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Abstract

We obtain a family of functional identities satisfied by vector-
valued functions of two variables and their geometric inversions. For
this we introduce particular differential operators of arbitrary order
attached to Gegenbauer polynomials. These differential operators are
symmetry breaking for the pair of Lie groups (SL(2,C), SL(2,R)) that
arise from conformal geometry.
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1 A family of vector-valued functional iden-

tities

Given a pair of functions f , g on R2\{(0, 0)}, we consider a C2-valued func-

tion F⃗ :=

(
f
g

)
. Define its “twisted inversion” F⃗λ with parameter λ ∈ C

by

(1.1) F⃗∨
λ (r cos θ, r sin θ) := r−2λ

(
cos 2θ − sin 2θ
sin 2θ cos 2θ

)
F⃗

(
− cos θ

r
,
sin θ

r

)
.

Clearly, F⃗ 7→ F⃗∨
λ is involutive, namely, (F⃗∨

λ )
∨
λ = F⃗ .

A pair of differential operators D1, D2 on R2 yields a linear map

D : C∞(R2)⊕ C∞(R2) → C∞(R), (f, g) 7→ (D1f)(x, 0) + (D2g)(x, 0).

We write
D := Resty=0 ◦ (D1,D2).

Our main concern in this article is the following:

Question A. (1) For which parameters λ, ν ∈ C, do there exist differential
operators D1 and D2 on R2 with the following properties?

• D1 and D2 have constant coefficients.

• For any F⃗ ∈ C∞(R2)⊕ C∞(R2), the functional identity
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(Mλ,ν) (DF⃗∨
λ )(x) = |x|−2ν(DF⃗ )

(
−1

x

)
, for x ∈ R×

holds, where D = Resty=0 ◦ (D1,D2).

(2) Find an explicit formula of such D ≡ Dλ,ν if exists.

Our motivation will be explained in Section 2 by giving three equivalent
formulations of Question A. Here are some examples of the operators Dλ,ν

satisfying (Mλ,ν).

Example 1.1. (0) ν = λ:

Dλ,ν := Resty=0 ◦ (id, 0) ,

namely,

Dλ,ν

(
f
g

)
(x) = f(x, 0)

satisfies (Mλ,ν) for ν = λ.

(1) ν = λ+ 1:

Dλ,ν := Resty=0 ◦
(
∂

∂x
, λ

∂

∂y

)
,

namely,

Dλ,ν

(
f
g

)
(x) =

∂f

∂x
(x, 0) + λ

∂g

∂y
(x, 0)

satisfies (Mλ,ν) for ν = λ+ 1.

(2) ν = λ+ 2:

Dλ,ν := Resty=0 ◦
(
2(2λ+ 1)

∂2

∂x∂y
, (λ− 1)

∂2

∂x2
+ (λ+ 1)(2λ+ 1)

∂2

∂y2

)
,

namely,

Dλ,ν

(
f
g

)
(x) = 2(2λ+1)

∂2f

∂x∂y
(x, 0)+(λ−1)

∂2g

∂x2
(x, 0)+(λ+1)(2λ+1)

∂2g

∂y2
(x, 0)

satisfies (Mλ,ν) for ν = λ+ 2.
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Given D = Resty=0 ◦ (D1,D2), define

(1.2) D∨ := Resty=0 ◦ (−D2,D1).

Clearly, D∨ is determined only by D, and is independent of the choice of
D1 and D2. Proposition 1.2 below shows that the map D 7→ D∨ is an
automorphism of the set of the operators D such that (Mλ,ν) is satisfied.

Proposition 1.2. If D satisfies (Mλ,ν) for all F⃗ , so does D∨.

Proof. For F⃗ =

(
f
g

)
, we set ∨F⃗ :=

(
g
−f

)
. Then we have

(1.3) ∨∨F⃗ = −F⃗ , D
(
∨F⃗

)
= (D∨)F⃗ , (∨F⃗ )∨λ = ∨(F⃗∨

λ ).

To see this we note that w :=

(
0 −1
1 0

)
commutes with

(
cos 2θ − sin 2θ
sin 2θ cos 2θ

)
and that D∨ and ∨F⃗ are expressed as D∨ = Dw−1 and ∨F⃗ = w−1F⃗ , respec-
tively. Therefore, (

D∨F⃗∨
λ

)
(x) = D

(
∨F⃗

)∨

λ
(x)

= |x|−2ν
(
D ∨F⃗

)(
− 1

x

)
= |x|−2ν

(
D∨F⃗

)(
− 1

x

)
,

where the passage from the first line to the second one is justified by the fact
that ∨F⃗ satisfies (Mλ,ν).

