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Abstract. We prove a one-to-one correspondence between differential symmetry
breaking operators for equivariant vector bundles over two homogeneous spaces
and certain homomorphisms for representations of two Lie algebras, in connection
with branching problems of the restriction of representations.

We develop a new method (F-method) based on the algebraic Fourier transform
for generalized Verma modules, which characterizes differential symmetry breaking
operators by means of certain systems of partial differential equations.

In contrast to the setting of real flag varieties, continuous symmetry breaking
operators of Hermitian symmetric spaces are proved to be differential operators in
the holomorphic setting. In this case symmetry breaking operators are character-
ized by differential equations of second order via the F-method.
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1. Introduction

Let W → Y and V → X be two vector bundles with a smooth map p ∶ Y → X.
Then we can define “differential operators” D ∶ C∞(X,V) → C∞(Y,W) between the
spaces of smooth sections (Definition 2.1).
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Suppose that G′ ⊂ G is a pair of Lie groups acting equivariantly on W → Y
and V → X, respectively, and that p is G′-equivariant. The object of the present
work is the study of G′-intertwining differential operators (differential symmetry
breaking operators). If W is isomorphic to the pull-back p∗V , then the restriction
map f ↦ f ∣Y is obviously a G′-intertwining operator (and a differential operator
of order zero). In the general setting where there is no morphism from p∗V to W ,
non-zero G′-intertwining differential operators may or may not exist.

Suppose that G acts transitively on X and G′ acts transitively on Y . We write
X (respectively Y ) as a homogeneous space = G/H (respectively Y = G′/H ′). The
first main result is a duality theorem that gives a one-to-one correspondence between
G′-intertwining differential operators and (g′,H ′)-homomorphisms for induced rep-
resentations of Lie algebras (see Corollary 2.10 for the precise notation):

Theorem A. Suppose H ′ ⊂H. Then there is a natural bijection:

(1.1) DX→Y ∶ Hom(g′,H′)(indg′

h′(W ∨), indg
h(V ∨)) ∼Ð→ DiffG′ (VX ,WY ) .

This generalizes a well-known result in the case where G and G′ are the same
reductive group and where X and Y are the same flag variety ([Kos74, HJ82]).

By a branching problem we mean a problem of understanding how a given rep-
resentation of a group G behaves when restricted to a subgroup G′. For a unitary
representation π of G, branching problems concern a decomposition of π into the
direct integral of irreducible unitary representations of G′ (branching law).

More generally, for non-unitary representations π and τ of G and G′, respectively,
we may consider the space HomG′ (π∣G′ , τ) of continuous G′-homomorphisms. The
right-hand side of (1.1) concerns branching problems with respect to the restric-
tion from G to G′, whereas the left-hand side of (1.1) concerns branching laws of
“generalized Verma modules”.

If DiffG′ (VX ,WY ) in (1.1) is one-dimensional, we may regard its generator as
canonical up to a scalar and be tempted to find an explicit description for such a
natural differential symmetry breaking operator. It should be noted that seeking ex-
plicit formulæ of intertwining operators is much more involved than finding abstract
branching laws, as we may observe with the celebrated Rankin–Cohen brackets which
appear as symmetry breaking operators in the decomposition of the tensor product
of two holomorphic discrete series representations of SL(2,R) (see [DP07, KP15-2]
for a detailed discussion).

The condition dim DiffG′ (VX ,WY ) ≤ 1 is often fulfilled when h is a parabolic
subalgebra of g with abelian nilradical, (see [K14, Theorem 2.7]). Moreover, finding
all bundles WY for which such nontrivial intertwining operators exist is a part of the
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initial problem, which reduces to abstract branching problems (see [KP15-2, Fact
4.3]).

We propose a new method to find explicit expressions for differential symmetry
breaking operators appearing in this geometric setting. We call it the F-method,
where F stands for the Fourier transform. More precisely, we consider an “algebraic
Fourier transform” of generalized Verma modules, and characterize symmetry break-
ing operators by means of certain systems of partial differential equations. If h is a
parabolic subalgebra with abelian nilradical, then the system is of second order al-
though the resulting differential symmetry breaking operators may be of any higher
order. The characterization is performed by applying an algebraic Fourier transform
(see Definition 3.1). A detailed recipe of the F -method is described in Section 4.4
relying on Theorem 4.1 and Proposition 3.11.

In general, symmetry breaking operators between two principal series representa-
tions of real reductive Lie groups G′ ⊂ G are given by integro-differential operators in
geometric models. Among them, equivariant differential operators are very special
(e.g. [KnSt71] for G′ = G and [KS14] for G′ ⫋ G). However, in the case where X
is a Hermitian symmetric space, Y a subsymmetric space, G′ ⊂ G are the groups
of biholomorphic transformations of Y ↪ X, respectively, we prove the following
localness and extension theorem:

Theorem B. Any continuous G′-homomorphism from O(X,V) to O(Y,W) is given
by a holomorphic differential operator, which extends to the whole flag variety.

See Theorem 5.3 for the precise statement. Theorem B includes the case of the
tensor product of two holomorphic discrete series representations corresponding to
the setting where G ≃ G′ ×G′ and X ≃ Y × Y as a special case.

In the second part of the work [KP15-2] we apply the F-method to Hermitian sym-
metric spaces to find explicit formulæ of differential symmetry breaking operators
in the six parabolic geometries arising from symmetric pairs of split rank one.

The authors are grateful to the referee for enlightening remarks and for suggesting
to divide the original manuscript (old title “Rankin-Cohen operators for symmetric
pairs”) into two parts and to write more detailed proofs and explanations in the
first part, not only for specialists but also for a broader audience. We would like
to extend a special thanks to Dr. T. Kubo for providing valuable and constructive
suggestions in respect to its legibility.

Notation: N = {0,1,2,⋯}.
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2. Differential intertwining operators

In this section we discuss equivariant differential operators between sections of
homogeneous vector bundles in a more general setting than the usual. Namely,
we consider vector bundles admitting a morphism between their base spaces. In
this generality, we establish a natural bijection between such differential operators
(differential symmetry breaking operators) and certain homomorphisms arising from
the branching problems for infinite-dimensional representations of Lie algebras, see
Theorem 2.9 (duality theorem).

2.1. Differential operators between two manifolds. We understand the notion
of differential operators between two vector bundles in the usual sense when the
bundles are defined over the same base space. We extend this terminology in a more
general setting, where there exists a morphism between base spaces. Let V → X
be a vector bundle over a smooth manifold X. We write C∞(X,V) for the space of
smooth sections, which is endowed with the Fréchet topology of uniform convergence
of sections and their derivatives of finite order on compact sets. Let W → Y be
another vector bundle, and p ∶ Y →X a smooth map between the base spaces.

Definition 2.1. We say that a continuous linear map T ∶ C∞(X,V) → C∞(Y,W) is
a differential operator if T satisfies

(2.1) p (SuppTf) ⊂ Supp f for any f ∈ C∞(X,V).
We write Diff(VX ,WY ) for the vector space of differential operators from C∞(X,V)
to C∞(Y,W).

The condition (2.1) shows that T is a local operator in the sense that for any open
subset U of X, T induces a continuous linear map:

TU ∶ C∞(U,V∣U) Ð→ C∞ (p−1(U),W∣p−1(U)) .
Remark 2.2. If X = Y and p is the identity map, then the condition (2.1) is equivalent
to T being a differential operator in the usual sense owing to Peetre’s celebrated
theorem [Pee59]. Our proof of Lemma 2.3 in this special case gives an account of
this classical theorem by using the theory of distributions due to L. Schwartz [S66].

Let ΩX ∶= ∣⋀top T ∨(X)∣ be the bundle of densities. For a vector bundle V →X, we
set V∨ ∶= ∐x∈X V∨x where V∨x ∶= HomC(Vx,C), and denote by V∗ the dualizing bundle
V∨ ⊗ ΩX . In what follows D′(X,V∗) (respectively, E ′(X,V∗)) denotes the space of
V∗-valued distributions (respectively, those with compact support). We shall regard
distributions as generalized functions à la Gelfand rather than continuous linear
forms on C∞

c (X) or C∞(X). In particular, we sometimes write as

(2.2) E ′(X,ΩX) → C, ω ↦ ∫
X
ω,
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to denote the natural pairing ⟨ω,1X⟩ of ω with the constant function 1X on X.
Composing (2.2) with the contraction on the fiber, we get a natural bilinear map

(2.3) C∞(X,V) × E ′(X,V∗) → C, (f,ω) ↦ ⟨f,ω⟩ = ∫
X
fω.

Let V∗ ⊠W denote the tensor product bundle over X × Y of the two vector bundles
V∗ →X andW → Y . Then for any continuous linear map T ∶ C∞(X,V) → C∞(Y,W)
there exists a unique distribution KT ∈ D′(X × Y,V∗ ⊠W) such that the projection
on the second factor pr2 ∶X × Y → Y is proper on the support of KT and such that

(Tf)(y) = ⟨KT (⋅, y), f(⋅)⟩ for any f ∈ C∞(X,V),
by the Schwartz kernel theorem.

Given a map p ∶ Y →X, we set

∆(Y ) ∶= {(p(y), y) ∶ y ∈ Y } ⊂X × Y.
The following lemma characterizes differential operators by means of the distribution
kernels KT .

Lemma 2.3. Let p ∶ Y →X be a smooth map. A continuous operator T ∶ C∞(X,V) →
C∞(Y,W) is a differential operator in the sense of Definition 2.1 if and only if
SuppKT ⊂ ∆(Y ).

Proof. Suppose SuppKT ⊂ ∆(Y ). Let (xo, yo) ∈ ∆(Y ) and take a neighborhood U
of xo = p(yo) in X and a neighborhood U ′ of yo in Y such that U ′ ⊂ p−1(U). We
trivialize the bundles locally as V∣U ≃ U×V andW∣U ′ ≃ U ′×W . Let (x1,⋯, xm) be the
coordinates in U . According to the structural theory of distributions supported on a
submanifold ∆Y ⊂X×Y [S66, Chapter III, Théorème XXXVII], there exists a unique
family hα(y) ∈ D′(U ′)⊗W for a finite number of multi-indices α = (α1,⋯, αm) ∈ Nm,
such that ⟨KT , f⟩ ∈ D′(U ′) ⊗HomC(V,W ) is locally given as a finite sum

(2.4) ∑
α

hα(y)
∂ ∣α∣f

∂xα
(p(y)),

for every f ∈ C∞(X,V). Hence ⟨KT , f⟩∣U ′ = 0 if f ∣U = 0. Thus T is a differential
operator in the sense of Definition 2.1.

Conversely, take any (xo, yo) ∈ SuppKT . By the definition of the distribution
kernel KT , for any neighborhood S of xo in X there exists f ∈ C∞(X,V) such that
Suppf ⊂ S and (xo, yo) ∈ Supp f × SuppTf . If T is a differential operator then by
(2.1)

p(SuppTf) ⊂ Supp f ⊂ S.
Since S is an arbitrary neighborhood of xo, p(yo) must coincide with xo. Hence
SuppKT ⊂ ∆(Y ). �
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By (2.4), the terminology “differential operators” in Definition 2.1 is justified as
follows:

Example 2.4. (1) Let p ∶ Y ↠ X be a submersion. Choose an atlas of local
coordinates {(xi, zj)} on Y in such a way that {xi} form an atlas on X.
Then, every T ∈ Diff(VX ,WY ) is locally of the form

∑
α∈NdimX

hα(x, z)
∂ ∣α∣

∂xα
(finite sum),

where hα(x, z) are Hom(V,W )-valued smooth functions on Y .
(2) Let i ∶ Y ↪X be an immersion. Choose an atlas of local coordinates {(yi, zj)}

on X in such a way that {yi} form an atlas on Y . Then, every T ∈ Diff(VX ,WY )
is locally of the form

∑
(α,β)∈NdimX

gαβ(y)
∂ ∣α∣+∣β∣

∂yα∂zβ
(finite sum),

where gα,β(y) are Hom(V,W )-valued smooth functions on Y .

Next, suppose that the two vector bundles V → X and W → Y are equivariant
with respect to a given Lie group G. Then we have natural actions ofG on the Fréchet
spaces C∞(X,V) and C∞(Y,W) by translations. Denote by HomG(C∞(X,V),C∞(Y,W))
the space of continuous G-homomorphisms. We set

DiffG(VX ,WY ) ∶= Diff(VX ,WY ) ∩HomG(C∞(X,V),C∞(Y,W)).(2.5)

Example 2.5. Suppose X and Y are both Euclidean vector spaces with an injec-
tive linear map p ∶ Y ↪ X. If G contains the subgroup of all translations of Y
then DiffG(VX ,WY ) is a subspace of the space of differential operators with constant
coefficients.

An analogous notion can be defined in the holomorphic setting. Let V → X and
W → Y be two holomorphic vector bundles with a holomorphic map p ∶ Y → X
between the complex base manifolds X and Y . We say a differential operator T ∶
C∞(X,V) → C∞(Y,W) is holomorphic if

TU(O(U,V∣U)) ⊂ O(p−1(U),W∣p−1(U))

for any open subset U of X. We denote by Diffhol(VX ,WY ) the vector space of
holomorphic differential operators. When a Lie group G acts biholomorphically on
the two holomorphic vector bundles V →X and W → Y , we set

Diffhol
G (VX ,WY ) ∶= Diffhol(VX ,WY ) ∩HomG(C∞(X,V),C∞(Y,W)).
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2.2. Induced modules. Let g be a Lie algebra over C, and U(g) its universal
enveloping algebra. Let h be a Lie subalgebra of g.

