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F -method for constructing equivariant differential operators
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Dedicated to Professor Sigurdur Helgason for his 85th birthday.

Abstract. Using an algebraic Fourier transform of operators, we develop a
method (F -method) to obtain explicit highest weight vectors in the branch-
ing laws by differential equations. This article gives a brief explanation of
the F -method and its applications to a concrete construction of some natu-

ral equivariant operators that arise in parabolic geometry and in automorphic
forms.
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1. Introduction

The aim of this article is to give a brief account of a method that helps us
to find a closed formula of highest weight vectors in the branching laws of cer-
tain generalized Verma modules, or equivalently, to construct explicitly equivariant
differential operators from generalized flag varieties to subvarieties.

This method, which we call the F -method, transfers an algebraic problem of
finding explicit highest weight vectors to an analytic problem of solving differential
equations (of second order) via the algebraic Fourier transform of operators (Def-
inition 3.1). A part of the ideas of the F -method has grown in a detailed analysis
of the Schrödinger model of the minimal representation of indefinite orthogonal
groups [8].
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The F -method provides a conceptual understanding of some natural differen-
tial operators which were previously found by a combinatorial approach based on
recurrence formulas. Typical examples that we have in mind are the Rankin–Cohen
bidifferential operators
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in automorphic form theory [2, 3, 11], and Juhl’s conformally equivariant operators
[4] from C∞(Rn) to C∞(Rn−1):
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These examples can be reconstructed by the F -method by using a special case
of the fundamental differential operators, which are commuting family of second
order differential operators on the isotropic cone, see [8, (1.1.3)].

In recent joint works with B. Ørsted, M. Pevzner, P. Somberg and V. Souček [9,
10], we have developed the F -method to more general settings, and have found new
explicit formulas of equivariant differential operators in parabolic geometry, and also
have obtained a generalization of the Rankin–Cohen operators. To find those nice
settings where the F -method works well, we can apply the general theory [6, 7] that
assures discretely decomposable and multiplicity-free restrictions of representations
to reductive subalgebras.

The author expresses his sincere gratitude to the organizers, J. Christensen, F.
Gonzalez and T. Quinto, for their warm hospitality during the conference in honor
of Professor Helgason for his 85th birthday in Boston 2012. The final manuscript
was prepared when the author was visiting IHES.

2. Preliminaries

2.1. Induced modules. Let g be a Lie algebra over C, and U(g) its universal
enveloping algebra. Suppose that h is a subalgebra of g and V is an h-module. We
define the induced U(g)-module by

indgh(V ) := U(g)⊗U(h) V.

If h is a Borel subalgebra and if dimC V = 1, then indgh(V ) is the standard Verma
module.

2.2. Extended notion of differential operators. We understand clearly
the notion of differential operators between two vector bundles over the same base
manifold. We extend this notion in a more general setting where there is a morphism
between two base manifolds (see [10] for details).

Definition 2.1. Let VX → X and WY → Y be two vector bundles with a
smooth map p : Y → X between the base manifolds. Denote by C∞(X,VX)
and C∞(Y,WY ) the spaces of smooth sections to the vector bundles. We say that
a linear map T : C∞(X,VX)→ C∞(Y,WY ) is a differential operator if T is a local
operator in the sense that

(2.1) Supp(Tf) ⊂ p−1(Supp f), for any f ∈ C∞(X,V).
We write Diff(VX ,WY ) for the vector space of such differential operators.
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Since any smooth map p : Y → X is given as the composition of a submersion
and an embedding

Y ↪→ X × Y ↠ X, y 7→ (p(y), y) 7→ p(y),

the following example describes the general situation.

Example 2.2. Let n be the dimension of X.

(1) Suppose p : Y ↠ X is a submersion. Choose local coordinates {(xi, zj)}
on Y such thatX is given locally by zj = 0. Then every T ∈ Diff(VX ,WY )
is locally of the form ∑

α∈Nn

hα(x, z)
∂|α|

∂xα
,

where hα(x, z) are Hom(V,W )-valued smooth functions on Y .
(2) Suppose i : Y ↪→ X is an embedding. Choose local coordinates {(yi, zj)}

onX such that Y is given locally by zj = 0. Then every T ∈ Diff(VX ,WY )
is locally of the form ∑

(α,β)∈Nn

gαβ(y)
∂|α|+|β|

∂yα∂zβ
,

where gα,β(y) are Hom(V,W )-valued smooth functions on Y .

