
GLOBAL UNIQUENESS OF SMALL REPRESENTATIONS

TOSHIYUKI KOBAYASHI AND GORDAN SAVIN

Abstract. We prove that automorphic representations whose local components are certain
small representations have multiplicity one. The proof is based on the multiplicity-one
theorem for certain functionals of small representations, also proved in this paper.

1. Introduction

Let k be a field of characteristic 0. Let G be the group of k-points of a simply connected,
absolutely simple algebraic group defined over k, with the Lie algebra g. Let P = MN be
a maximal parabolic subgroup with abelian unipotent radical N such that P is conjugate
to the opposite parabolic subgroup P̄ = MN̄ by an element in G. In this case N and N̄
admit a structure of simple Jordan algebra J . The Jordan algebra structure sheds light on
the structure of M -orbits on N̄ . More precisely, we have a decomposition

N̄ =
r∐
j=0

Ωj

where Ωj is the set of elements of “rank j” and r the degree of J . A precise definition is given
in Section 4, but the reader is probably familiar with the following example. If G = Sp2r(k)
and P is the Siegel maximal parabolic subgroup, then N̄ can be identified with the space
of r × r symmetric matrices, and Ωj consist of all symmetric matrices of rank j. Over an
algebraically closed field, M acts transitively on every Ωj. Over a general field k, however,
the structure of M -orbits may be complicated.

If k is a local field, then N̄ can be identified with the Pontrjagin dual of N . In particular,
any x ∈ N̄ corresponds to a unitary character ψx : N → C×. Let ω ⊆ Ωj be an M -orbit
where j < r. We have an irreducible representation π of P on the Hilbert space H = L2(ω),
defined with respect to a quasi M -invariant measure on ω. The action of M on L2(ω) arises
from the geometric action of M on ω, while n ∈ N acts on f ∈ L2(ω) by

π(n)f(y) = ψy(n)f(y).

The small representations in the title of this work are unitary representations of G whose
restriction to P is isomorphic to (π, L2(ω)) for some ω. If G = Sp2r(k), then small repre-
sentations appear naturally in the stable range of theta correspondences, see [Ho]. For more
general G, we have works of [Sa], [HKM], [KM], for real groups, and works of [To] and [We]
for p-adic groups.
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Let H∞ be the space of G-smooth vectors in H = L2(ω). Since M acts transitively on ω,
elements in H∞ are represented by smooth functions on ω. In particular, we can evaluate
f ∈ H∞ at any point x ∈ ω. The functional

δx : H∞ → C, f 7→ f(x)

is continuous on H∞ and (N,ψx)-equivariant i.e. for all n ∈ N and f ∈ H∞

δx(π(n)f) = ψx(n)δx(f).

One may ask if any continuous and (N,ψx)-equivariant functional ` is a multiple of δx. We
show that this is indeed the case (Propositions 7.2 and 8.3), under a natural assumption
that g acts on H∞ by regular differential operators on ω if k is archimedean.

We now explain the key points of the proof. It is not too difficult to see that `(f) = 0 for
any function f vanishing in a neighborhood of x. If k is a p-adic field and f1(x) = f2(x), for a
pair of smooth functions, then the difference f1− f2 vanishes in a neighborhood of x. Hence
`(f1) = `(f2) and this implies that ` is a multiple of δx. However, if k = R, then f1(x) = f2(x),
for a pair of smooth functions, does not imply that f1 − f2 vanishes in a neighborhood of
x. Moreover, a priori, it is not clear that H∞ contains a single non-zero function vanishing
in a neighborhood of x. For example, K-finite elements in H are represented by analytic
functions on ω. In order to prove that ` is a multiple of δx we first prove that C∞c (ω), the
space of smooth compactly supported functions on ω, is contained in H∞ and then we reduce
the problem to some standard results in the theory of distributions. A key in proving that
C∞c (ω) ⊆ H∞ is the following analogue of the Sobolev lemma, a general result of independent
interest. Let (π,H) be any unitary representation of G. Let v ∈ H. It defines a continuous
functional on H∞, by the inner product on H. The enveloping algebra U(g) of g acts on
H∞ and hence we have a weak dπ−∞ action of U(g) on v. If, for all u ∈ U(g), dπ−∞(u)v
is in H, then v is G-smooth. We remind the reader that the classical Sobolev lemma states
that if all weak derivatives (i.e. derivatives in the sense of distributions) of f ∈ L2(R) are
contained in L2(R), then f is a smooth function. The analogy is obvious.

Next, following Howe [Ho], we define a notion of N -rank for smooth representations of
G. A smooth representation π has N -rank j if there exists a non-zero, continuous, (N,ψy)-
equivariant functional on π for some y ∈ Ωj, but there is no such functional for y in larger
orbits. In particular, the previous discussion can be summarized as follows. A small repre-
sentation has the N -rank j where j is the integer such that ω ⊆ Ωj and, for every y ∈ ω,
any (N,ψy)-equivariant functional is a multiple of δy. We use this information to show that
automorphic representations whose local components are small have multiplicity one. The
following is the main result of this paper. It is a combination of Theorems 9.4 and 10.1.

Theorem 1.1. Let A be the ring of adelés corresponding to an algebraic number field. Let
π = ⊗̂vπv be an automorphic representation of G(A) such that πv is a small representation
for every place v. Then the N-rank of πv is independent of v and π has multiplicity one in
the automorphic spectrum.

The paper is organized as follows. Sections 2 and 3 contain a precise description of groups
considered in this paper. Starting with a split group G, we define a structure of simple



GLOBAL UNIQUENESS OF SMALL REPRESENTATIONS 3

Jordan algebra J on N and N̄ . We show that there is a natural inclusion of groups

Aut(J) ↪→ Aut(G) = Aut(g).

Thus, any class c in H1(k,Aut(J)) defines a form J c of J and a form Gc of G, containing
a maximal parabolic subgroup P c whose nilpotent radical N c has a structure of the Jordan
algebra J c. This is the Kantor–Koecher–Tits construction [Ja], page 324, from the Galois
cohomology point of view. In Section 4 we discuss the Hasse principle for M -orbits on N .
Section 6 contains the analogue of the Sobolev lemma, described above. Sections 7 and 8
contain proofs of the uniqueness of (N,ψx)-equivariant functionals for x ∈ ω in the p-adic
and real cases, respectively. In Section 9 we define the notion of N -rank for representations
of G and prove that the local components of an automorphic representation have the same
N -rank. In Section 10 we prove the global multiplicity one statement. In particular, we prove
that the minimal representations appear in the automorphic spectrum with multiplicity one
(Corollary 10.2).

2. Jordan algebras

Let G be as in the introduction. The main purpose of this section is to explain the Jordan
structure on N and N̄ . We shall do this first for split groups. A more general case will be
treated in the next section using Galois descent.

So we assume that G is split throughout this section. Fix t ⊆ g, a maximal split Cartan
subalgebra. Let Φ be the root system for (g, t) and, for every α ∈ Φ, let gα ⊆ g be the
corresponding root space. Fix ∆ = {α1, . . . , αl}, a set of simple roots. Now every root can

be written as a sum α =
∑l

i=0mi(α)αi for some integers mi(α). Every simple root αj defines
a maximal parabolic subalgebra p ≡ pj = m + n where

m =t⊕ (
⊕

mj(α)=0

gα),

n =
⊕

mj(α)>0

gα.

Note that mder = [m,m] is a semi-simple Lie algebra which corresponds to the Dynkin
diagram of ∆ \ {αj}. Let β be the highest root. The algebra n is commutative if and only if
mj(β) = 1. Here is the list of all possible pairs (g,m) with n commutative and p conjugate
to the opposite parabolic by an element in G.

g Cn A2n−1 D2n E7 Bn+1 Dn+1

mder An−1 An−1 × An−1 A2n−1 E6 Bn Dn

dim n n(n+ 1)/2 n2 n(2n− 1) 27 2n+ 1 2n
r n n n 3 2 2
d 1 2 4 8 2n− 1 2n− 2

The meaning of the integer d will be explained later. The integer r is the cardinality of
any maximal set S = {β1, . . . , βr} of strongly orthogonal roots spanning n. (A root α is said
to span n if gα ⊆ n.) A set S can be constructed inductively as follows: β1 is the highest
root, β2 is the highest root amongst the roots spanning n and orthogonal to β1, etc. For
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every βi ∈ S take an sl2-triple (fi, hi, ei) where ei ∈ gβi and fi ∈ g−βi . We normalize the
Killing form κ(·, ·) on g by

κ(fi, ei) = 1

for all i. Each triple (fi, hi, ei) lifts to a homomorphism of algebraic groups

ϕi : SL2 → G.

