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Abstract

We initiate a new study of differential operators with symmetries and combine this with
the study of branching laws for Verma modules of reductive Lie algebras. By the criterion for
discretely decomposable and multiplicity-free restrictions of generalized Verma modules [T.
Kobayashi, Transf. Groups (2012)], we are brought to natural settings of parabolic geome-
tries for which there exist unique equivariant differential operators to submanifolds. Then
we apply a new method (F-method) relying on the Fourier transform to find singular vectors
in generalized Verma modules, which significantly simplifies and generalizes many preceding
works. In certain cases, it also determines the Jordan–Hölder series of the restriction for
singular parameters. The F-method yields an explicit formula of such unique operators,
for example, giving an intrinsic and new proof of Juhl’s conformally invariant differential
operators [Juhl, Progr. Math. 2009] and its generalizations to spinor bundles. This article
is the first in the series, and the next ones include their extension to curved cases together
with more applications of the F-method to various settings in parabolic geometries.
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1 Introduction
Let G′ ⊂ G be a pair of real reductive Lie groups. The main objects of this paper are
G′-equivariant differential operators between two homogeneous vector bundles over two real
flag manifolds N = G′/P ′ and M = G/P, where N is a submanifold of M corresponding to
G′ ⊂ G. We provide a new method ("F-method") for constructing explicitly such operators,
and demonstrate its effectiveness in several concrete examples.

On the algebraic level — in the dual language of homomorphisms between (generalized)
Verma modules, the whole construction is connected to natural questions in representation
theory, namely branching laws; no attempts at a systematic approach to branching laws for
Verma modules has been made until quite recently, and our results might be of independent
interest from this point of view. Restricting Verma modules to reductive subalgebras appears
manageable at a first glance, however, it involves sometimes wild problems such as the
effect of "hidden continuous spectrum" as was revealed in [29]. Nevertheless there is a
considerably rich family of examples with good behaviour such as discretely decomposable
and multiplicity-free restrictions [28], which are at the same time particularly important for
our geometric purposes.

Some of the operators we construct for example, (powers of) the wave operator and
Dirac operator appeared previously in physics. Since a large amount of natural differential
operators have been already found in parabolic geometries, it is worth pointing out, that
the ones treated as a prototype here are exactly the ones that are the hardest to find by
the previous methods (essentially coming from the BGG resolution). Further we extend this
prototype in two folds to arbitrary signatures in pseudo-Riemannian manifolds (Theorem
4.3) and to Dirac operators (Theorem 5.7) by the new method. We work primarily in the
model case situation where the manifold is a real flag manifold, but we see in the second
part of the series [33] that (as seen for example in the case of conformal geometry) it is
both possible and interesting to extend to the "curved case" of manifolds equipped with the
corresponding parabolic geometry.

The results we are going to present are inspired by geometrical considerations. In par-
ticular, they correspond to differential invariants (of higher order in general) in the case
of models for parabolic geometries. To be precise, let G be a real reductive Lie group,
P a parabolic subgroup of G, and G′ a reductive subgroup of G such that P ′ := P ∩ G′
is a parabolic subgroup of G′. We consider G′-equivariant differential operators acting on
sections of homogeneous vector bundles over homogeneous models over G′/P ′ and G/P. In
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effect, what happens is that initial sections on G/P are differentiated and then restricted
to the submanifolds G′/P ′, and this combined operation commutes with the action of the
group G′.

Explicit formulae for invariant differential operators constructed in the paper are de-
scribed in the simplest possible coordinates, i.e., in the noncompact picture. In principle,
there are methods (based on factorization identities) how to compute explicit form of the
differential operators in compact picture but the work needed to do so is nontrivial. An
example of such computation can be found in [23, Chapt. 5.2].

Our language chosen for presenting these results is algebraic, however, relies at a stage
on certain analytic techniques. The first step is to translate geometrical problems into
branching problems of generalized Verma modules for the Lie algebra of G induced from P
when restricted to the Lie algebra of G′. Let us recall what is known and what is not known.

The existence of equivariant differential operators is assured by the discrete decompos-
ability (Definition 3.1) of the restriction in the BGG category O. A general theory of
discretely decomposable restrictions in the BGG category O as well as in the category of
Harish-Chandra modules was established in [25, 26, 27, 29]. Moreover, the uniqueness of
such operators is guaranteed by the multiplicity-freeness of the restriction. An explicit for-
mula of the branching law for reductive symmetric pairs (g, g′) was proved in [28, 29], which
includes the classical Hua–Kostant–Schmid formula and also the decomposition of the tensor
product of two modules as special cases. A short summary is given in Section 3 in a way
that we need. These general results help us to single out appropriate geometric settings for
which we could expect to construct natural equivariant operators to submanifolds, however,
we need another idea to answer the following delicate algebraic problems of branching laws,
which are closely related with our geometric interest in finding explicit formulae equivariant
operators in parabolic geometries. In what follows, Mg

p (λ) ≡Mg
p (Fλ) denotes the g-module

induced from an irreducible finite-dimensional p-module Fλ with highest weight λ.

Problem A. Find precisely where irreducible g′-submodules are located in a generalized
Verma module Mg

p (λ) of g.

Problem B. Find the Jordan–Hölder series of a generalized Verma module Mg
p (λ) of g

regarded as a module of a reductive subalgebra g′ by the restriction.

Problem A is to ask for an explicit description of g′-singular vectors (i.e., vectors anni-
hilated by the action of the nilpotent radical of p′ = g′ ∩ p, see Section 3 for the definition)
in the generalized Verma module Mg

p (λ)) of g, and in turn, is equivalent to our geometric
question, namely, to construct equivariant differential operators explicitly from real flag va-
rieties to subvarieties (see Theorem 2.4). Problem B concerns with the case where Mg

p (λ)
is not completely reducible, in particular, for non-generic parameter λ. It should be noted
that even in the case g = g′, Problem B is already difficult and unsolved in general. Fur-
thermore, complete reducibility as a g′-module is another thing than complete reducibility
as a g-module, and it seems that Problem B has never been studied before in the case where
g′ $ g (even for Lie algebras of small dimensions). The new ingredient of Problem B is to
understand how non-trivial g-extensions occurring in Mg

p (λ) behave when restricted to the
subalgebra g′.

We are interested in Problems A and B, in particular, when we know a priori the re-
striction Mg

p (λ)|g′ is isomorphic to a multiplicity-free direct sum of irreducible g′-modules
for generic parameter λ.

In the category O, every irreducible g′-submodule contains a singular vector, and con-
versely, every singular vector generates a g′-submodule of finite length. Thus the structure
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of the set of all singular vectors is a key to the above mentioned problems. In the case of
conformal densities, singular vectors were found by using the recurrence relations in cer-
tain generalized Verma modules by A. Juhl [23]. However, it seems hard to apply such a
combinatorial method in a more general setting due to its computational complexity.

Our method to attack Problems A and B is based on the "Fourier transform" of gen-
eralized Verma modules; we call it the F-method. The idea is to characterize the set of
all singular vectors by means of a system of partial differential equations on the Fourier
transform side. It was first suggested by T. Kobayashi, March 2010, with a number of new
examples. In contrast to the existing combinatorial techniques to find singular vectors, the
F-method is more conceptual.

For example, the coefficients of Juhl’s families of equivariant differential operators for the
conformal group (see (4.22)) coincide with those of the Gegenbauer polynomials. This was
discovered by Juhl [23], but the combinatorial proof there based on recurrence relations did
not explain the origin of the special functions in formulae. Our new method is completely
different and explains their appearance in a natural way (see Section 4).

The F-method itself is briefly described in Section 2. The key idea of the F-method is
to take the Fourier transform of Verma modules after realizing them in the space of dis-
tributions supported at the origin on the flag variety. Then we can transfer the algebraic
branching problem for generalized Verma modules into an analytic problem, to find poly-
nomial solutions to a system of partial differential equations. In the setting we consider,
it leads to an ordinary differential equation (due to symmetry involved). The resulting
second-order differential equations control all the family of equivariant differential operators
(of arbitrarily high order). The polynomial solutions are the Fourier transform of singular
vectors. Hence this new method offers a uniform and effective tool to find explicitly singular
vectors in many different cases.

In Section 3, we discuss a class of branching problems for modules in the parabolic
BGG category Op having a discrete decomposability property with respect to reductive
subalgebras g′. Moreover, one of our guiding principles is to focus on multiplicity-free cases
which were obtained systematically in [28, 29] by two methods — by visible actions on
complex manifolds and by purely algebraic methods. Branching rules are given in terms of
the Grothendieck group of the category Op, and they give geometric settings where we shall
apply the F-method.

The rest of the paper contains applications of the F-method for descriptions of the
space of all singular vectors in particular cases of conformal geometry. It contains a com-
plete answer to Problems A and B for generalized Verma modules of scalar type in the
case where (G,G′) = (SO0(p, q), SO0(p, q − 1)), see Theorems 4.2 and 4.10, respectively.
The explicit construction of equivariant differential operators for the particular examples
of pseudo-Riemannian manifolds of arbitrary signature (p, q) is given in Theorem 4.3, ex-
tending a theorem of Juhl. A further generalization to spinor-valued sections is discussed in
Section 5, and explicit formulae of equivariant differential operators for the conformal group
are given in Theorem 5.7 by using the Dirac operator and the coefficients of Gegenbauer
polynomials. Again the main machinery is the F-method.

As we already emphasized, our original motivation for the study of branching rules for
generalized Verma modules came from differential geometry. In fact, there is a substantial
relation of the curved version of the Juhl family and a notion of Q-curvature and conformally
invariant powers of the Laplace operator. In the second part of the series [33], we construct
the curved version of the Juhl family and its generalization by using the result of this article
and the ideas of semi-holonomic Verma modules.

To summarize, we have in this paper provided a new method, and some new results con-
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cerning the relation between several important topics in representation theory and parabolic
geometry, namely branching laws for generalized Verma modules and the construction of
equivariant differential operators to submanifolds. In the second part of the series, [33],
we give further applications of the F-method to some other examples of parabolic ge-
ometries with commutative nilradical, e.g., the projective geometry, Grassmannian geom-
etry and Rankin–Cohen brackets as an example of branching rules for the symmetric pair
(G × G,∆(G)), where ∆ : G → G × G is a diagonal embedding, and discuss their "curved
versions".

In the paper, we use the following notation: N = {0, 1, 2, · · · }, N+ = {1, 2, · · · }.

2 Problems and methods for their solutions
The first aim of this section is to explain in more details the connection between geometric
and algebraic side of the problem and a method to find g′-singular vectors in Verma modules
of g, where g′ ⊂ g are a pair of complex reductive Lie algebras. The second aim is to discuss
the general idea of a new approach how to describe equations for singular vectors by using
Fourier analysis. The main advantage of the method, which we call "F-method", is that a
combinatorially complicated problem of finding singular vectors by the existing methods is
converted to a more conceptual question to find polynomial solutions of a certain system
of partial or ordinary differential equations, see (2.7). Explicit examples showing how the
method works in various situations (related in problems in differential geometry) can be
found in the latter half of the paper, in the second part [33] of the series, and [35].

2.1 Two dual faces of the problem
Let G′ ⊂ G be real reductive Lie groups, and g′ ⊂ g their complexified Lie algebras. In the
paper, we are studying two closely related problems. On the side of geometry, we are going
to construct intertwining differential operators between principal series representations of
the two groups G and G′. On algebraic side, we are going to construct homomorphisms
between generalized Verma modules of the two Lie algebras g′ and g. The relation between
these geometric and algebraic sides is classically known when G′ = G (see [3], for instance).
We generalize it to the case G′ 6= G in connection with branching problems in representation
theory. The treatment here is based on recent publications [7, 8] by using jet bundles. A
self-contained account (in a more general situation) by a different approach can be found in
[34, Sect. 2].

Let G be a connected real reductive Lie group with Lie algebra g(R). Let x ∈ g(R) be a
hyperbolic element. This means that ad(x) is diagonalizable and its eigenvalues are all real.
Then we have the following Gelfand–Naimark decomposition

g(R) = n−(R) + l(R) + n+(R),

according to the negative, zero, and positive eigenvalues of ad(x). The subalgebra p(R) :=
l(R) + n+(R) is a parabolic subalgebra of g(R), and its normalizer P in G is a parabolic
subgroup of G. Subgroups N± ⊂ G are defined by N± = exp n±(R).

Given a complex finite-dimensional P -module V , we consider the unnormalized induced
representation π of G on the space IndGP (V ) of smooth sections for the homogeneous vector
bundle V := G×P V → G/P . We can identify this space with

C∞(G,V )P := {f ∈ C∞(G,V ) : f(g p) = p−1 · f(g), g ∈ G, p ∈ P}.

5



Moreover, we shall also need the space Jke (G,V )P of k-jets in e ∈ G of P -equivariant
maps and its projective limit

J∞e (G,V )P = lim
−→ kJ

k
e (G,V )P .

Let U(g) denote the universal enveloping algebra of the complexified Lie algebra g of g(R).
Let V ∨ denote the contragredient representation. Then V ∨ extends to a representation of
the whole enveloping algebra U(p). The generalized Verma module Mg

p (V ∨) is defined by

Mg
p (V ∨) := U(g)⊗U(p) V

∨.

It is a well-known fact that there is a non-degenerate invariant pairing between J∞e (G,V )P

andMg
p (V ∨). In what follows, we present a version better adapted for our needs. All details

of the proof of the version of the claim presented below can be found in [8, App.1], which is
an extended version of the paper [7].

Fact 2.1. Let G be a connected semisimple Lie group with complexified Lie algebra g, and P
a parabolic subgroup of G with complexified Lie algebra p. Suppose further that V is a finite-
dimensional P -module and V ∨ its dual. Then there is a (g, P )-invariant pairing between
J∞e (G,V )P and Mg

p (V ∨), which identifies Mg
p (V ∨) with the space of all linear maps from

J∞e (G,V )P to C that factor through Jke (G,V )P for some k.

The statement above has the following classical corollary (see [3] for instance), which
explains the relation between the geometrical problem of finding G-equivariant differential
operators between induced representations and the algebraic problem of finding homomor-
phisms between generalized Verma modules.

Corollary 2.2. Let V and V ′ be two finite-dimensional P -modules. Then the space of G-
equivariant differential operators from IndGP (V ) to IndGP (V ′) is isomorphic to the space of
(g, P )-homomorphisms from Mg

p ((V ′)∨) to Mg
p (V ∨).

We now discuss a generalization of Corollary 2.2 to the case of homogeneous vector
bundles over different flag manifolds, which is formulated and proved below. Suppose that,
in addition to the pair P ⊂ G used above, we consider another pair P ′ ⊂ G′, such that G′ is
a reductive subgroup of G and P ′ = P ∩G′ is a parabolic subgroup of G′. We shall see that
this happens if p is g′-compatible in the sense of Definition 3.3. In this case, n′+ := n+ ∩ g′

is the nilradical of p′, and we set L′ = L ∩G′ for the corresponding Levi subgroup in G′.
For any smooth vector bundle V →M, there exists a unique (up to isomorphism) vector

bundle Jk(V) over M (called the k-th jet prolongantion of V) together with the canonical
differential operator

Jk : C∞(M,V)→ C∞(M,JkV)

of order k. Recall that a linear operator D : C∞(M,V) → C∞(M,V ′) between two smooth
vector bundles overM is called a differential operator of order at most k, if there is a bundle
morphism Q : JkV → V ′ such that D = Q◦Jk.We need a generalization of this definition to
the case of a linear operator acting between vector fibre bundles over two different smooth
manifolds.

Definition 2.3. Fix k ∈ N. Let p : N → M be a smooth map between two smooth
manifolds and let V →M (respectively, V ′ → N) be two smooth vector bundles.

A linear map D : C∞(M,V)→ C∞(N,V ′) is said to be a differential operator of order k,
if there exists a bundle map Q : C∞(N, p∗(JkV))→ C∞(N,V ′) such that

D = Q ◦ p∗ ◦ Jk.
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An alternative definition of a differential operator can be based on suitable local prop-
erties. For operators between bundles over the same manifold, the relation between both
definitions is contained in the classical theorem of Peetre ([40]). For a more general situa-
tion (including the case of an linear operator between bundles over different manifolds), an
analogue of the Peetre theorem also holds, see [34, Sect.2] and [37, Chapt. 19].