In order to answer Question A for general (λ, ν), we recall that the Gegen-
bauer polynomial or ultraspherical polynomial Cα

ℓ (t) is a polynomial in one
variable t of degree ℓ given by

Cα
ℓ (t) =

[ ℓ
2
]∑

k=0

(−1)k
Γ(ℓ− k + α)

Γ(α)Γ(ℓ− 2k + 1)k!
(2t)ℓ−2k,

where [s] denotes the greatest integer that does not exceed s. Following [9],
we inflate Cα

ℓ (t) to a polynomial of two variables by

(1.4) Cα
ℓ (s, t) := s

ℓ
2Cα

ℓ

(
t√
s

)
.
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By formally substituting − ∂2

∂x2 and ∂
∂y

to s and t in Cα
ℓ (s, t), respectively, we

obtain a homogeneous differential operator Cα
ℓ := Cα

ℓ

(
− ∂2

∂x2 ,
∂
∂y

)
of order ℓ

on R2. Here are the first four operators:

Cα
0 = id,

Cα
1 = 2α ∂

∂y
,

Cα
2 = α

(
− ∂2

∂x2 + (α + 1) ∂2

∂y2

)
,

Cα
3 = 2

3
α(α + 1)

(
3 ∂3

∂x2∂y
+ 2(α + 2) ∂3

∂y3

)
.

Theorem A. Suppose that a := ν − λ is a non-negative integer. For a > 0,
we define the following pair of homogeneous differential operators of order a
on R2 by

D1 := a(2λ+ a− 1)
∂

∂x
◦ Cλ+ 1

2
a−1

D2 :=
(
2λ2 + 2(a− 1)λ+ a(a− 1)

) ∂

∂y
◦ Cλ+ 1

2
a−1

+ (λ− 1)(2λ+ 1)

(
∂2

∂x2
+

∂2

∂y2

)
◦ Cλ+ 3

2
a−2 .

For a = 0, we set
D1 := id, D2 := 0.

Then D := Resty=0 ◦ (D1,D2) and D∨ := Resty=0 ◦ (D2,−D1) satisfy the
functional identity (Mλ,ν). Moreover, when 2λ /∈ {0,−1,−2, · · · }, there
exists a non-trivial solution to (Mλ,ν) only if ν−λ is a non-negative integer.
and any differential operator satisfying (Mλ,ν) is a linear combination of D
and D∨.

Notation: N := {0, 1, 2, . . .}
N+ := {1, 2, . . .}

2 Three equivalent formulations

Question A arises from various disciplines of mathematics. In this section we
describe it in three equivalent ways.
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2.1 Covariance of SL(2,R) for vector-valued functions

For λ ∈ C, we define a group homomorphism

(2.1) ψλ : C× → GL(2,R), z = reiθ 7→ rλ
(

cos θ sin θ
− sin θ cos θ

)
.

For a C2-valued function F⃗ on C ≃ R2, we set

F⃗ h
λ (z) := ψλ

(
(cz + d)−2

)
F⃗

(
az + b

cz + d

)

for λ ∈ C, h−1 =

(
a b
c d

)
∈ SL(2,R), and z ∈ C such that cz + d ̸= 0.

Question A′. (1) Determine complex parameters λ, ν ∈ C for which there
exist differential operators D1 and D2 on R2 with the following property:
D = Resty=0 ◦ (D1,D2) satisfies

(2.2) (DF⃗ h
λ )(x) = |cx+ d|−2ν(DF⃗ )

(
ax+ b

cx+ d

)

for all F⃗ ∈ C∞(C)⊕ C∞(C), h−1 =

(
a b
c d

)
∈ SL(2,R), and x ∈ R \ {−d

c
}.

(2) Find an explicit formula of such D ≡ Dλ,ν .

The equivalence between Questions A and A′ follows from the following
three observations:

• The functional identity (2.2) for h =

(
1 t
0 1

)
(t ∈ R) implies that

D = Resty=0 ◦ (D1,D2) is a translation invariant operator. Therefore,
we can take D1 and D2 to have constant coefficients.

• F⃗∨
λ = F⃗w

λ .

• The group SL(2,R) is generated by w and

{(
1 t
0 1

)
: t ∈ R

}
.
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2.2 Conformally covariant differential operators

Let X be a smooth manifold equipped with a Riemannian metric g. Suppose
that a group G acts on X by the map G×X → X, (h, x) 7→ h ·x. This action
is called conformal if there is a positive-valued smooth function (conformal
factor) Ω on G×X such that

h∗(gh·x) = Ω(h, x)2gx for any h ∈ G and x ∈ X.