Definition 2.6. For an h-module V , we define the induced U(g)-module indg
h(V ) as

indg
h(V ) ∶= U(g) ⊗U(h) V.

If h is a Borel subalgebra and dimV = 1, then the g-module indg
h(V ) is the Verma

module.

For later purposes we formulate the following statement in terms of the contragre-
dient representation V ∨. Let h′ be another Lie subalgebra of g.

Proposition 2.7. For a finite-dimensional h′-module W we have:

(1) Homg(indg
h′(W ∨), indg

h(V ∨)) ≃ Homh′(W ∨, indg
h(V ∨)).

(2) If h′ /⊂ h, then Homh′(W ∨, indg
h(V ∨)) = {0}.

Proof. The first statement is due to the functoriality of the tensor product.
For the second statement it suffices to treat the case where h′ is one-dimensional.

Then the assumption h′ /⊂ h implies that h′ ∩ h = {0}, and therefore there is a direct
sum decomposition of vector spaces:

g = h′ + q + h,

for some subspace q in g. We fix a basis X1,⋯,Xn of q, and define a subspace of
U(g) by

U ′(q) ∶= C-span{Xα1
1 ⋯Xαn

n ∶ (α1,⋯, αn) ∈ Nn} .
Then, by the Poincaré–Birkhoff–Witt theorem we have an isomorphism of h′-modules:

indg
h(V ∨) ≃ U(h′) ⊗C U

′(q) ⊗C V
∨.

In particular, indg
h(V ∨) is a free U(h′)-module. Hence there does not exist a non-zero

finite-dimensional h′-submodule in the g-module indg
h(V ∨). �

Remark 2.8. We shall see in Theorem 2.9 that dimC Homg′(indg′

h′(W ∨), indg
h(V ∨)) is

equal to the dimension of the space of differential symmetry breaking operators from
C∞(X,V) to C∞(Y,W) when H ′ is connected. In [KP15-2, Section 2], we give a
family of sextuples (g,g′,h,h′, V,W ) such that this dimension is one.

2.3. Duality theorem for differential operators between two homogeneous
spaces. Let G be a real Lie group, and g(R) ∶= Lie(G). We denote by U(g) the uni-
versal enveloping algebra of the complexified Lie algebra g ∶= g(R) ⊗R C. Analogous
notations will be applied to other Lie groups.

Let H be a closed subgroup of G. Given a finite-dimensional representation λ ∶
H → GLC(V ) we define the homogeneous vector bundle VX ≡ V ∶= G ×H V over
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X ∶= G/H. As a G-module, the space C∞(X,V) of smooth sections is identified with
the following subspace of C∞(G,V ) ≃ C∞(G) ⊗ V :

C∞(G,V )H ∶={f ∈ C∞(G,V ) ∶ f(gh) = λ(h)−1f(g) for any g ∈ G,h ∈H}
≃{F ∈ C∞(G) ⊗ V ∶ λ(h)F (gh) = F (g) for any g ∈ G, h ∈H}.

In dealing with a representation V of a disconnected subgroup H (e.g. H is a
parabolic subgroup of a real reductive Lie group G), we notice that the diagonal
H-action on U(g)⊗CV ∨ defines a representation of H on indg

h(V ∨) = U(g)⊗hV ∨ and

thus indg
h(V ∨) is endowed with a (g,H)-module structure.

Theorem 2.9 (Duality theorem). Let H ′ ⊂H be (possibly disconnected) closed sub-
groups of a Lie group G with Lie algebras h′ ⊂ h, respectively. Suppose V and W are
finite-dimensional representations of H and H ′, respectively. Let G′ be any subgroup
of G containing H ′, and VX ∶= G ×H V and WY ∶= G′ ×H′ W be the corresponding
homogeneous vector bundles. Then, there is a natural linear isomorphism:

(2.6) DX→Y ∶ HomH′(W ∨, indg
h(V ∨)) ∼Ð→ DiffG′ (VX ,WY ) ,

or equivalently,

DX→Y ∶ Hom(g′,H′)(indg′

h′(W ∨), indg
h(V ∨)) ∼Ð→ DiffG′ (VX ,WY ) .

For ϕ ∈ HomH′(W ∨, indg
h(V ∨)) and F ∈ C∞(X,V) ≃ C∞(G,V )H , DX→Y (ϕ)F ∈

C∞(Y,W) ≃ C∞(G′,W )H′

is given by the following formula:

(2.7) ⟨DX→Y (ϕ)F,w∨⟩ = ∑
j

⟨dR(uj)F, v∨j ⟩∣G′ for w∨ ∈W ∨,

where ϕ(w∨) = ∑j ujv
∨
j ∈ indg

h(V ∨) (uj ∈ U(g), v∨j ∈ V ∨).

When H ′ is connected, we can write the left-hand side of (2.6) by means of Lie
algebras.

Corollary 2.10. Suppose we are in the setting of Theorem 2.9. Assume that H ′ is
connected. Then there is a natural linear isomorphism:

DX→Y ∶ Homh′(W ∨, indg
h(V ∨)) ∼Ð→ DiffG′(VX ,WY ),(2.8)

or equivalently,

(2.8)′ DX→Y ∶ Homg′(indg′

h′(W ∨), indg
h(V ∨)) ∼Ð→ DiffG′(VX ,WY ).

The construction of DX→Y and the fact that the formula (2.7) is well-defined will
be explained in Section 2.4.

Remark 2.11. (1) Corollary 2.10 is known when X = Y , i.e. G′ = G and H ′ =H,
especially in the setting of complex flag varieties, see e.g. [Kos74, HJ82].



F-METHOD 9

(2) When g′ is a reductive subalgebra and h′ is a parabolic subalgebra, the exis-
tence of an h′-module W for which the left-hand side of (2.8) is non-zero, is
closely related to the “discretely decomposability” of the g-module indg

h(V ∨)
when restricted to the subalgebra g′ ([K98b], [K12]). This relationship will
be used in Section 5 in proving that any continuous symmetry breaking op-
erator in a holomorphic setting is given by a differential operator (localness
theorem).

(3) Owing to Proposition 2.7, the left-hand side of (2.8)′ is non-zero only when
h′ ⊂ h. Conversely, if H ′ ⊂ H ∩ G′, then there is a natural morphism Y =
G′/H ′ → X = G/H and therefore “differential operators” (in the sense of
Definition 2.1) from C∞(X,V) to C∞(Y,W) are defined.

(4) We shall consider the case where H ′ = H ∩G′ in later applications, however,
Theorem 2.9 also covers the cases where the natural morphism Y →X is not
injective, i.e. where H ′ ⫋H ∩G′.

An analogous result to Theorem 2.9 holds in the holomorphic setting as well.
To be precise, let GC be a complex Lie group, G′

C, HC and H ′
C be closed complex

subgroups such that H ′
C ⊂ HC ∩G′

C. We write g, h, . . . for the Lie algebras of the
complex Lie groups GC, HC, . . ., respectively. Given finite-dimensional holomorphic
representations V of HC and W of H ′

C, we form holomorphic vector bundles V ∶=
GC ×HC V over XC = GC/HC and W ∶= G′

C ×H′
C
W over YC = G′

C/H ′
C.

For simplicity, we assume that H ′
C is connected. (This is always the case if G′

C
is a connected complex reductive Lie group and H ′

C is a parabolic subgroup of G′
C.)

Then we have:

Theorem 2.12 (Duality theorem in the holomorphic setting). There is a canonical
linear isomorphism:

DX→Y ∶ Homg′ (indg′

h′(W ∨), indg
h(V ∨)) ∼Ð→ Diffhol

G′
C
(VXC ,WYC).

Suppose furthermore thatG, G′, H andH ′ are real forms of the complex Lie groups
GC, G′

C, HC and H ′
C, respectively. We regard V and W as H- and H ′-modules by the

restriction, and form vector bundles V = G ×H V over X = G/H and W = G′ ×H′ W
over Y = G′/H ′.

We ask whether or not all symmetry breaking operators have holomorphic exten-
sions. Here is a simple sufficient condition:

Corollary 2.13. If H ′ is contained in the connected complexification H ′
C, then we

have a natural bijection:

Diffhol
G′

C
(VXC ,WYC)

∼→ DiffG′(VX ,WY ).
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Proof. Comparing Theorem 2.9 with Theorem 2.12, the proof of Corollary 2.13 re-
duces to the surjectivity of the inclusion

(2.9) Hom(g′,H′)(indg′

h′(W ∨), indg
h(V ∨)) ↪ Homg′(indg′

h′(W ∨), indg
h(V ∨)).

We note that Hom(g′,H′
C)(indg′

h′(W ∨), indg
h(V ∨)) is a subspace of the left-hand side of

(2.9) because H ′ ⊂ H ′
C, whereas it coincides with the right-hand side of (2.9) if H ′

C
is connected. Hence (2.9) is surjective. Thus Corollary 2.13 is proved. �

The rest of this section is devoted to the proof of Theorem 2.9. For Theorem 2.12,
since the argument is parallel to that of Theorem 2.9, we omit the proof.

2.4. Construction of DX→Y . This subsection gives the definition of the linear map
DX→Y in Theorem 2.9.

Consider two actions dR and dL of the universal enveloping algebra U(g) on
the space C∞(G) of smooth complex-valued functions on G induced by the regular
representation L ×R of G ×G on C∞(G):

(2.10) (dR(Z)f)(x) ∶= d

dt
∣
t=0

f(xetZ) and (dL(Z)f)(x) ∶= d

dt
∣
t=0

f(e−tZx),

for Z ∈ g(R).
The right differentiation (2.10) defines a bilinear map

Φ ∶ C∞(G) ×U(g) → C∞(G), (F,u) ↦ dR(u)F,
with the following properties

Φ(L(g)F,u) = L(g)Φ(F,u),(2.11)

Φ(F,u′u) = dR(u′)Φ(F,u),(2.12)

for any g ∈ G and u,u′ ∈ U(g).
Combining Φ with the canonical pairing V × V ∨ → C, we obtain a bilinear map

ΦV ∶ C∞(G) ⊗ V ×U(g) ⊗C V
∨ → C∞(G).

Then we have the following:

Lemma 2.14. The map ΦV induces a well-defined diagram of maps:

C∞(G) ⊗ V ×U(g) ⊗C V ∨ ΦVÐ→ C∞(G)
1 ↡ ∥

C∞(X,V) × indg
h(V ∨) ⇢ C∞(G).

Proof. Denote by λ∨ the contragredient representation of the representation (λ,V )
of H, and by dλ∨ the infinitesimal representation of h. The kernel of the natural
quotient map U(g) ⊗C V ∨ → indg

h(V ∨) is generated by

−uY ⊗ v∨ + u⊗ dλ∨(Y )v∨
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with u ∈ U(g), Y ∈ h and v∨ ∈ V ∨. Hence it suffices to show

ΦV (f,−uY ⊗ v∨ + u⊗ dλ∨(Y )v∨) = 0

for any f ∈ C∞(X,V) ≃ C∞(G,V )H .
Since f ∈ C∞(G,V )H satisfies dR(Y )f = −dλ(Y )f for Y ∈ h, we have

ΦV (f, uY ⊗ v∨) = ⟨dR(u)dR(Y )f, v∨⟩
= ⟨dR(u)f, dλ∨(Y )v∨⟩
= ΦV (f, u⊗ dλ∨(Y )v∨⟩.

Thus the lemma is proved. �

Lemma 2.15. 1) The bilinear map

(2.13) C∞(X,V) × indg
h(V ∨) → C, (f,m) ↦ ΦV (f,m)(e)

is (g,H)-invariant.
2) If m ∈ indg

h(V ∨) satisfies ΦV (f,m)(e) = 0 for all f ∈ C∞(X,V) then m = 0.

Proof. 1) Let f ∈ C∞(X,V) and m ∈ indg
h(V ∨). It follows from (2.11) and (2.12) that

ΦV (dL(Z)f,m) =dL(Z)ΦV (f,m)
ΦV (f,Zm) =dR(Z)ΦV (f,m)

for any Z ∈ g. Since
(dL(Z) + dR(Z))F (e) = 0

for any F ∈ C∞(G), we have shown the g-invariance of the bilinear map (2.13):

ΦV (dL(Z)f,m)(e) +ΦV (f,Zm)(e) = 0.

The proof for the H-invariance of (2.13) is similar.
2) Take a basis {v1,⋯, vk} of V , and let {v∨1 ,⋯, v∨k} be the dual basis in V ∨. Choose

a complementary subspace q of h in g, and fix a basis {X1,⋯,Xn} of q. Then by the
Poincaré–Birkhoff–Witt theorem, we can write m ∈ indg

h(V ∨) as a finite sum:

m =
k

∑
j=1

∑
α=(α1,⋯,αn)

aα,jX
α1
1 ⋯Xαn

n v∨j .

If m is non-zero, we can find a multi-index β and jo (1 ≤ jo ≤ k) such that aβ,jo /= 0
and that aα,j0 = 0 for any multi-index α satisfying ∣α∣ > ∣β∣ and for any j. Here
∣α∣ = ∑n

i=1αi for α ∈ Nn. We take f ∈ C∞(G,V )H ≃ C∞(X,V) such that f is given in
a right H-invariant neighborhood of H in G by

f (exp(
n

∑
i=1

xiXi)h) = xβλ(h)−1vjo forx = (x1,⋯, xn) ∈ Rn and h ∈H.

