but less direct. As before the situation immediately reduces to the
case when n is even. In our setting where we are considering the equivalence
of the quadratic forms ‖x‖2 and a‖x‖2 on Qn, [D, Theorems 2 and 3] can be
reformulated as the statement that the subgroup Λ = Q+ for n ≡ 0 (mod 4),
and Λ is equal to the group of non-zero norms in the algebraic extension Q+Q[i]
for n ≡ 2 (mod 4). The latter set consists of rational numbers c for which there
exist rational solutions to the equation a2 + b2 = c, see also the remark in [D,
page 404]. The Diophantine equation a2 + b2 = c has an integer solution if
and only if ordp c is even for every prime p ≡ 3 (mod 4), see [IR, Section 17.6,
Corollary 1]. Here ordp c is the largest non-negative integer k such that pk|c by
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pk+1 ∤ c. This proves Proposition 3.11 because the rational solutions differ from
the integer solutions only by a square in the denominator.

Remark 3.12. There is a natural isomorphism

R+ ×O(n)
∼→ CO(n), (λ, g) 7→ λg (3.3.3)

for all dimensions n. Further, the isomorphism (3.3.3) induces an isomorphism

Q+ ×O(n,Q)
∼→ CO(n,Q)

if n is odd because | det g|1/n ∈ Q for all g ∈ CO(n,Z) by Proposition 3.11.

Corresponding to the isomorphism (3.3.3) we have an inclusion:

N+ ×O(n,Z) →֒ CO(n,Z),

where we set O(n,Z) := O(n) ∩M(n,Z).

Remark 3.13. The semigroup CO(n,Z) is strictly larger than the subsemigroup
N+ ×O(n,Z) for any n ≥ 2.

Proof. The element g ∈ CO(n,Z) belongs to the subsemigroup only if | det g|1/n ∈
N+. For even n = 2k, the element

g :=

(
1 −1
1 1

)
⊕ · · · ⊕

(
1 −1
1 1

)

belongs to CO(2k,Z) but | det g|1/n =
√
2 /∈ N+ for k ≥ 1. Hence this element

does not belong to the subsemigroup.
For n odd, we have seen in Remark 3.12 that CO(n,Q) = Q+ × O(n,Q).

Taking the intersection with M(n,Z) we obtain CO(n,Z) = (Q+ × O(n,Q)) ∩
M(n,Z). Since O(n,Q) is dense in O(n,R), see for example [Sch],Q×·pn(CO(n,Z)) =
pn(CO(n,Q)) is dense in Rn. On the other hand, O(n,Z) is the set of permu-
tation matrices with signs. Thus Q× · pn(N+ × O(n,Z)) is not dense in Rn.
Therefore N+ ×O(n,Z) is a proper subset of CO(n,Z).

Proof of Proposition 3.8. First we observe that the condition (ii) is equivalent
to:

e1 ∼ x for any x ∈ Qn \ {0},
which is then equivalent also to the following condition by Lemma 3.9:

(ii)′ ‖x‖2 ∈ Λ for any x ∈ Qn \ {0}.
(i) ⇒ (ii)′: This implication is trivial if n = 1. For n = 2, suppose x =

t(x1, x2) ∈ Q2 \ {0}. Then g :=

(
x1 −x2

x2 x1

)
∈ CO(2,Q) and p2(g) = x. This

shows that p2 is surjective. For n ≡ 0 (mod 4), (ii)′ holds immediately by
Λ = Q+ (see Proposition 3.11).

(ii) ⇒ (iii): If pn is surjective, then any element in Qn \ {0} is in the same
equivalence class as e1. This implies (iii).

(iii) ⇒ (iv) Obvious.
(iv) ⇒ (i) This follows from Lemma 3.14 below.
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Lemma 3.14. For n odd or n ≡ 2 (mod 4) and larger than 2, we have #(Zn \
{0}/ ∼) = ∞.

Proof. Suppose first that n is odd. We define a sequence of integers pj by setting
p1 := 1 and using the recursive relation:

pj :=

j−1∏

i=1

(1 + p2i ).