2.3. Equivariant differential operators. Let G be a real Lie group, g(R) =
Lie(G) and g = g(R)⊗C. Analogous notations will be applied to other Lie groups
denoted by uppercase Roman letters.

Let dR be the representation of U(g) on the space C∞(G) of smooth complex-
valued functions on G generated by the Lie algebra action:

(2.2) (dR(A)f)(x) :=
d

dt

∣∣∣
t=0

f(xetA) for A ∈ g(R).

Let H be a closed subgroup of G. Given a finite dimensional representation V
of H we form a homogeneous vector bundle VX := G×H V over the homogeneous
space X := G/H. The space of smooth sections C∞(X,VX) can be seen as a
subspace of C∞(G)⊗ V .

Let V ∨ be the (complex linear) dual space of V . Then the (G × g)-invariant
bilinear map C∞(G) × U(g) → C∞(G), (f, u) 7→ dR(u)f induces a commutative
diagram of (G× g)-bilinear maps:

C∞(G)⊗ V × U(g)⊗C V
∨ −→ C∞(G)

↪→ ↞ ∥
C∞(X,VX)× indgh(V

∨) −→ C∞(G).

In turn, we get the following natural g-homomorphism:

(2.3) indgh(V
∨) −→ HomG(C

∞(X,VX), C∞(G)).

Next, we take a connected closed subgroup H ′ of H. For a finite dimensional
representation W of H ′ we form the homogeneous vector bundle WZ := G×H′ W
over Z := G/H ′. Taking the tensor product of (2.3) with W , and collecting all
h′-invariant elements, we get an injective homomorphism:

(2.4) Homh′(W∨, indgh(V
∨)) −→ HomG(C

∞(X,VX), C∞(Z,WZ)), φ 7→ Dφ.
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Finally, we take any closed subgroup G′ containing H ′ and form a homogeneous
vector bundle WY := G′ ×H′ W over Y := G′/H ′. We note that WY is obtained
from WZ by restricting the base manifold Z to Y .

Let RZ→Y : C∞(Z,WZ)→ C∞(Y,WY ) be the restriction map. We set

(2.5) DX→Y (φ) := RX→Y ◦Dφ.

Since there is a natural (G′-equivariant but not necessarily injective) morphism
Y → X, the extended notion of differential operators between VX and WY makes
sense (see Definition 2.1). We then have:

Theorem 2.3. The operator DX→Y (see (2.5)) induces a bijection:

DX→Y : Homh′(W∨, indgh(V
∨))

∼−→ DiffG′(VX ,WY ).(2.6)

Remark 2.4. We may consider a holomorphic version of Theorem 2.3 as follows.
Suppose GC, HC, G

′
C and H ′

C are connected complex Lie groups with Lie algebras
g, h, g′ and h′, and VXC andWYC are homogeneous holomorphic vector bundles over
XC := GC/HC and YC := G′

C/H
′
C, respectively. Then Theorem 2.3 implies that we

have a bijection:

(2.7) DXC→YC : Homh′(W∨, indgh(V
∨))

∼−→ Diffhol
G′

C
(VXC ,WYC).

Here Diffhol
G′

C
denotes the space of G′

C-equivariant holomorphic differential operators

with respect to the holomorphic map YC → XC. By the universality of the induced
module, (2.7) may be written as

(2.8) DXC→YC : Homg′(indg
′

h′(W
∨), indgh(V

∨))
∼−→ Diffhol

G′
C
(VXC ,WYC).

The isomorphism (2.8) is well-known when XC = YC is a complex flag variety.
The proof of Theorem 2.3 is given in [10] in the generality that X ̸= Y .