Then ΦV (f,m)(e) = aβ,joβ1!⋯βk! ≠ 0. The contraposition completes the proof. �
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We regard C∞(G) as a G × g-module via the (L × dR)-action. Then the space
HomG(C∞(X,V),C∞(G)) of continuous G-homomorphisms becomes a g-module by
the remaining dR-action on the target space. By (2.11), (2.12) and Lemma 2.14, we
get the following g-homomorphism:

(2.14) indg
h(V ∨) Ð→ HomG(C∞(X,V),C∞(G)), u⊗ v∨ ↦ (f ↦ ⟨dR(u)f, v∨⟩).

Furthermore, it is actually a (g,H)-homomorphism, where the group H acts on
indg

h(V ∨) = U(g) ⊗U(h) V ∨ diagonally and acts on HomG(C∞(X,V),C∞(G)) via the

R-action on C∞(G).
Let H ′ be a connected closed Lie subgroup of G. Given a finite-dimensional repre-

sentation W of H ′, we form a homogeneous vector bundle WZ ≡ W ∶= G ×H′ W over
Z ∶= G/H ′.

Taking the tensor product of the (g,H)-modules in (2.14) with the H ′-module W ,
we get an (H ′ × (g,H))-homomorphism:

HomC(W ∨, indg
h(V ∨)) Ð→ HomG(C∞(X,V),C∞(G,W )).

Let ∆(H ′) be a subgroup of H ′ ×H defined by {(h,h) ∶ h ∈ H ′}. Taking ∆(H ′)-
invariants, we obtain the following C-linear map:

(2.15) HomH′(W ∨, indg
h(V ∨)) Ð→ HomG(C∞(X,V),C∞(Z,W)), ϕ↦Dϕ,

where Dϕ satisfies

(2.16) ⟨Dϕf,w
∨⟩ = ΦV (f,ϕ(w∨))

for any f ∈ C∞(X,V) and any w∨ ∈W ∨.

Remark 2.16. If H ′ is connected, then we can replace HomH′ by Homh′ in (2.15).

Lemma 2.17. The map (2.15) is injective.

Proof. By (2.16), Lemma 2.17 is derived from the second statement of the Lemma
2.15. �

Take any subgroup G′ of G containing H ′ and form a homogeneous vector bundle
WY ∶= G′ ×H′ W over Y = G′/H ′. Then, the vector bundle WY is isomorphic to the
restriction WZ ∣Y of the vector bundle WZ to the submanifold Y of the base space Z.
Let

RZ→Y ∶ C∞(Z,WZ) → C∞(Y,WY )
be the restriction map of sections. For ϕ ∈ Homh′(W ∨, indg

h(V ∨)) we set

(2.17) DX→Y (ϕ) ∶= RZ→Y ○Dϕ.

Then DX→Y (ϕ) ∶ C∞(X,V) → C∞(Y,W) is a G′-equivariant differential operator, i.e.
DX→Y defines a linear map Homh′(W ∨, indg

h(V ∨)) → DiffG′(VX ,WY ). Theorem 2.9
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describes explicitly the image DX→Y when H ′ ⊂ H ∩G′, namely, when the following
diagram exists:

Z = G/H ′

&& &&
Y = G′/H ′

* 


77

// X = G/H

.

Remark 2.18. The left-hand side of (2.8) does not depend on the choice of G′. This
fact is reflected by the commutativity of the following diagram.

(2.18) Homh′(W ∨, indg
h(V ∨))

DX→Y

∼

))

∼ // DiffG(VX ,WZ)

RZ→Yvv
DiffG′(VX ,WY )

2.5. Proof of Theorem 2.9. We have already seen in Lemma 2.17 that DX→Y is
injective. In order to prove the surjectivity of the linear map DX→Y , we realize the
induced U(g)-module indg

h(V ∨) in the space of distributions.
We recall that V∗ = V∨ ⊗ΩX is the dualizing bundle of a vector bundle V over X.

For a closed subset S and an open subset U in X containing S, we write D′S(U,V∗) for
the space of V∗-valued distributions on U with support in S. Obviously, D′S(U,V∗) =
D′S(X,V∗). If S is compact, then D′S(U,V∗) is contained in the space E ′(U,V∗)
of distributions on U with compact support, and thus coincides with E ′S(U,V∗) ∶=
D′S(U,V∗) ∩ E ′(U,V∗).

We return to the setting of Theorem 2.9, where V is a G-equivariant vector bundle
over X = G/H. Then the Lie group G acts on C∞(X,V) and E ′(X,V∗) by the
pull-back of smooth sections and distributions, respectively. The infinitesimal action
defines representations of the Lie algebra g on C∞(U,V) and E ′S(U,V∗).

The “integration map” (2.2)

(2.19) E ′(X,ΩX) → C, ω ↦ ∫
X
ω

is G-invariant. Composing this with the G-invariant bilinear map (contraction):

C∞(X,V) × E ′(X,V∗) Ð→ E ′(X,ΩX), (f, h) ↦ ⟨f, h⟩,
we obtain the following G-invariant bilinear form

(2.20) C∞(X,V) × E ′(X,V∗) Ð→ C, (f, h) ↦ ∫
X
⟨f, h⟩.

Similarly, we obtain the following local version:



14 TOSHIYUKI KOBAYASHI, MICHAEL PEVZNER

Lemma 2.19. Let S be a closed subset of X and U an open neighborhood of S in
X. Then, we have the natural g-invariant bilinear form:

C∞(U,V) × E ′S(U,V∗) Ð→ C, (f, h) ↦ ∫
U
⟨f, h⟩.

Moreover, if S ⊂ U are both H-invariant subsets in X, then the bilinear form is also
H-invariant.

We write o = eH ∈ X for the origin. By Lemmas 2.15 and 2.19, we have obtained
two (g,H)-invariant pairings:

C∞(X,V) × indg
h(V ∨) Ð→ C, (f,m) ↦ ΦV (f,m)(e),

C∞(X,V) × E ′{o}(X,V∗) Ð→ C (f, h) ↦ ∫
X
⟨f, h⟩.

Let us show that there is a natural (g,H)-isomorphism between indg
h(V ∨) and

E ′{o}(X,V∗). In fact, it follows from Lemma 2.15 that there exists an injective (g,H)-
homomorphism

A ∶ indg
h(V ∨) → E{o}(X,V∗)

such that

ΦV (f,m)(e) = ∫
X
⟨f,A(m)⟩ for all m ∈ indg

h(V ∨) and f ∈ C∞(X,V).

For a homogeneous vector bundle V = G ×H V we define a vector-valued Dirac
δ-function δ ⊗ v∨ ∈ E ′{o}(X,V∗), for v ∈ V ∨ by

(2.21) ⟨f, δ ⊗ v∨⟩ ∶= ⟨f(e), v∨⟩ for f ∈ C∞(X,V) ≃ C∞(G,V )H .
By the definition of ΦV , we have

ΦV (f,1⊗ v∨)(e) = ⟨f(e), v∨⟩.
Hence A(1 ⊗ v∨) = δ ⊗ v by (2.21). Since A is a g-homomorphism, we have shown
that

A(u⊗ v∨) = dL(u)(δ ⊗ v∨), for u ∈ U(g), v ∈ V ∨.

Lemma 2.20. The (g,H)-homomorphism

(2.22) A ∶ indg
h(V ∨)Ð→E ′{o}(X,V∗), u⊗ v∨ ↦ dL(u) (δ ⊗ v∨) ,

is bijective.

Proof. By Lemma 2.15 the map (2.22) is injective. Let us show that it is also sur-
jective. By the structural theorem of (scalar-valued) distributions [S66, Chapter III,
Théorème XXXVII], distributions supported on the singleton {o} are obtained as
a finite sum of derivatives of the Dirac’s delta function. An analogous statement
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holds for vector-bundle valued distributions supported on {o}, as we can see by triv-
ializing the bundle near the origin o. Choose a complementary subspace q(R) of
h(R) = Lie(H) in g(R) = Lie(G). Since dL(Z) (Z ∈ q(R)) spans the tangent space
To(G/H) ≃ q(R), any derivative of the vector-valued Dirac’s delta function is given
as a linear combination of elements of the form dL(u)(δ ⊗ v∨) (u ∈ U(g), v∨ ∈ V ∨).
Thus the map (2.22) is surjective. �

Let C2ρ denote the one-dimensional representation of H defined by

h↦ ∣det(AdG/H(h) ∶ g/h→ g/h)∣−1.

If H is a parabolic subgroup of G with Langlands decomposition P =MAN+ then the
infinitesimal representation of C2ρ is given by the sum of the roots for n+ = Lie(N+).
The bundle of densities ΩG/H is given as a G-equivariant line bundle,

ΩG/H ≃ G ×H ∣det−1 AdG/H ∣ ≃ G ×H C2ρ.

For an H-module (λ,V ), we define a “twist” of the contragredient representation
λ∨2ρ on the dual space V ∨ (or simply denoted by V ∨

2ρ) by the formula

λ∗ ≡ λ∨2ρ ∶= λ∨ ⊗C2ρ = λ∨ ⊗ ∣det −1 AdG/H ∣.
Then the dualizing bundle V∗ = V∨⊗ΩG/H of the vector bundle V = G×H V is given,
as a homogeneous vector bundle, by:

(2.23) V∗ ≡ V∨2ρ ≃ G ×H V ∨
2ρ.

Then D′(X,V∗) is identified with

(D′(G) ⊗ V ∨
2ρ)∆(H) = {F ∈ D′(G) ⊗ V ∨ ∶ λ∨2ρ(h)F (⋅h) = F (⋅) for any h ∈H}.

Now let us consider the setting of Theorem 2.9 where we have a G′-equivariant
(but not necessarily injective) morphism from Y = G′/H ′ to X = G/H.

Lemma 2.21. Suppose that G′ is a subgroup of G. Then the multiplication map

m ∶ G ×G′ → G, (g, g′) ↦ (g′)−1g,

induces the isomorphism:

m∗ ∶ (D′(X,V∗) ⊗W )∆(H′) ∼Ð→ D′(X × Y,V∗ ⊠W)∆(G′).

Proof. The image of the pull-back m∗ ∶ D′(G) → D′(G×G′) is D′(G×G′)∆(G′), where
G′ acts diagonally from the left. Thus, considering the remaining G × G′ action
from the right, we take H ×H ′-invariants with respect to the diagonal action in the
(G ×G′ ×H ×H ′)-isomorphism:

m∗ ⊗ id⊗ id ∶ D′(G) ⊗ V ∨
2ρ ⊗W

∼Ð→ D′(G ×G′)∆(G′) ⊗ V ∨
2ρ ⊗W,

and therefore we get the lemma. �
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We recall from Section 2.1 that any continuous linear map T ∶ C∞(X,V) →
C∞(Y,W) is given by a unique distribution kernel KT ∈ D′(X × Y,V∗ ⊠ W). The
following lemma gives a necessary and sufficient condition on the distribution KT for
the linear map T to be a G′-equivariant differential operator.

Lemma 2.22. There is a natural linear isomorphism:

DiffG′(VX ,WY )
∼Ð→ (D′{o}(X,V∗) ⊗W )∆(H′), T ↦ (m∗)−1(KT ).(2.24)

Proof. First, we show that the map (2.24) is well-defined. Suppose T ∈ DiffG′(VX ,WY ).
Since KT is uniquely determined by T , the operator T is G′-equivariant, i.e. L(g) ○
T ○ L(g−1) = T for all g ∈ G′ if and only if KT ∈ D′(X × Y,V∗ ⊠W)∆(G′). By Lemma
2.3 the distribution kernel KT is supported on the diagonal set ∆(Y ) = {(p(y), y) ∶
y ∈ Y } ⊂X × Y . Via the bijection m∗ given in Lemma 2.21 we thus have

Supp((m∗)−1KT ) ⊂ {o}.
Hence the map (2.24) is well-defined. The injectivity of (2.24) is clear.

Conversely, take any element k ∈ (D′{o}(X,V∗) ⊗W )∆(H′). We set K ∶= m∗(k) ∈
D′(X × Y,V∗ ⊠W)∆(G′), and define a linear map

T ∶ C∞(X,V) Ð→ D′(Y,W), f ↦ ∫
X
f(x)K(x, ⋅).

Then T is G′-equivariant because K is ∆(G′)-invariant.
Let us show that Tf ∈ C∞(Y,W) for any f ∈ C∞(X,V). To see this, we take

neighborhoods U,U ′ and U ′′ of xo = p(yo) in X, yo in Y , and e in G′, respectively,
such that gU ′ ⊂ p−1(U) for any g ∈ U ′′. Since the kernel K is supported on the
diagonal set ∆(Y ), TF ∣U ′ is locally of the form (2.4) as in the proof of Lemma 2.3.

Since T is G′-equivariant, we have

∑
α

hα(y)
∂ ∣α∣f

∂xα
(gp(y)) = ∑

α

hα(gy)
∂ ∣α∣f

∂xα
(p(y)),

for any y ∈ U ′, g ∈ U ′′, and f ∈ C∞(U) ⊗ V . By taking f(x) = xα ⊗ v (α ∈ Nn and
v ∈ V ) as test functions, there are some ϕαβ ∈ C∞(U ′′ ×U ′) for ∣β∣ < ∣α∣ such that

hα(gy) = hα(y) + ∑
∣β∣<∣α∣

ϕαβ(g, y)hβ(y).