Then for any i 6= j, we have

GCD(1 + p2j , 1 + p2i ) = 1. (3.3.4)

We set γj :=
t(1, pj , 0, . . . , 0). By Lemma 3.9 and Proposition 3.11,

γi ∼ γj ⇒
√

1 + p2i
1 + p2j

∈ Q×. (3.3.5)

By (3.3.4), this implies that 1+p2j = a2 for some integer a. But this is impossible

because pj <
√

1 + p2j < pj +1. Hence γi ≁ γj and #(Zn \ {0}/ ∼) = ∞ if n is

odd.
Suppose now that n > 2 and n ≡ 2 (mod 4). Let pk be the kth prime such that
pk ≡ 3 (mod 4), that is,

p1 = 3, p2 = 7, p3 = 11, p4 = 19, . . . .

By a theorem of Lagrange (see [Se, Section IV, Appendix Corollary 1] for ex-
ample), we can find four integers ak, bk, ck, dk such that

a2k + b2k + c2k + d2k = pk.

We set
γk := t(ak, bk, ck, dk, 0, . . . , 0) ∈ Zn.

Then
‖γj‖

2

‖γi‖2 =
pj

pi
/∈ Λ by Proposition 3.11. Therefore γi ≁ γj for any i 6= j by

Lemma 3.9. Hence there exist infinitely many γj ∈ Zn which are not equivalent
to each other.

Remark 3.15. As we see from Theorems A and B and from Proposition 3.8,
the surjectivity of pn : CO(n,Q) → Qn \ {0} is a necessary and sufficient
condition on n, such that the maximal semigroup symmetry characterizes R.
Let us consider the stronger condition of surjectivity of pn replacing Q by Z.
By using the fields R,C,H and O, we see that pn : CO(n,Z) → Zn \ {0} is
surjective if n = 1, 2, 4 and 8 respectively. This gives a partial result of Theorem
A in the cases n = 1, 2, 4 and 8. This was the original approach when we started
this project.
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3.4 Proof of Theorem B for Tn

In order to prove Theorem B, we use Proposition 2.2 and construct, for any
ν ∈ R, infinitely many, linearly independent multipliers m : Zn → Cn for
n ≥ 3, n 6≡ 0 (mod 4) satisfying the condition

m(gα) = | det g|νg m(α), for all α ∈ Zn and g ∈ CO(n,Z). (3.4.1)

The case ν = −1/n will be used in the proof of Theorem B for Tn, and ν =
−(n + 1)/n for Zn, see Section 4. Proposition 3.1 gives a guiding principle to
introduce the following function mβ .

Lemma 3.16. Fix β ∈ Zn and ν ∈ R. Then the map mβ : Zn → Cn given by

mβ(α) =

{
| det g|να if α = gβ for some g ∈ CO(n,Q)

0 if α ≁ β

is well-defined and satisfies (3.4.1). Further, we have

Suppmβ = {α ∈ Zn : α ∼ β}. (3.4.2)

Proof. If β = 0 then mβ ≡ 0 and the statement is obvious.
Suppose β 6= 0. If β = g1α = g2α for g1, g2 ∈ CO(n,Q), then g1g

−1
2 β = β.

Taking the norm, we see | det(g1g−1
2 )| = 1 because g1g

−1
2 ∈ CO(n,Q). Therefore

we have | det g1|να = | det g2|να, and thus mβ(α) is well-defined.
Let us verify that mβ satisfies (3.4.1). Suppose g ∈ CO(n,Z). For α such

that α ≁ β, we also have gα ≁ β. Hence mβ(α) = mβ(gα) = 0, and (3.4.1)
holds. For α such that α ∼ β, we take g′ ∈ CO(n,Q) such that α = g′β. By
definition,

mβ(α) = | det g′|να,
mβ(gα) = | det(gg′)|νgα.

Hence mβ(gα) = | det g|νgmβ(α), and therefore (3.4.1) holds. Thus Lemma
3.16 is proved.

Lemma 3.17. Retain the notation of Lemma 3.16. Suppose γj ∈ Zn (j =
1, 2, . . .) satisfies γi ≁ γj for any i 6= j. Then mγj

(j = 1, 2, . . .) are linearly
independent.

Proof. The supports of the mγj
’s are disjoint for j = 1, 2, . . . by (3.4.2). It then

follows that mγj
(j > 1, 2, . . .) are linearly independent.