By restricting ϕi to the torus of diagonal matrices in SL2 we obtain a homomorphism (a
co-character) χ∨i : Gm →M ,

(1) χ∨i (t) = ϕi

(
t 0
0 t−1

)
.

Let Tr ⊆ M be the torus generated by all χ∨i (t). Any element in Tr(k) is uniquely written
as a product of χ∨i (ti) for some ti ∈ k×. Let χ be a generator of the group of characters
Hom(M,Gm) ∼= Z. The kernel of χ is Mder, the derived group of M . From the root data it
is easy to check that (for one of the two choices of χ)

(2) χ(χ∨i (t)) = t.

Let

f =
r∑
i=1

fi, h =
r∑
i=1

hi and e =
r∑
i=1

ei.

Since the roots βi are strongly orthogonal, (f, h, e) is also an sl2-triple. The semi-simple
element h preserves the decomposition

g = n̄⊕m⊕ n.

More precisely, [h, x] = −2x for all x ∈ n̄, [h, x] = 0 for all x ∈ m, and [h, x] = 2x for all
x ∈ n. The triple (f, h, e) lifts to a homomorphism

ϕ : SL2 → G.

The element

w = ϕ

(
0 1
−1 0

)
normalizes M and conjugates n into n̄, and vice versa. Explicitly, the action of w on x ∈ n
is given by

w(x) =
1

2
[f, [f, x]].
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2.1. Jordan algebras. Using the sl2-triple (f, h, e) we can define a Jordan algebra structure
on J = n with multiplication ◦

(3) x ◦ y =
1

2
[x, [f, y]].

Note that e is the identity element. Similarly, we can define a Jordan algebra structure on
n̄ with the multiplication ◦

x ◦ y =
1

2
[x, [−e, y]].

In this case −f is the identity element. These two structures are isomorphic under the
conjugation by w. We shall now discuss this structure in more details, working with n.

The elements ei are mutually perpendicular (ei ◦ ej = 0 if i 6= j) and idempotent (ei ◦ ei =
ei) elements in J such that e1 + · · · + er = e. These idempotent elements give a Pierce
decomposition of J ,

J =
⊕

1≤i≤r

Jii ⊕
⊕

1≤i<j≤r

Jij

where

Jii = {x ∈ J | ei ◦ x = x}
and

Jij = {x ∈ J | ei ◦ x =
1

2
x and ej ◦ x =

1

2
x}.

The space Jii is one-dimensional and spanned by ei. The space Jij can also be described in
terms of the original root data. It is a span of gα such that

(4) 〈α, β∨i 〉 = 〈α, β∨j 〉 = 1 and 〈α, β∨l 〉 = 0 if l 6= i, j.

Since the Weyl group of M can be used to reorder the elements of S in any way (see [RRS]),
all Jij have the same dimension d, as in the table. With respect to the conjugation action of
M on N , χ∨i (t) acts on Jii by multiplication by t2, on Jij by multiplication by t, and trivially
on all other summands in the Pierce decomposition of J .

Proposition 2.1. Let κ be the Killing form on g, normalized so that κ(fi, ei) = 1 for all i.
For every pair of indices i 6= j let Qij be a quadratic form on Jij defined by

Qij(x) =
1

2
κ([fi, x], [fj, x]]).

Then, for every x ∈ Jij,
x ◦ x = Qij(x)(ei + ej).

The quadratic form Qij is non-degenerate and split, that is, it contains a direct sum of [d/2]
hyperbolic planes. Let

{x, y} = [x, [f, y]] = 2(x ◦ y)

denote the “Jordan bracket”. The quadratic forms Qij satisfy a composition property: Let
i, j, l be three distinct indices. For every x ∈ Jil and y ∈ Jij, so {x, y} ∈ Jjl,

Qjl({x ◦ y}) = Qil(x) ·Qij(y).
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Proof. We first show that {x, y}, for x, y ∈ Jij, is a multiple of ei + ej. Since Jij is a span of
gα satisfying (4), [fl, y] = 0 for all l 6= i, j. Hence

{x, y} = [x, [f, y]] = [x, [fi, y]] + [x, [fj, y]].

Exploiting (4) again, [x, [fi, y]] is contained in a sum of gα such that 〈α, β∨j 〉 = 2. But this
equation holds only for α = βj. Hence [x, [fi, y]] is a multiple of ej, while [x, [fj, y]] is a
multiple of ei. In order to determine the coefficient in front of ej we take the inner product
of [x, [fi, y]] and fj, with respect to the Killing form. By the invariance of the Killing form,
we have

κ(fj, [x, [fi, y]]) = κ([fi, x], [fj, y]]) = κ(fi, [x, [fj, y]]).

This proves that x ◦ x = Qij(x)(ei + ej), as claimed. We go on to describe the structure of
the quadratic form Qij. On the set of roots α spanning Jij we have an involution

α 7→ α∗ = βi + βj − α.

If α is fixed by the involution then 2α = βi + βj. This is only possible in the cases Cn and
Bn+1. In both cases there is only one fixed root, a short root. The complement of this line
(if there is such a line) is a sum of hyperbolic planes, gα ⊕ gα∗ for α 6= α∗. This completes
the proof of the first part of the proposition. The second part, the composition property of
quadratic forms Qij, follows from a beautiful but long computation that we omit. �

In order to describe the algebra J we need to review some facts from the theory of Jordan
algebras. A Jordan algebra J has degree r if any element x in J satisfies a generic minimal
polynomial

xr − ar−1x
r−1 + · · ·+ (−1)ra0 = 0

where ai ∈ k depend algebraically on x. The coefficients ar−1 and a0 are the trace TJ and
the norm NJ of x.

Let D be a composition algebra over k. It is a unital, not necessarily associative, algebra
with a non-degenerate quadratic form ND (the norm) such that ND(uv) = ND(u)ND(v).
The possible dimension of D are 1, 2, 4 or 8. There is a linear map u 7→ ū on D such that
uv = v̄ū and ND(u) = uū, for all u, v ∈ D. Let TD(u) = u + ū. It is a linear functional,
called the trace. We shall consider the following three families of Jordan algebras in this
paper.

Special Jordan algebras. Assume that D is associative, i.e. dimD 6= 8. Let Hr(D) be the
set of hermitian-symmetric r × r matrices x with entries in D, i.e. any element in Hr(D) is
equal to its transpose-conjugate, where by conjugation we mean applying the map u 7→ ū to
all entries. If dimD 6= 8, then Hr(D) is a Jordan algebra with respect to the operation

x ◦ y =
1

2
(xy + yx)

where xy and yx are the usual multiplication of r× r matrices. The norm NJ is the reduced
determinant.
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Exceptional Jordan algebras (r = 3). Assume that dimD = 8. Then H3(D) is a Jordan
algebra only for r = 3. The norm NJ of

x =

a u w̄
ū b v
w v̄ c


is

NJ(x) = abc− aND(v)− bND(w)− cND(u) + TD(vwu).

Quadratic Jordan algebras (r = 2). Let (V,Q) be a non-degenerate quadratic space ever k,
where V is a vector space and Q is a non-degenerate quadratic form on V . Let

J2(V ) = J2(V,Q) = ke1 ⊕ ke2 ⊕ V.

In particular, an element in J2(V ) is a triple (a, b, v) where a, b ∈ k and v ∈ V . The Jordan
square in J2(V ) is defined by

(a, b, v) ◦ (a, b, v) = (a2 +Q(v), b2 +Q(v), av + bv).

Then e1 and e2 are orthogonal idempotents such that e = e1 + e2 is the identity in J2(V ).
The norm NJ is

NJ(a, b, v) = ab+Q(v).