Therefore we see inductively on ∣α∣ that hα(y) ∈ C∞(U ′) ⊗ Hom(V,W ) for all α
because G′ acts transitively on Y . Hence Tf ∣U ′ ∈ C∞(U ′)⊗W . Thus we have shown
that T maps C∞(X,V) into C∞(Y,W).

Finally, it follows from Lemma 2.3 that T is a differential operator because SuppK ⊂
∆(Y ). Now we have proved the lemma. �
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Proof of Theorem 2.9. Taking the tensor product of each term in (2.22) with the
finite-dimensional representation W of H ′, we get a bijection between the subspaces
of h′-invariants:

Homh′(W ∨, indg
h(V ∨)) ∼Ð→ (D′{o}(X,V∗X) ⊗W )∆(H′).

Composing this with the bijection in Lemma 2.22, we obtain a bijection from
Homh′(W ∨, indg

h(V ∨)) to DiffG′(VX ,WY ), which is by construction nothing butDX→Y
in Theorem 2.9. �

3. Algebraic Fourier transform for generalized Verma modules

The duality theorem (Theorem 2.9) states that, to obtain a differential symmetry
breaking operator D ∈ DiffG′(VX ,WY ), it suffices to find ϕ ∈ HomH′(W ∨, indg

h(V ∨)).
In Section 4, we shall present a new method (F-method) which characterizes the “al-
gebraic Fourier transform” of ϕ as a solution to a certain system of partial differential
equations.

In this section we introduce and study the “algebraic Fourier transform” of gener-
alized Verma modules. Proposition 3.11 is particularly important to the F-method.

3.1. Weyl algebra and algebraic Fourier transform. Let E be a vector space
over C. The Weyl algebra D(E) is the ring of holomorphic differential operators on
E with polynomial coefficients.

Definition 3.1. We define the algebraic Fourier transform as an isomorphism of
two Weyl algebras on E and its dual space E∨:

D(E) → D(E∨), T ↦ T̂ ,

induced by

(3.1)
∂̂

∂zj
∶= −ζj, ẑj ∶=

∂

∂ζj
, 1 ≤ j ≤ n = dimE.

where (z1, . . . , zn) are coordinates on E and (ζ1, . . . , ζn) are the dual coordinates on
E∨.

Example 3.2. Let Ez ∶= ∑n
j=1 zj

∂
∂zj

be the Euler operator on E. Then, by the com-

mutation relations

(3.2)
∂

∂ζi
ζj − ζj

∂

∂ζi
= δij,

in the Weyl algebra D(E∨), where δij is the Kronecker delta. Hence we have Êz =
−Eζ − n.
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The isomorphism T ↦ T̂ in Definition 3.1 does not depend on the choice of coordi-
nates. To see this, we consider the natural action of the general linear group GL(E)
on E, which yields automorphisms of the ring Pol(E) of polynomials of E and the
Weyl algebra D(E). For A ∈ GL(E), we set

A# ∶ Pol(E) Ð→ Pol(E), F ↦ F (A−1⋅),
A∗ ∶ D(E) Ð→ D(E), T ↦ A# ○ T ○A−1

# .

We denote by tA ∈ GL(E∨) the dual map of A. Then we have

Lemma 3.3. For any A ∈ GL(E) and T ∈ D(E),

Â∗T = (tA−1)∗ T̂ .

The proof is straightforward from the definition (3.1), and we omit it.
Next we consider the group homomorphism GL(E) Ð→ GL(Pol(E)), A ↦ A#.

Taking the differential, we get a Lie algebra homomorphism End(E) → D(E). In
the coordinates, we write Z = t(z1,⋯, zn) and ∂Z = t ( ∂

∂z1
,⋯, ∂

∂zn
). Then this homo-

morphism amounts to

(3.3) ΨE ∶ End(E) → D(E), A↦ −tZ tA∂Z ≡ −∑
i,j

Aijzj
∂

∂zi
.

Let σ ∶ g → End(E) be a representation of a Lie algebra g on E, and σ∨ ∶ g →
End(E∨) the contragredient representation. Then the algebraic Fourier transform

T ↦ T̂ relates the two Lie algebra homomorphisms ΨE ○σ ∶ g→ D(E) and ΨE∨ ○σ∨ ∶
g→ D(E∨) as follows:

Lemma 3.4.

Ψ̂E ○ σ = ΨE∨ ○ σ∨ + (Trace ○ σ) ⋅ idE∨ .

Proof. In the coordinates, we write A ∶= σ(Z) ∈ End(E) ≃M(n,C) for Z ∈ g. Then,

̂ΨE ○ σ(Z) −ΨE∨ ○ σ∨(Z) = − ̂tZ tA∂Z − tζA∂ζ

= t∂ζ
tAζ − tζA∂ζ

= (TraceA) idE∨ ,

where the last equality follows from the commutation relations (3.2). �

For actual computations that will be undertaken in a subsequent paper [KP15-2],
it is convenient to give another interpretation of the algebraic Fourier transform by
using real forms of E.
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Definition 3.5. Fix a real form E(R) of the complex vector space E. Let E ′{0}(E(R))
be the space of distributions on the vector space E(R) supported at the origin 0. We
define a “Fourier transform” Fc ∶ E ′{0}(E(R)) → Pol(E∨) by the following formula:

(3.4) Fcf(ζ) ∶= ⟨f(⋅), e⟨⋅,ζ⟩⟩ = ∫
E(R)

e⟨x,ζ⟩f(x) for ζ ∈ E∨.

We have used the function e⟨x,ζ⟩ in (3.4) rather than e−
√
−1⟨x,ζ⟩ or e−⟨x,ζ⟩ which are

involved in the usual Fourier transform or the Laplace transform, respectively. This
convention makes later computations simpler (see Remark 4.2).

Furthermore, with our convention

(3.5) Fc(f(A⋅)) = (Fcf)( tA−1⋅),
for any A ∈ GLR(E(R)).

The Fourier transform Fc induces an algebra isomorphism

Fc ∶ E ′{0}(E(R)) ∼Ð→ Pol(E∨)
between the polynomial algebra Pol(E∨) with unit 1, the constant function on E∨,
and the convolution algebra E ′{0}(E(R)) with unit δ, the Dirac delta function. We

write F−1
c ∶ Pol(E∨) ∼Ð→ E ′{0}(E(R)) for the inverse “Fourier transform”:

F−1
c (1) = δ.

Remark 3.6. The Weyl algebra D(E) acts naturally on the space of distributions on
E(R), and in particular, on E ′{0}(E(R)). The algebraic Fourier transform defined in

Definition 3.1 satisfies

(3.6) T̂ = Fc ○ T ○ F−1
c for T ∈ D(E),

and the formula (3.6) characterizes T̂ . To see this, we take coordinates (x1,⋯, xn)
on E(R), and extend them to the complex coordinates (z1,⋯, zn) on E and the dual

ones (ζ1,⋯, ζn) on E∨. Let P (ζ) = ζα ∈ Pol(E∨) and T = ∑
β,γ

aβ,γz
β ∂
∣γ∣

∂zγ
∈ D(E). Then

we have

T̂P = ∑
β,γ

(−1)∣γ∣aβ,γ
∂ ∣β∣

∂zβ
ζα+γ,

and on the other hand,

Fc ○ T ○ F−1
c P = (−1)∣α∣Fc ○ T (δα(x)) = (−1)∣α∣Fc

⎛
⎝∑β,γ

aβ,γx
βδα+γ(x)

⎞
⎠

= (−1)∣α∣∑
β,γ

(−1)∣α∣+∣γ∣aβ,γ
∂ ∣β∣

∂zβ
ζα+γ.
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Hence the identity (3.6) holds on Pol(E∨). Since the Weyl algebra D(E∨) acts
faithfully on Pol(E∨), we have shown (3.6). In particular, the composition Fc○T ○F−1

c

does not depend on the choice of a real form E(R).

3.2. Holomorphic vector fields associated to the Gelfand–Naimark decom-
position. It is convenient to prepare some notation in the complex reductive Lie
algebras for later purpose.

Let g be a complex reductive Lie algebra, and p = l + n+ a Levi decomposition of
a parabolic subalgebra. Let GC be a connected complex Lie group with Lie algebra
g, and PC = LC expn+ the parabolic subgroup with Lie algebra p = l + n+. According
to the Gelfand–Naimark decomposition g = n− + l + n+ of the Lie algebra g, we have
a diffeomorphism

n− ×LC × n+ → GC, (Z, `, Y ) ↦ (expZ)`(expY ),

into an open dense subset Greg
C of GC. Let

p± ∶ Greg
C Ð→ n±, po ∶ Greg

C → LC,

be the projections characterized by the identity

exp(p−(g))po(g) exp(p+(g)) = g.

We set

α ∶ g × n− → l, (Y,Z) ↦ d

dt
∣
t=0

po (etY eZ) ,(3.7)

β ∶ g × n− → n−, (Y,Z) ↦ d

dt
∣
t=0

p− (etY eZ) .(3.8)

γ ∶ g × n− → l + n+, (Y,Z) ↦ α(Y,Z) + d

dt
∣
t=0

p+ (etY eZ) .(3.9)

We regard β(Y, ⋅ ) as a holomorphic vector field on n− through the following iden-
tification.

n− ∋ Z ↦ β(Y,Z) ∈ n− ≃ TZn−.

Example 3.7. GC = GL(p + q,C), LC = GL(p,C) ×GL(q,C), and n− ≃M(p, q;C).
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We note that n− is realized as upper block matrices. Then for g−1 = (a b
c d

) ∈ GC,

Y = (A B
C D

) ∈M(p + q;C) and Z ∈M(p, q;C) we have

p−(g−1) =bd−1,

po(g−1) =(a − bd−1c, d) ∈ GL(p,C) ×GL(q,C),
α(Y,Z) =(A −ZC,CZ +D) ∈ glp(C) ⊕ glq(C),
β(Y,Z) =AZ +B −ZCZ −ZD.

Then β(Y, ⋅) is regarded as the following holomorphic vector field on n− ≃M(p, q;C)
given by

Trace(β(Y,Z) t∂Z) =
p

∑
a=1

q

∑
b=1

β(Y,Z)ab
∂

∂zab

=
p

∑
a=1

q

∑
b=1

(
p

∑
i=1

Aaizib +Bab −
p

∑
i=1

q

∑
j=1

zajCjizib −
q

∑
j=1

zajDjb)
∂

∂zab
.

A reductive Lie algebra g is said to be k-graded if it admits a direct sum decom-
position g = ⊕kj=−kg(j) such that [g(i),g(j)] ⊂ g(i + j) for all i, j. Any parabolic
subalgebra p = l+ n+ of g is given by l = g(0) and n+ = ⊕j>0g(j) for some k-gradation
of g. We then have the following estimates of coefficients of holomorphic differential
operators dπµ(Y ).

Lemma 3.8. According to the direct sum decomposition g = ⊕kj=−kg(j), we write

γ(Y,Z) = ∑k
`=0 γ` and β(Y,Z) = ∑−1

`=−k β`, where γ` ∈ g(`) for 0 ≤ ` ≤ k and β` ∈ g(`)
for −k ≤ ` ≤ −1. Then γ` and β` are polynomials in Z of degree at most k − `.

Proof. Since the map N−,C × PC
∼Ð→ Greg

C is an analytic diffeomorphism, we have

(3.10) etY eZ = eZ+tβ(Y,Z)+o(t)etα(Y,Z)+o(t)

for sufficiently small t ∈ C, where we use the Landau symbol o(t) for a g-valued
function dominated by t when t tends to be zero. Multiplying (3.10) by e−Z from
the left, and taking the differential at t = 0, we get

Ad(e−Z)Y = γ(Y,Z) + e
ad(Z) − 1

ad(Z) β(Y,Z),
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because
d

dt
∣
t=0

e−ZeZ+tW = e
ad(Z) − 1

ad(Z) W. We note that ad(Z) lowers the grading of g,

namely ad(Z)g(j) ⊂ ⊕j−1
i=−kg(i) because Z ∈ n−. In particular, we have

(3.11)
2k

∑
j=0

(−1)j
j!

ad(Z)jY = γ(Y,Z) +
k−1

∑
i=0

ad(Z)i
(i + 1)!β(Y,Z).

Let q` ∶ g → g(`) be the projection according to the direct sum decomposition g =
k

⊕
j=−k

g(j). Suppose ` ≥ 0. Applying q` to (3.11), we have

γ` = q` (
k−`
∑
j=0

(−1)jad(Z)j
j!

Y ) .

Hence γ` is a polynomial in Z of degree at most k − `.
Suppose ` < 0. Applying q` to (3.11), we get

β` = q` (
k−`
∑
j=0

(−1)jad(Z)j
j!

Y ) − q`
⎛
⎝

j−`

∑
i=0

−1

∑
j=`

ad(Z)i
(i + 1)!βj

⎞
⎠
.

By the downward induction on `, we see that β` is a polynomial in Z of degree at
most k − ` for −k ≤ ` ≤ −1. �

3.3. Fourier transform of principal series representations. Suppose g is a
complex reductive Lie algebra, p = l+n+ a parabolic subalgebra, and λ ∶ p→ EndC(V )
a finite-dimensional representation.