Given λ ∈ C, we define a G-equivariant line bundle Lλ ≡ Lconf
λ over X

by letting G act on the direct product X ×C by (x, u) 7→ (h · x,Ω(h, x)−λu)
for h ∈ G. Then we have a natural action of G on the vector space Eλ(X) :=
C∞(X,Lλ) consisting of smooth sections for Lλ. Since Lλ → X is topologi-
cally a trivial bundle, we may identify Eλ(X) with C∞(X), and corresponding
G-action on C∞(X) is given as the multiplier representation ϖλ ≡ ϖX

λ :

(ϖλ(h)f) (x) = Ω(h−1, x)λf(h−1 · x) for h ∈ G and f ∈ C∞(X).

See [7] for the basic properties of the representation (ϖλ, C
∞(X)).

Example 2.1. We endow P1C ≃ C ∪ {∞} with a Riemannian metric g via
the stereographic projection of the unit sphere S2:

R3 ⊃ S2 ∼→ C ∪ {∞}, (p, q, r) 7→ p+
√
−1q

1 + r
.

Then g(u, v) = 4
(1+|z|2)2 (u, v)R2 for u, v ∈ TzC ≃ R2, and the Möbius trans-

formation, defined by

P1C → P1C, z 7→ g · z = az + b

cz + d
for g =

(
a b
c d

)
∈ SL(2,C),

is conformal with conformal factor

(2.3) Ω(g, z) = |cz + d|−2.

Therefore,

(ϖλ(h)f) (z) = |cz + d|−2λf

(
az + b

cz + d

)
for h−1 =

(
a b
c d

)
.

This is a (non-unitary) spherical principal series representation IndGC
BC
(1 ⊗

λα ⊗ 1) of GC = SL(2,C), where α is the unique positive restricted root
which defines a Borel subgroup BC.
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Let ∧iT ∗X be the i-th exterior power of the cotangent bundle T ∗X for
0 ≤ i ≤ n, where n is the dimension of X. Then sections ω for ∧iT ∗X are
i-th differential forms on X, and G acts on E i(X) = C∞(X,∧iT ∗X) as the
pull-back of differential forms:

ϖ(h)ω = (h−1)∗ω for ω ∈ E i(X).

More generally, the tensor bundle Lλ⊗∧iT ∗X is also a G-equivariant vector
bundle over X, and we denote by ϖX

λ,i the regular representation of G on the
space of sections

E i
λ(X) := C∞(X,Lλ ⊗ ∧iT ∗X).

By definition E0
λ(X) = Eλ(X). In our normalization we have a natural

G-isomorphism
E0
n(X) ≃ En

0 (X),

if X admits a G-invariant orientation.
Denote by Conf(X) the full group of conformal transformations of the

Riemannian manifold (X, g). Given a submanifold Y of X, we define a
subgroup by

Conf(X;Y ) := {φ ∈ Conf(X) : φ(Y ) = Y }.

Then the induced action of Conf(X;Y ) on the Riemannian manifold (Y, g|Y )
is again conformal. We then consider the following problem.

Problem 2.2. (1) Given 0 ≤ i ≤ dimX and 0 ≤ j ≤ dimY , classify
(λ, ν) ∈ C2 such that there exists a non-zero local/non-local operator

T : E i
λ(X) → E j

ν(Y )

satisfying

ϖY
ν,j(h) ◦ T = T ◦ϖX

λ,i(h) for all h ∈ Conf(X;Y ).

(2) Find explicit formulæ of the operators T ≡ T i,j
λ,ν .

The case i = j = 0 is a question that was raised in [6, Problem 4.2] as a
geometric aspect of the branching problem for representations with respect
to the pair of groups Conf(X) ⊃ Conf(X;Y ).

As a special case, one may ask:
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Question A′′. Solve Problem 2.2 for covariant differential operators in the
setting that (X, Y ) = (S2, S1) and (i, j) = (1, 0).

We note that, for (X, Y ) = (S2, S1), there are natural homomorphisms

GC := SL(2,C) →Conf(X)

∪ ∪
GR := SL(2,R) →Conf(X;Y ),

and the images of SL(2,C) and SL(2,R) coincide with the identity compo-
nent groups of Conf(X) ≃ O(3, 1) and Conf(X;Y ), respectively. Question
A is equivalent to Question A′′ with Conf(X;Y ) replaced by its identity
component SO0(2, 1) ≃ SL(2,R)/{±I}. In fact, the differential operator
D = Resty=0 ◦ (D1,D2) in Question A gives a GR-equivariant differential
operator

E1
λ−1(S

2) → E0
ν (S

1) ≡ Eν(S1)

in our normalization, which takes the form

E1(R2) → C∞(R), fdx+ gdy 7→ (D1f)(x, 0) + (D2g)(x, 0)

in the flat coordinates via the stereographic projection.