Now we can formulate and prove a generalization of Corollary 2.2 in a more general
situation as follows:

Theorem 2.4. The set of all G′-equivariant differential operators from IndGP (V ) to IndG
′

P ′(V
′)

is in one-to-one correspondence with the space of all (g′, P ′)-homomorphisms fromMg′

p′ (V
′ ∨)

to Mg
p (V ∨).

Proof. The inclusion i : G′ → G induces a smooth map i : G′/P ′ → G/P. The fibers
of Jk(V) and i∗(Jk(V )) over o ∈ G′/P ′ are both isomorphic to Jke (G,V )P , hence G′-
equivariant bundle maps from i∗(Jk(V)) to V ′ over G′/P ′ are in bijective correspondence
with elements in HomP ′(Jk(G,V )P , V ′). It implies that G′-equivariant differential operators
from IndGP (V ) to IndG

′
P ′(V

′) are in one-to-one correspondence with P ′-homomorphisms from
J∞e (G,V )P to V ′ that factor through Jke (G,V )P for some k. By using the pairing in Fact 2.1,
such homomorphisms are in bijective correspondence with elements in (Mg

p (V ∨)⊗ V ′)P ′ '
HomP ′((V ′)∨,M

g
p (V ∨)). Finally, the Frobenius reciprocity gives us the bijective correspon-

dence between the spaces HomP ′((V ′)∨,M
g
p (V ∨)) and Hom(g′,P ′)(M

g′

p′ (V
′ ∨),Mg

p (V ∨)).

A detailed account of Theorem 2.4 (in a more general setting) with a different proof can
be found in [34]. See also [36, Chap. 3] for the general perspectives of continuous symmetry
breaking operators which include G′-equivariant differential operators as a special case.

2.2 F-method
Let us recall that we now consider a general setting with a given pair (P,G) together with
another pair (P ′, G′), such that G′ ⊂ G is a reductive subgroup of G, P = LN+ is a Levi
decomposition of a (real) parabolic subgroup of G, and P ′ = P ∩G′ is a parabolic subgroup
of G′ with Levi decomposition L′N ′+ ≡ (L ∩G′)(N+ ∩G′). We write g, g′, p, p′, l, l′, n+, and
n′+ for the complexified Lie algebras of G,G′, P, P ′, L, L′, N+, and N ′+, respectively. Then
n′+ = n+ ∩ g′ is the nilradical of p′. A usual classical setting is that G = G′ and P = P ′.

As explained in Theorem 2.4, a study of intertwining differential operators between
principal series of representations of the two groups G and G′ can be translated to a study
of homomorphisms between generalized Verma modules of the two Lie algebras g′ and g. By
the universality of the tensor product, the latter homomorphisms are characterized by the
image of the highest weight vectors with respect of the parabolic subalgebra p′, which are
sometimes referred to as singular vectors. These vectors are annihilated by the nilradical
n′+.

The whole procedure of the F-method to find explicit singular vectors may be divided
into the following three main steps.

Step 1. Computation of the infinitesimal action dπ(X) for X ∈ n+(R) on a chosen principal
series representation of G (in the non-compact picture).

Step 2. Computation of the dual infinitesimal action dπ ∨(X) for X ∈ n+(R) on the dual
space D′[o](N−, V

∨) of distributions on N− with values in V ∨ with support in [o]. This space
is isomorphic with Mg

p (V ∨) as g-modules.
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Step 3. Suppose now that N− is commutative and we identify N− with the Lie algebra
n−(R) via the exponential map. The Fourier transform defines an isomorphism F ⊗ IdV ∨ :
D′[o](N−, V

∨) → Pol[n+] ⊗ V ∨ and the representation dπ ∨ induces the action dπ̃ of g on
Pol[n+]⊗ V ∨.

2.3 Realization of F-method.
We shall describe now these three steps in more details.
Step 1. The fibration p : G→ G/P is a principal fiber bundle with the structure group P
over the compact manifold G/P . The manifold p(N− P ) is an open dense subset of G/P ,
sometimes referred to as the big Schubert cell or the open Bruhat cell of G/P. It is naturally
identified with N−. Let o := e · P ∈M ⊂ G/P . The exponential map

φ : n−(R)→ G/P, φ(X) := exp(X) · o ∈ G/P

gives the natural identification of the vector space n−(R) with the open Bruhat cell N− '
p(N− P ).

Let V be an irreducible complex finite-dimensional P -module, and let us consider the
corresponding induced representation π of G on IndGP (V ) ' C∞(G,V )P . The representa-
tion of G on IndGP (V ) will be denoted by π, and the infinitesimal representation dπ of its
complexified Lie algebra g will be considered in the non-compact picture as follows: We
identify the space of equivariant smooth maps C∞(N− P, V )P with the space C∞(N−, V )
as follows: A function f ∈ C∞(N−, V ) corresponds to f̃ ∈ C∞(N− P, V )P defined by
f̃(n− p) = p−1 · f(n−), n− ∈ N−, p ∈ P. The induced representation dπ defines by re-
striction the representation of g on the space C∞(N−, V ).

An actual computation of the representation dπ(Z), Z ∈ n+(R) can be carried out by
the usual scheme: For a given Z ∈ n+(R), we consider the one-parameter subgroup n(t) =
exp(tZ) ∈ N+ and rewrite the product n(t)−1x, for x ∈ N− and for small t ∈ R as

n(t)−1x = x̃(t)p(t), x̃(t) ∈ N−, p(t) ∈ P.

Then, for f ∈ C∞(N−, V ), we have

[dπ(Z)f ](x) =
d

dt

∣∣
t=0

(p(t))−1 · f(x̃(t)). (2.1)

Step 2. A simple way how to describe the dual representation dπ ∨ on the corresponding
generalized Verma module is to use a well-known identification of generalized Verma modules
with the spaces of distributions supported at the origin of G/P or on the open Bruhat cell
N−. It goes as follows.

Let D′[o](N−, V
∨) denote the space of V ∨-valued distributions on N− with support in

the point {o}. The Lie algebra g acts on this space by the dual action dπ ∨ :

dπ ∨(X)(T )(f) = −T (dπ(X)(f)), X ∈ g, f ∈ C∞(N−, V ).

The action can be extended to the action of U(g) by

dπ ∨(u)(T )(f) = −T (dπ(X)(uo)), X ∈ g, f ∈ C∞(N−, V ),

where the map u→ uo is the antiautomorphism of U(g) acting as X 7→ −X on g.
The space D′[o](N−, V

∨) can be identified with a suitable generalized Verma module:
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Fact 2.2 The linear map

φ : U(g)⊗U(p) V
∨ → D′[o](N−, V

∨)

determined by
φ(u⊗ v ∨) : f 7→ 〈v ∨, (dπ(uo)f)(o)〉

is a U(g)-module isomorphism.
The proof of this claim can be found in [1, 34].

Step 3. Suppose now that the unipotent group N− is commutative. We identify n−(R)
with N− via the exponential map. The Fourier transform gives an isomorphism

F : D′[0](n−(R)) ∼−→ Pol[n+], T 7→ F(T ) (2.2)

defined by
F(T )(ξ) = Tx(ei〈x,ξ〉), for x ∈ n−(R), ξ ∈ n+,

where 〈x, ξ〉 is given by the Killing form on g.
If we consider the space D′[0](n−(R)) as a convolution algebra with the delta function

being the unit, then F is an algebra isomorphism mapping the delta function to the constant
polynomial 1.

The isomorphism (2.2) can be extended to distributions with values in V ∨ by

F ⊗ IdV ∨ : D′[o](N−, V
∨)→ Pol[n+]⊗ V ∨.

The Fourier transform F ⊗ IdV ∨ can be then used to define the action dπ̃ of g on the
space Pol[n+] ⊗ V ∨. Elements of n+ act by differential operators of second order as n+ is
commutative. Let F−1 be the inverse Fourier transform, and we set ϕ := φ−1◦(F−1⊗IdV ∨).
Then ϕ gives a bijection

ϕ : Pol[n+]⊗ V ∨ ∼−→ U(g)⊗U(p) V
∨. (2.3)

2.4 Singular vectors in F-method
Definition 2.5. Let V be any irreducible finite-dimensional p-module. Let us define the
L′-module

Mg
p (V ∨)n′+ := {v ∈Mg

p (V ∨) : dπ ∨(Z)v = 0 for any Z ∈ n′+}. (2.4)

The spaceMg
p (V ∨)n′+ of singular vectors is a principal object of our interest. For G′ = G,

the space Mg
p (V ∨)n′+ is of finite-dimension. Note that for G′ $ G, the space Mg

p (V ∨)n′+

is infinite-dimensional but it is still completely reducible as an l′-module. Let us decom-
pose Mg

p (V ∨)n′+ into irreducible l′-submodules and take W ∨ to be one of its irreducible
submodules. Then we get a g′-homomorphism from Mg′

p′ (W
∨) to Mg

p (V ∨).
If V is a P -module, then Mg

p (V ∨) carries a (g, P )-module structure, and therefore,
Mg

p (V ∨)n′+ becomes an L′-module. In this case, we consider irreducible submodules of L′

in Mg
p (V ∨)n′+ for W ∨, and regard W ∨ as a P ′-module by letting N ′+ act trivially. Then we

get a (g′, P ′)-homomorphism from Mg′

p′ (W
∨) to Mg

p (V ∨) via the canonical isomorphisms:

Homg′,P ′(M
g′

p′ (W
∨),Mg

p (V ∨)) ' Homp′,P ′(W ∨,Mg
p (V ∨))

' HomL′(W ∨,Mg
p (V ∨)n′+). (2.5)
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Dually, in the language of differential operators, we shall get an invariant differential operator
from IndGP (V ) to IndG

′
P ′(W ) by Theorem 2.4. So the knowledge of all irreducible summands

W ∨ of the L′-module Mg
p (V ∨)n′+ gives the knowledge of all possible targets IndG

′
P ′(W ) for

equivariant differential operators on IndGP (V ).
In the F-method, we then realize the space Mg

p (V ∨)n′+ in the space of polynomials on
n+ with values in V ∨ with action dπ̃. It can be done efficiently using the Fourier transform
as follows:

Definition 2.6. We define

Sol ≡Sol(g, g′;V ∨)
:={f ∈ Pol[n+]⊗ V ∨ : dπ̃(Z)f = 0 for any Z ∈ n′+}. (2.6)

The inverse Fourier transform gives an L′-isomorphism

ϕ : Sol(g, g′;V ∨) ∼→Mg
p (V ∨)n′+ . (2.7)

An explicit form of the action dπ̃(Z) leads to a (system of) differential equation for elements
in Sol which makes it possible to describe its structure completely in some particular cases
of interest. We shall see in Sections 4 and 5 in certain settings the full understanding of the
structure of the set Sol as an L′-module gives complete classification of g′-homomorphisms
from Mg′

p′ (W
∨) to Mg

p (V ∨) and answers Problems A and B.
The transition from Mg

p (V ∨)n′+ to Sol(g, g′;V ∨) is the key point of the F-method. It
transforms the algebraic problem of finding singular vectors in generalized Verma modules
(Problem A) into an analytic problem of solving certain differential equations. It turns
out that the F-method is often more efficient than other existing algebraic methods in
finding singular vectors. Furthermore, the F-method clarifies why the combinatorial formula
appearing in the coefficients of intertwining differential operators in the example of Juhl [23,
Chapter 5] are related to those of the Gegenbauer polynomials. It also reduces substantially
the amount of computation needed and gives a complete description of the set of singular
vectors (e.g. Theorem 4.2); finally it offers a systematic and effective tool for investigation
of singular vectors in many cases (e.g. Theorem 4.10). It will be illustrated in Sections 4 and
5 of this article as well as in the second part of the series with a series of different examples.

3 Discretely decomposable branching laws
Suppose that g ⊃ g′ are a pair of complex reductive Lie algebras, and thatX is an irreducible
g-module. It often happens that the restriction X|g′ does not contain any irreducible g′-
module ([32, 34]). On the other hand, for X = Mg

p (V ∨) belonging to the parabolic BGG
category Op (see below), the restriction X|g′ needs to contain some irreducible g′-module for
the existence of nonzero G′-equivariant differential operators by Theorem 2.4. This algebraic
property is said to be "discretely decomposable restrictions" in representation theory, which
gives a certain constraint on the triple (g, g′, p) (Proposition 3.2).

Further, the uniqueness (up to scaling) of equivariant differential operators to submani-
folds is assured if (2.5) is one-dimensional, or if the branching law of the restriction X|g′ is
multiplicity free, by Theorem 2.4.

In this section we fix notation for the parabolic BGG category Op, and summarize the
algebraic framework on discretely decomposable restrictions and multiplicity-free theorems
in branching laws that were established in [25, 28, 29]. These algebraic results are a guiding
principle in this current article and in the second part [33] of the series for finding appro-
priate settings in parabolic geometry, where one could expect to obtain explicit formulas of
equivariant differential operators.
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3.1 Category O and Op

We begin with a quick review of the parabolic BGG category Op (see [21] for an introduction
to this area).

Let g be a semisimple Lie algebra over C, and j a Cartan subalgebra. We write ∆ ≡
∆(g, j) for the root system, gα (α ∈ ∆) for the root space, and α∨ for the coroot, and
W ≡ W (g) for the Weyl group for the root system ∆(g, j). We fix a positive system ∆+,
write ρ ≡ ρ(g) for half the sum of the positive roots, and define a Borel subalgebra b = j+n

with nilradical n := ⊕α∈∆+gα. The Bernstein–Gelfand–Gelfand category O (BGG category
for short) is defined to be the full subcategory of g-modules whose objects are finitely
generated g-modules X such that X are j-semisimple and locally n-finite [2].

Let p be a parabolic subalgebra containing b, and p = l+n+ its Levi decomposition with
j ⊂ l. We set ∆+(l) := ∆+ ∩∆(l, j), and define

n−(l) :=
∑

α∈∆+(l)

g−α.

The parabolic BGG category Op is the full subcategory of O whose objects X are locally
n−(l)-finite. We note that Ob = O by definition.

The set of λ for which λ|j∩[l,l] is dominant integral is denoted by

Λ+(l) := {λ ∈ j∗ : 〈λ, α∨〉 ∈ N for all α ∈ ∆+(l)}.

We write Fλ for the finite-dimensional simple l-module with highest weight λ, inflate Fλ to
a p-module via the projection p→ p/n+ ' l, and define the generalized Verma module by

Mg
p (λ) ≡Mg

p (Fλ) := U(g)⊗U(p) Fλ. (3.1)

Then Mg
p (λ) ∈ Op, and any simple object in Op is the quotient of some Mg

p (λ). We say
Mg

p (λ) is of scalar type if Fλ is one-dimensional, or equivalently, if 〈λ, α∨〉 = 0 for all
α ∈ ∆(l).

If λ ∈ Λ+(l) satisfies

〈λ+ ρ, β ∨〉 6∈ N+ for all β ∈ ∆+ \∆(l), (3.2)

then Mg
p (λ) is simple, see [9].

Let Z(g) be the center of the enveloping algebra U(g), and we parameterize maximal
ideals of Z(g) by the Harish-Chandra isomorphism:

HomC-alg(Z(g),C) ' j∗/W, χλ ↔ λ.

In our normalization, the trivial one-dimensional representation has a Z(g)-infinitesimal
character ρ ∈ j∗/W . Then the generalized Verma module Mg

p (λ) has a Z(g)-infinitesimal
character λ+ ρ ∈ j∗/W.

We denote by Op
λ the full subcategory of Op whose objects have generalized Z(g)-

infinitesimal characters λ ∈ j∗/W , namely,

Op
λ =

∞⋃
n=1

{X ∈ Op : (z − χλ(z))nv = 0 for any v ∈ X and z ∈ Z(g)}.

Any g-module in Op is a finite direct sum of g-modules belonging to some Op
λ. Let K(Op

λ)
be the Grothendieck group of Op

λ, and set

K(Op) :=
∏

λ∈j∗/W

′
K(Op

λ),
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where
∏′ denotes the direct product for which the components are zero except for countably

many constituents. ThenK(Op) is a free Z-module with basis elements Ch(X) in one-to-one
correspondence with simple modules X ∈ Op. We note that K(Op) allows a formal sum of
countably many Ch(X), and contains the Grothendieck group of Op

λ as a subgroup.