Proof of Theorem B. Clear from Lemma 3.17 and from the equivalence (i) ⇔
(iv) in Proposition 3.8.

19



4 Translation invariant operators on Zn

So far, we have discussed the maximal semigroup symmetry for the Riesz trans-
forms on Tn. In this section, we consider an analogous question for the Zn

case.

4.1 One-dimensional case

In this subsection we review the characterization results for the Hilbert trans-
form on Z obtained by Edwards and Gaudry in [EG].

Let

κ(α) =

{
0 α = 0,
1
πα α 6= 0.

Then the Hilbert transform H for Z is defined 2 to be the operator on l2(Z) as
the convolution with h, i.e. Hf = κ∗f. Then H : l2(Z) → l2(Z) is a translation
invariant bounded linear operator.

We recall from (2.1.2) that Da : l2(Z) → l2(Z) is a dilation for a ∈ Z \ {0}.
Edwards and Gaudry proved the following characterization of the Hilbert

transform on Z :

Fact 4.1 ([EG, Theorem 6.8.5]). Let T be a translation invariant operator on
l2(Z) which, for every a ∈ Z \ {0}, satisfies the relation

T (Daf) = aDaT (f)

for all functions f ∈ l2(Z) with support in aZ. Then T is a constant multiple of
the Hilbert transform.

The restriction of the invariance condition to functions with support in aZ
did not appear in the characterization theorem for the Rn-case (Fact 1.3) or
the Tn-case (Fact 2.1). However, it cannot be relaxed in the Z-case as the next
fact shows.

Fact 4.2 ([EG, Lemma 6.8.4]). If T is a translation invariant operator on l2(Z)
such that

T ◦Da = σ(a)Da ◦ T (4.1.1)

for all a ∈ Z\{0}, where σ(a) is a non-zero complex-valued function on Z\{0}.
Then σ ≡ 1 and T is a constant multiple of the identity.

We shall analyze Fact 4.2 for the higher dimensional case in the next sub-
section.

2Here we follow the definition given in [EG]. Note that κ(α) is the natural correspondent to
the Hilbert kernel on R. This kernel differs a little bit from the Fourier transform of −i sgn θ,

whose kernel can be written as
(−1)α−1

2
κ(α).
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4.2 Maximal semigroup symmetry

For β ∈ Zn, we define the translation operator τβ : l2(Zn) → l2(Zn) by
(τβf)(α) = f(α − β). For g ∈ M(n,Z), let Lg : l2(Zn) → l2(Zn) be the
linear map defined by Lgf(α) = f(tgα). Let V be a finite-dimensional complex
vector space.

Definition 4.3. A bounded linear operator T : l2(Zn) → V ⊗ l2(Zn) is said to
be

1) translation invariant if T ◦ τβ = (id⊗τβ) ◦ T, for all β ∈ Zn;

2) non-degenerate if C- span{Tf(α) : f ∈ l2(Zn), α ∈ Zn} is equal to V .

Any translation invariant operator, T : l2(Zn) → V ⊗l2(Zn), can be obtained
as the convolution with some kernel κ : Zn → V

Tf(α) = κ ∗ f(α) =
∑

β∈Zn

f(β)κ(α− β), f ∈ l2(Zn).

Then T is non-degenerate if and only if κ(Zn) spans the vector space V over C.
From now on assume that T is translation invariant and non-degenerate.

We will make frequent use of Kronecker’s delta function

δγ(α) =

{
1 α = γ

0 α 6= γ

in the present section.
For g ∈ M(n,Z) and A ∈ GLC(V ), we consider the following conditions on

the pair (g,A):

C0) (A⊗ Lg) ◦ Tf = T ◦ Lgf, for all f ∈ l2(Zn).

C1) (A⊗ Lg) ◦ Tf = T ◦ Lgf, for all f ∈ l2(Zn) with Supp f ⊂ tgZn.

C2) (A⊗ Lg) ◦ Tδ0 = T ◦ Lgδ0.

C3) Aκ(tgα) = κ(α), for all α ∈ Zn.

Obviously C0) implies C1).

Lemma 4.4. The three conditions C1), C2), and C3) are equivalent.