2.3 Branching laws of Verma modules

Let g = sl(2,C), and b a Borel subalgebra consisting of lower triangular
matrices in g. For λ ∈ C, we define a character of b, to be denoted by Cλ, as

b → C,
(
−x 0
y x

)
7→ λx.

If λ ∈ Z then Cλ is the differential of the holomorphic character χλ,λ of the
Borel subgroup BC, which will be defined in (3.1) in Section 3.1.

We consider a g-module, referred to as a Verma module, defined by

M(λ) := U(g)⊗U(b) Cλ.

Then 1λ := 1⊗ 1 ∈M(λ) is a highest weight vector with weight λ ∈ C, and
it generates M(λ) as a g-module. The g-module M(λ) is irreducible if and
only if λ /∈ N.

We consider the following algebraic question:
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Question A′′′. (1) Classify (µ, λ1, λ2) ∈ C3 such that

Homg (M(µ),M(λ1)⊗M(λ2)) ̸= {0}.

(2) Find an explicit expression of φ(1µ) in M(λ1) ⊗ M(λ2) for any φ ∈
Homg (M(µ),M(λ1)⊗M(λ2)).

An answer to Question A′′′ is given as follows:

Proposition 2.3. If λ1 + λ2 /∈ N then the tensor product M(λ1) ⊗M(λ2)
decomposes into the direct sum of Verma modules as follows:

M(λ1)⊗M(λ2) ≃
∞⊕
a=0

M(λ1 + λ2 − 2a).

For the proof, consult [4] for instance. In fact, in [4], one finds the (ab-
stract) branching laws of (parabolic) Verma modules in the general setting
of the restriction with respect to symmetric pairs. By the duality theorem
([8], [9, Theorem 2.7]) between differential symmetry breaking operators (co-
variant differential operators to submanifolds) and (discretely decomposable)
branching laws of Verma modules, we have the following one-to-one corre-
spondence

{The differential operators D yielding the functional identity (Mλ,ν)}

↔ Homg (M(−2ν),M(−λ− 1)⊗M(−λ+ 1))
(2.4)

⊕ Homg (M(−2ν),M(−λ+ 1)⊗M(−λ− 1)) ,

because To(GC/BC) ⊗ C ≃ C−2 ⊠ C + C ⊠ C−2 as b ⊗ C ≃ b ⊕ b-modules.
Combining this with Proposition 2.3, we obtain

Proposition 2.4. If 2λ /∈ −N then a non-zero differential operator D satis-
fying (Mλ,ν) exists if and only if ν − λ ∈ N, and the set of such differential
operators forms a two-dimensional vector space.

Owing to Proposition 1.2, we get the two-dimensional solution space as
the linear span of D and D∨, once we find a generic solution D.

3 Rankin–Cohen brackets

As a preparation for the proof of Theorem A, we briefly review the Rankin–
Cohen brackets, which originated in number theory [1, 2, 11].
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3.1 Homogeneous line bundles over P1C
First, we shall fix a normalization of three homogeneous line bundles over
X = P1C, namely, Lconf

λ (Section 2), Lhol
λ , and Ln,λ.

We define a Borel subgroup of GC = SL(2,C) by

BC :=

{(
a 0
c 1

a

)
: a ∈ C×, c ∈ C

}
,

and identify GC/BC with X = P1C by hBC 7→ h · 0.
Given n ∈ Z and λ ∈ C, we define a one-dimensional representation of

BC by

(3.1) χn,λ : BC → C×,

(
1

reiθ
0

c reiθ

)
7→ einθrλ,

and a GC-equivariant line bundle Ln,λ = GC×BCχn,λ as the set of equivalence
classes of GC × C given by

(g, u) ∼ (gb−1, χn,λ(b)u) for some b ∈ BC.

The conformal line bundle Lconf
λ defined in Section 2.2 amounts to L0,2λ by

the formula (2.3).
On the other hand, if λ = n ∈ Z then χλ,λ is a holomorphic character of

BC, and consequently, Lλ,λ → X becomes a holomorphic line bundle, which
we denote by Lhol

λ . The complexified cotangent bundle (T ∗X)⊗C splits into
a Whitney sum of the holomorphic and anti-holomorphic cotangent bundle
(T ∗X)1,0 ⊕ (T ∗X)0,1, which amounts to L2,2 ⊕ L−2,2. In summary, we have:

Lemma 3.1. We have the following isomorphisms of GC-equivariant line
bundles over X ≃ P1C.