3.2 Discretely decomposable branching laws for Op

Retain the notation of Section 3.1. Let g′ be a reductive subalgebra of g. Our subject
here is to understand the g′-module structure of a g-module X ∈ Op, to which we simply
refer as the restriction X|g′ . We allow the case where g′ is not of maximal rank in g. This
question might look easy in the category O at first glance, however, the restriction X|g′
behaves surprisingly in a various (and sometimes "wild") manner even when (g, g′) is a
reductive symmetric pair. In particular, it may well happen that the restriction X|g′ does
not contain any simple module of g′, which may be considered as the effect of "hidden
continuous spectrum" (see [29]).

In order to exclude "hidden continuous spectrum", we introduced the following notion:

Definition 3.1 ([27, Definition 1.1.]). A g′-module X is discretely decomposable if there
exists an increasing sequence of g′-modulesXj of finite length (j ∈ N) such thatX = ∪∞j=0Xj .

For an irreducible g-module X, the restriction X|g′ contains an irreducible g′-module
if and only if the restriction X|g′ is discretely decomposable [27, Sect.1]. Applying this
to X = Mg

p (V ∨), we see from Theorem 2.4 that the concept of "discretely decomposable
restrictions" exactly guarantees the existence of our main objects, namely equivariant dif-
ferential operators between two real flag varieties.

We then ask for which triple g′ ⊂ g ⊃ p the restriction X|g′ is discretely decomposable
as a g′-module for any X ∈ Op. A criterion for this was established in [29] by using an idea
of D-modules as follows: Let G be the group Int(g) of inner automorphisms of g, P ⊂ G
the parabolic subgroup of G with Lie algebra p, and G′ ⊂ G a reductive subgroup with Lie
algebra g′ ⊂ g.

Proposition 3.2. If G′P is closed in G, then the restriction X|g′ is discretely decomposable
for any X ∈ Op. The converse statement also holds if (G,G′) is a symmetric pair.

Proof. See [29, Proposition 3.5 and Theorem 4.1].

Let us consider a simple sufficient condition for the closedness of G′P in G, which will
be fulfilled in all the examples discussed in this article. To that aim, let E be a hyperbolic
element of g defining a parabolic subalgebra p(E) = l(E) + n(E), namely, l(E) and n(E)
are the sum of eigenspaces of ad(E) with zero, positive eigenvalues.

Definition 3.3 ([29, Definition 3.7]). A parabolic subalgebra p is g′-compatible if there
exists a hyperbolic element E′ ∈ g′ such that p = p(E′).

If p = l+n+ is g′-compatible, then p′ := p∩g′ becomes a parabolic subalgebra of g′ with
the following Levi decomposition:

p′ = l′ + n′+ := (l ∩ g′) + (n+ ∩ g′),

and P ′ := P∩G′ becomes a parabolic subgroup ofG′. Hence, G′/P ′ becomes automatically a
closed submanifold of G/P , or equivalently, G′P is closed in G. Here is a direct consequence
of Proposition 3.2:

12



Proposition 3.4 ([29, Proposition 3.8]). If p is g′-compatible, then the restriction X|g′
is discretely decomposable for any X ∈ Op, and any Xj in Definition 3.1 belongs to the
parabolic BGG category Op′ for g′-modules.

Let p be a g′-compatible parabolic subalgebra, and keep the above notation. We denote
by F ′µ a finite-dimensional simple l′-module with highest weight µ ∈ Λ+(l′). The l′-module
structure on the opposite nilradical n− descends to n−/(n− ∩ g′), and consequently extends
to the symmetric tensor algebra S(n−/(n− ∩ g′)). We set

m(λ, µ) := dim Homl′(F ′µ, Fλ|l′ ⊗ S(n−/(n− ∩ g′))).

The following identity is a key step to find branching laws (in a generic case) for the restric-
tion X|g′ for X ∈ Op:

Theorem 3.5 ([29, Proposition 5.2]). Suppose that p = l + n+ is a g′-compatible parabolic
subalgebra of g, and λ ∈ Λ+(l). Then

1) m(λ, µ) <∞ for all µ ∈ Λ+(l′).

2) We have the following identity in K(Op):

Mg
p (λ)|g′ '

⊕
µ∈Λ+(l′)

m(λ, µ)Mg′

p′ (µ)

for any generalized Verma modules Mg
p (λ) and Mg′

p′ (µ) defined respectively by Mg
p (λ) =

U(g)⊗U(p) Fλ, M
g′

p′ (µ) = U(g′)⊗U(p′) F
′
µ.

Finally, we highlight the multiplicity-free case, namely, when m(λ, µ) ≤ 1 and give a
closed formula of branching laws. Suppose now that p = l + n+ is a parabolic subalgebra
such that the nilradical n+ is abelian. We write g = n− + l + n+ for the Gelfand–Naimark
decomposition. Let θ be an endomorphism of g such that θ|l = id and θ|n++n− = − id. Then
θ is an involutive automorphism of g because n+ is abelian.

Suppose τ is another involutive automorphism of the complex Lie algebra g such that
τ l = l and τn± = n±. Then τθ = θτ and the parabolic subalgebra p is gτ -compatible.
We take a Cartan subalgebra j of l such that jτ is a maximal abelian subspace of lτ . Here,
for a subspace V in g, we write V ±τ := {v ∈ V : τv = ±v} for the ±1 eigenspaces of τ ,
respectively. Then

gτθ := lτ + n−τ− + n−τ+

is a reductive subalgebra of g. We write gτθ =
⊕

i g
τθ
i for the decomposition into simple

or abelian ideals, and decompose n−τ− =
⊕

i n
−τ
−,i correspondingly. Each n−τ−,i is a jτ -module,

and we denote by ∆(n−τ−,i, j
τ ) the set of weights of n−τ−,i with respect to jτ . (We note that

n−τ−,i = {0} except for a single i in the case where we shall treat, and thus we may simply
replace n−τ−,i by n−τ− below for actual computations below.)

The roots α and β are said to be strongly orthogonal if neither α+β nor α−β is a root.
We take a maximal set of strongly orthogonal roots {ν(i)

1 , · · · , ν(i)
ki
} in ∆(n−τ−,i, j

τ ) inductively
as follows:

1) ν(i)
1 is the highest root of ∆(n−τ−,i, j

τ ).

2) ν(i)
j+1 is the highest root among the elements in ∆(n−τ−,i, j

τ ) that are strongly orthogonal

to ν(i)
1 , · · · , ν(i)

j (1 ≤ j ≤ ki − 1).
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Then we recall from [28, 29] the multiplicity-free branching law:

Theorem 3.6. Suppose that p, τ , and λ are as above. Then the generalized Verma module
Mg

p (λ) decomposes into a multiplicity-free direct sum of generalized Verma modules of gτ in
K(Op):

Mg
p (λ)|gτ '

⊕
Mgτ

pτ (λ|jτ +
∑
i

ki∑
j=1

a
(i)
j ν

(i)
j ). (3.3)

Here the summation is taken over the following subset of Nk (k =
∑
ki) defined by∏

i

Ai, Ai := {(a(i)
j )1≤j≤ki ∈ Nki : a(i)

1 ≥ · · · ≥ a
(i)
ki
≥ 0}.

The restriction Mg
p (λ)|gτ is actually a direct sum in the parabolic BGG category Op if λ is

sufficiently negative, or more generally, if the following two conditions are satisfied for {a(i)
j }

in the above range:

〈λ|jτ + ρ(gτ ) +
∑
i

ki∑
j=1

a
(i)
j ν

(i)
j , β ∨〉 /∈ N+ for all β ∈ ∆(nτ+, j

τ ), (3.4)

λ|jτ + ρ(gτ ) +
∑
i

ki∑
j=1

a
(i)
j ν

(i)
j are all distinct in (jτ )∗/W (gτ ). (3.5)

Proof. The formula (3.3) was proved in [28, Theorem 8.3] (in the framework of holomorphic
discrete series representations) and in [29, Theorem 5.2] (in the framework of generalized
Verma modules) under the assumption that λ is sufficiently negative and that gτθ is simple.
The latter proof shows in fact that the identity (3.3) holds in K(Op) for all λ. Since two
modules with different infinitesimal characters do not have extension, the last statement
follows.

Remark 3.7. In the case l = gτ , each summand of the right-hand side is finite-dimensional
because the parabolic subalgebra pτ coincides with gτ . In this very special case, Theorem
3.6 for sufficiently negative λ was proved earlier by B. Kostant and W. Schmid. We also note
that Theorem 3.6 includes the decomposition of the tensor product of two representations
for generic parameters because the pair (g ⊕ g,diag(g)) is regarded as an example of a
symmetric pair.

4 Conformal geometry with arbitrary signature
In Sections 4 and 5, we illustrate the F-method by examples of pseudo-Riemannian manifolds
with arbitrary signatures, whose symmetries are given by

(G,G′) = (SOo(p, q), SOo(p, q − 1)) or (Spino(p, q), Spino(p, q − 1)).

In answer to the Problem A posed in Introduction, we see that the F-method brings
us to the Gegenbauer differential equation (6.3) in this case, and prove that all singular
vectors can be described by using the classical orthogonal polynomials. In turn, these
orthogonal polynomials yield a generalization of Juhl’s equivariant differential operators
between sections of line bundles over two conformal manifolds (of different dimensions), of
which the original form was constructed by completely different (combinatorial) techniques
in [23].
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Concerning Problem B in Introduction, by using the explicit singular vectors obtained by
the F-method, we can determine the Jordan–Hölder series of the generalized Verma modules
for g with exceptional (discrete) values of parameters, when we restrict them to the reductive
subalgebra g′, see Theorem 4.10.

4.1 Notation
Let p ≥ 1 and q ≥ 2. We set n = p+ q − 2 and

εi :=

{
1 (1 ≤ i ≤ p− 1),
−1 (p ≤ i ≤ n).

We note εn = −1 because q ≥ 2. Let us consider the quadratic form

2x0 xn+1 +
n∑
i=1

εix
2
i for x = (x0, · · · , xn+1). (4.1)

on Rp+q ' Rn+2, and set G := SOo(p, q), the identity component of the group preserving
the quadratic form. Then the group G preserves the null cone

N = Np,q := {x = (x0, · · · , xn+1) ∈ Rp,q \ {0} : 2x0 xn+1 +
n∑
i=1

εix
2
i = 0}. (4.2)

We define the parabolic subgroups P and P− to be the isotropy subgroups of the line in
the null cone N generated by e0 = t(1, 0, . . . , 0) and en+1 = t(0, . . . , 0, 1), respectively, and
set L := P ∩ P−. The homogeneous space G/P is the projective null cone PN with its
conformal structure. We write P = LN+ = MAN+ for the Langlands decomposition. Let
{Ej}j=1,··· ,n be the standard basis of the Lie algebra n+(R) of N+, which we identify with
Rn, and likewise n−(R) with Rn by using the standard basis:

n+(R) ' {Z : Z = (z1, . . . , zn)}, n−(R) ' {X : tX = (x1, . . . , xn)}. (4.3)

The group M is isomorphic to SO(p− 1, q − 1), and acts on n+(R) ' Rn(= Rp+q−2) as
the natural representation, preserving the quadratic form

∑n
i=1 εix

2
i . Denote by J the n×n

matrix of this quadratic form with elements εi on the diagonal.
Elements in G can be written as block matrices with respect to the direct sum decom-

position

Rn+2 = Re0 ⊕
n∑
j=1

Rej ⊕ Ren+1. (4.4)

Then elements in the real parabolic subgroup P are given by block triangular matrices

p =

 ε(m)a ? ?
0 m ?
0 0 ε(m)a−1

 (4.5)

with a ∈ R+, m ∈ SO(p− 1, q− 1). Here ε(m) = +1 or −1 according to whether m belongs
to the identity component SOo(p− 1, q − 1) or not. In the coordinates (4.3) we have

n = expZ =

1 Z − |Z|
2

2
0 Id −JtZ
0 0 1

 ∈ N+, x = expX =

 1 0 0
X Id 0
− |X|

2

2 −tXJ 1

 ∈ N−, (4.6)

where we set |X|2 := tXJX and |Z|2 := ZJtZ.
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4.2 The representations dπλ and dπ̃λ.

We are going now to apply the F-method explained in Section 2 to the conformal case of
the general signature (p, q),

(G,G′) = (SOo(p, q), SOo(p, q − 1)).

The first goal is to describe the action of elements in n+ in terms of differential operators
acting on the "Fourier image" of the generalized Verma module. This can be deduced
from the explicit form of the (easily described) action of the induced representation in
the non-compact picture. We shall then find singular vectors in Mg

p (Cλ) by using the F-
method. Later on, we use them to obtain equivariant differential operators from IndGP (Cλ)
to IndG

′
P ′(Cλ+K) for some K ∈ N after switching λ to −λ corresponding to the dual repre-

sentation.
For λ ∈ C, we define a family of differential operators on n−(R) ' Rn

x by

Qj(λ) := −1
2
εj |X|2∂xj + xj(λ+

∑
k

xk∂xk), j = 1, . . . , n,

and on its dual space Rn
ξ by

Pj(λ) := −i
(

1
2
εjξj� + (λ− E)∂ξj

)
, j = 1, . . . , n, (4.7)

where
� := ∂2

ξ1 + · · ·+ ∂2
ξp−1
− ∂2

ξp − · · · − ∂
2
ξp+q−2

is the Laplace–Beltrami operator of signature (p−1, q−1) and E =
∑n

k=1 ξk∂ξk is the Euler
homogeneity operator. The mutually commuting operators Pj(λ) (1 ≤ j ≤ n) were intro-
duced in [32, Chapter 1], and include "fundamental differential operators" on the isotropic
cone as a special case (i.e., λ = 1).

Let Cλ be the one-dimensional representation of P given by p 7→ aλ, with the notation of
(4.5). By a little abuse of notation we shall use Cλ to stand for the one-dimensional repre-
sentation space C. Let πλ (≡ πλ,+) be the complex representation of G on the unnormalized
induced representation

IndGP (Cλ) := {f ∈ C∞(G) : f(gp) = a−λf(g) for any p ∈ P}

with p in the notation (4.5). The infinitesimal representation dπλ of the Lie algebra g acts
on C∞(n−(R))⊗ Cλ. We write C∨λ for the contragredient representation of Cλ.

Lemma 4.1. The elements Ej ∈ n+(R) act on C∞(n−(R))⊗ Cλ by

dπλ(Ej)(g ⊗ v) = Qj(λ)(g)⊗ v for g ∈ C∞(n−(R)), v ∈ Cλ. (4.8)

The action of dπ̃λ on Pol[ξ1, . . . , ξn]⊗ C∨λ is given by

dπ̃λ(Ej)(f ⊗ v) = Pj(λ)(f)⊗ v for f ∈ Pol[ξ1, . . . , ξn], v ∈ C∨λ . (4.9)

Proof. For n = expZ ∈ N+ and x = expX ∈ N− we have from (4.5)

n−1x =

 a −Z + 1
2 |Z|

2 tXJ −1
2 |Z|

2

X − 1
2 |X|

2JtZ Id−JtZ ⊗ tXJ JtZ
−1

2 |X|
2 −tXJ 1

 ,
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where

a := 1− Z ·X +
|Z|2|X|2

4
. (4.10)

If Z and X are sufficiently small, then a 6= 0 and we can define

x̃ :=

 1 0 0
a−1(X − 1

2 |X|
2JtZ) Id 0

−1
2a
−1|X|2 a−1(tXJ + 1

2 |X|
2Z) 1

 ∈ N−.
Then p := x̃−1n−1x ∈ P , and in the expression (4.5), a is given by (4.10) and m satisfies
ε(m) = 1. If we let Z tend to be zero, then the elements x̃, a and m behave up to the first

order in ‖Z‖ = (
n∑
i=1
|zi|2)

1
2 as

a ∼ 1− Z ·X, m ∼ Id−JtZ ⊗ tXJ +X ⊗ Z; (4.11)

x̃ = exp X̃, X̃ ∼ (1 + Z ·X)
(
X − |X|

2JtZ
2

)
. (4.12)

Taking Z = tEj , we have for X = t(x1, . . . , xn) ∈ n−(R) ' Rn,

a = 1− txj + o(t),

X̃ = X + txj
t(x1, . . . , xn)− 1

2
εjt|X|2 tEj + o(t),

where o(t) denotes the Landau symbol. Therefore, for F ∈ IndGP (Cλ) and x = exp(X) ∈ N−,
we have

(dπλ(Ej)F )(x) =
d

dt
|t=0 F (exp(−tEj)x)

=
d

dt
|t=0 F (x̃p)

=
d

dt
|t=0 a

−λF (exp(X̃))

=
(
Qj(λ)(F ◦ exp)

)
(X).