We use the letter µ to denote the representation of p on the dual space V ∨ given
by

(3.12) µ ∶= λ∗ ≡ λ∨ ⊗Trace(ad(⋅) ∶ n+ → n+).
By applying the (algebraic) Fourier transform of the Weyl algebra, we define a Lie

algebra homomorphism

d̂πµ ∶ g→ D(n+) ⊗EndC(V ∨),
by using the complex flag variety GC/PC in this subsection. In Section 3.4, we relate

d̂πµ with the “algebraic Fourier transform” of a generalized Verma module

Fc ∶ indg
p(V ∨) ∼→ Pol(n+) ⊗ V ∨,

which is defined by using a real flag variety G/P , see (3.23).
Let GC be a connected complex reductive Lie group with complex reductive Lie

algebra g, and PC = LCN+,C be the parabolic subgroup with Lie algebra p. Let ΩXC

be the canonical line bundle of the complex generalized flag variety XC = GC/PC.
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Suppose λ lifts to a holomorphic representation of PC, then so does µ. We form a
GC-equivariant holomorphic vector bundle V and V∨ ⊗ΩXC over XC associated to λ
and µ, respectively.

We consider the regular representation πµ of GC on C∞(GC/PC,V∨ ⊗ ΩXC). The
infinitesimal action will be denoted by dπµ, which is defined on C∞(U,V∨ ⊗ΩXC ∣U)
for any open subset U of GC/PC. In particular, we take U to be the open Bruhat cell
n− ↪ GC/PC, Z ↦ expZ ⋅ o, where o = ePC ∈ GC/PC. By trivializing the holomorphic
vector bundle V∨ ⊗ ΩXC → GC/PC on it, we define a function F ∈ C∞(n−, V ∨) for a
section f ∈ C∞(GC/PC,V∨ ⊗ΩXC) by

F (Z) ∶= f(expZ) for Z ∈ n−.
Then the action of g on C∞(n−, V ∨) given by

(dπµ(Y )F ) (Z) = = d

dt
∣
t=0

f(e−tY eZ)

= µ(γ(Y,Z))F (Z) − (β(Y, ⋅ )F )(Z) for Y ∈ g,(3.13)

where by a little abuse of notation µ stands for the infinitesimal action. The right-
hand side of (3.13) defines a representation of Lie algebra g whenever µ (or λ) is a
representation of the Lie algebra p without assuming that it lifts to a holomorphic
representation of the complex reductive group PC.

It follows from (3.13) and Lemma 3.8 that we obtain a Lie algebra homomorphism

(3.14) dπµ ∶ g→ D(n−) ⊗End(V ∨),
for any representation λ of the Lie algebra p. By taking the algebraic Fourier trans-
form on the Weyl algebra D(n−) (see Definition 3.1), we get another Lie algebra
homomorphism:

(3.15) d̂πµ ∶ g→ D(n+) ⊗End(V ∨).
We use the same letter πµ to denote the “action” of GC on C∞(n−, V ∨) given as

(3.16) (πµ(g)F ) (Z) = µ(po(g−1 expZ) exp(p+(g−1 expZ)))−1F (p−(g−1 expZ)).
This formula makes sense if F comes from C∞(GC/PC,V⊗Ω∨

XC
), or if F ∈ C∞(n−, V ∨)

and g ∈ GC and Z ∈ n− satisfy g−1 expZ ∈ Greg
C . In particular, if λ is trivial on the

nilpotent radical n+ for g = m expW with m ∈ LC and W ∈ n−, and if n+ is abelian
we have

(3.17) (πµ(g)F ) (Z) = µ(m)F (Ad(m)−1Z −W ).
Let us analyze dπµ(Y ) for Y ∈ l + n+. We begin with the case Y ∈ l. We let the

Levi subgroup LC act on Pol(n+) by

Ad#(l) ∶ f(⋅) ↦ f(Ad(l−1)⋅), l ∈ LC.



24 TOSHIYUKI KOBAYASHI, MICHAEL PEVZNER

Since this action is algebraic, the infinitesimal action defines a Lie algebra homomor-
phism into the Weyl algebra:

ad# ∶ l→ D(n+), Y ↦ ad#(Y ),
where ad#(Y ) is a holomorphic vector field on n+ given by ad#(Y )x ∶= d

dt
∣
t=0

Ad(e−tY )x ∈
Tx(n+) for x ∈ n+.

Lemma 3.9. Let λ be a representation of the parabolic Lie algebra p = l + n+, and
µ ≡ λ∗ be as in (3.12). Then the following two representations of l on Pol(n+)⊗V ∨are
isomorphic:

(3.18) d̂πµ∣l ≃ ad#⊗id + id⊗ (µ −Trace ○ ad∣
n−
) = ad#(Y ) ⊗ id + id⊗ (−λ).

In particular, if λ lifts to a holomorphic representation of PC then the right-hand
side is the infinitesimal action of Ad# ⊗ λ∨ of LC on Pol(n+) ⊗ V ∨.

Proof. For Y ∈ l, X ∈ n− we have γ(Y,X) = Y , and the formula (3.13) reduces, in
D(n−) ⊗End(V ∨), to

dπµ(Y ) = id⊗ µ(Y ) − β(Y, ⋅ ) ⊗ id.

We apply Lemma 3.4 to the case where (σ,E) is the adjoint representation of l on
n−. Since β(Y, ⋅) = −dL(Y ) for Y ∈ l, we have Ψn− ○ ad = −β on l, with the notation
therein. Moreover, via the identification n∨− ≃ n+, the map Ψn∨− ○ ad∨ amounts to
Ψn+ ○ ad = ad#. Therefore, we get

d̂πµ(Y ) = id⊗ µ(Y ) +Ψn∨− ○ ad∨(Y ) ⊗ id + (Trace ○ ad(Y )∣
n−
) id⊗ id

= id⊗ µ(Y ) + ad#(Y ) ⊗ id − (Trace ○ ad(Y )∣
n+
) id⊗ id.

Thus, the lemma follows. �

The differential operators d̂πµ(Y ) with Y ∈ n+ play a central role in the F-method.
If the parabolic subalgebra p is associated to a k-gradation of g, then these differential
operators are at most of order 2k by Lemma 3.8. We describe their structure in the
case where k = 1, namely n+ is abelian.

Proposition 3.10. Assume that n+ is abelian. Let (λ,V ) be a representation of l,
extended trivially on n+, and µ = λ∗ be as in (3.12). For every Y ∈ n+ the operator

d̂πµ(Y ) is of the form

(3.19) ∑ajki ζ
i ∂2

∂ζj∂ζk
+∑ bj

∂

∂ζj
,

where ajki and bj ∈ End(V ∨) are constants depending on Y .
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Proof. Since n+ is abelian, we can take a characteristic element H such that

Ad(esH)Y = esY for anyY ∈ n+.
We set m ∶= esH . Then tAd(m)−1 = e−sid on n− ≃ n∨+.

Taking the algebraic Fourier transform of the formula

dπµ(Ad(m)Y ) = πµ(m)dπµ(Y )πµ(m−1),
where (πµ(m)F )(Z) = µ(m)F (Ad(m−1)Z) = µ(m)F (Ad(m)#F )(Z) by (3.17), we
get

d̂πµ(Ad(m)Y ) = (tAd(m)−1)∗ d̂πµ(Y )
by Lemma 3.3. Hence

(3.20) esd̂πµ(Y ) = (e−sid)∗ d̂πµ(Y )
If we write d̂πµ(Y ) in the form

∑
α,β∈Nn

Cα,βζ
α ∂
∣β∣

∂ζβ

then (3.20) implies that Cα,β ≠ 0 only when ∣α∣ + ∣β∣ = −1 because (e−sid)∗ ∂
∂ζj

= e−s ∂
∂ζj

and (e−sid)∗ζj = esζj (1 ≤ j ≤ n). As dπµ(Y ) is a vector field there is no term for
∣α∣ > 1. Hence we get the expression (3.19). �

3.4. Fourier transform on the real flag varieties. In this subsection we define
“algebraic Fourier transform” of generalized Verma modules, see (3.23):

Fc ∶ indg
p(V ∨) ∼→ Pol(n+) ⊗ V ∨.

As we shall prove in Proposition 3.11, the Lie algebra homomorphism d̂πλ∗ ∶ U(g) Ð→
D(n+)⊗End(V ∨) defined in (3.15) in the previous section can be reconstructed from

Fc, namely, d̂πλ∗(u) (u ∈ U(g)) is the operator S that is characterized by

SFc(v) = Fc(u ⋅ v) for any v ∈ indg
p(V ∨).

For later purpose, we work with a real form G of GC. From now on, let G be
a real semisimple Lie group, P a parabolic subgroup of G with Levi decomposition
P = LN+, and V a finite-dimensional representation of P .

Let LN− be the opposite parabolic subgroup of P = LN+. We write n+(R) and
n−(R) for the Lie algebras of N+ and N−, respectively, and set n+ = n+(R)⊗RC. The
open Bruhat cell is given as the image of the following embedding

ι ∶ n−(R) ↪ G/P, X ↦ exp(X) ⋅ o,
where o = eP ∈ G/P .

Let λ ∶ P → GLC(V ) be a finite-dimensional representation of P , and V = G ×P V
the G-equivariant vector bundle over the real flag variety G/P . The pullback of the



26 TOSHIYUKI KOBAYASHI, MICHAEL PEVZNER

dualizing bundle V∗ ≡ V∨2ρ → G/P via ι is trivialized into the direct product bundle
n−(R) × V ∨ → n−(R) and thus we have a linear isomorphism:

(3.21) ι∗ ∶ E ′{o}(G/P,V∨2ρ)
∼Ð→ E ′{0}(n−(R)) ⊗ V ∨,

through which we induce the (g, P )-action on E ′{0}(n−(R))⊗V ∨ from E ′{o}(G/P,V∨2ρ).
The Killing form of g identifies the dual space n−(R)∨ with n+(R), and thus the

Fourier transform Fc in (3.4) gives rise to a linear isomorphism:

(3.22) Fc ⊗ id ∶ E ′{0}(n−(R)) ⊗ V ∨ ∼Ð→ Pol(n+) ⊗ V ∨,

through which we induce the (g, P )-action further on the right-hand side.
In summary we have the following (g, P )-isomorphisms:

(3.23) Fc ∶ indg
p(V ∨)

(2.22)
∼Ð→ E ′{o}(G/P,V∨2ρ)

(3.21)
∼Ð→ E ′{0}(n−(R)) ⊗ V ∨

Fc⊗id
∼Ð→ Pol(n+) ⊗ V ∨.

We say that Fc is the algebraic Fourier transform of a generalized Verma module.
The (g, P )-module structure of Pol(n+) ⊗ V ∨ is described by the following propo-

sition.

Proposition 3.11. Let (λ,V ) be a finite-dimensional representation of P and define
another representation of P on the dual space V ∨ by µ ∶= λ∗ ≡ λ∨ ⊗C2ρ. Then,

1) The g-action on Pol(n+) ⊗V ∨ induced by Fc in (3.23) coincides with the one

given by d̂πµ in (3.15).
2) The L action on Pol(n+)⊗V ∨ induced by Fc in (3.23) coincides with the one

given by Ad# ⊗ λ∨.

Proof. 1) Let GC be a complexification of G and PC the connected subgroup of GC
with Lie algebra p = Lie(P ) ⊗R C. First we assume that λ extends to a holomorphic
representation of PC. Then the G-equivariant vector bundle V∨2ρ over X = G/P
is the restriction of the GC-equivariant holomorphic vector bundle V∨ ⊗ ΩXC over
XC = GC/PC that was introduced in the previous subsection. Therefore, the action
of Y ∈ g on E ′{0}(n−(R)⊗V ∨) induced by ι∗ in (3.21) is given by the restriction of the

holomorphic differential operator dπµ(Y ).
In turn, the action of Y ∈ g on Pol(n+)⊗V ∨ induced by the isomorphism (3.22) is

given by

(Fc ⊗ id) ○ dπµ(Y ) ○ (F−1
c ⊗ id),

which is equal to d̂πµ(Y ) by Remark 3.6.
To complete the proof in the general case we denote by Hom(PC,GLC(V )) the

set of holomorphic representations of PC on V and by Hom(p,End(V )) the set of
Lie algebra representations of p. Since the former is Zariski dense in the latter, the
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two g-actions on Pol(n+) ⊗ V ∨ coincide for all λ because both depend algebraically
(actually affinely) on λ ∈ Hom(p,End(V )).

2) This statement is the analogue of Lemma 3.9 for the Lie group L. Indeed, since
the group L normalizes n−(R) and fixes the origin 0, the isomorphism ι∗ in (3.21)
respects the L-action when L acts diagonally on E ′{0}(n−(R)) ⊗ V ∨. To conclude the

proof we use (3.5). �

The map Fc does not depend on the choice of a real form G of GC that appears
in the two middle terms of (3.23). Moreover, the isomorphism Fc ∶ indg

p(V ∨) ∼Ð→
Pol(n+) ⊗ V ∨ depends only on the infinitesimal action of P on V . In fact, the
following corollary follows immediately from the statement 1) of Proposition 3.11.

Corollary 3.12. The algebraic Fourier transform of generalized Verma modules (see
(3.23))

Fc ∶ indg
p(V ∨) ∼Ð→ Pol(n+) ⊗ V ∨

is given by

(u⊗ v∨) ↦ ̂dπλ∗(u)(1⊗ v∨), u ∈ U(g), v∨ ∈ V ∨.