Proof. First it is obvious that C1) implies C2).
C2) ⇒ C3): Since Lgδ0 = δ0 for any g ∈ M(n,Z), the implication is clear

from Tδ0 = κ.
C3) ⇒ C1): Take any f ∈ l2(Z) such that Supp f ⊂ tgZn. Then

(A⊗ Lg)Tf(α) = A
∑

β∈Zn

f(β)κ(tgα− β).
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Since the support of f is contained in tgZn, the right-hand-side is equal to

A
∑

γ∈Zn

f(tgγ)κ(tg(α− γ))

and by the condition C3) this is

=
∑

γ∈Zn

f(tgγ)κ(α− γ) = T (Lgf)(α),

which gives the condition C1).

Lemma 4.5. Assume that T is non-degenerate and satisfies the condition C3)
for the two pairs (g,A) and (g,A′) with A,A′ ∈ GLC(V ). Then A = A′.

Proof. Since A is invertible we have by condition C3) A−1κ(α) = κ(tgα). Since
κ(Zn) spans V , A−1 is uniquely determined by g.

The characterization theorem of Edwards and Gaudry (Fact 4.1) leads us to
the following definition.

Definition 4.6 (semigroup symmetry). Let T : l2(Zn) → V ⊗ l2(Zn) be a
translation invariant bounded operator. A semigroup symmetry for T is a pair
(G, π) where G is a subsemigroup of Mreg(n,Z), and π : G → GLC(V ) is a
semigroup homomorphism such that T satisfies the equivalent conditions C1),
C2) and C3) for (g, π(g)), g ∈ G.

Among the semigroup symmetries for T we define a partial order (G′, σ) ≺
(G, π) if G′ ⊂ G and σ(g) = π(g) for g ∈ G′.

The following proposition assures the existence of the unique maximal semi-
group symmetry for a non-degenerate translation invariant operator.

Proposition 4.7 (maximal semigroup symmetry). Given a translation in-
variant and non-degenerate bounded linear V -valued operator T : l2(Zn) →
V ⊗ l2(Zn). We define G to be a subset of Mreg(n,Z) consisting of g for
which there exists A ∈ GLC(V ) such that (g,A) satisfies one of the equiva-
lent conditions, C1)-C3). Then G is a semigroup. Further, A is unique for
each g ∈ G. The correspondence g 7→ A defines a semigroup homomorphism
π : G → GLC(V ). The pair (G, π) gives the maximal semigroup symmetry for
T.

Proof. The uniqueness for A follows directly from Lemma 4.5 because T is non-
degenerate. The remaining statement is clear.

We end this subsection with some comments on the semigroup symmetry,
namely, the reason why we have adopted C1) but not C0). In fact, the equiv-
alence C1)-C3) in Lemma 4.4 asserts that (G, π) is a maximal semigroup sym-
metry for the translation invariant bounded operator T : l2(Zn) → V ⊗ l2(Zn)
in the sense of condition C1) if and only if (G, π) is a maximal pair with the fol-
lowing algebraic condition: π(g)κ(tgα) = κ(α) for all α ∈ Zn and g ∈ G. On the
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other hand, it turns out that the condition C0) is too strong, as Fact 4.2 already
suggests in the one-dimensional case. In fact, we have the following proposition
asserting that there does not exist an interesting operator T satisfying C0) if g
runs over a “sufficiently large” subsemigroup H:

Proposition 4.8. Let T be a translation invariant bounded operator T : l2(Zn) →
V ⊗ l2(Zn) such that the following diagram

l2(Zn) V ⊗ l2(Zn)

l2(Zn) V ⊗ l2(Zn)

✲
T

❄

Lg

❄

π(g)⊗Lg

✲
T

(4.2.1)

commutes for all g ∈ H, i.e. the condition C0) holds for (g, π(g)) for all g ∈ H.
If H satisfies

⋂
g∈H

tgZn = {0} then TF = v ⊗ F for some element v ∈ V.

For the proof we use the following:

Lemma 4.9. Suppose T : l2(Zn) → V ⊗ l2(Zn) is a translation invariant
bounded linear operator with kernel κ : Zn → V. If the condition C0) holds for
(g,A) for some A ∈ GLC(V ), then Suppκ ⊂ tgZn.