Thus we have proved the formula (4.8) for the action dπλ(Ej).
The action of dπ̃λ(Ej) is computed in two steps. The first step is to compute the dual

action dπ ∨ reversing the order in the composition of operators and adding sign changes
depending on the order of the operator. In the second step we apply the distributional
Fourier transform

xj 7→ −i∂ξj , ∂xj 7→ −iξj
preserving the order of operators in the composition.

4.3 The case (G,G′) = (SOo(p, q), SOo(p, q − 1)).

We realize G′ = SOo(p, q−1) as the subgroup of G = SOo(p, q) which leaves the basis vector
en = t(0, . . . , 0, 1, 0) invariant. We recall n = p+ q − 2. Then the parabolic subalgebra p is
g′-compatible in the sense of Definition 3.3, and therefore P ′ := P ∩G′ becomes a parabolic
subgroup of G′ with a Levi part L′ := L ∩G′.

The nilpotent radical n′−(R) ' {tX : X = (x1, . . . , xn−1)} ' Rn−1, has codimension one
in n−(R). We endow n−(R) ' Rp+q−2 with the standard flat quadratic form (p− 1, q − 1),
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denoted by Rp−1,q−1, so that G acts by local conformal transformations on n−(R). The
subspace n′−(R) ' Rn−1 has signature (p− 1, q − 2).

According to the recipe of the F-method in Section 2, we begin by finding the L′-module
structure on the space Sol (see (2.6) for the definition) in this case.

4.3.1 The space of singular vectors

Recall from (2.7) the isomorphism between the space of singular vectors Mg
p (V ∨)n′+ and

the space Sol ≡ Sol(g, g′;V ∨) of polynomial solutions to a system of partial differential
equations. We are now going to determine the set Sol, and thus we describe completely the
set of singular vectors.

For k ∈ N, we denote by Hk(Rp−1,q−1) the space of harmonic polynomials of degree k,
namely, homogeneous polynomials f(ξ) of degree k satisfying

(
∂2

∂ξ2
1

+ · · ·+ ∂2

∂ξ2
p−1

− ∂2

∂ξ2
p

− · · · − ∂2

∂ξ2
p+q−2

)f = 0.

Then the indefinite orthogonal group O(p−1, q−1) acts irreducibly on Hk(Rp−1,q−1), which
then decomposes

Hk(Rp−1,q−1) '
k⊕
j=0

Hj(Rp−1,q−2) (4.13)

when restricted to the subgroup O(p− 1, q − 2).
If Cα` (x) is the Gegenbauer polynomial, then x`Cα` (x−1) is an even polynomial. Hence

we can define another polynomial Cα` (s) by the relation (see Appendix for more details):

x`Cα` (x−1) = Cα` (x2). (4.14)

We define a homogeneous polynomial fK(ξ) ≡ fK,λ(ξ1, · · · , ξn) of degree K (K ∈ N) by

fK,λ(ξ1, · · · , ξn) := ξKn C
−λ−n−1

2
K

(
−
εn
∑n−1

i=1 εiξ
2
i

ξ2
n

)
. (4.15)

Since fK,λ vanishes when λ ∈ {1−n
2 , 3−n

2 , . . . , [K−1
2 ] + 1−n

2 } for K ≥ 1, we renormalize a
non-zero element

wK ≡ wK,λ ∈ Pol[ξ1, · · · , ξn]⊗ Cλ (4.16)

by

w2N,λ :=
N !

(−λ− n−1
2 )N

f2N,λ(ξ1, · · · , ξn)⊗ 1λ,

w2N+1,λ :=
N !

2(−λ− n−1
2 )N+1

f2N+1,λ(ξ1, · · · , ξn)⊗ 1λ,

where (α)k = α(α+1) · · · (α+k−1). We let A ' R>0 act on Pol[n+]⊗V ∨ ' Pol[ξ1, · · · , ξn]⊗
Cλ by

f ⊗ v 7→ f(a−1·)⊗ a · v for a > 0.

We say f⊗v has weight µ if this action is given by the multiplication of aµ. Then the weight
of wK,λ is λ−K.

Theorem 4.2. Let p ≥ 1, q ≥ 2, p + q > 4 and (g(R), g′(R)) = (so(p, q), so(p, q − 1)). We
write 1λ for a non-zero vector in the one-dimensional vector space Cλ with parameter λ ∈ C.
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(1) Let Pj(λ) (1 ≤ j ≤ n) be the second-order differential operators defined in (4.7). Then
the space Sol(g, g′; Cλ) (see (2.6)) is given by

Sol(g, g′; Cλ) = {f ⊗ 1λ ∈ Pol[ξ1, · · · , ξn]⊗ Cλ : Pj(λ)f = 0 (1 ≤ j ≤ n− 1)}.

(2) For λ 6∈ N, we have

Sol(g, g′; Cλ) =
∞⊕
K=0

CwK,λ.

In particular, the inverse Fourier transform (see (2.7)) gives an L′-isomorphism:

Mg
p (λ)n′+

∼←
ϕ

Sol(g, g′; Cλ) =
∞⊕
K=0

CwK,λ.

(3) For λ ∈ N, we have

Sol(g, g′; Cλ) =
∞⊕
K=0

CwK,λ ⊕
λ+1⊕
j=1

H ′j ,

where H ′j ≡ H ′j,λ (1 ≤ j ≤ λ+1) is the subspace of Hλ+1(Rp−1,q−1)⊗Cλ corresponding
to the summand Hj(Rp−1,q−2) in (4.13). In particular, the inverse Fourier transform
induces an L′-isomorphism:

Mg
p (λ)n′+

∼←
ϕ

Sol(g, g′; Cλ) =
∞⊕
K=0

CwK,λ ⊕
λ+1⊕
j=1

H ′j .

Furthermore, for each j = 1, . . . , λ + 1, the image ϕ(H ′j) is contained in the g′-
submodule generated by the vector ϕ(wλ+1−j,λ).

Proof. We apply the F-method as follows. By (4.7), the equation dπ̃(Z)f = 0 for Z ∈ n′+
amounts to a system of differential equations

Pj(λ)f = 0 for j = 1, . . . , n− 1. (4.17)

Hence we have shown the first statement.
In order to analyze Sol(g, g′; Cλ) explicitly, we first prove that if λ /∈ N then any polyno-

mial solution f to (4.17) is SOo(p− 1, q − 2)-invariant. Since the operators Pj(λ) decrease
the homogeneity by one, we can assume f ∈ Sol(g, g′; Cλ) to be homogeneous without loss
of generality. It follows from (4.17) that

(εiξiPj(λ)− εjξjPi(λ))f = 0,

which amounts to

(E − λ− 1)(εjξj∂ξi − εiξi∂ξj )f = 0 (4.18)

for all i, j = 1, . . . , n − 1. We recall n = p + q − 2. Hence if λ 6= deg f − 1, then (εjξj∂ξi −
εiξi∂ξj )f = 0, namely, f is a polynomial invariant under SOo(p− 1, q − 2).

Next, let us solve the equation (4.17).
Case 1. SOo(p− 1, q − 2)-invariant solutions.
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As we saw above, this is always the case when λ 6∈ N. Since p + q − 3 ≥ 2, classical
invariant theory says that any SOo(p − 1, q − 2)-invariant, homogeneous polynomial f in
n-variables of degree K can be written in the form

f(ξ1, . . . , ξn) = ξKn h(t),

where

t =
εn|ξ′|2

ξ2
n

, |ξ′|2 =
n−1∑
i=1

εiξ
2
i

and h is a polynomial of degree N (depending on the parity of K, either K = 2N or
K = 2N + 1).

Hence we look for a solution of the form f = ξKn h(t), t = εn|ξ′|2
ξ2n

. We get immediately

∂jf = ξK−2
n 2εnεjξj h′, ∂2

j f = ξK−2
n

(
4h′′

ξ2
j

ξn
2 + εnεj2h′

)
, j = 1, . . . , n− 1,

�′f = εnξ
K−2
n

(
4h′′t+ 2(n− 1)h′

)
, ∂ξnf = ξK−1

n

(
K h− 2h′t

)
,

εn∂
2
ξnf = εnξ

K−2
n

(
K(K − 1)h+ (−4K + 6)h′t+ 4h′′t2

)
,

�f = εnξ
K−2
n

(
4t(1 + t)h′′ + (2(n− 1) + t(−4K + 6)) h′ +K(K − 1)h

)
,

(λ− E)∂jf = εnεjξjξ
K−2
n (2λ− 2K + 2)h′.

Collecting terms together and cancelling the scalar multiple by 1
2εnεjξjξ

K−2
n , the partial

differential equation (4.17) induces the following ordinary differential equation for h(t) which
is independent of j (1 ≤ j ≤ n− 1):

R(K,−λ− n− 1
2

)h(t) = 0, (4.19)

where we define a differential operator R(l, α) of second order by

R(l, α) := 4t(1 + t)
d2

dt2
+ ((6− 4l)t+ 4(1− α− l)) d

dt
+ l(l − 1). (4.20)

Hence the resulting system of equations (4.17) (for j = 1, . . . , n− 1) reduces to a single
ordinary differential equation of second order for h(t).

We set g(x) := xKh(− 1
x2 ), then g(x) ∈ PolK [x]even belongs to

PolK [x]even := C-span
{
xK−2j : 0 ≤ j ≤

[K
2

]}
.

It follows from Lemma 6.1 that g(x) is a scalar multiple of the renormalized Gegenbauer
polynomial

C̃αK(x) :=
1

(α)[K+1
2

]

CαK(x) for α = −λ− n− 1
2

,

and h(t) = C̃−λ−
n−1

2
K (−t) up to scalar (see (4.14).) Hence f(ξ1, . . . , ξn) is a scalar multiple

of 1
(−λ−n−1

2
)
[K+1

2 ]

fK,λ.

Case 2. λ ∈ N.
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We set k := λ + 1. Suppose f is a homogeneous polynomial. As we saw, if f ⊗ 1λ ∈
Sol(g, g′; Cλ), then f is SOo(p−1, q−2)-invariant as far as deg f 6= k. Suppose now deg f = k.
Then (λ−E)∂ξj f vanishes, because ∂ξjf is homogeneous of degree k − 1 (= λ). In view of
the formula (4.7) of Pj(λ) for homogeneous polynomials f of degree k, f⊗1λ ∈ Sol(g, g′; Cλ)
if and only if f satisfies the single equation �f = 0, namely, f ∈ Hk(Rp−1,q−1). Hence we
have shown

Sol(g, g′; Cλ) =
∞⊕
K=1

CwK,λ ⊕Hλ+1(Rp−1,q−1)⊗ Cλ

=
∞⊕
K=0

CwK,λ ⊕
λ+1⊕
j=1

H ′j .

For j = 0, . . . , k (= λ+ 1), let Mj be the g′-submodules in Mg
p (λ) generated by the singular

vectors ϕ(wλ+1−j,λ). Finally, let us prove

ϕ(H ′j) ⊂Mj (j = 0, 1, · · · , λ+ 1).

This is deduced from the following three claims, which we are going to prove:

• ϕ(H ′j) ⊂M0 +M1 + · · ·+Mλ+1.

•
λ+1∑
i=0

Mi is a direct sum of g′-modules.

• Among {M0,M1, · · · ,Mλ+1},Mj is the unique g′-submodule that has the same Z(g′)-
infinitesimal character with that of the g′-module generated by ϕ(H ′j).

In the F-method, the Lie algebra n′− acts on Pol[ξ1, · · · , ξn−1]⊗Cλ by the multiplication of
a linear function of ξ1, · · · , ξn−1. Hence we have

Mj = ϕ(Pol[ξ1, · · · , ξn−1]wλ+1−j,λ).

Thus the first claim will be proved if we show

Polλ+1[ξ1, · · · , ξn]⊗ 1λ ⊂
λ+1∑
i=0

Pol[ξ1, · · · , ξn−1]wλ+1−i,λ, (4.21)

where Poll[ξ1, · · · , ξn] stands for the space of homogeneous polynomials of degree l. To see
(4.21), we observe that the coefficient of ξKn ⊗ 1λ in the polynomial wK,λ (see (4.16)) is a
non-zero multiple of

(α)K
(α)[K+1

2
]

= (α+ [
K + 1

2
]) · · · (α+K − 2)(α+K − 1) with α = −λ− n− 1

2
,

which does not vanish ifK ≤ λ+1. Hence we see by induction on l that
l∑

K=0

Pol[ξ1, · · · , ξn]wK,λ

coincides with
l∑

K=0

Pol[ξ1, · · · , ξn−1]ξKn ⊗ 1λ for all l ≤ λ+ 1. In particular, (4.21) is proved

and the first claim is shown.
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To see the second and third claims, let j′ be a Cartan subalgebra of g′ = so(n+ 1,C) '
so(p, q − 1) ⊗R C. We identify (j′)∗ ' C[n+1

2
] via the standard basis {e1, e2, · · · , e[n+1

2
]} so

that Cλ is given by λe1 (λ ∈ C) and similarly for j∗ ' C[n+2
2

]. In the coordinates we have

ρ′ = (
n− 1

2
,
n− 3

2
, · · · , n− 1

2
− [

n− 1
2

]) ∈ (j′)∗.

Then the Z(g′)-infinitesimal character of Mj is given by

(λ− (λ+ 1− j), 0, · · · , 0) + ρ′ = (j +
n− 3

2
,
n− 3

2
,
n− 5

2
, · · · , n− 1

2
− [

n− 1
2

])

which are distinct for j = 0, 1, · · · , λ + 1(= k) in (j′)∗/W (g′) if n ≥ 3. Therefore, the sum
M0 +M1 + · · ·+Mλ+1 is a direct sum if n ≥ 3.

Let us now consider one fixed summand H ′j for j = 0, 1, . . . , k. Since such f is homoge-
neous of degree k(= λ+ 1), the Z(g′)-infinitesimal character of the g′-module generated by
ϕ(H ′j) is given by

(−1, j, 0, · · · , 0) + ρ′ = (
n− 3

2
, j +

n− 3
2

,
n− 5

2
, · · · , n− 1

2
− [

n− 1
2

]),

which coincides with that of Mj . Hence we have shown ϕ(H ′j) ⊂Mj .

Theorem 4.2 gives a complete description of the set of singular vectors invariant with
respect to SOo(p− 1, q− 2). In the positive signature, which corresponds to the p = 1 case,
SO(q − 2)-invariant singular vectors were found by A. Juhl in [23, Chapter 5] by a heavy
combinatorial computation using recurrence relations. Notice that the Juhl’s computations
depend on the parity of K, and the higher dimensional components of singular vectors are
more difficult to detect by algebraic methods. We would like to emphasize that our approach
is very different and allows us a uniform treatment.

An important point is that the F-method gives a complete description of the set of
singular vectors and its structure as an L′-module. In the second part of Theorem 4.2, we
describe also all L′-submodules of higher dimensions, which will be used in the complete
description of the composition series when the restriction is not completely reducible (see
Theorem 4.10).

4.3.2 Equivariant differential operators for the conformal group

For 0 ≤ j ≤ N − 1, we set

aj(λ) ≡ aN,nj (λ) :=
(−2)N−jN !
j!(2N − 2j)!

N−1∏
k=j

(2λ− 4N + 2k + n+ 1), (4.22)

bj(λ) ≡ bN,nj (λ) :=
(−2)N−jN !

j!(2N − 2j + 1)!

N−1∏
k=j

(2λ− 4N + 2k + n− 1),

(4.23)

and aN (λ) = bN (λ) := 1. Here we have adopted the same notation with Juhl’s book
[23], i.e. [loc. cit., Corollary 5.1.1] for aj(λ) and [loc. cit., Corollary 5.1.3] for bj(λ) for the
convenience of the reader.
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Then it follows from (6.8) and (6.9) in Appendix that the formula (4.15) amounts to

w2N,λ = (
N∑
j=0

aj(λ)(−|ξ′|2)jξ2N−2j
n )⊗ 1λ, (4.24)

w2N+1,λ = (
N∑
j=0

bj(λ)(−|ξ′|2)jξ2N−2j+1
n )⊗ 1λ, (4.25)

because εn = −1.
As stated in Theorem 2.4, the homomorphism between the generalized Verma modules of

the Lie algebras g′ and g induces an equivariant differential operator acting on local sections
of induced homogeneous bundles on the generalized flag manifolds of the Lie groups G′

and G. We shall describe these differential operators using the non-compact picture of the
induced representation. The restriction from G to N− P induces the non-compact model of
the induced representation by the map

β : IndGP (Cλ) ↪→ C∞(N−) ' C∞(Rp−1,q−1).