Proposition 2.2. If the type of G is A2n−1, D2n or E7, and r ≥ 3, then J is isomorphic
to Hr(D) where D is a split composition algebra of dimension d = 2, 4 or 8, respectively. If
the type of G is Dn+1 or Bn+1, the cases when r = 2, then J is isomorphic to J2(V ) where
V = J12 with the quadratic form Q12.

Proof. If the type of G is A2n−1, D2n or E7, then the forms Qij are isotropic. In particular,
for every i = 2, · · · , r, there exists u1i ∈ J1i such that Q1i(u1i) = 1. Let uij = {u1i, u1j}.
Then, by Proposition 2.1, Qij(uij) = 1. Hence uij ◦uij = ei+ej for all pairs i 6= j. We define
a product · on J12 by

x · y = {{x, u23}, {y, u13}}.
The composition property of quadratic forms Qij, as in Proposition 2.1, implies that

Q12(x · y) = Q12(x)Q12(y)

making J12 a composition algebra D, with the identity 1D = u12. Let Eij denote the
elementary r × r matrix, all entries 0 except (i, j) where the entry is 1. By Jacobson’s

coordinatization theorem [MC, page 101], there is an isomorphism J
∼→ Hr(D) defined by

ei 7→ Eii, uij 7→ Eij + Eji, and v 7→ vE12 + v̄E21, v ∈ D.

In the last two cases, Dn+1 and Bn+1, the algebra J is obviously isomorphic to J2(J12). �

The conditions of Jacobson’s coordinatization theorem can be always satisfied by picking
fi, i = 2, . . . , r, suitably. Indeed, rescaling fi amounts to rescaling Q1i. In particular, we can
easily arrange that all Q1i represent 1. For example, if G = Sp2n(k), then we can arrange
J ∼= Hn(k). We fix, henceforth, the identification of J with Hr(D) or J2(V ).
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3. Kantor–Koecher–Tits construction

We continue with the assumptions and notations from the previous section. In particular,
g is split. Recall that we have an isomorphism of n and n̄, preserving the Jordan algebra
structure J , given by

n→ n̄, x 7→ w(x) =
1

2
[f, [f, x]].

Let C be the centralizer of the triple (f, h, e) in Aut(g). Note that C acts naturally on
both n and n̄, preserving the Jordan algebra structure J . In this way we have a natural
homomorphism

ι : C → Aut(J).

Proposition 3.1. The map ι is an isomorphism of the centralizer C in Aut(g) of the sl2-
triple (f, h, e) and Aut(J), the automorphism group of J .

Proof. The proof is based on the following two lemmas.

Lemma 3.2. We have [n, n̄] = m.

Proof. Since h = [e, f ] and h spans a complement of mder in m, it remains to show that
mder ⊆ [n, n̄]. The algebra mder is spanned by the sl2-triples (fα, hα, eα), where α is a root in
m. Now observe that any root α in m is a sum of a root γ in n and a root γ̄ in n̄. Hence eα
and fα, non-zero multiples of [eγ, eγ̄] and [fγ, fγ̄] respectively, are contained in [n, n̄]. Since
hα is a linear combination of hγ and hγ̄, it is also contained in [n, n̄]. �

If c ∈ C is in the kernel of ι then c acts trivially on n and n̄. Since c is an automorphism
of g, it also acts trivially on [n, n̄] = m. Hence c = 1 and ι is injective. We now go on to
prove surjectivity of ι. Let g ∈ Aut(J). It acts naturally on n and on n̄. The two actions are
related by the isomorphism w, that is, g(w(x)) = w(gx) for every x ∈ n. We shall see that
this action extends, uniquely, to an automorphism of g fixing the triple (f, h, e). Uniqueness
is clear. Indeed, by Lemma 3.2, any element in m is a equal to a sum

∑
[x,w(y)], where

x, y ∈ n, hence g must act on it by

(5) g([x,w(y)]) =
∑

[gx, w(gy)]

in order to preserve the Lie algebra structure on g. However, it is not clear that this defines
an action of g on m since an element in m can be written as a sum of the brackets in more
than one way. To address this issue we need the following beautiful lemma that expresses
the Lie bracket [m, n] in terms of the Jordan algebra structure.

Lemma 3.3. Let x, y, z ∈ n. Then

[[x,w(y)], z] = 2((x ◦ z) ◦ y − (z ◦ y) ◦ x− (x ◦ y) ◦ z)

where the left-hand side is computed using the Lie bracket, while the right-hand side is com-
puted using the Jordan multiplication ◦ on n.

Proof. This follows by substituting w(y) = 1
2
[f, [f, y]], using the Jacobi identity, and the

definition of the Jordan multiplication ◦ on n. �
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If
∑

[x,w(y)] =
∑

[u,w(v)] ∈ m then∑
[[x,w(y)], z] =

∑
[[u,w(v)], z] ∈ n

for all z ∈ n. Acting by g on both sides of this equation, applying the second lemma, and
using that g is an automorphism of J , we have∑

[[gx, w(gy)], gz] =
∑

[[gu, w(gv)], gz]

for all z ∈ n. Since m acts faithfully on n, it follows that
∑

[gx, w(gy)] =
∑

[gu, w(gv)].
Hence the action of g on m given by the equation (5) is well-defined.

Lemma 3.3 (and an analogue of this lemma for the bracket [m, n̄]) imply that g, acting on
g, preserves the Lie bracket. Since g fixes e and f , it fixes h = [e, f ]. Thus g is in C. This
proves that ι is surjective.

�

Thus we have a natural map

H1(k,Aut(J))→ H1(k,Aut(g)).

In particular, a class c in H1(k,Aut(J)) gives a form J c of J , a form gc of g, and a form Gc

of G. Since c fixes the triple (f, h, e), the triple is contained in gc and w in Gc. The adjoint
action of h on gc gives a decomposition

gc = n̄c ⊕mc ⊕ nc

and nc, with the multiplication given by the equation (3), is the Jordan algebra J c. On the
level of Lie algebras, this is the Kantor–Koecher–Tits construction. Moreover, the group
Gc can be related to Koecher’s construction [Ko]. Koecher considers the group generated
by the birational transformations of J c: translations ty(x) = y + x, for every y ∈ J c, and
j(x) = −x−1. Note that N cwP c/P c is an open set in the Grassmannian Gc/P c. The natural
action of Gc on Gc/P c by left translations gives a group of birational transformations of N c

where the action of y ∈ N c on N c is by ty, while the action of w on N c is by j. In particular,
the group defined by Koecher is the adjoint quotient of Gc.

3.1. Our groups. In this paper we shall consider the groups Gc where the cocycle c arises
as follows: If J = Hr(D) then there is a natural map Aut(D)→ Aut(J). If J = J2(V ) then
there is a natural map Aut(V ) → Aut(J), where Aut(V ) is the group of automorphisms of
the quadratic space (V,Q). We shall assume that c lies in the image of H1(k,Aut(D)) or
H1(k,Aut(V )), respectively. In particular the resulting Jordan algebra J c is isomorphic to
Hr(D

c) or J2(V c), respectively. All triples (fi, hi, ei), i = 1, . . . , r, are contained in gc, and
the torus Tr is contained in Gc. The restricted root system with respect to Tr is of the type
Cr.

4. Hasse principle

Let G be constructed by means of a Jordan algebra J = Hr(D) or J2(V ), as in Section
3.1. Thus, D is any composition algebra and V any non-degenerate quadratic space over k.
In particular, we have a maximal parabolic subgroup P = MN such that N has a structure
of the Jordan algebra J . To be precise, n carries a Jordan algebra structure, however, n is
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canonically isomorphic to N , hence N carries the same Jordan algebra structure. Also, by
an abuse of notation, we shall view ei ∈ n as elements of N . A purpose of this section is
to prove a Hasse principle for M -orbits on N . As N and N̄ are conjugate by the element
w ∈ G preserving the Jordan structures and normalizing M , describing M -orbits on N is
equivalent to describing M -orbits on N̄ . For notational convenience we work with N . First,
we have the following (see [RRS] and [SW]):

Proposition 4.1. Assume that G is split. If the type of G is Cn, in addition, assume that k
is algebraically closed. Then every Mder-orbit on N contains precisely one of the following:
e1 + · · ·+ ej, for some j < r, or e1 + · · ·+ er−1 + aer, for some a ∈ k×.