Lhol
λ ≃ Lλ,λ for λ ∈ Z,

Lconf
λ ≃ L0,2λ for λ ∈ C,

(T ∗X)1,0 ≃ L2,2,

(T ∗X)0,1 ≃ L−2,2.

The line bundle Ln,λ → X is GC-equivariant; thus, there is the regular
representation πn,λ of GC on C∞(X,Ln,λ). This is called the (unnormalized,
non-unitary) principal series representation of GC. The restriction to the
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open Bruhat cell C ↪→ X = C ∪ {∞} yields an injection C∞(X,Ln,λ) ↪→
C∞(C), on which πn,λ is given as a multiplier representation:

(πn,λ(h)F ) (z) =

(
cz + d

|cz + d|

)−n

|cz + d|−λF

(
az + b

cz + d

)
for h−1 =

(
a b
c d

)
.

Comparing this with the conformal construction of the representation ϖλ in
Example 2.1, we have ϖλ ≃ π0,2λ.

Similarly to the smooth line bundle Ln,λ, we consider holomorphic sec-
tions for the holomorphic line bundle Lhol

λ . For this, let D be a domain of
C and G a subgroup of GC, which leaves D invariant. Then we can define a
representation, to be denoted by πhol

λ , of G on the space O(D) ≡ O(D,Lhol
λ )

of holomorphic sections, which is identified with a multiplier representation

(
πhol
λ (h)F

)
(z) = (cz + d)−λF

(
az + b

cz + d

)
for F ∈ O(D).

Example 3.2. (1) D = {z ∈ C : |z| < 1}, G = SU(1, 1).
(2) D = {z ∈ C : Imz > 0}, G = SL(2,R).

(For the application below we shall use the unit disc model.)

3.2 Rankin–Cohen bidifferential operator

Let D be a domain in C. For a ∈ N and λ1, λ2 ∈ C, the bidifferential operator
RCa

λ1,λ2
: O(D) ⊗ O(D) → O(D), referred to as the Rankin–Cohen bracket

[1, 11], is defined by

RCa
λ1,λ2

(f1⊗f2)(z) :=
a∑

ℓ=0

(−1)ℓ
(
λ1 + a− 1

ℓ

)(
λ2 + a− 1

a− ℓ

)
∂a−ℓf1
∂za−ℓ

(z)
∂ℓf2
∂zℓ

(z).

In the theory of automorphic forms, RCa
λ1,λ2

yields a new holomorphic
modular form of weight λ1 + λ2 + 2a out of two holomorphic modular forms
f1 and f2 of weights λ1 and λ2, respectively.

From the viewpoint of representation theory, RCa
λ1,λ2

is an intertwining
operator:

(3.2) πhol
λ1+λ2+2a(h) ◦ RCa

λ1,λ2
= RCa

λ1,λ2
◦
(
πhol
λ1

(h)⊗ πhol
λ2

(h)
)

for all h ∈ G.
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The coefficients of the Rankin–Cohen brackets look somewhat compli-
cated. Eicheler–Zagier [2, Chapter 3] found that they are related to those of
a classical orthogonal polynomial. A short proof for this fact is given by the
F-method in [9].

To see the relation, we define a polynomial RCa
λ1,λ2

(x, y) of two variables
x and y by

(3.3) RCa
λ1,λ2

(x, y) :=
a∑

ℓ=0

(−1)ℓ
(
λ1 + a− 1

ℓ

)(
λ2 + a− 1

a− ℓ

)
xa−ℓyℓ,

so that the Rankin–Cohen bidifferential operator RCa
λ1,λ2

is given by

RCa
λ1,λ2

= Restz1=z2=z ◦ RCa
λ1,λ2

(
∂

∂z1
,
∂

∂z2

)
.

The polynomial RCa
λ1,λ2

(x, y) is of homogeneous degree a. Clearly we have:

Lemma 3.3. RCa
λ1,λ2

(x, y) = (−1)aRCa
λ2,λ1

(y, x).

Second we recall that the Jacobi polynomial Pα,β
ℓ (t) is a polynomial of

one variable t of degree ℓ given by

Pα,β
ℓ (t) =

Γ(α+ ℓ+ 1)

Γ(α + β + ℓ+ 1)

ℓ∑
m=0

Γ(α+ β + ℓ+m+ 1)

(ℓ−m)!m!Γ(α +m+ 1)

(
t− 1

2

)m

.