Via the injection β, we get the following explicit form of G′-equivariant differential operator
by replacing λ with −λ.

Theorem 4.3. Let (G,G′) = (SOo(p, q), SOo(p, q − 1)), p ≥ 1, q ≥ 2, n = p + q − 2 > 2,
and λ ∈ C.

(1) The singular vectors ϕ(w2N,−λ) ∈ Mg
p (−λ) in Theorem 4.2 (1) induce (in the non-

compact picture) the family D2N (λ) : C∞(Rp−1,q−1)→ C∞(Rp−1,q−2) of G′-equivariant
differential operators given by D2Nf = (D2N (λ)f)|xn=0, where D2N (λ) is a differential
operator of order 2N defined as follows:

D2N (λ) :=
N∑
j=0

aj(−λ)(−�′)j(
∂

∂ xn
)2N−2j .

Here �′ = ∂2

∂x2
1
+· · ·+ ∂2

∂x2
p−1
− ∂2

∂x2
p
−· · ·− ∂2

∂x2
n−1

is the (ultra)-wave operator on Rp−1,q−2.

The infinitesimal intertwining property of D2N (λ) is given explicitly as

D2N (λ)dπGλ (X) = dπG
′

λ+2N (X)D2N (λ) for X ∈ g′. (4.26)

Similarly, the singular vectors ϕ(w2N+1,−λ) ∈ Mg
p (−λ) in Theorem 4.2 (1) define

the family D2N+1(λ) : C∞(Rp−1,q−1) → C∞(Rp−1,q−2) of G′-equivariant differential
operators induced by

D2N+1(λ) :=
N∑
j=0

bj(−λ)(−�′)j(
∂

∂ xn
)2N−2j+1.

The operator D2N+1(λ) intertwines dπGλ and dπG′λ+2N+1.

(2) The branching law Hk(Rp−1,q−1) '
⊕k

j=0Hj(Rp−1,q−2) (see (4.13)) is multiplicity-
free, and we denote by πkj the corresponding orthogonal projections. Note that the
O(p−1, q−1)-modules Hk(Rp−1,q−1) are isomorphic to the k-th symmetric and trace-
free part �k0(Rp−1,q−1) of the defining representation of O(p− 1, q − 1).
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For −λ ∈ N, set k = |λ|+ 1. Then we have G-equivariant differential operator

Dk : C∞(Rp−1,q−1)→ C∞(Rp−1,q−1)⊗Hk(Rp−1,q−1),

given by the set f ⊗ 1−λ, f ∈ Hk(Rp−1,q−1) of singular vectors. In the non-compact
picture, the operator Dk corresponds to the (symmetric) trace-free part of the multiple
gradient σ 7→ ∇(a . . .∇b)0σ (number of indices being k).

Moreover, for each j = 0, 1, 2, . . . , k, there are G′-equivariant differential operators

Dk,j : C∞(Rp−1,q−1)→ C∞(Rp−1,q−2)⊗Hj(Rp−1,q−2);

given by the composition Dk,j = πkj ◦Dk, restricted to Rp−1,q−2.

Proof. The first part of the theorem follows immediately from Theorem 4.2 (2) and from
the fact that an element X ∈ n−(R) acts on functions in C∞(n−(R)) by the derivative in
the direction X.

The second part follows from Theorem 4.2 (3) and the well-known classification of dif-
ferential operators on the sphere Sn ' G/P equivariant with respect to the action of the
conformal group (see, e.g., [42, Sections 8.6–8.9]).

Remark 4.4. Denote the induced representation IndGP (Cλ) by πλ,+(≡ πλ) and denote the
representation IndGP (sgn ⊗ Cλ) ≡ IndGP ((−1) ⊗ Cλ) induced from p 7→ ε(m)aλ by πλ,− (see
(4.5) for notation). They give rise to the same action of the Lie algebra, but on the level of
the induced representations we have the following intertwining relation

DK(λ)πGλ,ε1(g′) = πG
′

λ+K,ε2(g′)DK(λ), (4.27)

where g′ ∈ G′ and ε1 · ε2 = (−1)K , K ∈ N.
The results obtained in the first part of the Theorem 4.3 generalize those obtained in

[23, Chapter 5] for the positive definite signature. Our proof based on the F-method is
completely different from [23], and is significantly shorter even in the p = 1 case.

The operator Dk, defined in the second part of Theorem 4.3, is the first BGG operator
in the BGG complex corresponding to the G-module given by the k-th symmetric traceless
power of its fundamental vector representation. There are also explicit formulae for a ma-
jority of operators appearing in the BGG complexes in the compact picture (as well as for
their curved versions in the BGG sequences), but the expressions are more complicated and
contain many lower order curvature terms (see, [4]).

The second part of Theorem 4.3 is an example of a more general principle, which can
be formulated as follows. Every G-equivariant differential operator D, acting between sec-
tions of homogeneous bundles over G/P , induces by restriction to G′/P ′ a G′-equivariant
differential operator. Moreover, we may compose G-equivariant differential operators or G′-
equivariant differential operators to get G′-equivariant differential operators. This composi-
tion may be possible for a discrete set of λ. Such possibilities called factorization identities
will be discussed (for densities) in Section 4.3.5 in more details.

4.3.3 The branching rules for Verma modules — generic case

The branching rules for generic parameters are obtained as a special case of the general
theory stated in Section 3. The proof does not require the F-method.
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Theorem 4.5. For λ ∈ C\{1
2(k−n) : k = 2, 3, 4, · · · }, the Verma moduleMg

p (λ) decomposes
as a direct sum of generalized Verma modules of g′:

Mg
p (λ)|g′ '

⊕
b∈N

Mg′

p′ (λ− b). (4.28)

Proof. Apply Theorem 3.6 to the special case where gτ = g′ and

(g, g′, p/n+) ' (so(n+ 2,C), so(n+ 1,C), so(n,C)⊕ C).

Then l = 1 and ν1 = −e1. Hence we get (4.28) from Theorem 3.6 as the identity in the
Grothendieck group for all λ ∈ C. The infinitesimal characters of Mg′

p′ (λ− b) are given by

(λ− b+
n− 1

2
,
n− 3

2
,
n− 5

2
, · · · , n− 1

2
− [

n− 1
2

]),

which are all distinct in (j′)∗/W (g′) for b ∈ N if and only if 2λ+ n 6= 2, 3, 4, · · · , whence the
last statement.

We shall give in Corollary 4.15 a necessary and sufficient condition on λ for the irre-
ducibility of Mg′

p′ (λ). The branching law in the singular case λ ∈ 1
2(k − n) (k = 2, 3, 4, · · · )

will be treated in Theorem 4.10.

4.3.4 The branching rules — exceptional cases

For integral values of the inducing parameter, the branching law is not always a direct sum
decomposition but may involve extensions. To understand this delicate structure, we shall
apply the F-method again and use an explicit form of singular vectors. The description of the
branching rules for exceptional parameters was earlier studied in a special case corresponding
to Juhl’s operator in [43].

Let us first notice that the g-module Mg
p (λ) ≡ Mg

p (Cλ) decomposes for all λ into an
even and odd part as g′-modules. In the F-method, we take the Fourier transform of
the Verma module Mg

p (Cλ), and this decomposition is described as the decomposition of
Pol[ξ1, . . . , ξn]⊗ Cλ into( ∞⊕

k=0

Pol[ξ1, . . . , ξn−1]ξ2k
n

)
⊗ Cλ ⊕

( ∞⊕
k=0

Pol[ξ1, . . . , ξn−1]ξ2k+1
n

)
⊗ Cλ.

By the formula of dπλ(Ej) (see Lemma 4.1), it is easy to see that both summands are
g′-submodules.

Any singular vector vector ϕ(wλ,K) (K ∈ N) in Mg
p (λ)n′+ (see Theorem 4.2) generates a

g′-submodule of Mg
p (λ), which we denote by VK ≡ VK(λ). Since n− acts freely on Mg

p (λ),
the g′-module VK is isomorphic to the g′-Verma module Mg′

p′ (Cλ−K). We note that the
g′-submodule

∑
K∈N

VK inMg
p (Cλ) is not necessarily a direct sum for exceptional parameter λ

(see (4.29) below), where two g′-modules VK and VK′ may have the same Z(g′)-infinitesimal
character. In order to understand what happens about the g′-module structure of the
g-module Mg

p (Cλ) in this case, we apply again the F-method – take the inverse Fourier
transform (see (2.3))

VK = ϕ(Pol[ξ1, · · · , ξn]wK,λ)

and use an explicit formula for the singular vector wK,λ (see (4.16)).
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In cases where the submodules V2N and V2N ′ have the same infinitesimal character, we
shall see (due to the knowledge of the explicit form of the singular vectors) that one of them
is submodule of the other. In this case, we find a g′-submodule Mg

p (Cλ) which allows a
non-splitting extension. We shall illustrate it in a number of examples. For this, we begin
with explicit formulas of wK,λ (K ≤ 4) as follows (see Appendix for the formula for C̃λK(t)
(K = 0, 1, · · · , 4)):

w0 ≡ w0,λ = 1⊗ 1λ,
w1 ≡ w1,λ = ξn ⊗ 1λ,
w2 ≡ w2,λ = (−(2λ+ n− 3)ξ2

n − |ξ′|2)⊗ 1λ,

w3 ≡ w3,λ = ξn(−1
3

(2λ+ n− 5)ξ2
n − |ξ′|2)⊗ 1λ,

w4 ≡ w4,λ = (
1
3

(2λ+ n− 5)(2λ+ n− 7)ξ4
n + 2(2λ+ n− 5)ξ2

n|ξ′|2 + |ξ′|4)⊗ 1λ,

where we recall |ξ′|2 =
n−1∑
i=1

εiξ
2
i .

We set
λj :=

1
2

(−n+ 1 + j). (4.29)

Example 4.6. The case λ = λ1 = −n+2
2 . In this case, all the infinitesimal characters of the

g′-submodules generated by singular vectors wK (K ∈ N) are mutually different except those
corresponding to w0 and w1, which coincide. Due to the fact that the whole g-module splits
into a direct sum of even and odd parts, there is no extension among these g′-modules and
therefore, the branching is the same as in the generic case.

Example 4.7. The case λ = λ2 = −n+3
2 . In this case, the infinitesimal characters of g′-

submodules generated by singular vectors wK (K ∈ N) coincide only for w0 and w2, and
all others are mutually different. We compare w0 and w2. For λ = λ2, the first term of
w2 ≡ w2,λ vanishes, and w2 reduces to −|ξ′|2 ⊗ 1λ. Hence

Pol[ξ1, · · · , ξn−1]w0,λ ⊃ Pol[ξ1, · · · , ξn−1]w2,λ

for λ = λ2. In turn, we have V0(λ2) ⊃ V2(λ2).
Thus for λ = λ2 = −n+3

2 , the g′-submodule V0(λ2) generated by w0 contains the unique
nontrivial submodule V2(λ2) , generated by w2. On the other hand, the direct sum M02 of
the U(n′−)-span of w0 = 1λ and the U(n′−)-submodule generated by the vector ξ2

n ⊗ 1λ is
invariant under the action of g′, and it is a (non-split) extension

0→Mg′

p′ (λ2)→M02 →Mg′

p′ (λ2 − 2)→ 0. (4.30)

All the other infinitesimal characters are mutually different, hence the branching rule is now
given by

Mg
p (λ2) 'M02 ⊕

⊕
b∈N,b 6=0,2

Mg′

p′ (λ2 − b).

Example 4.8. The case λ = λ3 = −n+4
2 . In this case, the infinitesimal characters of

g′-submodules generated by singular vectors w0, w3 respectively w1, w2 coincide, and both
characters are different from each other, and differ from all others (which are also mutually
different). But again due to the fact that the whole g-module splits into a direct sum of even
and odd parts, the whole branching is again the same as in generic case.
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Example 4.9. Let λ = λ4 = −n+5
2 . The explicit formula of singular vectors wK,λ shows

that in this case the vectors shows the first two terms of w4 = w4,λ vanish, and w4 reduces
to |ξ′|4 ⊗ 1λ. Hence

Pol[ξ1, · · · , ξn−1]w0,λ ⊃ Pol[ξ1, · · · , ξn−1]w4,λ

for λ = λ4. In turn, we have V0(λ4) ⊃ V4(λ4). Of course, these two g′-modules have the
same infinitesimal character. Another couple with the same infinitesimal characters (but
different from the previous couple) are the two g′-submodules V1(λ4) and V3(λ4) generated
by w1 and w3, respectively.

Returning to w0, w4 ∈ Pol[ξ1, · · · , ξn−1]⊗ 1λ for λ = λ4, we consider

M04 := ϕ(Pol[ξ1, · · · , ξn−1] C-span{1, ξ2
n, ξ

4
n} ⊗ 1λ).

It turns out that the U(n′−)-submodule M04 in Mg
p (Cλ) is g′-invariant. Clearly, V4(λ4) ⊂

V0(λ4) ⊂M04. Furthermore, it is possible to show we have a non-splitting exact sequence of
g′-modules:

0→Mg′

p′ (λ4)→M04 →Mg′

p′ (λ4 − 4)→ 0. (4.31)

Similarly, there is a non-trivial extension

0→Mg′

p′ (λ4 − 1)→M13 →Mg′

p′ (λ4 − 3)→ 0 (4.32)

of the modules generated by w1 and w3, denoted by M13, and the branching rule is

Mg
p (λ4) 'M04 ⊕M13 ⊕

⊕
b∈N,b 6=0,1,3,4

Mg′

p′ (λ4 − b).

We generalize these observations and obtain the following precise description of the
extensions among branching laws for integral parameters:

Theorem 4.10. Recall (4.29) for the definition of λj.

(1) Suppose j = 2k + 1 with k ∈ N+. Then the branching is the same as in the generic
case:

Mg
p (λ2k+1)|g′ '

⊕
b∈N

Mg′

p′ (λ2k+1 − b) (direct sum). (4.33)

(2) Suppose j = 2k with k ∈ N+. Then there exists a g′-submodule Ma,2k−a ⊂ Mg
p (λ2k)

for each a = 0, . . . , k − 1 with the following two properties: The restriction Mg
p (λ2k)

decomposes into a direct sum of g′-modules:

Mg
p (λ2k)|g′ '

k−1⊕
a=0

Ma,2k−a ⊕Mg′

p′ (λ2k − k)⊕
∞⊕

b=2k+1

Mg′

p′ (λ2k − b),

and there exists a non-split exact sequence of g′-modules:

0→Mg′

p′ (λ2k − a)→Ma,2k−a →Mg′

p′ (λ2k − (2k − a))→ 0. (4.34)

In order to give a proof of the theorem, we begin with the following elementary but useful
observation.
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Lemma 4.11. Suppose N is a g-module in the category O, and V1, V2 are two submodules
of N satisfying the following three conditions:

1) (character identity) Ch(V1) + Ch(V2) = Ch(N),

2) V1 is irreducible,

3) dim Homg(V1, V2) = dim Homg(V1, N) = 1.

Then there exists a non-split exact sequence of g-modules:

0→ V2 → N → V1 → 0. (4.35)

Proof. We note that V1 ⊂ V2 ⊂ N from the third condition. Since V1 is irreducible, V1 is
isomorphic to the quotient N/V2 by the first condition. Thus we have an exact sequence
(4.35) of g-modules. Then the third condition implies that (4.35) does not split.

The next lemma analyzes a relationship between two singular vectors with the same
infinitesimal characters.

Lemma 4.12. For a, k ∈ N such that a ≤ 2k, the Gegenbauer polynomials satisfy:

C−ka (s) = C−k2k−a(s) and C−ka (s) = sa−kC−k2k−a(s).

Proof. By using the identity Γ(α)Γ(1 − α) = π
sinπα , the polynomial expression (6.4) of the

Gegenbauer polynomial can be written as

C−ka (s) = (−1)ak!
[a
2

]∑
i=0

(2s)a−2i

Γ(1− a+ i+ k)i!(a− 2i)!
.