In general, when G is not necessarily split but J = Hr(D) or J2(V ), then we have a
decomposition

N =
r∐
j=0

Ωj

where, for j < r, Ωj is the set of elements in N in the orbit of e1 + · · ·+ ej over the algebraic
closure. Informally speaking, Ωj consist of elements of rank j. For example, if J = Hr(D)
where D is an associative division algebra, then Ωj consists of all matrices of rank j.

In general, Ωj consists of possibly infinitely many M -orbits. We shall now work towards
a description of M -orbits. The adjoint action of the torus Tr on g and m gives rise to
(restricted) root systems of type Cr and Ar−1, respectively. Let {εi − εj | 1 ≤ i 6= j ≤ r}
be the standard realization of the root system Ar−1. Then, for every root εi − εj there is a
unipotent group

Xij ⊂Mder

isomorphic to D, if J = Hr(D), or to V , if J = J2(V ). We shall describe Xij on a case by
case basis.

J = Hr(D) and dimD 6= 8. In this case Mder = SLr(D). Let u ∈ D. Let xij(u) be an r × r
matrix with 1 on the diagonal, u as (i, j)-entry and 0 elsewhere. Then Xij is the set of all
xij(u). Note that xij(u) acts on x ∈ Hr(D) by

xij(u)xxji(ū).

J = H3(D) and dimD = 8. In this case Mder is the group of linear transformations of J

preserving the norm NJ . Let u ∈ D. Let xij(u) be a 3× 3 matrix with 1 on the diagonal, u
as (i, j)-entry and 0 elsewhere. Although D is not associative, it is still true that

(xij(u)x)xji(ū) = xij(u)(xxji(ū)),

for every x ∈ H3(D). The group Xij is the set of linear transformations of H3(D) defined by

x 7→ xij(u)xxji(ū).

J = J2(V,Q). In this case Mder = Spin(J) where J is considered a quadratic space with

respect to the norm NJ . Let B(u, v) be the symmetric bilinear form such that B(v, v) =
2Q(v). The group Xij consists of elements xij(u), u ∈ V , acting on J by

x12(u)(a, b, v) = (a, b+ aQ(u) +B(u, v), v + au)
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and
x21(u)(a, b, v) = (a+ bQ(u) +B(u, v), b, v + bu).

Now, using the action of Xij, it is a simple exercise to check that any Mder-orbit in J
contains

x = a1e1 + · · ·+ arer

for some a1, . . . , ar ∈ k. If ar = 0 then χ∨r (t), defined by the equation (1), stabilize x. Since
χ(χ∨r (t)) = t, where χ is the generator of Hom(M,Gm), it readily follows that the Mder-orbit
of x coincides with the M -orbit of x. Hence, M -orbits and Mder-orbits in Ωj coincide for all
j < r. This observation will prove useful in the proof of the following Hasse principle.

Theorem 4.2. Let k be a number field. Let x, y ∈ Ωj(k) where j < r. If x, y belong to the
same M(kv)-orbit for all places v of k, then x, y belong to the same M(k)-orbit.

Proof. We shall prove this statement for Mder(k). If G is split but not of the type Cn, then
there is nothing to prove, in view of Proposition 4.1. Now assume that J = Hr(D) where
D is an associative division algebra over k. In this case Mder(k) = SLr(D) and x, y can be
viewed as hermitian forms on Dr. If two k-rational hermitian forms are equivalent over kv,
for all places v, then they are equivalent over k. This is the classical weak local to global
principle, see Chapter 10 in [Sch]. Of course, the equivalence refers to the action of GLr(D),
however, for degenerate forms GLr(D)-equivalence is the same as SLr(D)-equivalence. Hence
the Hasse principle holds in this case.

We shall study the remaining cases using Galois cohomology. Let C be the stabilizer of
e1 in Mder, in the sense of algebraic groups. Then Mder(k)-orbits in Ω1(k) correspond to the
elements in the kernel of the morphism

H1(k, C)→ H1(k,Mder)

of pointed sets. Recall that N is an irreducible representation of Mder and e1 is the highest
weight vector of weight β. Hence the stabilizer in Mder of the line through e1 is a parabolic
subgroup LU such that the simple roots of the Levi factor L are the simple roots of Mder per-
pendicular to β. If the type of G is not Cn or A2n−1 then β is a fundamental weight for Mder.
Thus, in these cases, the stabilizer C of e1 is LderU . Since H1(k, LderU) = H1(k, Lder) (the
Galois cohomology of the unipotent group U is trivial) Mder(k)-orbits in Ω1(k) correspond
to the elements in the kernel of the morphism

H1(k, Lder)→ H1(k,Mder)

of pointed sets. Let S∞ be the set of archimedean places for k. Since Lder and Mder are
simply connected, the natural maps

H1(k, Lder)→
∏
v∈S∞

H1(kv, Lder)

and
H1(k,Mder)→

∏
v∈S∞

H1(kv,Mder)

are bijections. Thus, if G is not Cn or A2n−1, the Hasse principle holds for Ω1. In fact, we
have the following, more precise, information.
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• Mder(kv) acts transitively on Ω1(kv) if v is a p-adic place.
• the number of Mder(k)-orbits in Ω1(k) is equal to the product of the number of
Mder(kv)-orbits in Ω1(kv) over all archimedean places v.

Finally, the case of Ω2 for H3(D), where dimD = 8. The stabilizer in Mder of e1 + e2 is a
connected group whose Levi factor is a simple, simply-connected group of type B4, see [CC].
Hence the Hasse principle applies in this case, as well. �

Corollary 4.3. Assume that k is a p-adic field. Then M(k) acts transitively on Ω1(k) unless
G has type Cn or A2n−1. In these two cases, when J = Hn(D) and dimD = 1 or 2, then the
orbits are parameterized by k×/ND(D×).

Proof. Indeed, by the first bullet above, there is one orbit unless G has type Cn or A2n−1.
In these two cases, by looking at the explicit action of SLn(D) on Ω1, t · e1 and u · e1 are in
the same orbit if and only if t/u ∈ ND(D×). �

5. Some preliminaries

Let H be an algebraic group defined over R. We shall write H in place of H(R). We
assume that H is unimodular and fix an invariant Haar measure throughout this section.
Take a faithful algebraic representation ρ : H → SLd(R). Then any g ∈ H is represented by
a d× d-matrix (xij). We set

||g|| :=
∑
ij

|xij|2.

A complex function f on H is called of moderate growth if there exists an integer a such that
|f(g)| · ||g||a is a bounded function on H. On the other hand, a complex function f on H is
called rapidly decreasing if, for every integer a, |f(g)| · ||g||a is a bounded function on H.

Let h be the Lie algebra of H. Every element u in U(h), the enveloping algebra of h,
defines a left H-invariant differential operator acting on smooth functions. Let u · f denote
this action, where f is a smooth function on H. The Schwartz space S(H) is the space of
smooth functions f on H such that u · f is rapidly decreasing for all u ∈ U(h).

5.1. Fréchet spaces. A Fréchet vector space over C is a complete locally convex vector
space V equipped with a countable family of semi-norms | · |i, i ∈ N. The space V is
metrizable, namely, it is homeomorphic to a complete metric space, e.g. with respect to the
metric defined by

d(x, y) =
∞∑
i=1

1

2i
· |x− y|i

1 + |x− y|i
.

Now it is not to difficult to see that a sequence (xi) in V is Cauchy if and only it is so for
every semi-norm.

For a representation π of H on a Fréchet space, we shall always assume the following. For
every v ∈ V the map G→ V , g 7→ π(g)v is continuous. For every v ∈ V and any semi-norm
| · |i the function g 7→ |π(g)v|i is of moderate growth.