Proof of Lemma 4.9. Take γ /∈ tgZn. Lgδγ = 0, and therefore ATδγ(
tgα) = 0,

for all α ∈ Zn by C0). Since A ∈ GLC(V ) we obtain Tδγ(
tgα) = 0, which is

equivalent to κ(tgα− γ) = 0 for all α ∈ Zn. This implies that

Suppκ ⊂
⋂

γ /∈tgZn

(Zn \ (tgZn − γ)) = Zn \
⋃

γ∈tgZn

(tgZn − γ) = tgZn.

Proof of Proposition 4.8. By Lemma 4.9, the support of the kernel κ must be
contained in the set tgZn. Therefore Suppκ ⊂ ⋂

g∈H
tgZn = {0}. Hence T must

be of the form in the statement of the proposition.

4.3 Maximal semigroup symmetry of Riesz transform for

Zn

The results obtained in this section are similar to the ones obtained for Tn, but
there is a new feature to take into account, see Fact 4.1 and Fact 4.2.

Definition 4.10. The Riesz transforms for Zn are defined by convolving with
the kernels Kj (1 ≤ j ≤ n),

Kj(α) =





Γ(n+1

2
)

π
n+1
2

αj

‖α‖n+1 (α 6= 0),

0 (α = 0).

i.e. the discrete version of the corresponding kernel for the Riesz transforms on
Rn, see Definition 1.2.
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For j = 1, this coincides with the Hilbert transform of Edwards and Gaudry,
see Section 4.1.

Proposition 4.11. The maximal semigroup symmetry of the Riesz transform
on Zn is given by (CO(n,Z), ρ), where

ρ : CO(n,Z) → GL(n,C), g 7→ | det g|(n+1)/n tg−1.

Proof. Obviously, (CO(n,Z), ρ) is a semigroup symmetry for κ = (K1, . . . ,Kn).
Thus the proposition follows directly from the following lemma.

Lemma 4.12. Let κ = (K1, . . . ,Kn) be the kernel of the Riesz transform.
Assume there exist A ∈ GLC(V ) and g ∈ Mreg(n,Z) such that

Aκ(α) = κ(tgα), for all α ∈ Zn

Then g ∈ CO(n,Z) and A = | det g|−(n+1)/n tg.

Proof. Since κ(α) = Cn
α

‖α‖n+1 , where Cn is a non-zero constant depending only

on the dimension n, Aκ(α) = κ(tgα) implies that

A
α

‖α‖n+1
=

tgα

‖tgα‖n+1
. (4.3.1)

For 1 ≤ i ≤ n, we denote by tgi the i-th column vector of tg. Applying the

equation (4.3.1) to α = ei, the i-th unit vector, we get Aei = (tg)i
‖(tg)i‖n+1 . For

n = 1 this is what we wanted to prove, so let n > 1. Then

A

(
ei + ej√

2

)
=

(
tgi

‖tgi‖n+1
+

tgj
‖tgj‖n+1

)
1√
2
,

whereas equation (4.3.1) with α = ei + ej gives

A

(
ei + ej√

2

)
=

(
√
2)n+1

√
2

tgi +
tgj

‖tgi + tgj‖n+1
.

Since g ∈ Mreg(n,Z), tgi and tgj are linearly independent. Comparing the
coefficients of tgi and

tgj in the two expressions, we obtain ‖tgi+tgj‖ =
√
2‖tgi‖ =√

2‖tgj‖. Then we have ‖tgi + tgj‖2 = ‖tgi‖2 + ‖tgj‖2, which implies (gi, gj) = 0.
Hence g ∈ CO(n,Z). Then | det g| = ‖gi‖n for all i. Since Aei = tgi/‖tgi‖n+1

(1 ≤ i ≤ n), we get A = | det g|−(n+1)/n tg.

Proof of Theorems A and B in the Zn case. The maximal semigroup symme-
try for the Riesz transform on Zn imposes the invariance condition on the
convolution kernel κ : Zn → V (see C3))

| det g|(n+1)/ntg−1κ(tgα) = κ(α)

for all α ∈ Zn and g ∈ CO(n,Z) by Proposition 4.11. This is equivalent to

κ(gα) = | det g|−(n+1)/ngκ(α) (4.3.2)
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for all α ∈ Zn and g ∈ CO(n,Z). By Lemma 3.7 with ν = −(n + 1)/n and
Proposition 3.8, any κ satisfying (4.3.2) must be a scalar multiple of the con-
volution kernel of the Riesz transform if n = 1, 2 or n ≡ 0 (mod 4). Hence
Theorem A for Zn is proved.
Suppose n > 2 and n 6≡ 0 (mod 4). By Lemma 3.17 with ν = −(n+1)/n and the
equivalence (i) ⇔ (iv) in Proposition 3.8, there exists infinitely many linearly
independent κ’s satisfying (4.3.2). Then the corresponding translation invariant
operators are linearly independent because the convolution kernel determines
uniquely the operators (to see this one may apply δγ ∈ l2(Zn)).