Switching a with 2k − a, we have

C−k2k−a(s) = (−1)2k−ak!
[ 2k−a

2
]∑

i=0

(2z)2k−a−i

Γ(1− k + a+ i)i!(2k − a− 2i)!
,

where the terms for i = 0, · · · , k − a− 1 vanish if a < k. Putting j = i+ a− k, we have

C−k2k−a(s) = (−1)ak!
[a
2

]∑
j=0

(2z)a−2j

Γ(1 + j)(j + k − a)!(a− 2j)!
.

Hence C−ka (s) = C−k2k−a(s). The last assertion follows immediately from the definition (4.14).

Lemma 4.13. Let k ∈ N. We denote by fa(ξ) ≡ fa,λ2k
(ξ) (a ∈ N) the polynomials defined

in (4.15). Then for any a ∈ N such that a ≤ k, we have

f2k−a(ξ) = (
n−1∑
i=1

εiξ
2
i )k−afa(ξ).

Proof. Let t = ξ−2
n

∑n−1
i=1 εiξ

2
i . By (4.15) and Lemma 4.12, we have

fa(ξ) = ξanC−ka (t) = ξant
a−kC−k2k−a(t).

Hence f2k−a(ξ) = ξ2k−a
n C−k2k−a(t) = (

∑n−1
i=1 εiξ

2
i )k−afa(ξ).
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Proof of Theorem 4.10. Since there is no extension between two modules with distinct gener-
alized infinitesimal characters, we can collect the terms of the same generalized infinitesimal
characters as direct summands.

Let us examine this decomposition in our setting. First we observe that the identity
(4.28) holds in the Grothendieck group for all λ ∈ C by Theorem 3.6. We recall from
(4.29) that λj = 1

2(−n + 1 + j). This shows that generalized Z(g′)-infinitesimal characters
decomposition of g′-modules:

Mg
p (λj)|g′ =

⊕
b∈N
2b≥j

Nb,

that appear in the direct summands of the restriction Mg
p (λj)|g′ are of the form

(
j

2
− b, n− 3

2
,
n− 5

2
, . . . ,

n− 1
2
− [

n− 1
2

]),

for some b ∈ N with j
2 ≤ b. Correspondingly, in the Grothendieck group, or equivalently, as

the character identity, we have

Nb =


Mg′

p′ (λj − b) (j < b),
Mg′

p′ (λj − b) +Mg′

p′ (λj − j + b) ( j2 < b ≤ j),
Mg′

p′ (λj − b) (b = j
2).

On the other hand, the g′-module Mg′

p′ (λj − b) is irreducible for any b ∈ N with j
2 ≤ b by

Corollary 4.15 below. Let us consider the g′-module structure of Nb for j
2 < b ≤ j. It

follows from Theorem 4.2 that wb,λj and wj−b,λj Sol(g, g′; Cλj ) generate two g′-submodules
in Pol(n+)⊗Cλj , to be denoted by Mb and Mj−b, which are isomorphic to Mg′

p′ (λj − b) and

Mg′

p′ (λj − j + b), respectively.
Furthermore, if j = 2k then by Lemma 4.13 with b := 2k − a on an explicit knowledge

of singular vectors we have

fb(ξ) = (
n−1∑
j=1

εiξ
2
i )b−kf2k−b(ξ)

for b ≥ k. ThusM2k−b is a submodule ofMb. The theorem follows by application of Lemma
4.11. Here we take V1 to be Mb and V2 to be Mj−b.

4.3.5 Factorization identities

Let us return back to the Example 4.7. For λ2 = −n+3
2 , the action of g′ on the top two

singular vectors w0 and w2 generate the g′-submodules V0 and V2 in the g-module Mg
p (λ2),

respectively. The second one is a submodule of the first one. The corresponding inclusion is a
g′-homomorphisms ψ, whose dual differential operator is the conformally invariant Yamabe
operator. If we denote by φ0 and φ2 the inclusions of V0 and V2, respectively, into M

g
p (λ0),

we get the relation
φ2 = φ0 ◦ ψ.

The F-method explains this factorization as

f2(ξ) = (
n−1∑
i=1

εiξ
2
i )f0(ξ)
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by applying Lemma 4.13 with a = 0 and k = 1.
As another example, let us consider the weight λ4 = −n

2 + 5
2 . Then the g′-submodule

V1 generated by the singular vector w1 and the g′-submodule V3 generated by the singular
vector w3 have the same infinitesimal character. There exists a g′-homomorphism ψ from V3

to V1. The homomorphism φ3 from V3 to Mg
p (λ0) can be factorized as φ1 ◦φ. The F-method

explains this factorization as

f3(ξ) = (
n−1∑
i=1

εiξ
2
i )f1(ξ)

by applying Lemma 4.13 with a = 1 and k = 2.
Hence for some particular discrete subset of values for λ, there is a possibility to fac-

tor an element in Homg′(M
g′

p′ (λ
′),Mg

p (λ)) as a composition of an element in the space

Homg′(M
g′

p′ (λ
′),Mg′

p′ (λ
′′)) and an element in Homg′(M

g′

p′ (λ
′′),Mg

p (λ)). There is also another

possibility to factor an element in Homg′(M
g′

p′ (λ
′),Mg

p (λ)) as a composition of an element

in Homg′(M
g′

p′ (λ
′),Mg

p (λ′′)) and in Homg(Mg
p (λ′′),Mg

p (λ)).
The fact that such a behaviour can happen only for discrete values of λ is a consequence

of classification of homomorphisms of g-generalized Verma modules. These properties were
discovered and used effectively for curved generalizations by A. Juhl (see [23, Chapter 6])
under the name factorization identities. It is not a special feature of this particular example
with G = SOo(1, n + 1) but it is a more general fact. It holds not only in Juhl’s case (the
scalar case) but also in spinor-valued case. If we consider not only differential intertwining
operators for the restriction but also continuous intertwining operators ("symmetry breaking
operators"), then the factorization identity may hold for continuous values of parameters
see [31], [36, Chapters 8, 12]. In the F-method, the factorization identities are derived from
the identities of two polynomials in Sol such as the formula given in Lemma 4.13. This
viewpoint will be pursued in the second part of the series [32]. See also [35, Sect.9].

In the dual language of differential operators the factorization is described as follows:
The first example above expresses the Juhl operator D2 as the composition of the operator
D0 and the Laplace operator. The second example shows that the operator D3 is given by
the composition of D1 and the Laplace operator.

4.4 The case G = G′ = SOo(p, q).
We consider an application of the F-method to the special case G′ = G. In this case, we do
not need branching laws. Even in this classical situation, we shall observe that the F-method
yields a simple and new independent construction of all differential intertwining operators
for G = SOo(p, q)-modules induced from densities.

For λ ∈ C we recall from Section 4.1 that Cλ the one-dimensional representation of the
parabolic subgroup P . We write Mg

p (λ) for Mg
p (Cλ) as before. With the notation as in

Theorem 4.2, we give a classification of all singular vectors via the bijection Mg
p (λ)n+

∼←
ϕ

Sol(g, g; Cλ) by the next proposition.

Proposition 4.14. Let g(R) = so(p, q) and λ ∈ C. Recall n = p+ q−2 and wK,λ is defined
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by the formula in (4.16). Then we have:

n: even

Sol(g, g; Cλ) '


Cw0,λ ⊕ Cw2λ+n,λ if λ+ n

2 ∈ N+ ,

Cw0,λ ⊕ Cw2λ+n,λ ⊕Hλ+1(Rp−1,q−1) if λ ∈ N,
Cw0,λ otherwise.

n:odd

Sol(g, g; Cλ) '


Cw0,λ ⊕ Cw2λ+n,λ if λ+ n

2 ∈ N+,

Cw0,λ ⊕Hλ+1(Rp−1,q−1) if λ ∈ N,
Cw0,λ otherwise.

Proof of Proposition 4.14. Most of the proof was already given in that of Theorem 4.2. In
particular, we see

Hλ+1(Rp−1,q−1) ⊂ Sol(g, g; Cλ) for all λ ∈ N.

In view of the obvious inclusion Sol(g, g; Cλ) ⊂ Sol(g, g′; Cλ), it suffices to determine for
which K and λ the vector wK,λ belongs to Sol(g, g; Cλ) when K ∈ N+. This is equivalent to
the condition that fK,λ defined in (4.15) is so(p, q)-invariant. The form of the polynomial
fK,λ, the relation εn = −1, and the invariance of fK,λ with respect to so(p, q) imply that

C
−λ−n−1

2
K (s) is a multiple of (1− s2)m for some m ∈ N. This happens if and only if

K = 2m and λ+
n

2
= m.

To see this, we verify whether or not (1−s2)m satisfies the Gegenbauer differential equation
like Cα2m(s) for α = −λ− n−1

2 . Since

((1− s2)
d2

ds2
− (1 + 2αs2)

d

ds
+ 4m(m+ α)s2)(1− s2)m = 2m(2m+ 2α− 1)s2(1− s2)m−1,

this is zero if and only if 2m + 2α − 1 = 0, namely, λ + n
2 = m. Hence Proposition 4.14 is

proved.

Forgetting a concrete description of singular vectors in Proposition 4.14, we still have
the following abstract result as a corollary:

Corollary 4.15. The generalized Verma module Mg
p (λ) is irreducible if and only if n2 +λ 6∈

N+ (n even); λ 6∈ N and n
2 + λ 6∈ N+ (n odd).

If F is a homomorphism from a generalized Verma module Mg
p (V ) to Mg

p (Cλ), then the
image of 1 ⊗ V by F is an l-irreducible subspace of Mg

p (λ)n+ = ϕ(Sol(g, g; Cλ)). In such
a way, Proposition 4.14 gives not only a new proof of the well-known classification of all
homomorphisms from a generalized Verma module Mg

p (Cλ) for this specific pair (g, p), but
also an explicit construction of such homomorphisms by special values of the Gegenbauer
polynomials.

In the dual language, the singular vector w0,λ gives the identity operator on the induced
representations IndGP (C−λ), whereas w2λ+n,λ and Hλ+1(Rp−1,q−1) give rise to G-intertwining
differential operators

IndGP (Cn
2
−m)→ IndGP (Cn

2
+m), (4.36)

IndGP (C1−k)→ IndGP ((−1)k ⊗Hk(Rp−1,q−1)⊗ C1), (4.37)

31



with m = λ + n
2 , k = 1 + λ ∈ N, respectively. In the non-compact picture, (4.36) is given

by the m-th power of the Laplacian

�m : C∞(Rp−1,q−1)→ C∞(Rp−1,q−1),

where � = ∂2

∂x2
1

+ · · ·+ ∂2

∂x2
p−1
− ∂2

∂x2
p
− · · · − ∂2

∂x2
p+q−2

. For the operator (4.37), we use the fact

that the representation of SOo(p − 1, q − 1) on Hk(Rp−1,q−1) is self-dual. Then (4.37) is
described in the non-compact picture by

C∞(Rp−1,q−1)⊗Hk(Rp−1,q−1)→ C∞(Rp−1,q−1),
(u(x), f(ξ)) 7→ f( ∂

∂x1
, · · · , ∂

∂xp+q−2
)u.

Note that the powers �m,m = λ + n
2 with λ ≤ 0 are special in the following sense. There

exists their ‘curved’ versions, i.e., on any manifold with a given conformal structure, there
are conformally invariant operators of order m = 1, . . . , n2 with symbol equal to �m. These
operators were constructed in [17], and they are usually called the GJMS operators. The
structure of lower order curvature terms is very complicated and was studied in many pub-
lications (see, e.g., [24] and the references in [23]). On the contrary, curved analogues of �m

for m > n
2 do not exist ([20]).

The series Dk of operators constructed above are examples of the first BGG operators
(equations for the conformal Killing tensors in Theorem 4.3) given by the projection to the
symmetric trace-free part of the multiple gradient ∇(a . . .∇b)0σ (number of indices being k).
As the trace-free condition translates by the Fourier transform to the harmonicity condition,
the operators Dk correspond by Proposition 4.14 to Hk(Rp−1,q−1) with k := λ+ 1 ∈ N+.

5 Dirac operators and Spino(p, q)

In the present section we extend the scalar-valued results considered in Section 4.3 to those
for spinor-valued sections. The symmetries for the base manifolds remain the same, given
by the pair of Lie groups (G̃, G̃′) = (Spino(p, q), Spino(p, q − 1)). The main results are
Theorems 5.7 and 5.11.

5.1 Notation
We shall use the same convention as in Section 4. Let p ≥ 1, q ≥ 2, n = p+ q−2, n = n′+ 1,
and we suppose that the quadratic form (4.1) on Rp+q = Rn+2 is given as in Section 4.1.
Let us consider the associated Clifford algebra Cp,q. It is generated by an orthonormal basis
e0, . . . , ep+q−1 with the relations

e2
i = −εi for i = 1, . . . , p+ q − 2 and e0ep+q−1 + ep+q−1e0 = 1.

Let Cp−1,q−1 be its subalgebra generated by e1, . . . , ep+q−2. We realize Spin(p, q) in Cp,q and
define G̃ to be the identity component Spino(p, q). We write

Π : Spino(p, q)→ SOo(p, q)

for the canonical homomorphism, which is a double covering. Via Π, G̃ acts on Rp,q preserv-
ing the null cone Np,q of Rp,q and the projective null cone PNp,q. We shall keep the notation
as in Section 4.1. The subgroup P̃ ⊂ G̃ is defined as the stabilizer of the chosen null line
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generated by the vector (1, 0, . . . , 0), namely, P̃ = Π−1(P ). According to the Langlands
decomposition P = LN+ = MAN+ in G = SOo(p, q), we have a Langlands decomposition

P̃ = L̃N+ = M̃AN+

by setting L̃ := Π−1(L) and M̃ := Π−1(M) ' Spin(p − 1, q − 1). Here by a little abuse of
notation, we regard A and N+ as subgroups of G̃.

The Lie algebras g̃ and p̃ are isomorphic to g and p, respectively, considered in the case
G = SOo(p, q). We take a Cartan subalgebra h in g so that h ⊂ l. Let us denote by
Sn± ≡ Sp−1,q−1

± the irreducible half-spin representations for M̃ ' Spin(p − 1, q − 1) with
n = p + q − 2 even, and Sn ≡ Sp−1,q−1 the spin representation for M̃ ' Spin(p − 1, q − 1)
with n = p + q − 2 odd. We have Sn± ' Sn−1 for n even and Sn ' Sn−1

+ ⊕ Sn−1
− for n odd.

By an abuse of notation, we write S for S± in the proof, since the differential action is the
same. The differential action of the spinor representation is given by

so(p− 1, q − 1)→ Cp,q, εiεjEij − Eji 7→ −
1
2
εieiej (1 ≤ i 6= j ≤ n).

Here Eij stands for the matrix unit with 1 at the (i, j)-component, and we recall that
{Xij = εiεjEij − Eji : 1 ≤ i < j ≤ n = p+ q − 2} forms a basis of so(p− 1, q − 1).

5.2 Representations dπλ and dπ̃λ.

For λ ∈ C, we define the twisted spinor representation Sλ of the Levi factor L̃ = M̃A as
the outer tensor product S⊗Cλ, where Cλ is the one-dimensional representation of A with
the same normalization as in Section 4.2. The differential representation of l̃ ' l has the
highest weight (λ + 1

2 ,
1
2 , . . . ,

1
2) (and (λ + 1

2 ,
1
2 , . . . ,−

1
2) for n even). We extend Sλ to a

representation of P̃ by letting the unipotent radical N+ act trivially. The (unnormalized)
induced representation IndG̃

P̃
Sλ, is denoted by πS,λ, or simply by πλ. The representation

space is identified with C∞(G̃, Sλ)P̃ , consisting of smooth functions F : G̃→ Sλ subject to

F (g m̃an) = a−λS(m)−1F (g), for all g ∈ G̃, p̃ = m̃an ∈ P̃ ,

where

Π(m̃an) =

 ε(m)a ? ?
0 m ?
0 0 ε(m)a−1

 , m ∈ SO(p− 1, q − 1), a > 0,

and ε(m) = +1 or −1 according to whether or not m belongs to the identity component of
SOo(p− 1, q − 1).