A prominent example arises as follows. Let π be a unitary representation of H on a Hilbert
space H, with the invariant product (·, ·)H, and the corresponding norm || · ||. Let H∞ be the
space of all smooth vectors in H. A vector v of V is smooth if the map G→ V , g 7→ π(g)v
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is smooth, or equivalently, for every w ∈ H, g 7→ (π(g)v, w)H is a smooth function. Then
H∞ is a Fréchet space with respect to a family of the semi-norms

|v|u = ||dπ(u)v||

for every u ∈ U(h), the enveloping algebra of h.

5.2. Integration. Let π be a representation of H on a Fréchet space V . Then for every
continuous, rapidly decreasing function α on H we define an operator

π(α) : V → V

by

π(α)v =

∫
H

α(x)π(x)v dx.

For our working purposes, π(α)v can be defined as the limit, in V , of a sequence of finite
sums, as follows. For every a ∈ N, one can take a sequence of finite sets Xa ⊂ H, and for
every x ∈ Xa a measurable set Sax containing x such that ‖g−1

1 g2‖ ≤ 2−a for any g1, g2 ∈ Sax
and such that for every continuous, rapidly decreasing function α the sequence∑

x∈Xa

µxα(x)

converges to the integral
∫
H
α(x)dx where µx ≡ µax =

∫
Sa
x
dx (<∞). Then, for every v ∈ V ,

π(α)v is defined as the limit of the sequence

va =
∑
x∈Xa

µxα(x)π(x)v.

For the sake of completeness, we make this precise in the case H = R, essentially the
only case that we shall use in this paper. For every a ∈ N, we take xi = 2−ai − 2a−1

(0 ≤ i ≤ 4a) and divide the interval [−2a−1, 2a−1] into subintervals [xi, xi+1] of lengths 1/2a.
Let Xa = {x1, . . . x4a} and Saxi = [xi, xi+1].

Lemma 5.1. For every v ∈ V , the sequence

va =
1

2a

4a∑
i=1

α(xi)π(xi)v, a ∈ N,

is Cauchy with respect to any semi-norm | · | defining the topology of V .

Proof. Let A > 0 and, for every a, write va = v<Aa + v≥Aa where v<Aa is the sum over xi
such that ‖xi‖ < A. Since α(x) is rapidly decreasing and |π(x)v| is of moderate growth,
|α(x)π(x)v| is rapidly decreasing. Therefore, given ε > 0, one can take A large enough so
that |v≥Aa | < ε/3 for all a. Using the continuity of π, one shows that

|v<Aa − v<Ab | < ε/3

for any a, b large enough. Thus |va − vb| < ε for all a, b large enough. �
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Proposition 5.2. Let χ : H → C× be a unitary character of H, and ` : V → C a continuous
functional such that `(π(g)v) = χ(g)`(v) for all choices of data. Then, for every α ∈ S(H)
and every v ∈ V ,

`(π(α)v) = `(v)α̂(χ)

where α̂(χ) :=
∫
H
α(x)χ(x) dx.

Proof. Write π(α)v as the limit of va =
∑

x∈Xa
µxα(x)π(x)v as a tends to infinity. Since ` is

assumed to be continuous,

`(π(α)v) = `( lim
a→∞

va) = lim
a→∞

∑
x∈Xa

µxα(x)`(π(x)v) =

= lim
a→∞

∑
x∈Xa

µxα(x)χ(x)`(v) = `(v)

∫
H

α(x)χ(x) dx = `(v)α̂(x).

�

5.3. p-adic case. Assume now that k is a p-adic field. In this case S(H) is the space of
locally constant, compactly supported functions on H. If (π, V ) is a smooth representation
of H, then the operator π(α) is defined by

π(α)v =

∫
H

α(x)π(x)v dx

where, in this case, the right-hand side is a finite sum. In particular, the analogue of
Proposition 5.2 trivially holds true.

5.4. Fourier Transform. Assume now that k is a local field. LetN be the abelian unipotent
radical of a maximal parabolic subgroup of G, as in Section 3. Let ψ be a unitary, non-trivial
character of k. The Killing form κ defines a pairing between N and N̄ by

(6) 〈n, x〉 = κ(log n, log x).

In particular, every x ∈ N̄ defines a unitary character of N by

ψx(n) = ψ(〈n, x〉).

Let S(N) be the space of Schwartz functions on N . In this situation, we have a Fourier
transform F : S(N)→ S(N̄) by

F(α)(x) = α̂(x) =

∫
N

α(n)ψx(n) dn

where dn is a Haar measure on N . It is well-known that the Fourier transform is a bijection
between the two Schwartz spaces S(N) and S(N̄). We shall need this fact.
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6. An analogue of the Sobolev lemma

Let π be a unitary representation of G on a Hilbert space H, and H∞ the space of smooth
vectors. Let H−∞ be the set of distribution vectors consisting of linear functional on the
Fréchet space H∞. We write

〈 , 〉 : H∞ ×H−∞ → C
for the natural bilinear map. Then the Lie algebra g acts on H−∞ as a contragredient
representation: for X ∈ g,

〈w, dπ−∞(X)v〉 := −〈dπ(X)w, v〉 for w ∈ H∞ and v ∈ H−∞.
We extend dπ−∞ to a C-algebra homomorphism U(g)→ EndC(H−∞).

Since H is a Hilbert space with inner product ( , )H, we may regard v ∈ H as a distribution
vector by

〈w, v〉 := (w, v)H for w ∈ H∞.
This yields an (anti-linear) embedding

(7) H ↪→ H−∞,
so that we have a Gelfand triple H∞ ⊂ H ⊂ H−∞.

In general, for v ∈ H and u ∈ U(g), dπ−∞(u)v is defined just as a distribution vector.
However, if dπ−∞(u)v belongs to the Hilbert space H which is identified as a subspace of
H−∞ by (7), we get a better regularity on v. Here is an analogue of the Sobolev lemma
which we need:

Proposition 6.1. Suppose v ∈ H satisfies

dπ−∞(u)v ∈ H for all u ∈ U(g).

Then v is a smooth vector.

This proposition is a consequence of iterated applications of the following lemma:

Lemma 6.2. Let X ∈ g. Suppose v ∈ H satisfies

dπ−∞(X)v ∈ H and dπ−∞(X2)v ∈ H.
Then limt→0

1
t
(π(etX)v − v) converges to dπ−∞(X)v in the topology of the Hilbert space H.

Proof. Take any w ∈ H∞, and we set

f(t) := (w, π(etX)v)H = (π(e−tX)w, v)H.

Since w is a smooth vector, f(t) is a C∞-function on R. By Taylor’s theorem there exists
0 < θ < 1 such that

f(t) = f(0) + tf ′(0) +
t2

2
f ′′(θt),

where

f(0) =(w, v)H,

f ′(0) =(−dπ(X)w, v)H = 〈w, dπ−∞(X)v〉,
f ′′(s) =(dπ(X)dπ(X)π(esX)w, v)H = 〈π(esX)w, dπ−∞(X2)v〉.
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Since dπ−∞(X)v ∈ H, we have f ′(0) = (w, dπ−∞(X)v)H. Since dπ−∞(X2)v ∈ H, and since
π is a unitary representation, the remainder term has an upper estimate

|f ′′(s)| ≤ ‖w‖H‖dπ−∞(X2)v‖H.
Thus we have ∣∣∣∣(w, π(etX)v − v

t
− dπ−∞(X)v)H

∣∣∣∣ ≤ |t|2 ‖w‖H‖dπ−∞(X2)v‖H.

Since H∞ is dense in H, the above estimate holds for all w ∈ H. Hence we have shown the
lemma. �

7. Small representations of p-adic groups

Assume that k is a p-adic field. Let G be a group defined over k, as in Section 3. In
particular, we have a maximal parabolic subgroup P = MN with abelian unipotent radical
N . Fix a non-trivial character ψ of k. Then every y ∈ N̄ defines a unitary character ψy
of N , ψy(n) = ψ(〈n, y〉), where 〈n, y〉 is the pairing between N and N̄ defined in (6). Fix
an M -orbit ω ⊆ N̄ . We shall consider M acting on ω from the left. Let dx be a quasi
M -invariant measure on ω. Let ν : M → C× be a smooth character such that

d(mx) = |ν(m)|−2dx.