4. F-method

In Section 2 we have established a one-to-one correspondence between differential
symmetry breaking operators for vector bundles and certain Lie algebra homomor-
phisms (Theorem 2.9). Using this framework our aim is to find explicit formulæ for
such operators, in particular, when such operators are a priori known to be unique
up to scalar. For this purpose we propose a new method, which we call the F-method.
Its theoretical foundation is summarized in Theorem 4.1. This method becomes par-
ticularly simple when h is a parabolic subalgebra with abelian nilradical. In this case
we develop the F-method in more details, and give its recipe in Section 4.4. Some
useful lemmas for actual computations for vector-valued differential operators are
collected in Section 4.5.

4.1. Construction of equivariant differential operators by algebraic Fourier
transform. Let E be a finite-dimensional vector spaces over C and E∨ its dual
space. Let Diffconst(E) denote the ring of holomorphic differential operators on E
with constant coefficients. We define the symbol map

Symb ∶ Diffconst(E) ∼Ð→Pol(E∨), Dz ↦ Q(ζ)
by the following characterization

Dze
⟨z,ζ⟩ = Q(ζ)e⟨z,ζ⟩.

Then Symb is an algebra isomorphism. The differential operator on E with symbol
Q(ζ) will be denoted by ∂Qz.
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By the definition of the algebraic Fourier transform (Definition 3.1) one has

(4.1) ∂̂Pz = (−1)`P (ζ), Q̂(z) = ∂Qζ

for any homogeneous polynomial P on E∨ of degree ` and any polynomial Q on E
seen as a multiplication operator.

We recall from Corollary 3.12 that Pol(n+) ⊗ V ∨ is a (g, P )-module if V is a P -
module. Note that the action of exp(n+) (⊂ P ) on Pol(n+) ⊗ V ∨ is not geometric,
namely, it is not given by the pull-back of polynomials via the action on the base
space n+.

The key tool for the F-method that we explain in Section 4.4 is the following
assertion. We note that the two approaches (the canonical invariant pairing (2.20))
and the algebraic Fourier transform (3.23)) give rise to the same differential operators,
provided that n+ is abelian:

Theorem 4.1. Suppose that p is a parabolic subalgebra g and that P = L exp(n+)
is its Levi decomposition. Let P ′ be a closed subgroup of P such that P ′ has a
decomposition P ′ = L′ exp(n′+) with L′ ⊂ L and n′+ ⊂ n+. Let G′ be an arbitrary
subgroup of G containing P ′. For a representation (λ,V ) of P and a representation
(ν,W ) of P ′, we form a G-equivariant vector bundle V = G×P V over X = G/P and a
G′-equivariant vector bundle W = G′ ×P ′ W over Y = G′/P ′, respectively. Let µ ∶= λ∗
be as in (3.12).

(1) There is a natural isomorphism

DiffG′(VX ,WY ) ≃ (Pol(n+) ⊗HomC(V,W ))L
′,d̂πµ(n′+)(4.2)

≃ (HomL′(V ⊗Pol(n+),W ))d̂πµ(n
′
+) .

Here the right-hand side of (4.2) consists of ψ ∈ Pol(n+) ⊗HomC(V,W ) sat-
isfying

ν(`) ○Ad#(`)ψ ○ λ(`−1) = ψ for all ` ∈ L′,(4.3)

(d̂πµ(C) ⊗ idW + id⊗ν(C))ψ = 0 for allC ∈ n′+.(4.4)

(2) Assume that the nilradical n+ is abelian. Then the following diagram com-
mutes:

HomC(W ∨, indg
p(V ∨))

Fc⊗id
∼Ð→ Pol(n+) ⊗HomC(V,W )

Symb⊗id
∼←Ð Diffconst(n−) ⊗HomC(V,W )

∪ ↻ ∪
HomP ′(W ∨, indg

p(V ∨)) ∼Ð→
DX→Y

DiffG′(VX ,WY ).

Remark 4.2. The convention on the Fourier transform Fc in Definition 3.5 makes the
diagram in Theorem 4.1 commutative without additional powers of

√
−1.



F-METHOD 29

Theorem 4.1 may be regarded as a construction of symmetry breaking operators
by using the Fourier transform of generalized Verma modules.

Corollary 4.3. Assume that n+ is abelian and that P ′ = L′ exp(n′+) with L′ ⊂ L and
n′+ ⊂ n+. Then the following diagram of three isomorphisms commutes.

HomL′ (V ⊗Pol(n+),W ))d̂πµ(n
′
+)

HomP ′(W ∨, indg
p(V ∨))

Fc⊗id
33

DX→Y

∼ // DiffG′(VX ,WY )

Symb⊗id
jj

In the above corollary, HomL′ (V ⊗Pol(n+),W ))d̂πµ(n
′
+) consists of L′-equivariant,

HomC(V,W )-valued polynomial solutions ψ on n+ to a system of partial differential
equations of second order, see Sections 3.3 and 4.4. Corollary 4.3 implies that, once
we find such a polynomial solution ψ, we obtain a P ′-submodule W ∨ in indg

p(V ∨)
(sometimes referred to as singular vectors) by (Fc⊗ id)−1(ψ), and a differential sym-
metry breaking operator by (Symb⊗ id)−1(ψ).

We first give proofs for the first statement of Theorem 4.1 here. The proof of the
second statement is postponed until the next subsection.

Proof of Theorem 4.1 (1). Combining the duality theorem (Theorem 2.9) with the
algebraic Fourier transform (Corollary 3.12) we have an isomorphism

HomP ′(W ∨,Pol(n+) ⊗ V ∨) ∼Ð→ DiffG′(VX ,WY )
where the P ′-action on Pol(n+) ⊗ V ∨ is defined via the algebraic Fourier transform
Fc, namely, the left-hand side consists of ψ ∈ HomC(W ∨,Pol(n+) ⊗ V ∨) ≃ Pol(n+) ⊗
HomC(V,W ) satisfying

(d̂πµ(C) ⊗ idW + id⊗ ν(C))ψ = 0 for all C ∈ l′ + n+,

provided L′ is connected. Owing to Lemma 3.9, the condition for C ∈ l′ is equivalent
to that ψ ∈ (Pol(n+) ⊗ HomC(V,W ))l′ , where l′ acts on Pol(n+) ⊗ HomC(V,W ) by
ad# ⊗ id+ id⊗(λ∨ ⊗ id+ id⊗ν).

In a more general setting where we allow L′ to be disconnected, by the same
argument as in the proof of Lemma 3.9, we see that the P -action on Pol(n+) ⊗ V ∨

via the algebraic Fourier transform Fc of generalized Verma modules (Corollary 3.12)
coincides with the tensor product representation Ad#⊗λ∨ when restricted to the Levi
subgroup L. Thus the isomorphism (4.2) is proved. �

4.2. Symbol map and reversing signatures. The purpose of this section is to
carefully and clearly set up relations involving various signatures in connection with
the algebraic Fourier transform in a coordinates-free fashion.
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Denote by γ ∶ S(E) ∼Ð→ Pol(E∨) the canonical isomorphism, and define another
algebra isomorphism

γsgn ∶ S(E) ∼Ð→ Pol(E∨),
by γ ○a, where a ∶ S(E) → S(E) denotes the automorphism of the symmetric algebra
S(E) induced by the linear map X ↦ −X for X ∈ E.

Now we regard E as an abelian Lie algebra over C, and identify its enveloping al-
gebra U(E) with the symmetric algebra S(E). Then, the right and left-infinitesimal
actions induce two isomorphisms:

dR ∶ S(E) ∼Ð→ Diffconst(E), dL ∶ S(E) ∼Ð→ Diffconst(E).
By the definition of the symbol map, we get,

Symb ○dR = γ, Symb ○dL = γsgn.
On the other hand, it follows from (4.1) that

d̂L(u) = γ(u), d̂R(u) = γsgn(u),
for every u ∈ S(E) ≃ U(E), where polynomials are regarded as multiplication oper-
ators. Hence we have proved

Lemma 4.4. Let E be an abelian Lie algebra over C. For any u ∈ U(E),

Symb ○dR(u) = d̂L(u), Symb ○dL(u) = d̂R(u).
4.3. Proof of Theorem 4.1 (2). We are ready to complete the proof of Theorem
4.1 (and Corollary 4.3).

Proof. Take an arbitrary ϕ ∈ HomC(W ∨, indg
p(V ∨)), which may be written as a finite

sum
ϕ = ∑

j

uj ⊗ ψj ∈ U(n−) ⊗HomC(V,W )

by the Poincaré–Birkhoff–Witt theorem U(g) ≃ U(n−) ⊗U(p). Then it follows from
(2.22) and (3.23) that

Fcϕ = ∑
j

Fc (dL(uj)δ) ⊗ ψj ∈ Pol(n+) ⊗HomC(V,W ).

Since δ = F−1
c (1), we get

Fcϕ = ∑
j

d̂L(uj) ⊗ ψj.

On the other hand, by the construction (2.18),

DX→Y (ϕ) = ∑
j

dR(uj) ⊗ ψj.

Now we use the assumption that n+ or equivalently n− is abelian. Then, in the
coordinates n−(R) ↪ G/P the operator dR(uj) for uj ∈ U(n−) defines a constant
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coefficient differential operator on n−. Thus DX→Y (ϕ) can be regarded as an element
of Diffconst(n−(R)) ⊗HomC(V,W ).

Applying the symbol map we have

(Symb⊗ id) ○DX→Y (ϕ) = ∑
j

Symb ○dR(uj) ⊗ ψj = ∑
j

d̂L(uj) ⊗ ψj,

where the last equation follows from Lemma 4.4. Thus we have proved that

(Fc ⊗ id)ϕ = (Symb⊗ id) ○DX→Y (ϕ),

whence the second statement of Theorem 4.1. �

4.4. Recipe of the F-method for abelian nilradical n+. Our goal is to find an
explicit form of a differential symmetry breaking operator from VX to WY . Equiva-
lently, what we call F-method provides a way to find an explicit element in the space

Homg′(indg′

p′(W ∨), indg
p(V ∨)) ≃ Homp′(W ∨, indg

p(V ∨)).
A semisimple element Z in g is called hyperbolic if all the eigenvalues of ad(Z) are

real. A hyperbolic element Z defines a parabolic subalgebra p(Z) = l(Z) + n+(Z),
where l(Z) and n+(Z) are the sum of eigenspaces of ad(Z) with zero and positive
eigenvalues, respectively.

Let g′ be a reductive subalgebra in g, in the sense that g′ itself is reductive and
the adjoint representation of g′ on g is completely reducible.

Definition 4.5. A parabolic subalgebra p is said to be g′-compatible if there exists
a hyperbolic element Z ∈ g′ such that p = p(Z).

If p = l + n+ is g′-compatible, then p′ ∶= p ∩ g′ becomes a parabolic subalgebra of g′

with the following Levi decomposition:

p′ = l′ + n′+ ∶= (l ∩ g′) + (n+ ∩ g′),

which satisfies the assumptions of Theorem 4.1 2).
In this case the space DiffG′(VX ,WY ) of differential symmetry breaking operators

is always finite-dimensional owing to Corollary 2.10 because:

dimC Homg′(indg′

p′(W ∨), indg
p(V ∨)) < ∞

for any finite-dimensional representations V and W of p and p′, respectively [K14,
Proposition 2.8].
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Our assumption here is that p = l+n+ is a g′-compatible parabolic subalgebra of g
with abelian nilradical n+. Based on the following diagram (see Corollary 4.3),
(4.5)

(Pol(n+) ⊗HomC(V,W ))L
′,d̂πµ(n′+)

HomP ′(W ∨, indg
p(V ∨))

Fc⊗id
33

DX→Y

∼ // DiffG′(VX ,WY )

Symb⊗id
jj

we develop a method as follows:

Step 0. Fix a finite-dimensional representation (λ,V ) of the parabolic subgroup P .
It defines a G-equivariant vector bundle VX = G ×P V over X = G/P .

Step 1. Let µ ∶= λ∨ ⊗ C2ρ and compute (see (3.14) and (3.15)),

dπµ ∶ g → D(n−) ⊗End(V ∨),
d̂πµ ∶ g → D(n+) ⊗End(V ∨).

According to (3.13), d̂πµ only depends on the infinitesimal representation λ
of the parabolic subalgebra p.

Step 2. Find a finite-dimensional representation (ν,W ) of the Lie group P ′ such that

HomP ′(W ∨, indg
p(V ∨)) ≠ {0}.

It defines a G′-equivariant vector bundle WY = G′ ×P ′W over Y = G′/P ′ such
that DiffG′(VX ,WY ) is non-trivial.

Step 3. Consider ψ ∈ Pol(n+)⊗HomC(V,W ) satisfying (4.3) and (4.4). Note that the
system of partial differential equations (4.4) is of second order (see Proposition
3.10).

Step 4. Take a slice S for generic L′C-orbits on n+. Use invariant theory for (4.3) and
consider the system of differential equations on S induced from (4.4). Find
polynomials ψ ∈ Pol(n+) ⊗ Hom(V,W ) satisfying (4.3) and (4.4) by solving
those equations on S.

Step 5. Let ψ be a polynomial solution to (4.3) and (4.4) obtained in Step 4. In
the diagram (4.5), (Symb⊗ id)−1(ψ) gives the desired differential symmetry
breaking operator in the coordinates n− of X by Theorem 4.1. In the same
diagram, (Fc ⊗ id)−1(ψ) gives an explicit element in Homp′(W ∨, indg

p(V ∨))
(≃ Homg′(indg′

p′(W ∨), indg
p(V ∨))), which is sometimes referred to as a singular

vector.
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This method gives all non-trivial differential symmetry breaking operators for given
data (Y ↪ X,VX) by providing G′-equivariant vector bundles WY and explicit ele-
ments in DiffG′(VX ,WY ). In fact, Step 2 based on Theorem 2.9 gives a necessary and
sufficient condition for a P ′-module W to ensure that DiffG′(VX ,WY ) is non-zero.
Steps 1, 3 and 5 based on Theorem 4.1 show that any differential symmetry breaking
operator is of the form (Fc ⊗ id)−1(ψ) where ψ is a polynomial solution to (4.3) and
(4.4).