Similarly, we may treat IndG̃
P̃

(sgn⊗Sλ) by the condition F (gm̃ãn) = ε(m)−1a−λS(m−1)F (g)
as in the scalar case (see Remark 4.4), but we omit it because the differential action is the
same and the main results hold by a small modification in the signature cases.

Restricting to the open Bruhat cell, we have the non-compact picture C∞(Rp−1,q−1, Sλ)
of the induced representation IndG̃

P̃
(Sλ). In order to calculate the action of dπλ(Z) in the

non-compact picture for Z ∈ n+(R), we apply the previous computation in the scalar case.
We already observed in (4.11) that if Z ∈ n+(R) and X ∈ n−(R) are sufficiently small, then
the element m̃ ∈ M̃ determined by the condition

(expZ)−1 expX ∈ N−m̃AN+
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behaves as

Id−Π(m̃) ∼ JtZ ⊗ tXJ−X ⊗ Z =
n∑

i,j=1

zixj(εiεjEij − Eji), (5.1)

up to the first order in ‖Z‖. The right-hand side of (5.1) acts as the multiplication by the
element

− 1
2

n∑
i 6=j

zixjεieiej = −1
2

(
(
n∑
i=1

εiziei)(
n∑
j=1

xjej)−
n∑
j=1

zixiεie
2
i

)
= −1

2
(
z x+

n∑
i=1

xizi
)

(5.2)

in the corresponding Clifford algebra, where x =
∑n

1 xiei, and z =
∑n

1 εiziei.
We define differential operators on n+(R) ' Rn in the coordinates (ξ1, · · · , ξn−1, ξn) by

D :=
n∑
k=1

ek∂ξk = D′ + en∂ξn (the Dirac operator on Rp−1,q−1), (5.3)

E :=
n−1∑
j=1

ξj∂ξj + ξn∂ξn (the Euler homogeneity operator),

� :=−D2 = �′ − ∂2
ξn , �′ =

n−1∑
j=1

εj∂
2
ξj
.

Summarizing the information obtained so far, we get the following claim as in Lemma
4.1:

Lemma 5.1. The basis element Ej ∈ n+(R) (1 ≤ j ≤ n) acts on C∞(Rp−1,q−1,Sλ) (i.e.,
in the non-compact picture for C∞(G̃, Sλ)P̃ ) in the coordinates {x1, · · · , xn} of n−(R) '
Rp−1,q−1 by

dπS,λ(Ej) = −1
2
εj |X|2∂xj + xj(λ+

∑
k

xk∂xk +
1
2

) +
1
2

(εjejx). (5.4)

The dual action composed with the Fourier transform is given by

dπ̃S,λ(Ej) = i

(
1
2
εjξj� + (λ− E − 1

2
)∂ξj −

1
2
εjejD

)
. (5.5)

Proof. It follows from (5.2) that

dπS,λ(Ej) = dπλ(Ej) +
1
2

(xj + εjejx),

whence the formula (5.4). In turn,

dπ̃S,λ(Ej) = Pj(λ)− i

2
(∂ξj + εjejD),

whence the formula (5.5) owing to Lemma 4.1.
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5.3 The space Sol of singular vectors
In the scalar case, we proved in Theorem 4.2 that Sol(g, g′; Cλ) consists of polynomials
which are invariant under m′ ' so(n − 1,C) as far as λ /∈ N. In the spinor case, we shall
consider first such invariant solutions. For this, we work with CC

n (' Cp−1,q−1 ⊗R C)-valued
polynomials in ξ1, · · · , ξn, on which M̃ ' Spin(p− 1, q − 1) acts as

s 7→ gs(g−1·) for s ∈ Pol[ξ1, · · · , ξn]⊗ CC
n .

It is obvious that the following elements

ξ′ :=
n−1∑
j=1

εj ej ξj , ξn := εn enξn, ξn

belong to (Pol[ξ1, · · · , ξn] ⊗ CC
n )M̃ ′ , and so does any polynomial generated by these three

elements. We note (ξ′)2 = −|ξ′|2 = −
∑n−1

j=1 εjξ
2
j and (ξn)2 = −εnξ2

n = ξ2
n as εn = −1. We

set

t := εn
|ξ′|2

ξ2
n

.

Then homogeneous polynomials FK of degree K generated by ξ′, ξn and ξn are written as
follows: for K = 2N it is of the form

F2N (ξ1, · · · , ξn) = ξ2N
n P (t) + ξ2N−2

n Q(t)ξ′ξn , (5.6)

where P (t) and Q(t) are polynomials in the variable t, P (t) is of degree N and Q(t) is of
degree N − 1; for K = 2N + 1, FK is of the form:

F2N+1(ξ1, · · · , ξn) = ξ2N
n (P (t)ξ′ +Q(t)ξn), (5.7)

where both P (t) and Q(t) are polynomials of degree N.
Let us consider the question when the spinor FK · sλ, sλ ∈ Sλ, belongs to Sol(g, g′; Sλ),

namely, FK · sλ is annihilated by the operators

−2idπ̃S,λ(Ej) = εjξj�− (2E − 2λ+ 1)∂ξj − εjej D, j = 1, . . . , n− 1,

where the notation "·" in FK · sλ means the tensor product followed by the Clifford mul-
tiplication. This leads us to a system of ordinary differential equations for the polynomials
P (t) and Q(t). We shall first treat the case of even homogeneity K = 2N.

Lemma 5.2. Let λ ∈ C, N ∈ N and let sλ ∈ Sλ be a non-zero vector. For polynomials P (t)
and Q(t), we set

F2N = ξ2N
n P (t) + ξ2N−2

n Q(t)ξ′ξn.

Then F2N · sλ ∈ Sol(g, g′; Sλ) if and only if the following system of ordinary differential
equations is satisfied:

R(2N,−λ− n

2
+ 1)P = 0 (5.8)

R(2N − 1,−λ− n

2
+ 1)Q = 0, (5.9)

− 2N P + 2 t P ′ + (4N − 2λ− n)Q− 2 tQ′ = 0, (5.10)
2P ′ − (2N − 1)Q+ 2 tQ′ = 0. (5.11)

The first two equations actually follow from the last two equations.
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Proof. By Lemma 5.1, F2N · sλ ∈ Sol(g, g′; Sλ) if and only if

dπ̃S,λ(Ej)(F2N · sλ) = 0 for 1 ≤ j ≤ n− 1.

We set F2N = v1 + v2 with v1 = ξ2N
n P (t) and v2 = ξ2N−2

n Q(t)ξ′ξn. Then

∂ξjv1 =2εnεjξjξ2N−2
n P ′(t),

∂2
ξj
v1 =2εnεjξ2N−2

n P ′(t) + 4ξ2N−4
n ξ2

jP
′′(t),

�′v1 =εnξ2N−2
n (4 t P ′′ + (2n− 2)P ′),

∂ξnv1 =ξ2N−1
n (2N P − 2 t P ′),

∂2
ξnv1 =ξ2N−2

n (2N(2N − 1)P + (−8N + 6) t P ′ + 4 t2 P ′′),

ejD
′v1 =2εn ejξ2N−2

n P ′ξ′,

ejen∂ξnv1 =εn ejξ2N−2
n (2N P − 2 t P ′)ξn.

Similarly,

∂ξjv2 =εnεjξ2N−4
n 2Q′ξjξ′ξn + ξ2N−2

n εjejQ(t)ξn,

�′ v2 =ξ2N−4
n εn(4 tQ′′ + (2n+ 2)Q′)ξ′ξn,

∂ξnv2 =ξ2N−3
n ((2N − 1)Q− 2 tQ′)ξ′ξn,

∂2
ξnv2 =ξ2N−4

n ((2N − 1)(2N − 2)Q+ t (−8N + 10)Q′ + 4 t2Q′′)ξ′ξn,

−ejD′v2 =− εnejξ2N−2
n (2 tQ′ + n′Q)ξn,

−ejen∂ξnv2 =εnejξ2N−2
n ((2N − 1)Q− 2 tQ′)ξ′.

Collecting all terms of dπ̃S,λ(Ej)(F2N · sλ) with respect to the basis

εjεnξjξ
2N−2
n , εjεnξjξ

2N−4
n ξ′ξn, εj ej εnξ

2N−2
n ξ′, εj ej εnξ

2N−2
n ξn,

we see that the the system of equations dπ̃S,λ(Ej)(F2N ·sλ) = 0 (1 ≤ j ≤ n−1) is equivalent
to the four equations in the lemma.

It can be easily checked that a suitable linear combination of the last two equations
(5.10) and (5.11) and their differentials implies the first two equations (5.8) and (5.9). For
example, the application of d

dt and
d2

dt2
to the equation (5.11) gives

2P ′ = −2tQ′ + (2N − 1)Q, 2P ′′ = −2Q′ − 2 tQ′′ + (2N − 1)Q′,

and their substitution into the equation (5.10) yields the equation (5.9). Hence the proof of
Lemma 5.2 is complete.

Lemma 5.3. Let N ∈ N and λ ∈ C, and sλ ∈ Sλ a non-zero vector. We set

F̃2N (ξ1, · · · , ξn) = ξ2N
n C̃

−λ−n
2

+1

2N

(
|ξ′|2

ξ2
n

)
+ ξ2N−2

n C̃−λ−
n
2

+1

2N−1

(
|ξ′|2

ξ2
n

)
ξ′ξn. (5.12)

Then F̃2N · sλ is a spinor–valued homogeneous polynomial of ξ1, · · · , ξn−1, and ξn of degree
2N , and belongs to Sol(g, g′; Sλ).
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Proof. By Lemma 5.2, it is sufficient to solve the system of ordinary differential equations
(5.8)–(5.11) for polynomials P (t) and Q(t).

It follows from Lemma 6.1 in Appendix that the polynomial solutions P (t) and Q(t) are
of the form

P (t) = A C̃α2N (−t), Q(t) = B C̃α2N−1(−t) with α = −λ− n

2
+ 1,

for some A,B ∈ C. Let us show that (5.10) and (5.11) are fulfilled for this pair (P (t), Q(t))
if and only if A = B. We shall deal with (5.11) below, and omit (5.10) which gives the same
conclusion by a similar argument using the formula (6.12) in Appendix.

Suppose t = − 1
x2 . We note that if two functions g(x) and h(t) are related by the formula

g(x) = xlh(t) (≡ xlh(− 1
x2

)),

then dx
dt = 1

2x
3 and thus

h′(t) =
1
2

(x−l+3g′(x)− lx2h(t)). (5.13)

Applying (5.13) to

gP (x) := x2NP (t) and gQ(x) := x2N−1Q(t),

we get

2P ′(t) = x−2N+3g′P (x)− 2Nx2P (t), (5.14)

− (2N − 1)Q(t) + 2tQ′(t) = −x−2N+2g′Q(x). (5.15)

Since gP (x) = AC̃α2N (x) and gQ(x) = BC̃α2N−1(x) with α = −λ − n
2 (see (4.14) or Lemma

6.1), (5.11) amounts to

A((α+N)x C̃α+1
2N−1(x)−NC̃α2N (x))−BC̃α+1

2N−2(x) = 0

by (6.10). Using the identity (6.15), we see that this holds if and only if A = B. Thus the
proof of Lemma 5.3 is completed.

The case of odd homogeneity is contained in the next two lemmas, for which the proof
is similar and omitted.

Lemma 5.4. Let N ∈ N, λ ∈ C, and sλ ∈ Sλ a non-zero vector. Then

F2N+1 · sλ = ξ2N
n (P (t)ξ′ +Q(t)ξn) · sλ

is annihilated by dπ̃S,λ(Ej) (1 ≤ j ≤ n − 1) if and only if the polynomials P (t) and Q(t)
satisfy the following system of ordinary differential equations:

R(2N,−λ− n

2
+ 1)P = 0, (5.16)

R(2N + 1,−λ− n

2
+ 1)Q = 0, (5.17)

(4N − 2λ− n+ 2)P − 2 t P ′ − (2N + 1)Q+ 2 tQ′ = 0, (5.18)
2NP − 2 tP ′ − 2Q′ = 0. (5.19)

Furthermore, the first two equations follow from the last two equations.
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Lemma 5.5. Let N ∈ N, λ ∈ C, and sλ ∈ Sλ a non-zero vector. We set

F̃2N+1(ξ1, · · · , ξn) = ξ2N
n

(
C̃−λ−

n
2

+1

2N

(
|ξ′|2

ξ2
n

)
ξ′ + (−λ− n

2
+N + 1)C̃−λ−

n
2

+1

2N+1

(
|ξ′|2

ξ2
n

)
ξn

)
.

(5.20)

Then F̃2N+1·sλ is of homogeneous degree 2N+1 and is annihilated by dπ̃λ(Ej)(1 ≤ j ≤ n−1),
and therefore belongs to Sol(g, g′; Sλ) for any sλ ∈ Sλ.

Remark 5.6. In contrast to the even case in Lemma 5.3, the coefficient −λ− n
2 +N + 1 (=

α+N) shows up in the odd case in Lemma 5.5 with respect to the renormalized Gegenbauer
polynomials. We note

Cα2N (−t)ξ′ + Cα2N+1(−t)ξn = (α)N (C̃α2N (−t)ξ′ + (α+N)C̃α2N+1(−t)ξn).

As in Section 4, the homomorphisms of generalized Verma modules defined by the singu-
lar vectors described above induce equivariant differential operators acting on local sections
of induced homogeneous vector bundles on the generalized flag manifolds. We describe these
differential operators in the non-compact picture of the induced representations.

In the following theorem, we retain the notation of Section 5.1: Sn ≡ Sp−1,q−1 is the spin
representation of Spin(p − 1, q − 1), and Sn± ≡ Sp−1,q−1

± are the half-spin representations
when n = p+ q− 2 is even. They are extended to the representations Snλ ≡ Sp−1,q−1

λ , Sn±,λ ≡
Sp−1,q−1
±,λ , respectively, of the parabolic subgroup P̃ = M̃AN+ with M̃ ' Spin(p− 1, q − 1)

by letting A act as the one-dimensional representation Cλ and N+ trivially. Then the
branching law of the restriction with respect to the pair of the parabolic subgroups P̃ ⊃ P̃ ′
of Spino(p, q) ⊃ Spino(p, q − 1) is given as

Snλ ' Sn−1
+,λ ⊕ Sn−1

−,λ , n : odd,

Sn±,λ ' Sn−1
λ , n : even. (5.21)

We recall from (4.22) and (4.23) the polynomials aj(λ) ≡ aN,nj (λ) and bj(λ) ≡ bN,nj (λ).
Then we have

N ! C̃−λ−
n
2

+1

2N (−t) =
N∑
j=0

aj(λ−
1
2

)tj ,

N ! C̃−λ−
n
2

+1

2N−1 (−t) = 2N
N−1∑
j=0

bj(λ−
1
2

)tj ,

N ! C̃−λ−
n
2

+1

2N+1 (−t) = 2
N∑
j=0

bj(λ−
1
2

)tj .

Therefore, by applying Theorem 2.4 to Lemmas 5.3 and 5.5 with λ replaced by −λ, we
obtain the following theorem:

Theorem 5.7. Let (G̃, G̃′) = (Spino(p, q), Spino(p, q − 1)) and λ ∈ C. We decompose the
Dirac operator D on Rp−1,q−1 = Rp−1,q−2 ⊕ R0,1 as

D = D′ + ∂n ≡
n−1∑
i=1

ei
∂

∂xi
+ en

∂

∂xn
,
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and write the Laplace–Beltrami operator on Rp−1,q−2 as

�′ = −(D′)2 =
n−1∑
i=1

εi
∂2

∂x2
i

.

We introduce a family of End(Sn)-valued differential operators DS
K(λ) of order K (K ∈ N)

by

DS
2N (λ) :=

N∑
j=0

aj(−λ−
1
2

)(�′)j
∂2N−2j

∂x2N−2j
n

+ 2N
N−1∑
j=0

bj(−λ−
1
2

)(�′)j
∂2N−2j−2

∂x2N−2j−2
n

D′∂n,

DS
2N+1(λ) :=

N∑
j=0

aj(−λ−
1
2

)(�′)j
∂2N−2j

∂x2N−2j
n

D′ + (−2λ− n+ 2N + 2)
N∑
j=0

bj(−λ−
1
2

)(�′)j
∂2N−2j

∂x2N−2j
n

∂n.