On L2(ω) we have a unitary, irreducible, representation of P where m ∈ M and n ∈ N act
on f ∈ L2(ω) by, respectively,

π(m)f(y) = ν(m)f(m−1y)

and
π(n)f(y) = ψy(n)f(y).

Assume that π extends to a unitary representation of G. Let V be the space of G-smooth
elements in L2(ω). Let ` be a functional on V such that `(π(n)v) = ψx(n)`(v) for all choices
of data. The main goal of this section is to prove that ` = 0 if x does not belong to the
topological closure of ω and `(f) = λf(x), for some λ ∈ C, if x belongs to ω, see Proposition
7.2.

Lemma 7.1. Every M-smooth element in L2(ω) is represented, uniquely, by a locally con-
stant function on ω.

Proof. Let f be an M -smooth element, i.e. there exists an open compact subgroup K of M
fixing f , not as a function on ω, but in the L2-sense. Write

ω =
∐
i

ωi

where each ωi is an K-orbit. It is an open compact subset of ω. In particular, the restriction
of f to ωi is well-defined. Let fi be that restriction. Then

fi ∈ L2(ωi)
K .

Now recall that dimL2(ωi)
K = 1 by computing the trace of the projection operator, for

example. Hence L2(ωi)
K is spanned by the characteristic function of ωi, and fi is represented
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by a constant function on ωi. Therefore f is represented by a locally constant function. The
uniqueness is clear. �

Proposition 7.2. Let x ∈ N̄ . Let ` be a functional on V such that `(π(n)f) = ψx(n)`(f)
for all choices of data.

• If x is not in the topological closure of ω then ` = 0.
• If x ∈ ω, then there exists λ ∈ C such that `(f) = λf(x) for all f .

Proof. Assume first that x is not in the topological closure of ω. Let Bx be an open neigh-
borhood of x in N̄ disjoint from the topological closure of ω. Let α ∈ S(N) be such that
α̂(x) = 1 and the support of α̂ is contained in Bx. Let f ∈ V . We shall now compute
`(π(α)f) in two ways. The first uses the explicit definition of π,

π(α)(f)(y) =

∫
N

α(n)π(n)(f)(y) dn =

∫
N

α(n)ψy(n)f(y) dn = α̂(y)f(y) = 0

since α̂(y) = 0 for all y ∈ ω. Hence `(π(α)f) = 0.
The second computation uses the formal property of `, as in Proposition 5.2,

`(π(α)f) = `(f)

∫
N

α(n)ψx(n) dn = `(f)α̂(x) = `(f).

Thus `(f) = 0 for all f ∈ V , by combining the two computations. This proves the first
bullet.

For the second, let Vx ⊆ V be the subspace of codimension one consisting of f such that
f(x) = 0. We need to show that `(f) = 0 for all f ∈ Vx. Fix f ∈ Vx. Let Bx be a
neighborhood of x in N̄ such that f vanishes on Bx ∩ ω. Let α be such that α̂(x) = 1 and
the support of α̂ is in Bx. With this modifications, the argument used in the proof of the
first bullet implies that `(f) = 0. The proposition is proved. �

8. Small representations of real groups

Let k = R, and fix a character ψ : R → C×, ψ(z) = e
√
−1z. Then any y ∈ N̄ defines a

unitary character of N by

ψy(n) = e
√
−1〈n,y〉

where 〈n, y〉 is the pairing between N and N̄ defined in (6). Let dx be a quasi M -invariant
measure on ω. Let ν : M → C× be a smooth character such that

d(mx) = |ν(m)|−2dx.

Then, as in the p-adic case, we have an irreducible unitary representation (π,H) of P where
H = L2(ω) and m ∈M and n ∈ N act on f ∈ L2(ω) by, respectively,

π(m)(f)(y) = ν(m)f(m−1y)

and
π(n)(f)(y) = ψy(n)f(y).

Now assume that π extends to a unitary representation of G. In particular, we assume
that the G-invariant Hilbert space structure is given by the inner product (·, ·)H arising from
the L2-norm. Let H∞ be the Fréchet space of G-smooth vectors. Let ` be a continuous
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functional on H∞ such that `(π(n)v) = ψx(n)`(v) for all choices of data. The main goal
of this section is to prove Proposition 8.3 asserting that ` = 0 if x does not belong to the
topological closure of ω and `(f) = λf(x), for some λ ∈ C, if x belongs to ω, under the
following, natural, assumption on π.

A regular differential operator D on ω is called anti-symmetric if, for any ϕ ∈ C∞c (ω) and
f ∈ C∞(ω), ∫

ω

Dϕ · f̄ = −
∫
ω

ϕ ·Df.

Since M acts transitively on ω, M -smooth elements inH are represented by smooth functions
on ω, see [Po]. In particular, all elements in H∞ are represented by smooth functions on
ω. We assume that g acts on H∞ by anti-symmetric regular differential operators, that is,
for every X ∈ g there exists an anti-symmetric regular differential operator DX such that
dπ(X)f = DXf for all f ∈ H∞.

Lemma 8.1. With the above assumptions, C∞c (ω) ⊆ H∞.

Proof. Let 〈·, ·〉 be the natural pairing between H∞ and H−∞. Let ϕ ∈ C∞c (ω). Then ϕ is
viewed as an element in H−∞ by

〈f, ϕ〉 := (f, ϕ)H

for all f ∈ H∞. For every X ∈ g, let dπ−∞(X)ϕ ∈ H−∞ be the weak derivative of ϕ ∈ H−∞,
that is,

〈f, dπ−∞(X)ϕ〉 := −(dπ(X)f, ϕ)H

for all f ∈ H∞. Since, by the assumption, dπ(X)f = DXf for an anti-symmetric regular
differential operator DX , we have

〈f, dπ−∞(X)ϕ〉 = (f,DXϕ)H.

It follows that all weak derivatives of ϕ are contained in H. Hence ϕ ∈ H∞, by Proposition
6.1.

�

Lemma 8.2. For every f ∈ L2(ω) and α ∈ S(N), π(α)(f) = α̂f , the point-wise product of
α̂ and f .

Proof. Recall, from Section 5, that π(α)f is defined as a limit, in L2(ω), of the sequence of
finite sums

fa =
∑
x∈Xa

µxα(x)π(x)f

where
∑

x∈Xa
µxβ(x) converges to

∫
N
β for every continuous, rapidly decreasing function β

on N . In particular, for every y, the sequence

fa(y) =
∑
x∈Xa

µxα(x)π(x)(f)(y) =
∑
x∈Xa

µxα(x)ψy(x)f(y)

converges to α̂(y)f(y). Thus the sequence of functions fa converges pointwisely to α̂f . In
order to show that fa converges to α̂f in the L2-norm we shall apply Lebesgue’s dominated
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convergence theorem. Using the triangle inequality and |ψx(n)| = 1,

|fa(y)| ≤ (
∑
x∈Xa

µx|α(x)|) · |f(y)|.

Since (
∑

x∈Xa
µx|α(x)|) converges to C =

∫
N
|α(x)|dx, it follows that |fa(y)| ≤ (C + 1)|f(y)|

for almost all a. Since |α̂(y)| ≤ C we also have |(α̂f)(y)| ≤ C|f(y)|. Hence

|(fa − α̂f)(y)|2 ≤ (2C + 1)2|f(y)|2.
Thus, by Lebesgue’s dominated convergence theorem, we can exchange the limit and inte-
gration in the following.

lim
a→∞

∫
ω

|fa − α̂f |2 =

∫
ω

lim
a→∞
|fa − α̂f |2 = 0.

�

Proposition 8.3. Assume that for every X ∈ g there exists an anti-symmetric regular
differential operator DX such that dπ(X)f = DXf for all f ∈ H∞. Let x ∈ N̄ . Let ` be a
continuous functional on H∞ such that `(π(n)f) = ψx(n)`(f) for all choices of data.

• If x is not in the topological closure of ω, then ` = 0.
• If x ∈ ω, then there exists λ ∈ C such that `(f) = λf(x) for all f ∈ H∞.