2.4. Multiplicity-free branching laws. Theorem 2.3 says that if Homh′(W∨, indgh(V
∨))

is one-dimensional then G′-equivariant differential operators from VX to WY are
unique up to scalar. Thus we may expect that such unique operators should have a
natural meaning and would be given by a reasonably simple formula. Then we may
be interested in finding systematically the examples where Homh′(W∨, indgh(V

∨))
is one-dimensional. This is a special case of the branching problems that asks how
representations decompose when restricted to subalgebras. In the setting where h
is a parabolic subalgebra (to be denoted by p) of a reductive Lie algebra g, we have
the following theorem:

Theorem 2.5. Assume the nilradical n+ of p is abelian and τ is an involutive
automorphism of g such that τp = p. Then for any one-dimensional representation
Cλ of p and for any finite dimensional representation W of pτ := {X ∈ p : τX =
X}, we have

dimHompτ (W∨, indgp(C∨
λ)) ≤ 1.

There are two known approaches for the proof of Theorem 2.5. One is geometric
— to use the general theory of the visible action on complex manifolds [5, 6], and
the other is algebraic — to work inside the universal enveloping algebra [7].

Remark 2.6. Branching laws in the setting of Theorem 2.5 are explicitly obtained
in terms of ‘relative strongly orthogonal roots’ on the level of the Grothendieck
group, which becomes a direct sum decomposition when the parameter λ of V is
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‘generic’ or sufficiently positive, [6, Theorems 8.3 and 8.4] or [7]. The F -method
will give a finer structure of branching laws by finding explicitly highest weight
vectors with respective reductive subalgebras. The two prominent examples in
Introduction, i.e. the Rankin–Cohen bidifferential operators and the Juhl’s confor-
mally equivariant differential operators, can be interpreted in the framework of the
F -method as a special case of Theorem 2.5.

3. A recipe of the F -method

The idea of the F -method is to work on the branching problem of represen-
tations by taking the Fourier transform of the nilpotent radical. We shall explain
this method in the complex setting where HC is a parabolic subgroup PC with
abelian unipotent radical (see Theorem 2.3 and Remark 2.4) for simplicity. A de-
taild proof will be given in [10] (see also [9] for a somewhat different formulation
and normalization).

3.1. Weyl algebra and algebraic Fourier transform. Let E be an n-
dimensional vector space over C. The Weyl algebra D(E) is the ring of holomorphic
differential operators on E with polynomial coefficients.

Definition 3.1 (algebraic Fourier transform). We define an isomorphism of two
Weyl algebras on E and its dual space E∨:

(3.1) D(E)→ D(E∨), T 7→ T̂ ,

which is induced by

(3.2)
∂̂

∂zj
:= −ζj , ẑj :=

∂

∂ζj
(1 ≤ j ≤ n),

where (z1, . . . , zn) are coordinates on E and (ζ1, . . . , ζn) are the dual coordinates
on E∨.

Remark 3.2. (1) The isomorphism (3.1) is independent of the choice of coordi-
nates.

(2) An alternative way to get the isomorphism (3.1) or its variant is to use the
Euclidean Fourier transform F by choosing a real form E(R) of E. We then have

∂̂

∂z
=
√
−1F ◦ ∂

∂x
◦ F−1, ẑ = −

√
−1F ◦ z ◦ F−1

as operators acting on the space S ′(E∨) of Schwartz distributions. This was the

approach taken in [9]. In particular, T̂ ̸= F◦T ◦F−1 in our normalization here. The
advantage of our normalization (3.2) is that the commutative diagram in Theorem
3.5 does not involve any power of

√
−1 that would otherwise depend on the degrees

of differential operators. As a consequence, the final step of the F -method (see Step
5 below) as well as actual computations becomes simpler.

3.2. Infinitesimal action on principal series. Let p = l + n+ be a Levi
decomposition of a parabolic subalgebra of g, and g = n− + l + n+ the Gelfand–
Naimark decomposition. Since the following map

n− × l× n+ → GC, (X,Z, Y ) 7→ (expX)(expZ)(expY )
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is a local diffeomorphism near the origin, we can define locally the projections p−
and po from a neighbourhood of the identity to the first and second factors n− and
l, respectively. Consider the following two maps:

α : g× n− → l, (Y,X) 7→ d

dt

∣∣
t=0

po
(
etY eX

)
,

β : g× n− → n−, (Y,X) 7→ d

dt

∣∣
t=0

p−
(
etY eX

)
.

We may regard β(Y, ·) as a vector field on n− by the identification β(Y,X) ∈ n− ≃
TXn−.