5 Saturated semigroup symmetry

For n > 2 and n 6≡ 0 (mod 4), we have seen in Theorem B that there are
infinitely, many linearly independent translation invariant operators that sat-
isfy the maximal semigroup symmetry of the Riesz transforms for Tn and Zn.
We may ask what are other invariance conditions that can single out the Riesz
transforms on Tn and Zn. In this section, we introduce a little more technical
condition (saturated semigroup symmetry) which characterizes the Riesz trans-
forms on Tn and Zn (up to scalar) for all dimensions n.

5.1 Characterization of the Riesz transform on Tn

We define the following set

Ξ := {(g, α) ∈ CO(n)× Zn : gα ∈ Zn}.

Let fα(x) := e2πi〈α,x〉 for α ∈ Zn. For any (g, α) ∈ Ξ, the function Ltgfα is
well-defined as a function on Tn by

(Ltgfα)(x) := e2πi〈α,
tgx〉 = e2πi〈gα,x〉.

We say that a bounded translation invariant operator T : L2(Tn) → Cn ⊗
L2(Tn) satisfies a saturated semigroup symmetry for Ξ if it satifies the identity

(Tfα)(0) = | det g|−1/ng(T (Ltgfα)(0)) (5.1.1)

for all pairs (g, α) ∈ Ξ.
We recall from Proposition 3.1 and Example 3.2 that the invariance condition
m(gα) = | det g|−1/ng(m(α)) extends to invariance under the set

Y := {(g, α) ∈ CO(n,Q)× Zn : gα ∈ Zn} .

We note Y ( Ξ. We shall characterize the Riesz transforms on Tn and Zn by
using the larger set Ξ.

Then the Riesz transform on Tn can be recovered from the saturated semi-
group symmetry for Ξ for any dimension n:
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Theorem 5.1. If T : L2(Tn) → Cn⊗L2(Tn) is a bounded translation invariant
operator satisfying the identity (5.1.1) for all pairs (g, α) ∈ Ξ. Then T = cR,
for some c ∈ C, where R = (R1, . . . , Rn) is the Riesz transform on Tn.

Proof. As in the proof of Proposition 2.2, the multiplier m : Zn → Cn for the
operator T satisfies

m(α) = | det g|−1/ngm(tgα).

The result then follows from Lemma 5.2 below.

Lemma 5.2. Fix ν ∈ R. If a function F : Zn → Cn satisfies the condition

F (gα) = | det g|νgF (α), for all pairs (g, α) ∈ Ξ,

then F is unique up to multiplication with a scalar.

Proof. Since for any α ∈ Zn there exists an element g ∈ CO(n) such that
(g, e1) ∈ Ξ and α = ge1 the proof follows in the same way as in the proof of
Lemma 3.7.

5.2 Characterization of the Riesz transform on Zn

In a similar way as in the previous subsection, the Riesz transform on Zn is
recovered from the saturated semigroup symmetry for Ξ for all dimension n:

Theorem 5.3. Let T : l2(Zn) → Cn⊗l2(Zn) be a bounded translation invariant
operator satisfying the identity

Ltg(Tδ0)(α) = | det g|−n−1

n g(Tδ0(α)), (5.2.1)

for all pairs (g, α) ∈ Ξ. Then T = cR for some c ∈ C, where R = (R1, . . . , Rn)
denotes the Riesz transform on Zn.

Proof. The condition (5.2.1) is equivalent to that of the corresponding kernel
κ : Zn → Cn of T, namely

κ(gα) = | det g|−n−1

n gκ(α). (5.2.2)

Then Lemma 5.2 implies that κ must be a constant multiple of the Riesz trans-
form on Zn.
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