Proof. Assume that x is not in the topological closure of ω. Let Bx be an open neighborhood
of x in N̄ disjoint from the topological closure of ω. Let α ∈ S(N) be such that α̂(x) = 1
and the support of α̂ is contained in Bx. Then π(α)(f) = 0, for all f , by Lemma 8.2. On
the other hand, by Proposition 5.2,

`(π(α)f) = α̂(x)`(f) = `(f).

Combining the two gives `(f) = 0 for all f . This proves the first bullet.
For the second bullet, note that the same argument proves that `(f) = 0 for any function

f ∈ H∞ that vanishes in an open neighborhood of x. Let d be the dimension of ω. Since ω
is a homogeneous space for M , it is a smooth manifold. Hence we can take v1, . . . , vd ∈ N
giving a local chart around x. More precisely, every y ∈ ω close to x is identified with a
d-tuple of real numbers yi = 〈vi, y〉, i = 1, . . . , d. In particular, x is identified with the
d-tuple of real numbers xi = 〈vi, x〉. Let Ox be an open neighborhood of x in ω, identified
with

I = {(y1, . . . , yd) ∈ Rd | |yi − xi| < ε}
for some ε > 0. Since H∞ contains C∞c (ω), by Lemma 8.1, every f ∈ H∞ can be written as
f = f1 + f2 where f1 vanishes in a neighborhood of x and f2 has support contained in Ox.
Since `(f1) = 0, it remains to understand the restriction of ` to functions supported in Ox.

Let f ∈ C∞c (I) and fa ∈ C∞c (I), a ∈ N, a sequence of functions supported in a compact
set C ⊂ I, such

lim
a→∞

sup
y∈I
|Dfa(y)−Df(y)| = 0

for all partial derivatives D in the variables yi. Using the identification C∞c (I) ∼= C∞c (Ox),
consider f and fa as elements in H∞. Then, since g acts as regular differential operators,
the sequence fa converges to f in the topology of H∞. Hence, lima→∞ `(fa) = `(f). It
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follows that ` defines a distribution on C∞c (I) supported at 0. By the structural theory of
distributions, every such distribution is a finite linear combination of partial derivatives of
the delta function δx.

Let Xi = log(vi) ∈ n and y ∈ N̄ . Using the definition of the pairing 〈·, ·〉 in (6), we have

〈etXi , y〉 = κ(tXi, log y) = t · κ(Xi, log y) = t〈vi, y〉 = tyi.

Thus

ψy(e
tXi) = e

√
−1tyi .

By the equivariance of `, for every t ∈ R,

`(π(etXi)f) = ψx(e
tXi) · `(f) = e

√
−1txi · `(f).

Since ` is a continuous functional, we can pass to the action dπ of the Lie algebra, that is,
we can differentiate with respect to t. This gives

(8) `(dπ(Xi)f) =
√
−1xi · `(f).

On the other hand,

π(etXi)(f)(y) = ψy(e
tXi)f(y) = e

√
−1tyif(y).

By passing to the action of dπ,

dπ(Xi)(f)(y) =
√
−1yi · f(y).

Substituting into (8) yields `((yi − xi)f) = 0. Hence `(P · f) = 0 for all f ∈ C∞c (I) and all
polynomials P in yi vanishing at x. This implies that ` is a scalar multiple of δx, as claimed.

�

9. N-rank

Let Ωj be the set of elements in N̄ of rank j as defined in Section 4. Note that Ωj is not
empty by our assumption on the Jordan algebra. Over a local field, the topological closure
of Ωj is the union of Ωi with i ≤ j.

9.1. Local rank. Assume that k is a local field. We shall define a notion of N -rank for
any smooth representation (π, V ) of N . Recall that, if k is archimedean, (π, V ) is smooth
representation on a Fréchet space. In this case V ∗ is the space of continuous functionals on
V . If k is p-adic, V ∗ is the space of all functionals on V . Let x ∈ N̄ . Recall that every x
defines a unitary character ψx of N . Let (V ∗)N,ψx be the subspace of V ∗ consisting of all `
such that

`(π(n)v) = ψx(n)`(v)

for all choices of data.

Definition 9.1. Let (π, V ) be a smooth representation of N . The largest integer j such that
(V ∗)N,ψx 6= {0}, for some x ∈ Ωj, is called the local N-rank of V . Let ω be an M(k)-orbit
in Ωj. Suppose that the local rank of V is j. We say V has pure rank j relative to ω, if
(V ∗)N,ψx = {0} for all x ∈ Ωj \ ω.
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Proposition 9.2. Assume that the rank of a smooth representation V of N is larger than
j. Then there exists α ∈ S(N) such that the support of α̂ is disjoint from the topological
closure of Ωj and π(α) 6= 0.

Proof. By the assumption, there exists x ∈ N̄ , not contained in the topological closure of Ωj,
and a non-zero, continuous functional ` on V such that `(π(n)v) = ψx(n)`(v), for all choices
of data. Take v ∈ V such that `(v) 6= 0. Clearly, we can take α ∈ S(N) such that α̂(x) = 1
and the support of α̂ is disjoint from the topological closure of Ωj. Then by Proposition 5.2

`(π(α)v) = α̂(x)`(v) = `(v) 6= 0.

�

9.2. Automorphic representations. Assume that k is a number field. Let k∞ = k ⊗ R,
and k̂ be the completion of k with respect to all discrete valuations on k. Then A = k∞ × k̂
is the ring of adelés corresponding to k. Let g be the Lie algebra of G(k∞), and U(g) the
corresponding enveloping algebra.

Let A be the space of functions f on G(A) such that

(1) f is left G(k)-invariant.

(2) f is right Kf -invariant, where Kf is an open compact subgroup of G(k̂), depending
on f .

(3) For every ĝ ∈ G(k̂), g∞ 7→ f(g∞, ĝ) is a smooth function. In particular, U(g) acts on
f from the right by left invariant regular differential operators.

(4) The condition (3) assures that u ∈ U(g) acts on f , f 7→ u · f , by a left invariant
regular differential operator. We assume that f is annihilated by an ideal I of finite
index in Z(g), the center of U(g).

(5) f is of uniform moderate growth. This means that there exists an integer d such that
for all u ∈ U(g), the function |u · f(g)| · ||g||d is bounded on G(k∞).

Our definition of moderate growth appears to be slightly different from the one in the
literature, where it is usually required that g∞ 7→ f(g∞, ĝ) has moderate growth on G(k∞)

for every ĝ ∈ G(k̂). However, since G is simply connected, G(k̂) = G(k)Kf by the strong
approximation. Now it is easy to see that the two definitions are equivalent. Moreover, f
can be viewed as a function on Γ\G(k∞) where Γ = G(k) ∩G(k∞) ·Kf

Fix K̂, an open compact subgroup of G(k̂), I and d. Let A(K̂, I, d) be the subspace of A
consisting of f right invariant by K̂, annihilated by I and of moderate growth controlled by
d as above. On A(K̂, I, d) we have a family of semi-norms

sup
g∈G(k∞)

|u · f(g)| · ||g||d,

one for every u ∈ U(g). Then A(K̂, I, d) is a Fréchet space with a smooth G(k∞)-action.
The underlying (g, K∞)-module consists of modular forms. It is of finite length, by an old
result of Harish-Chandra.

The group G(A) acts on A by right translations. We shall denote this action by R. An
irreducible automorphic representation is a subspace π ⊆ A invariant under the action of
G(A) and satisfying the following additional conditions. There is a smooth representation
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π∞ of G(k∞) on a Fréchet space, a smooth representation π̂ of G(k̂), and a G(A)-intertwining
isomorphism

T : π∞ ⊗ π̂ → π ⊂ A.
Moreover, for every open compact subgroup K̂ of G(k̂), the map T is continuous G(k∞)-

intertwining map from π∞ ⊗ π̂K̂ to A(K̂, I, d), for some d and I. (Note that the Fréchet

topology on π∞ induces a canonical one on π∞⊗ π̂K̂ since π̂K̂ is finite dimensional.) Finally,
we remark that π̂ is a restricted direct product ⊗̂πv of smooth irreducible representations πv
of G(kv) for every finite place v.