Actual applications of the F-method include the following cases:
1. Holomorphic discrete series representations.
2. Principal series representations of real reductive groups (Corollary 2.13).
The latter is related to questions in conformal geometry (more generally parabolic

geometry), see [J09, KØSS13]. The former case includes the classical Rankin–Cohen
bidifferential operators as a prototype, and it is the main object of the second part
of this work [KP15-2]. The connection between these two is discussed in [KKP15].
We note that the normalization and formulation in [KØSS13] is different from this
paper, see [K13].

Here we give some comments on the actual applications of the F-method when X
and Y are Hermitian symmetric spaces. In Theorem 5.3 we prove that all continuous
symmetry breaking operators in this case are given by holomorphic differential oper-
ators that extend to the complex flag varieties, so that the F-method for a parabolic
subalgebra with abelian nilradical applies.

Furthermore, if (G,G′) is a reductive symmetric pair, we know a priori that
DiffG′(VX ,WY ) is one-dimensional for line bundles VX with generic parameter [K14,
Theorem 2.7]. Thus, it is natural to look for explicit formulæ for such canonical op-
erators. In Step 2 we can use explicit branching laws (see [KP15-2, Fact 4.2]) to find
all W such that Homp′(W ∨, indg

p(V ∨)) is non-zero. Conversely, the differential equa-
tions in Step 3 are useful in certain cases to get a finer structure of branching laws,
e.g., to find the Jordan–Hölder series of the restriction for exceptional parameters λ
(see [KØSS13]).

The Rankin–Cohen operators as well as Juhl’s conformally covariant differential
operators are recovered by the F-method as a special case where generic L′C-orbits
on n+ are of codimension one. The induced system of (4.4) reduces to ordinary
differential equations on the one dimensional complex manifold S. In the second part
of this work [KP15-2] we shall treat all the six geometries with a one-dimensional
slice S.

4.5. F-method – supplement for vector valued cases. In order to deal with
the general case where the target WY is no longer a line bundle but a vector bundle,
i.e., where W is an arbitrary finite-dimensional irreducible l′-module, we may find
the condition (4.3) somewhat complicated in practice, even though it is a system
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of differential equations of first order. In this section we give two useful lemmas to
simplify Step 3 in the recipe by reducing (4.3) to a simpler algebraic question on
polynomial rings, so that we can focus on the crucial part consisting of a system of
differential equations of second order (4.4). The results here will be used in [KP15-2,
Sections 7 and 8].

We fix a Borel subalgebra b(l′) of l′. Let χ ∶ b(l′) → C be a character. For an
l′-module U , we set

Uχ ∶= {u ∈ U ∶ Zu = χ(Z)u for any Z ∈ b(l′)}.
Suppose that W is an irreducible representation of l′ with lowest weight −χ. Then

the contragredient representation W ∨ has a highest weight χ. We fix a non-zero
highest weight vector w∨ ∈ (W ∨)χ. Then the contraction map

U ⊗W → U, ψ ↦ ⟨ψ,w∨⟩,
induces a bijection between the following two subspaces:

(4.6) (U ⊗W )l′ ∼Ð→ Uχ,

if U is completely reducible as an l′-module. By using the isomorphism (4.6), we
reformulate Step 3 of the recipe for the F-method as follows:

Lemma 4.6. Suppose we are in the setting of Section 4.4. Assume that W is an
irreducible representation of the parabolic subalgebra p′. Let −χ be the lowest weight
of W as an l′-module. Then we have a natural injective homomorphism

DiffG′(VX ,WY ) ↪ {Q ∈ (Pol(n+) ⊗ V ∨)χ ∶ d̂πµ(C)Q = 0 for all C ∈ n′+} ,
which is bijective if L′ is connected.

Proof. Applying (4.6) to the l′-module U ∶= Pol(n+) ⊗ HomC(V,W ), we get an iso-
morphism:

(4.7) (Pol(n+) ⊗Hom(V,W ))l
′ ∼Ð→ (Pol(n+) ⊗ V ∨)χ .

Since W is an irreducible p′-module, the Lie subalgebra n′ acts trivially on W and l′

acts irreducibly. In particular, the condition (4.4) amounts to

(d̂πµ(C) ⊗ idW )ψ = 0 for all C ∈ n′+.
Therefore, the isomorphism (4.7) induces a bijection

{ψ ∈ (Pol(n+) ⊗Hom(V,W ))l
′

∶ ψ satisfies (4.4)}
∼→ {Q ∈ (Pol(n+) ⊗ V ∨)χ ∶ d̂πµ(C)Q = 0 for all C ∈ n′+} .

Now Lemma follows from Theorem 4.1. �



F-METHOD 35

Since any non-zero vector in W ∨ is cyclic, the next lemma explains how to recover
DX→Y (ϕ) from Q given in Lemma 4.6.

We assume, for simplicity, that the l-module (λ,V ) lifts to LC, the l′-module
(ν,W ) lifts to L′C, and use the same letters to denote their liftings.

Lemma 4.7. For any ϕ ∈ Homp′(W ∨, indg
p(V ∨)), ` ∈ L′C and w∨ ∈W ∨,

(4.8) ⟨DX→Y (ϕ), ν∨(`)w∨⟩ = (Ad(`) ⊗ λ∨(`)) ⟨DX→Y (ϕ),w∨⟩ .

Proof. We write ϕ = ∑j uj ⊗ ψj ∈ U(n−) ⊗ HomC(V,W ). Since ϕ is p′-invariant, we
have the identity:

∑
j

uj ⊗ ψj = ∑
j

Ad(`)uj ⊗ ν(`) ○ ψj ○ λ(`−1) for l ∈ L′C.

In turn, we have

⟨DX→Y (ϕ), ν∨(`)w∨⟩ = ∑
j

dR(Ad(`)uj) ⊗ ⟨ψj,w∨⟩ ○ λ(`−1)

= ((Ad(`) ⊗ λ∨(`)) ⟨DX→Y (ϕ),w∨⟩ .
Thus, we have proved Lemma. �

We notice that the right-hand side of (4.8) can be computed by using the identity
in Diffconst(n−) ⊗ V ∨:

⟨DX→Y (ϕ),w∨⟩ = (Symb−1 ⊗ idV ∨)(Q),
once we know the polynomial Q = ⟨ψ,w∨⟩ with ψ = (Fc ⊗ id)(ϕ) (see Theorem 4.1).
In [KP15-2, Sections 7 and 8], we find explicit formulæ for vector-bundle valued
equivariant differential operators by solving equations for the polynomials Q.

5. Localness and extension theorem for symmetry breaking
operators

Let G ⊃ G′ be a pair of real reductive Lie groups. In general, continuous sym-
metry breaking operators between two principal series representations of G and G′

are not always given by differential operators. Actually, generic ones are supposed
to be given by integral transforms and their meromorphic continuation, as one can
see from a classification result [KS14]. In this section, however, we formulate and
prove a quite remarkable phenomenon (localness theorem) that any continuous G′-
intertwining operator between two representation spaces consisting of holomorphic
sections over Hermitian symmetric spaces is given by differential operators, see The-
orem 5.3. In particular, the covariant holomorphic differential operators which we
shall obtain explicitly in the second part [KP15-2] of this work exhaust all continuous
symmetry breaking operators.
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5.1. Formulation of the localness theorem. Let G be a connected reductive
Lie group, θ a Cartan involution, and G/K the associated Riemannian symmetric
space. We write c(k) for the center of the complexified Lie algebra k ∶= Lie(K)⊗RC ≡
k(R) ⊗R C. In order to formulate a localness theorem, we suppose that G/K is a
Hermitian symmetric space. This means that there exists a characteristic element
Z ∈ c(k) such that the eigenvalues of ad(Z) ∈ End(g) is 0 or ±1 and that we have an
eigenspace decomposition

g = k + n+ + n−

of ad(Z) with eigenvalues 0, 1, and −1, respectively. We note that c(k) is one-
dimensional if G is simple. With the notation of the previous sections, the complex
Lie algebra k plays the role of the Levi subalgebra l.

Let GC be a complex reductive Lie group with Lie algebra g, and PC the maximal
parabolic subgroup with Lie algebra p ∶= k + n+, with abelian nilradical n+. The
complex structure of the homogeneous G/K is induced from the open embedding

G/K ⊂ GC/KC expn+ = GC/PC.

Let G′ be a connected reductive subgroup of G. Without loss of generality we may
and do assume that G′ is θ-stable. We set K ′ ∶= K ∩ G′. Our crucial assumption
throughout this section is

(5.1) Z ∈ k′.

Lemma 5.1. If (5.1) holds, then the parabolic subalgebra p is g′-compatible (see
Definition 4.5), and the homogeneous space G′/K ′ is a Hermitian sub-symmetric
space of G/K such that the embedding G′/K ′ ↪ G/K is holomorphic.

Proof. Let G′
C be the connected complex subgroup of GC with Lie algebra g′ ∶=

Lie(G′) ⊗R C. Then p′ ∶= k′ + n′+ ≡ (k ∩ g′) + (n+ ∩ g′) is the sum of the eigenspaces
of ad(Z) in g′ with 0 and +1 eigenvalues, respectively, and therefore is a parabolic
subalgebra of g′. We set P ′

C ∶= PC ∩ G′. Then, the Riemannian symmetric space
G′/K ′ becomes a Hermitian symmetric space, for which the complex structure is
induced from the open embedding in the complex flag variety YC ∶= G′

C/P ′
C:

G′/K ′ ↪ G/K
open ⋂ ⋂ open

YC = G′
C/P ′

C ↪ GC/PC =XC.

Since YC is a complex submanifold of XC = GC/PC, the embedding G′/K ′ ↪ G/K is
holomorphic. �

Notice that in the setting of Lemma 5.1 the complexified Lie algebra of K ′ is a
Levi subalgebra of the parabolic subalgebra p′.
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Example 5.2. (1) Let G′ be a connected simple Lie group such that the asso-
ciated Riemannian symmetric space G′/K ′ is a Hermitian symmetric space.
We take a characteristic element Z ′ ∈ c(k′). Let G ∶= G′ × G′, and we re-
alize G′ as the diagonal subgroup ∆(G′) ∶= {(g, g) ∶ g ∈ G′} of G. Then
Z ∶= (Z ′, Z ′) ∈ c(k) satisfies (5.1), yielding a holomorphic embedding ∆ ∶
G′/K ′ ↪ G/K = G′/K ′ ×G′/K ′.

(2) Let G be a connected simple Lie group such that the associated symmetric
space G/K is a Hermitian symmetric space with Z a characteristic element in
c(k). Suppose τ is an automorphism of G of finite order such that τ(Z) = Z.
Let G′ be the identity component of the subgroup Gτ ∶= {g ∈ G ∶ τ(g) = g},
and K ′ ∶= G′ ∩K. Then the assumption (5.1) is satisfied, and G′/K ′ is a
Hermitian sub-symmetric space of G/K. We shall focus on the case where
(G,Gτ) is a symmetric pair, namely, τ is of order two in [KP15-2] for detailed
analysis.

Consider a finite-dimensional representation of K on a complex vector space V .
We extend it to a holomorphic representation of PC by letting the unipotent subgroup
exp(n+) act trivially, and form a holomorphic vector bundle VXC = GC×PCV over XC =
GC/PC. The restriction to the open set G/K defines a G-equivariant holomorphic
vector bundle V ∶= G×K V . We then have a natural representation of G on the vector
space O(G/K,V) of global holomorphic sections endowed with the Fréchet topology
of uniform convergence on compact sets.

Likewise, given a finite-dimensional representation W of K ′, we form the G′-
equivariant holomorphic vector bundleW = G′×K′W and consider the representation
of G′ on O(G′/K ′,W). By definition, it is clear that

(5.2) Diffhol
G′ (VX ,WY ) ⊂ HomG′ (O (G/K,V) ,O(G′/K ′,W)) .

Theorem 5.3 below shows that the two spaces do coincide.

Theorem 5.3. Let G′ be a reductive subgroup of G satisfying (5.1). Let V and W
be any finite-dimensional representations of K and K ′, respectively. Then,

(1) (localness theorem) any continuous G′-homomorphism from O(G/K,V) to
O(G′/K ′,W) is given by a holomorphic differential operator, in the sense
of Definition 2.1, with respect to a holomorphic map between the Hermitian
symmetric spaces G′/K ′ ↪ G/K, that is,

Diffhol
G′ (VX ,WY ) = HomG′ (O (G/K,V) ,O(G′/K ′,W)) ;

(2) (extension theorem) any such a differential operator (or equivalently, any
continuous G′-homomorphism) extends to a G′

C-equivariant holomorphic dif-
ferential operator with respect to a holomorphic map between the flag varieties
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YC = G′
C/P ′

C ↪XC = GC/PC, namely, the injection

(5.3) Diffhol
G′

C
(VXC ,WYC) ↪ Diffhol

G′ (VX ,WY )
is bijective.