We inflate it to a homogeneous polynomial of two variables x and y of
degree ℓ by

Pα,β
ℓ (x, y) := yℓPα,β

ℓ

(
2
x

y
+ 1

)
.

For instance, Pα,β
0 (x, y) = 1 and Pα,β

1 (x, y) = (2 + α + β)x + (α + 1)y. It
turns out that

RCa
λ1,λ2

(x, y) = (−1)aP λ1−1,−λ1−λ2−2a+1
a (x, y).

In particular, the following holds.

Lemma 3.4. We have

RCa
λ1,λ2

= (−1)aRestz1=z2=z ◦ P λ1−1,−λ1−λ2−2a+1
a

(
∂

∂z1
,
∂

∂z2

)
.
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4 Holomorphic trick

In this section we give a proof for Theorem A by using the results of the
previous sections

4.1 Restriction to a totally real submanifold

Consider a totally real embedding of X = P1C ≃ C ∪ {∞} defined by

(4.1) ι : P1C → P1C× P1C, z 7→ (z, z̄).

The map ι respects the action of GC via the following group homomorphism
(we regard GC as a real group), denoted by the same letter,

ι : GC → GC ×GC, g 7→ (g, ḡ).

This is because GC/BC ≃ P1C and because the Borel subgroup BC is stable
by the complex conjugation g 7→ ḡ. Then the following lemma is immediate
from Lemma 3.1.

Lemma 4.1. We have an isomorphism of GC-equivariant line bundles:

ι∗
(
Lhol

λ1
⊠ Lhol

λ2

)
≃ Lλ1−λ2,λ1+λ2 .

In particular,

ι∗(Lhol
λ+1 ⊠ Lhol

λ−1) ≃ Lconf
λ−1 ⊗ (T ∗X)1,0,(4.2)

ι∗(Lhol
λ−1 ⊠ Lhol

λ+1) ≃ Lconf
λ−1 ⊗ (T ∗X)0,1.(4.3)

Proposition 4.2. The isomorphisms (4.2) and (4.3) induce injective GC-
equivariant homomorphisms between equivariant sheaves:

(ι∗)1,0 : O(Lhol
λ+1)⊗O(Lhol

λ−1) → E1,0
λ−1, f1(z1)⊗ f2(z2) 7→ f1(z)f2(z̄)dz,

(ι∗)0,1 : O(Lhol
λ−1)⊗O(Lhol

λ+1) → E0,1
λ−1, f1(z1)⊗ f2(z2) 7→ f1(z)f2(z̄)dz̄,

that is, (ι∗)1,0 and (ι∗)0,1 are injective on every open set D in P1C, and

(ι∗)1,0 ◦
(
πhol
λ+1(g)⊗ πhol

λ−1(ḡ)
)
= ϖ1

λ−1(g) ◦ (ι∗)1,0

(ι∗)0,1 ◦
(
πhol
λ−1(g)⊗ πhol

λ+1(ḡ)
)
= ϖ1

λ−1(g) ◦ (ι∗)0,1

hold for any g whenever they make sense.
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Proof. The injectivity follows from the identity theorem of holomorphic func-
tions because ι : P1C → P1C× P1C is a totally real embedding. The covari-
ance property is derived from (4.2) and (4.3).

Fix λ ∈ Z and a ∈ N, and set ν = λ+ a. We want to relate the Rankin–
Cohen brackets RCa

λ±1,λ∓1 to our differential operator D (see Question A) in
the sense that both of the following diagrams commute:

O(Lhol
λ+1)⊗O(Lhol

λ−1)
(ι∗)1,0

↪−−−−→ E1,0
λ−1(C) ⊂ E1

λ−1(R2) ≃ C∞(R2)⊕ C∞(R2)

RCa
λ+1,λ−1

y yD

O(Lhol
2λ+2a)

ι∗

↪−−−−−−−−−−−→ Eν(R) ≃ C∞(R),

and

O(Lhol
λ−1)⊗O(Lhol

λ+1)
(ι∗)0,1

↪−−−−→ E0,1
λ−1(C) ⊂ E1

λ−1(R2) ≃ C∞(R2)⊕ C∞(R2)

(−1)aRCa
λ−1,λ+1

y yD

O(Lhol
2λ+2a)

ι∗

↪−−−−−−−−−−−→ Eν(R) ≃ C∞(R).