(1) The differential operators DS
K(λ) (K ∈ N) induce G̃′-homomorphisms

IndG̃
P̃

(Snλ)→
⊕
ε=±

IndG̃
′

P̃ ′
(Sn−1
ε,λ+K) for n odd,

IndG̃
P̃

(Sn±,λ)→ IndG̃
′

P̃ ′
(Sn−1
λ+K) for n even,

by the following formulas

DS
K(λ)f := (DS

K(λ)f)|xn=0

in the non-compact picture

DS
K(λ) : C∞(Rp−1,q−1,Sn)→ C∞(Rp−1,q−2, Sn−1

+ ⊕ Sn−1
− ) for n odd,

DS
K(λ) : C∞(Rp−1,q−1,Sn±)→ C∞(Rp−1,q−2,Sn−1) for n even,

In particular, the following infinitesimal relations are satisfied in both cases:

DS
K(λ)dπG̃S,λ(X) = dπG̃

′
S,λ+K(X)DS

K(λ) for all X ∈ g′. (5.22)

(2) Conversely, if λ ∈ C satisfies

−λ+ n− 3
2
/∈ N+ and − 2λ+ n− 1 /∈ N+,

and if there exist an irreducible finite-dimensional representation W of P̃ ′ and a non-
trivial differential G̃′-homomorphism T , then

W '

{
Sn−1
ε,λ+K (n odd),

Sn−1
λ+K (n even),

for some K ∈ N and ε = ± (n odd case) and T is given by a scalar multiple of DS
K(λ)

in the non-compact picture.

Remark 5.8. For n = p + q − 2 odd, the infinitesimal action dπG̃S,λ of the Lie algebra g on
the non-compact picture decomposes into a direct sum of two g′-modules:

C∞(Rp−1,q−1, Sn) ' C∞(Rp−1,q−1,Sn−1
+ )⊕ C∞(Rp−1,q−1, Sn−1

− ).

If f ∈ C∞(Rp−1,q−1,Sn−1
ε ) (ε = ±), then DS

K(λ)f ∈ C∞(Rp−1,q−2, Sn−1
δ ) where δ = (−1)Kε.
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Proof of Theorem 5.7. (1) It follows from Lemmas 5.3 and 5.5 that

F̃K · sλ ∈ Sol(g, g′; Snλ) for all K ∈ N and sλ ∈ Snλ.

Furthermore, since F̃K is an m′-invariant element in Pol[n+]⊗End(Snλ), the subspace
F̃K(Snλ) (or F̃K(Sn±,λ) for n odd) belongs to the same m′-isotypic component, namely,

Sn|m′ ' Sn−1
+ ⊕ Sn−1

− (n : even), or Sn±|m′ ' Sn−1 (n : odd).

Now the F-method in Section 2 (with λ replaced by −λ) leads us to Theorem 5.7 as
in the scalar case (Theorem 4.2).

(2) The second statement follows from Theorem 2.4 and Proposition 5.9 below.

Proposition 5.9. (Branching laws g ↓ g′) We recall n = p + q − 2 and (g, g′) = (so(n +
2,C), so(n+ 1,C)).

(1) In the Grothendieck group of g′-modules, we have

Mg
p (Snλ)|g′ '

⊕
ε=±

∞⊕
b=0

Mg′

p′ (S
n−1
ε,λ−b) for n odd,

Mg
p (Sn±,λ)|g′ '

∞⊕
b=0

Mg′

p′ (S
n−1
λ−b ) for n even,

(2) If λ ∈ C satisfies the following two conditions:

λ+ n− 3
2
/∈ N+, (5.23)

2λ+ n− 1 /∈ N+, (5.24)

then the first statement gives an irreducible decomposition as g′-modules.

Proof. (1) We apply Theorem 3.5 with

Fλ :=

{
Snλ ≡ Sn ⊗ Cλ for n odd,
Snε,λ ≡ Snε ⊗ Cλ for n even.

Then we have

Fλ|l′ '

{
Sn−1

+,λ ⊕ Sn−1
−,λ for n odd,

Sn−1
λ for n even.

Since the symmetric tensor algebra S(n−/n− ∩ g′) '
⊕
b∈N

C−b as a module of l′ '

so(n− 1,C)⊕ so(2,C), we have

Fλ|l′ ⊗ S(n−/n− ∩ g′) '


⊕
ε=±

∞⊕
b=0

Sn−1
ε,λ−b for n odd,

∞⊕
b=0

Sn−1
λ−b for n even.

Here the first statement follows from Theorem 3.5.
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(2) Suppose n is odd. Then the Z(g′)-infinitesimal character of the g′-moduleMg′

p′ (S
n−1
ε,λ−b)

is given by

(λ− b+
n− 1

2
,
n

2
− 1, · · · , 5

2
,
3
2
, ε

1
2

) ∈ C
n+1

2 /W (Dn+1
2

).

They are distinct when b runs over N and ε = ± if and only if

λ− b+
n− 1

2
6= −(λ− b′ + n− 1

2
)

for all (b, b′) ∈ N2 with b 6= b′, namely, λ satisfies (5.24). Furthermore, the g′-module
Mg′

p′ (S
n−1
ε,λ−b) is irreducible if

λ− b+ n+
3
2
/∈ N+

by (3.2), and in particular, if (5.23) is satisfied.

Therefore, if both (5.23) and (5.24) are fulfilled, then there is no extension among the
irreducible g′-modules Mg′

p′ (S
n−1
ε,λ−b), and hence the formula in (1) gives a direct sum

of irreducible g′-modules.

Suppose n is even. Then the Z(g′)-infinitesimal character of the g′-module Mg′

p′ (S
n−1
λ−b )

is

(λ− b+
n− 1

2
,
n

2
− 1, · · · , 2, 1) ∈ C

n
2 /W (Bn

2
).

They are distinct when b runs over N if and only if (5.24) is satisfied. Furthermore,
the condition (3.2) amounts to

2(λ− b+
n− 1

2
) /∈ N+ and λ− b+

n− 3
2

/∈ N+

which are satisfied if λ fulfills (5.23) and (5.24). Thus the second statement also
follows for n even.

As in the scalar case, we have for λ ∈ N + 1
2 an additional set of singular vectors in

Sol(g, g′; Sλ). To see this, we retain the notation of Section 5.1 and define the space of
monogenic spinors of degree (j ∈ N) by

Mj(Rp−1,q−1, Sn) := {s ∈ Pol[ξ1, · · · , ξn]⊗ Sn : Ds = 0, Es = js},

where D =
n∑
k=1

ek
∂
∂ξk

is the Dirac operator and E =
n∑
k=1

ξk
∂
∂ξk

is the Euler homogeneity

operator. For n = p+ q − 2 even, we also define for ε = ±

Mj(Rp−1,q−1, Snε ) := {s ∈ Pol[ξ1, · · · , ξn]⊗ Snε : Ds = 0, Es = js}.

ThenMj(Rp−1,q−1,Sn) for n odd (orMj(Rp−1,q−1,Snε ) for n even) is an irreducible Spin(p−
1, q − 1)-submodule of Pol[ξ1, · · · , ξn] ⊗ Sn with highest weight (j + 1

2 ,
1
2 , · · · ,

1
2) for n odd

(or (j + 1
2 ,

1
2 , · · · , ε

1
2) for n even), respectively.

Lemma 5.10. Suppose λ ∈ −1
2 + N. Then

Mλ+ 1
2 (Rp−1,q−1, Sn) ⊂ Sol(g, g; Snλ),

Mλ+ 1
2 (Rp−1,q−1, Snε ) ⊂ Sol(g, g; Snε,λ) for n even.

41



Proof. Since D2 = −�, we have

ξk�− ekD = −ek(Id− εkξkekD).

Hence, by Lemma 5.1, we have

dπ̃S,λ(Ek) = i

(
(λ− E − 1

2
)∂ξk −

1
2
ek(Id− εkξkekD)D

)
for k = 1, · · · , n.

If s ∈Mλ+ 1
2 (Rp−1,q−1, Sn), then

E(∂ξks) = (λ− 1
2

)∂ξks (1 ≤ k ≤ n), Ds = 0.

Therefore, dπ̃S,λ(Ek)s = 0 for all k (1 ≤ k ≤ n). Thus the lemma is proved.

We also need the branching laws of these modules when restricted from Spin(p−1, q−1)
to the subgroup Spin(p− 1, q − 2), which are given by

Mj(Rp−1,q−1, Sn) '
⊕
ε=±

j⊕
i=0

Mi(Rp−1,q−2,Sn−1
ε ) for n odd, (5.25)

Mj(Rp−1,q−1,Snε ) '
j⊕
i=0

Mi(Rp−1,q−2, Sn−1) for n even. (5.26)

Let us summarize our results for spinor representation in the following theorem analogous
to Theorem 4.2.

Theorem 5.11. Let (G̃, G̃′) = (Spino(p, q), Spino(p, q− 1)), n = p+ q− 2, and λ ∈ C. We
recall from Lemmas 5.3 and 5.5 that F̃K ≡ F̃ λK ∈ Pol[ξ1, . . . , ξn]⊗ CC

n (K ∈ N) is defined by

F̃2N = ξ2N
n C̃α2N (−t) + ξ2N−2

n C̃α2N−1(−t)ξ′ξn,

F̃2N+1 = ξ2N
n

(
C̃α2N (−t)ξ′ + (−λ− n

2
+N + 1) C̃α2N+1(−t)ξn

)
, (5.27)

where α = −λ− n
2 + 1 and t =

n−1∑
j=1

εjξ
2
j

εnξ2n
. Then

(1) For any λ ∈ C, we have

Sol(g, g′; Sλ) ⊃
∞⊕
K=0

{F̃K · sλ : sλ ∈ Sλ},

Sol(g, g′; Sε,λ) ⊃
∞⊕
K=0

{F̃K · sλ : sλ ∈ S(−1)Kε,λ} for n even.

Moreover, if λ satisfies (5.23) and (5.24), then the above inclusions are the equalities
and the inverse Fourier transform (see (2.7)) gives all the singular vectors via the
isomorphisms as modules of L̃′ ' Spin(p− 1, q − 2)× R:

Mg
p (Sλ)n′+

∼←
ϕ

Sol(g, g′; Sλ) '
∞⊕
K=0

{F̃K · sλ : sλ ∈ Sλ},

Mg
p (Sε,λ)n′+

∼←
ϕ

Sol(g, g′; Sε,λ) '
∞⊕
K=0

{F̃K · sλ : sλ ∈ S(−1)Kε,λ} for n even.
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(2) For λ ∈ N + 1
2 , we have l′-injective maps

Mg
p (Snλ)n′+

∼←
ϕ

Sol(g, g′; Snλ) ⊃
∞⊕
K=0

{F̃K · sλ : sλ ∈ Snλ} ⊕
⊕
ε=±

λ+ 1
2⊕

i=1

Mi,ε, for n odd,

Mg
p (Snε,λ)n′+

∼←
ϕ

Sol(g, g′; Snε,λ) ⊃
∞⊕
K=0

{F̃K · sλ : sλ ∈ Sn(−1)Kε,λ} ⊕
λ+ 1

2⊕
i=1

Mi, for n even,

HereMi,ε andMi are the summands in the branching laws (5.25) and (5.26), respec-
tively.

In the second part [33] of the series, we shall prove the existence of lifts of homomor-
phisms corresponding to singular vectors in generalized Verma modules induced from spinor
representations to homomorphisms of semi-holonomic generalized Verma modules covering
them. According to the philosophy of parabolic geometries, [6], we get curved versions of
our equivariant differential operators acting on sections of spinor bundles on manifolds with
conformal structure.

6 Appendix: Gegenbauer polynomials
In the Appendix we summarize for reader’s convenience a few basic conventions and prop-
erties of the Gegenbauer polynomials.

The Gegenbauer polynomials are defined in terms of their generating function

1
(1− 2xt+ t2)α

=
∞∑
l=0

Cαl (x)tl, (6.1)

and satisfy the recurrence relation

Cαl (x) =
1
l

(
2x(l + α− 1)Cαl−1(x)− (l + 2α− 2)Cαl−2(x)

)
(6.2)

with Cα0 (x) = 1, Cα1 (x) = 2αx. The Gegenbauer polynomials are solutions of the Gegen-
bauer differential equation(

(1− x2)
d2

dx2
− (2α+ 1)x

d

dx
+ l(l + 2α)

)
g = 0. (6.3)

They are given as special values of the Gaussian hypergeometric series when the series is
finite:

Cαl (x) =
(2α)l
l! 2F1

(
−l, 2α+ l;α+

1
2

;
1− x

2

)
=

[ l
2

]∑
k=0

(−1)k
Γ(l − k + α)

Γ(α)k!(l − 2k)!
(2x)l−2k. (6.4)

We renormalize the Gegenbauer polynomials by

C̃αl (x) :=
Γ(α)

Γ(α+ [ l+1
2 ])

Cαl (x) =
1

(α)[ l+1
2

]

Cαl (x). (6.5)

Then C̃αl (x) is a non-zero solution to (6.3) for all α ∈ C and l ∈ N.
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We observe that x 7→ xlCαl (x−1) is an even polynomial of degree 2[ l2 ]. Therefore there
exists uniquely a polynomial of degree [ l2 ], to be denoted by Cαl (t), such that

Cαl (x2) = xlCαl (x−1). (6.6)

It follows from (6.4) and (6.6) that

Cαl (−t) =
[n
2

]∑
k=0

Γ(l − k + α)2l−2k

Γ(α)k!(l − 2k)!
tk. (6.7)

Similarly to the renormalization (6.5), we set

C̃αl (t) =
1

(α)[ l+1
2

]

Cαl (t).

Then

C̃α0 (t) = 1,
C̃α1 (t) = 2,
C̃α2 (t) = 2 (α+ 1)− t,

C̃α3 (t) = 2 (
2
3

(α+ 2)− t),

C̃α4 (t) =
1
2

(
4
3

(α+ 2)(α+ 3)− 4(α+ 2)t+ t2).

In particular, for α = −λ− n
2

N ! C̃α2N (−t) =
N !

(α)N
Cα2N (−t) =

N∑
j=0

aj(λ)tj , (6.8)

1
2
N ! C̃α2N+1(−t) =

N !
2(α)N+1

Cα2N+1(−t) =
N∑
j=0

bj(λ)tj , (6.9)

where the coefficients aj(λ) ≡ aN,nj (λ) and bj(λ) ≡ bN,nj (λ) are defined in (4.22) and (4.23),
respectively.

We recall from (4.20) that

R(l, α) := 4t(1 + t)
d2

dt2
+ ((6− 4l)t+ 4(1− α− l)) d

dt
+ l(l − 1).

Lemma 6.1. Suppose l ∈ N and g(x) = xlh(− 1
x2 ).

(1) h(t) satisfies R(l, α)h(t) = 0 if and only if g(x) satisfies the Gegenbauer differential
equation (6.3).

(2) If h(t) is a polynomial of degree [ l2 ] and satisfies R(l, α)h(t) = 0, then g(x) is a
scalar multiple of the renormalized Gegenbauer polynomial C̃αl (x) and h(t) is a scalar
multiple of C̃αl (−t).

The Gegenbauer polynomials satisfy the Rodrigues formula

Cαl (x) =
(−2)l

l!
Γ(l + α)Γ(l + 2α)
Γ(α)Γ(2l + 2α)

(1− x2)−α+1/2 d
l

dxl

[
(1− x2)l+α−1/2

]
,
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a basic formula for derivative

d

dx
Cαl (x) = 2αCα+1

l−1 (x) (6.10)

and the following identities:

lCαl (x)− 2αxCα+1
l−1 (x) + 2αCα+1

l−2 (x) = 0, (6.11)

−2αCα+1
l (x) + (l + 2α)Cαl (x) + 2αxCα+1

l−1 (x) = 0. (6.12)

The formulas (6.10) and (6.11) are restated in terms of the renormalized Gegenbauer
polynomials C̃αl as below:

d

dx
C̃α2N (x) = 2(α+N) C̃α+1

2N−1(x), (6.13)

d

dx
C̃α2N+1(x) = 2 C̃α+1

2N (x), (6.14)

NC̃α2N (x)− (α+N)xC̃α+1
2N−1(x) + C̃α+1

2N−2(x) = 0, (6.15)

(2N + 1) C̃α2N+1(x)− 2xC̃α+1
2N (x) + 2 C̃α+1

2N−1(x) = 0. (6.16)
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