9.3. Global rank. Let π an irreducible automorphic representation. Fix a character ψ :
k\A → C×. For x ∈ N̄(k), we define ψx : N(k)\N(A) → C× by ψx(n) = ψ(〈n, x〉). Then
f ∈ π admits a Fourier expansion

f(g) =
∑

x∈N̄(k)

fx(g)

where

fx(g) =

∫
N(k)\N(A)

f(ng)ψ̄x(n)dn.

The functional

`x : π → C
defined by `x(f) = fx(1) for all f ∈ π satisfies

`x(R(n)f) = ψx(n)`x(f)

for all n ∈ N(A) and f ∈ π. It is useful to note, and easy to check, that `x = 0 implies
`y = 0 for all y in the M(k)-orbit of x.

Definition 9.3. Let π be an irreducible automorphic representation. The largest integer j
such that `x 6= 0 for some x ∈ Ωj is called the global N-rank of π. Let ω be an M(k)-orbit in
Ωj. Suppose that the global rank of π is j. We say π has pure rank j relative to ω, if `x = 0
for all x ∈ Ωj \ ω.

Theorem 9.4. Let π be an irreducible automorphic representation. If the global N-rank of
π is j then, for any place v, the local component πv of π has the local N-rank j.

Proof. We fix an isomorphism T of π with π∞ ⊗ π̂. We shall prove that π∞ has rank j.
The proof of the statement for the components of π̂ is similar and easier, since there are no
topological considerations. We leave this out as an exercise. Let x ∈ Ωj such that fx(1) 6= 0

for some f ∈ π. Let K̂ be an open compact subgroup in G(k̂) such that f is left invariant

under K̂. Then f lies in the image of π∞⊗ π̂K̂ . The map f 7→ fx(1) is clearly continuous in

the topology of A(K̂, I, d). Hence, by composing it with T , it gives a continuous, non-zero,

functional on π∞ ⊗ π̂K̂ , a finite multiple of π∞. Hence the local N -rank of π∞ is greater or
equal to j.
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It remains to show that the rank of π∞ is not greater than j. By Proposition 9.2, it suffices
to show that π∞(α) = 0 for any α ∈ S(N∞) such that the Fourier transform α̂ is supported
on elements of rank > j. By using the intertwining map T , it suffices to prove that

R(α)(f) = 0

for all f ∈ T (π∞ ⊗ πK̂), for some K̂, where R denotes the representation of G(k∞) on

A(K̂, I, d), acting by right translations.

Lemma 9.5. Let f ∈ A(K̂, I, d), and α ∈ S(N∞). Then

R(α)(f)(g) =

∫
N

f(gn)α(n)dn.

Proof. Recall that the operator R(α)(f) is defined as a limit, in the Fréchet topology on

A(K̂, I, d), of a sequence of functions fa, a ∈ N,

fa(g) =
∑
n∈Xa

µnf(gn)α(n)

where, Xa are finite sets in N∞ and µn positive real numbers such that for every continuous,
rapidly decreasing function β on N∞, the sequence

∑
n∈Xa

µnβ(n) converges to the integral
of β.

The topology of A(K̂, I, d) is given by sup-norms, hence the convergence of fa implies the
convergence of fa(g) for every g ∈ G(A). Since, for every g, the function n 7→ f(gn)α(n) is
rapidly decreasing on N∞, the sequence fa(g) converges to the integral of f(gn)α(n). This
proves the lemma.

�

Since R(α)(f) is smooth function on G(k)\G(A) and G(k) is dense in G(k∞) (see Propo-

sition 7.11 in [PR]), it suffices to prove that R(α)(f) = 0 on G(k̂). Let ĝ ∈ G(k̂). Firstly,
we expand R(α)(f)(ĝ) using the Fourier series:

R(α)f(ĝ) =
∑

x∈N̄(k)

(R(α)f)x(ĝ).

We shall now analyze each individual summand. Using the Fubini Theorem, one easily
justifies that

(R(α)f)x(ĝ) =

∫
N∞

α(n)fx(ĝn) dn.

Now observe that ĝ commutes with n ∈ N∞ and that fx(nĝ) = ψx(n)fx(ĝ). Hence∫
N∞

α(n)fx(ĝn) dn =

∫
N∞

α(n)ψx(n)fx(ĝ) dn = α̂(x)fx(ĝ).

The last term is clearly 0. Indeed, α̂(x) = 0 if the rank of x is > j and fx = 0 otherwise, by
the assumption on f . This proves the theorem. �
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10. Global uniqueness of small representations

Let G be as in Section 3.1, defined over a number field k. Let π be a smooth irreducible
representation of G(A). The multiplicity m(π) of π in A, the space of automorphic functions,
is defined as

m(π) = dim HomG(A)(π,A).

We are now ready to prove that automorphic representations whose local components
are small representations have multiplicity one. The proof is analogous to the proof of
multiplicity one for irreducible cuspidal automorphic representations of GLn (see [PS]), based
on uniqueness of Whittaker functionals, which we briefly sketch. Let A0 ⊆ A be the subspace
of cuspidal automorphic forms for GLn and let T1 and T2 be two non-zero elements in
HomGLn(A)(π,A). The uniqueness of local Whittaker functionals can be exploited to show
that there exists non-zero complex numbers c1 and c2 such that (c1T1 + c2T2)(π) is not
generic, i.e. has no global Whittaker functional. Since any non-zero cuspidal representation
of GLn(A) is generic, it follows that c1T1 + c2T2 = 0.

Theorem 10.1. Let π = ⊗̂πv be a smooth irreducible representation of G(A). For every
place v, assume that the representation πv has the N-rank j < r, pure relative to a single
M(kv)-orbit ωv in Ωj(kv), and

(π∗v)
N(kv),ψx ∼= C

for x ∈ ωv. Then m(π) ≤ 1.

Proof. Let T ∈ HomG(A)(π,A), T 6= 0. The purity of πv and the Hasse principle for Ωj,
Theorem 4.2, imply that T (π), if non-zero, is pure relative to a single M(k)-orbit ω in Ωj(k).
Fix x ∈ ω. For every v ∈ π, let

`x,T (v) = fx(1)

where f = T (v) and fx(1) is the Fourier coefficient of f . Then `x,T is a functional on π
such that `x,T (π(n)v) = ψx(n)`x,T (v) for all v. If T1, T2 ∈ HomG(A)(π,A) and are non-zero
then, by the uniqueness of the functional at every place, there exist c1, c2 ∈ C× such that
c1`x,T1 + c2`x,T2 = 0. Since

c1`x,T1 + c2`x,T2 = `x,c1T1+c2T2 ,

it follows that `x,c1T1+c2T2 = 0. However, for any T ∈ HomG(A)(π,A), `x,T = 0 for one x ∈ ω
implies `y,T = 0 for all y ∈ ω. Hence (c1T1 + c2T2)(π) has the global rank strictly less than
j. In turn, Theorem 9.4 implies that the local components of (c1T1 + c2T2)(π) have the rank
strictly less than j. This is only possible if c1T1 + c2T2 = 0. Hence HomG(A)(π,A) is at most
one dimensional. �

We now look at the minimal representations. A representation of a real groups is minimal
if the annihilator in U(g) is the Joseph ideal. For the groups considered in this paper,
Theorems A and B in [HKM] imply that the minimal representations satisfy the conditions
of Proposition 8.3. In turn, Proposition 8.3 implies that the minimal representations satisfy
the conditions of Theorem 10.1. On the other hand, a representation of a p-adic group is
minimal if its character, viewed as a distribution around 0 ∈ g, is equal to∫

O

f̂ + cf̂(0)
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where f̂ is the Fourier transform of f ∈ S(g), and O is a minimal G-orbit in g. (See
[MW] and [GS] for more details.) For the groups considered in this paper, the minimal
representations, when restricted to P , have a realization on L2(ω) where ω = n̄ ∩ O, see
[To]. Now Proposition 7.2 implies that the minimal representations satisfy the assumptions
of Theorem 10.1. Summarizing, we have the following corollary to Theorem 10.1. (As
conjectured in the introduction of [MS].)

Corollary 10.2. Let π = ⊗̂πv be a smooth irreducible representation of G(A) such that any
local component πv is minimal. Then m(π) ≤ 1.

.
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