Here we have used the following identification:

E1
λ−1(R2) ≃ C∞(R2)⊕ C∞(R2), fdx+ gdy 7→ (f, g).

We define homogeneous polynomials D1, D2 with real coefficients so that

D1(x, y) +
√
−1D2(x, y) = 2−aRCa

λ+1,λ−1(x−
√
−1y, x+

√
−1y),

where RCa
λ1,λ2

(x, y) is a polynomial defined in (3.3). We set

D1 := D1

(
∂

∂x
,
∂

∂y

)
, D2 := D2

(
∂

∂x
,
∂

∂y

)
, D := Resty=0 ◦ (D1,D2) .

(4.4)

Lemma 4.3. For any holomorphic functions f1 and f2,

D
(
(ι∗)1,0(f1 ⊗ f2)

)
= ι∗RCa

λ+1,λ−1(f1 ⊗ f2),

D
(
(ι∗)0,1(f1 ⊗ f2)

)
= (−1)aι∗RCa

λ−1,λ+1(f1 ⊗ f2).

15



Proof. Let ω := (ι∗)1,0(f1 ⊗ f2) = f1(z)f2(z̄)dz. If we write ω = fdx + gdy
then f(z) = f1(z)f2(z̄) and g =

√
−1f . Therefore,

Dω = Resty=0 ◦ (D1,D2)

(
f
g

)
,

(D1,D2)

(
f
g

)
=

(
D1 +

√
−1D2)(f1(z)f2(z̄)

)
.

If we write RCa
λ+1,λ−1(x, y) =

∑a
ℓ=0 rℓx

a−ℓyℓ then

(D1 +
√
−1D2) (f1(z)f2(z̄)) = RCa

λ+1,λ−1

(
∂

∂z
,
∂

∂z̄

)
(f1(z)f2(z̄))

=
a∑

ℓ=0

rℓ
∂a−ℓf1
∂za−ℓ

(z)
∂ℓf2
∂z̄ℓ

(z̄),

because f1 and f2 are holomorphic. Taking the restriction to y = 0, we get

D(ω) =
a∑

ℓ=0

rℓ
∂a−ℓf1
∂xa−ℓ

(x)
∂ℓf2
∂xℓ

(x) = ι∗RCa
λ+1,λ−1(f1 ⊗ f2).

Hence we have proved the first identity. The second identity follows from
Lemma 3.3.

Remark 4.4. If we multiply the bidifferential operatorRCa
λ+1,λ−1 by

√
−1 then

obviously (3.2) holds, where the role of (D1,D2) is changed into (−D2,D1)
because √

−1(D1 +
√
−1D2) = −D2 +

√
−1D1.

This explains Proposition 1.2 from the “holomorphic trick.”

4.2 Identities of Jacobi polynomials

For a ∈ N+, we define the following three meromorphic functions of λ by

Aa(λ) :=
2λ2 + 2(a− 1)λ+ a(a− 1)

a(2λ+ a− 1)
,

Ba(λ) :=
(λ− 1)(2λ+ 1)

a(2λ+ a− 1)
,

Ua(λ) :=
2
(
λ+ [a

2
]
)
[a−1

2
](

λ+ 1
2

)
[a−1

2
]

,
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where (µ)k := µ(µ+ 1) · · · (µ+ k − 1) = Γ(µ+k)
Γ(µ)

is the Pochhammer symbol.

Proposition 4.5. For a ∈ N+, we have

(1− z)aP λ,−2λ−2a+1
a

(
3 + z

1− z

)
= (−1)a−1Ua(λ)

(
(1− Aa(λ)z)C

λ+ 1
2

a−1 (z) +Ba(λ)(1− z2)C
λ+ 3

2
a−2 (z)

)
.

Equivalently,

P λ,−2λ−2a+1
a (x−

√
−1y, x+

√
−1y)

= (
√
−1)a−1Ua(λ)

(
xC

λ+ 1
2

a−1 (−x2, y) +
√
−1

(
Aa(λ)yC

λ+ 1
2

a−1 (−x2, y) +Ba(λ)(x
2 + y2)C

λ+ 3
2

a−2 (−x2, y)
))

.

Proposition 4.5 will be used in the proof of Theorem A in the next subsec-
tion. We want to note that we wondered if the first equation of Proposition
4.5 was already known; however, we could not find the identity in the liter-
ature.

One might give an alternative proof of Proposition 4.5 by applying the F-
method to a vector bundle case. We will discuss this approach in a subsequent
paper.