Remark 5.4. More generally, we may ask whether an analogous statement to Theorem
5.3 (1) holds or not if we replace O(G/K,V) and O(G′/K ′,W) by some other topo-
logical vector spaces having the same underlying (g,K)-module and (g′,K ′)-module,
respectively (e.g. the Casselman–Wallach globalization, Hilbert space globalization,
etc.). This question was raised by D. Vogan in May 2014. It turns out that this
generalization is also true, as we shall show in the proof of Theorem 5.3, that the
natural injection

(5.4) Diffhol
G′

C
(VXC ,WYC) ↪ Hom(g′,K′) (O (G/K,V)K-finite ,O(G′/K ′,W)K′-finite)

is surjective if the assumption (5.1) is satisfied.

Remark 5.5. An analogous statement for real parabolic subgroups is not true. For
instance, for the pair (G,G′) = (O(n + 1,1),O(n,1)) there always exists a non-zero
continuous G′-equivariant map from the spherical principal series representations
C∞(G/P,Lλ) of G to the one C∞(G′/P ′,Lν) of G′ for any (λ, ν) ∈ C2, however,
non-zero G′-equivariant differential operators exist if and only if ν − λ ∈ 2N [KS14].

Remark 5.6. Suppose that V is a generic character of K and (G,G′) is a symmet-
ric pair. Then owing to Theorems 2.12 and 5.3 (2), Diffhol

G′ (VXC ,WYC) is at most
one-dimensional for any irreducible K ′-module W , and [KP15-2, Fact 4.2] tells us
precisely when it is non-zero.

In [KP15-2] we describe explicit formulæ of such differential operators by using
the F-method (Theorem 4.1) for the six complex geometries arising from symmetric
pairs of split rank one.

5.2. Proof of the localness theorem. Theorem 5.3 is a reflection of the theory of
discretely decomposable restrictions (see [K94, K98a, K98b]). The proof is based on
a careful analysis of the following three objects:

(g,K)-modules, (g,K ′)-modules, and (g′,K ′)-modules.

We say that a K ′-module Z is K ′-admissible if the multiplicity

[M ∶ F ] ∶= dim HomK′(F,M ∣
K′

)

is finite for any F ∈ K̂ ′. Then, K ′-admissibility is preserved by taking the tensor
product with finite-dimensional representations.

We write O(G/K,V)K-finite for the space of K-finite vectors of O(G/K,V), which
becomes naturally a (g,K)-module.
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Lemma 5.7. The (g,K)-module O(G/K,V)K-finite is K ′-admissible if Z ∈ g′.

Proof. As a K-module, we have the following isomorphism

O(G/K,V)K−finite ≃ S(n+) ⊗ V

≃ (⊕
a≥0

Sa(n+)) ⊗ V,

where Sa(n+) denotes the space of symmetric tensors of homogeneous degree a.

Since exp(R
√
−1Z) acts on Sa(n+) as the scalar e

√
−1at (t ∈ R), the whole S(n+)

is admissible as a module of the one-dimensional subgroup exp(R
√
−1Z), and so is

O(G/K,V)K−finite. Hence it is also admissible as a K ′-module by [K94, Theorem
1.2]. Alternatively, the lemma follows as a special case of the general result [K94,
Theorem 2.7] or [K98a, Theorem 4.1]. �

Given a (g,K ′)-module M , we consider the contragredient representation on the
dual space M∨ ∶= HomC(M,C). Collecting K ′-finite vectors in M∨, we get a (g,K ′)-
module (M∨)K′-finite.

Lemma 5.8. Let M be a K ′-admissible (g,K ′)-module. Then,

(1) M is discretely decomposable as a (g′,K ′)-module.
(2) The (g,K ′)-module (M∨)K′-finite is K ′-admissible and one has the following

K ′-isomorphism

(M∨)K′-finite ≃ ⊕
F ∈K̂′

[M ∶ F ]F ∨.

For the proof we refer to [K98b, Proposition 1.6].

Lemma 5.9. Let M be a K ′-admissible (g,K)-module. Then,

(M∨)K-finite = (M∨)K′-finite .

Proof. There is an obvious inclusion (M∨)K-finite ⊂ (M∨)K′-finite. We shall prove that
the multiplicities in (M∨)K-finite and (M∨)K′-finite are both finite and are the same.
Indeed, M being K ′-admissible, one has

[M ∶ F ] = ⊕
E∈K̂

[M ∶ E][E ∶ F ] < ∞.

Conversely, (M∨)K′-finite ≃ ⊕F ∈K̂′[M ∶ F ]F ∨ and thus,

(M∨)K-finite ≃ ⊕
E∈K̂

[M ∶ E]E∨ ≃ ⊕
F ∈K̂′

(⊕
E∈K̂

[M ∶ E][E ∶ F ])F ∨,

which concludes the proof. �
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The next lemma is known to experts, but for the sake of completeness, we give a
proof.

Lemma 5.10. There is a natural (g,K)-isomorphism:

((O(G/K,V)K-finite)∨)K-finite
≃ indg

p(V ∨).

Proof. As in Lemma 2.15, there is a natural non-degenerate g-invariant bilinear form

O(G/K,V)K-finite × indg
p(V ∨) → C.

Hence, we have an injective (g,K)-homomorphism indg
p(V ∨) ⊂ (O(G/K,V)K-finite)∨.

Taking K-finite vectors we get the following commutative diagram of K-modules
isomorphisms:

indg
p(V ∨) ⊂ ((O(G/K,V)K-finite)∨)K-finite

S(n−) ⊗ V ∨ ≃ ((Pol(n−) ⊗ V )∨)K-finite .

Hence the first row is also bijective. �

Combining Lemmas 5.7, 5.9 and 5.10 we have shown the following key result:

Proposition 5.11. There is a natural (g,K)-isomorphism:

((O(G/K,V)K-finite)∨)K′-finite
≃ indg

p(V ∨).

Proof of Theorem 5.3. Let T ∶ O(G/K,V) → O(G′/K ′,W) be a continuousG′-intertwining
operator. It induces a (g′,K ′)-homomorphism

(5.5) TK ∶ O(G/K,V)K-finite → O(G′/K ′,W)K′-finite.

We shall prove that any such (g′,K ′)-homomorphism TK comes from aG′
C-equivariant

differential operator on the flag variety.
To see this, we take the dual map (5.5), and apply Lemma 5.10 and Proposition

5.11. Then there is a (g′,K ′)-homomorphism ψ ∶ indg′

p′(W ∨) → indg
p(V ∨) such that

the following diagram commutes:

(O(G′/K ′,W)∨K′-finite)K′-finite

T∨K //

Lemma 5.10

(O(G/K,V)∨K-finite)K′-finite

Proposition 5.11

indg′

p′(W ∨) ψ // indg
p(V ∨)
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The correspondence TK ↦ ψ is one-to-one, and thus we have obtained the following
natural injective map

Hom(g′,K′)(O(G/K,V)K-finite,O(G′/K ′,W)K′-finite) ↪ Homg′(indg′

p′(W ∨), indg
p(V ∨)).

According to Theorems 2.12 and 4.1 the latter space is isomorphic to Diffhol
G′ (VX ,WY ).

This shows that (5.4) is surjective.
Since the injective map (5.4) factors the two injective maps (5.2) and (5.3), both

(5.2) and (5.3) are bijective. �

5.3. Automatic continuity theorem in the unitary case. Any unitary high-
est weight module is realized as a subrepresentation of O(G/K,V) for some G-
equivariant holomorphic vector bundle V over G/K. In this subsection, we prove that
any continuous homomorphism between Fréchet modulesO(G/K,V) andO(G′/K ′,W)
induces a continuous homomorphism between their unitary submodules.

Definition 5.12. For a Fréchet G-module F , we say a G-submodule H is a unitary
submodule if H is a Hilbert space such that the inclusion map H ↪ F is continuous
and that G acts unitarily on H.

If V is an irreducible K-module, then there exists at most one non-zero unitary
submodule (up to a scaling of the inner product) of O(G/K,V). We denote by HGV
the unitary submodule of O(G/K,V). The classification of irreducible K-modules
V for which HGV ≠ {0} was accomplished in [EHW83]. We shall prove that any G′-
equivariant differential operator in Theorem 5.3 preserves the unitary submodules in
the following sense:

Theorem 5.13. Let G′ be a reductive subgroup of G satisfying (5.1). Let V and W be
any irreducible finite-dimensional representations of K and K ′, respectively. Suppose
that T ∶ O(G/K,V) Ð→ O(G′/K ′,W) is a G′-equivariant differential operator such

that T ∣
HGV

/≡ 0. Then HG′

W /= {0} and T induces a continuous G′-equivariant linear

map from the Hilbert space HGV onto the Hilbert space HG′

W .

Applying Theorems 5.3 and 5.13 to the setting of Example 5.2 (1), we have:

Example 5.14. Any symmetry breaking operator for the tensor product of two holo-
morphic discrete series representations is given by a holomorphic differential op-
erator if those representations are realized in the space of holomorphic sections for
G-equivariant holomorphic vector bundles over the Hermitian symmetric space G/K.
The Rankin–Cohen bidifferential operators are such operators for G = SL(2,R).

Remark 5.15. As we shall see in the proof, the unitary representation HGV decom-
poses discretely when restricted to G′ if the condition (5.1) is satisfied. The unitary
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submodule HG′

W occurs as a discrete summand of the restriction of the unitary rep-
resentation HGV of G to the subgroup G′.

Let V be an irreducible representation of K as before. Then, there exists a unique
K-submodule of O(G/K,V)K-finite ≃ S(n+)⊗V isomorphic to V , namely S0(n+)⊗V ≃
V.

Lemma 5.16. Let M be a non-zero (g,K)-submodule of O(G/K,V)K-finite. Then,

1) The module M contains V .
2) If M is unitarizable, then its Hilbert completion can be realized in O(G/K,V)

and M = (HGV )K-finite
.

Proof. 1) Since any non-zero quotient of the (generalized) Verma module indg
p(V ∨)

contains V ∨, the first statement follows from Lemma 5.10. Alternatively, since the
infinitesimal action of n− on O(G/K,V)K-finite ≃ Pol(n−) ⊗ V is given by directional
derivatives, iterated operators of n− yield non-zero elements in V .

2) Denote by (π,M) the unitary representation of G obtained as an (abstract)
Hilbert completion of the (g,K)-module M . We regard V as a K-submodule of M ,
and also of M . Then the map

G ×M × V Ð→ C, (g,w, v) ↦ (w,π(g)v)M ,
induces an injective G-homomorphism ι ∶M Ð→ O(G/K,V). Since HGV is the unique
non-zero unitary submodule, ι is an isomorphism onto HGV . �

Proof of Theorem 5.13. By Lemma 5.7, the module (HGV )K-finite
is K ′-admissible.

Therefore, the unitary representation HGV decomposes into a Hilbert direct sum of
irreducible unitary representations {Uj} of G′:

(5.6) HGV ≃ ∑⊕

j

mjUj,

with mj < ∞ for all j ([K94, Theorem 1.1]) and the underlying (g,K)-module
(HGV )K-finite

is isomorphic to an algebraic direct sum of irreducible and unitarizable
(g′,K ′)-modules

(5.7) (HGV )K-finite
= (HGV )K′-finite

≃⊕
j

mj (Uj)K′-finite ,

with the same multiplicities [K98b]. (We remark that an analogous statement fails
for the restriction π∣G′ of an irreducible unitary representation π of G if the branching
law contains continuous spectrum).

As we saw in the proof of Theorem 5.3, the G′-equivariant differential operators
T induces a (g′,K ′)-homomorphism

TK ∶ (HGV )K-finite
Ð→ O(G′/K ′,W)K′-finite.
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By (5.7), M ∶= TK ((HGV )K-finite
) is an algebraic direct sum of some irreducible unita-

rizable (g′,K ′)-modules. Since O(G′/K ′,W)K′-finite contains at most one irreducible
unitarizable (g′,K ′)-module, M is irreducible as a (g′,K ′)-module, and we can re-
alize its Hilbert completion as HG′

W by Lemma 5.16.
In view of (5.6) and (5.7), there exists a continuous G′-homomorphism between

Hilbert spaces:

T̃ ∶ HGV Ð→HG
′

W

such that T̃ ∣(HGV )K-finite
= T ∣(HGV )K-finite

. Since the inclusion map HGV ↪ O(G/K,V) and

the differential operator T ∶ O(G/K,V) Ð→ O(G′/K ′,W) are both continuous, we

get T̃ = T on HGV . Hence Theorem is proved. �

5.4. Orthogonal projectors. If V is one-dimensional and (G,G′) is a reductive
symmetric pair satisfying (5.1), then all the multiplicities mj in (5.6) are equal to
one (see [K08]) and it becomes meaningful to describe the projector from HGV to each
G′-irreducible summand. We explain briefly the relationship between the projector
for the unitary representation and the symmetry breaking operator.

For this, suppose T ∶ O(G/K,V) → O(G′/K ′,W) is a G′-equivariant differential
operator such that T ∣HGV /≡ 0. By Theorem 5.13, T induces a continuous map T ∶
HGV → HG

′

W . Let T ∗ ∶ HG′

W → HGV be its the adjoint operator. Then the composition
T ∗T ∶ HGV →HGV is a G′-intertwining operator onto the G′-irreducible summand which

is isomorphic to HG′

W . Since T vanishes on the orthogonal complement to T ∗ (HG′

W ),

it is (up to scaling) the orthogonal projector onto HG′

W .
Explicit description of such differential operators T will be the main concern of

the second part [KP15-2] of this work.
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