4.3 Proof of Theorem A

The relations in Lemma 4.3 and the covariance property (3.2) of the Rankin–
Cohen brackets imply that the differential operator D defined in (4.4) satisfies
the covariance relations (2.2) on the image

(ι∗)1,0
(
O(Lhol

λ+1)⊗O(Lhol
λ−1)

)
+ (ι∗)0,1

(
O(Lhol

λ−1)⊗O(Lhol
λ+1)

)
.

In order to prove (2.2), we need to show that the image is dense in
C∞(R2)⊕C∞(R2) topologized by uniform convergence on compact sets. To
see this we note that the image contains a linear span of the following 1-forms

zmz̄ndz, zmz̄ndz̄, (m,n ∈ N).

Since a linear span of (x+iy)m(x−iy)n (m,n ∈ N) is dense in C∞(R2) by the
Stone–Weierstrass theorem, we conclude that D satisfies (2.2). An explicit
formula for the operators (D1,D2) is derived from the Rankin–Cohen brackets
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by using Lemma 3.4 and Proposition 4.5 for λ ∈ Z. Then the covariance
relations (1.1) are satisfied for all λ ∈ C because Z is Zariski dense in C.

If 2λ /∈ −N then the dimension of solutions is two by Proposition 2.3
and the one-to-one correspondence (2.4). Since D and D∨ are linearly in-
dependent for our solution D, the linear span of D and D∨ exhausts all the
solutions by Proposition 1.2. Hence Theorem A is proved.

4.4 Scalar-valued case

So far we have discussed a family of vector-valued differential operators that
yield functional identities satisfied by vector-valued functions. We close this
article with some comments on the scalar-valued case.

Let λ ∈ C. Given f ∈ C∞(R2 \ {(0, 0)}) ≃ C∞(C \ {0}), we define its
twisted inversion f∨

λ by

f∨
λ (r cos θ, r sin θ) := r−2λf

(
− cos θ

r
,
sin θ

r

)
as in (1.1), and more generally,

fh
λ (z) := |cz + d|−2λf

(
az + b

cz + d

)
for h−1 =

(
a b
c d

)
∈ SL(2,C)

as in (2.1).
For a differential operator D on R2, we define a linear operator D̃ :

C∞(R2) → C∞(R) by
D̃ := Resty=0 ◦ D.

Fix λ, ν ∈ C. As in Questions A, A′, A′′, and A′′′, we may consider the
following equivalent questions:

Question B. Find D̃ with constant coefficients such that(
D̃f∨

λ

)
(x) = |x|−2ν(D̃f)

(
−1

x

)
for all f ∈ C∞(R2) and x ∈ R×.

Question B′. Find D̃ such that(
D̃fh

λ

)
(x) = |cx+d|−2ν(D̃f)

(
ax+ b

cx+ d

)
for all f ∈ C∞(C), h ∈ SL(2,R), and x ∈ R×.
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Question B′′. Find an explicit formula of conformally covariant differential
operator Eλ(S2) → Eν(S1).

Question B′′′. Find an explicit expression of the element φ(1−ν) for any
φ ∈ Homg (M(−ν),M(−λ)⊗M(−λ)), where g = sl(2,C).

An answer to Question B′′ (and also in the case Sn−1 ⊂ Sn for arbitrary
n ≥ 2) was first given by Juhl [3]. In the flat model (Questions B and B′), if
a := ν − λ ∈ N then

˜
Cλ− 1

2
a ≡ Resty=0 ◦ C

λ− 1
2

a

(
− ∂2

∂x2
,
∂

∂y

)
: Eλ(R2) → Eν(R1)

intertwines the SL(2,R)-action. There have been several proofs for this (and
also for more general cases) based on:

• Recurrence relations among coefficients of D ([3]),

• F-method ([5, 8, 9]), and

• Residue formulæ of a meromorphic family of non-local symmetry break-
ing operators [6, 10].

The holomorphic trick in Section 4 applied to this case gives yet another
proof by using the Rankin–Cohen brackets and the following proposition
analogous to (and much simpler than) Proposition 4.5.

Proposition 4.6. For a ∈ N, we have

(1− z)aP λ−1,−2λ−2a+1
a

(
3 + z

1− z

)
= (−1)a

(
λ+ [a

2
]
)
[a+1

2
](

λ− 1
2

)
[a+1

2
]

C
λ− 1

2
a (z).

Equivalently,

P λ−1,−2λ−2a+1
a (x−

√
−1y, x+

√
−1y) = (

√
−1)a

(
λ+ [a

2
]
)
[a+1

2
](

λ− 1
2

)
[a+1

2
]

C
λ− 1

2
a (−x2, y).
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