For l-module λ on V , we set µ := λ∨ ⊗ Λdimn+. Since Λdim n+n+ is one-
dimensional, we can and do identify the representation space with V ∨. We inflate
λ and µ to p-modules by letting n+ act trivially. Consider a Lie algebra homomor-
phism

(3.3) dπµ : g→ D(n−)⊗ End(V ∨),

defined for F ∈ C∞(n−, V
∨) as

(3.4) (dπµ(Y )F ) (X) := µ(α(Y,X))F (X)− (β(Y, · )F )(X).

If (µ, V ∨) lifts to the parabolic subgroup PC of a reductive group GC with Lie
algebras p and g respectively, then dπµ is the differential representation of the

induced representation IndGC
PC

(V ) (without ρ-shift). We note that the Lie algebra
homomorphism (3.4) is well-defined without integrality condition of µ. The F -
method suggests to take the algebraic Fourier transform (3.1) on the Weyl algebra
D(n−). We then get another Lie algebra homomorphism

(3.5) d̂πµ : g→ D(n+)⊗ End(V ∨).

Then we have (see [10])

Proposition 3.3. There is a natural isomorphism

Fc : ind
g
p(λ

∨)
∼−→ Pol(n+)⊗ V ∨

which intertwines the left g-action on U(g)⊗U(p) V
∨ with d̂πµ.

3.3. Recipe of the F -method. Our goal is to find an explicit form of a
G′-intertwining differential operator from VX to WY in the upper right corner of
Diagram ??. Equivalently, what we call the F -method yields an explicit homomor-

phism belonging to Homg′(indg
′

p′(W∨), indgp(V
∨)) ≃ Homp′(W∨, indgp(V

∨)) in the
lower left corner of Diagram ?? in the setting that n+ is abelian.

The recipe of the F -method in this setting is stated as follows:

Step 0. Fix a finite dimensional representation (λ, V ) of p = l+ n+.
Step 1. Consider a representation µ := λ∨ ⊗ Λdim n+n+ of the Lie algebra p.

Consider the restriction of the homomorphisms (3.3) and (3.5) to the
subalgebra n+:

dπµ : n+ → D(n−)⊗ End(V ∨),

d̂πµ : n+ → D(n+)⊗ End(V ∨).
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Step 2. Take a finite dimensional representation W of the Lie algebra p′. For
the existence of nontrivial solutions in Step 3 below, it is necessary and
sufficient for W to satisfy

(3.6) Homg′(indg
′

p′(W
∨), indgp(V

∨)) ̸= {0}.

Choose W satisfying (3.6) if we know a priori an abstract branching law
of the restriction of indgp(V

∨) to g′. See [6, Theorems 8.3 and 8.4] or [7]
for some general formulae. Otherwise, we take W to be any l′-irreducible
component of S(n+)⊗ V ∨ and go to Step 3.

Step 3. Consider the system of partial differential equations for ψ ∈ Pol(n+) ⊗
V ∨ ⊗W which is l′-invariant under the diagonal action:

d̂πµ(C)ψ = 0 forC ∈ n′+.(3.7)

Notice that the equations (3.7) are of second order. The solution space
will be one-dimensional if we have chosen W in Step 2 such that

(3.8) dimHomg′(indg
′

p′(W
∨), indgp(V

∨)) = 1.

Step 4. Use invariant theory and reduce (3.7) to another system of differential
equations on a lower dimensional space S. Solve it.

Step 5. Let ψ be a polynomial solution to (3.7) obtained in Step 4. Compute
(Symb⊗ Id)−1(ψ). Here the symbol map

Symb : Diffconst(n−)
∼→ Pol(n+)

is a ring isomorphism given by the coordinates

C[
∂

∂z1
, · · · , ∂

∂zn
]→ C[ξ1, · · · , ξn],

∂

∂zj
7→ ξj .

In case the Lie algebra representation (λ, V ) lifts to a group PC, we form a
GC-equivariant holomorphic vector bundle VXC over XC = GC/PC. Likewise, in
case W lifts to a group P ′

C, we form a G′
C-equivariant holomorphic vector bundle

WYC over YC = G′
C/P

′
C. Then (Symb⊗ Id)−1(ψ) in Step 5 gives an explicit formula

of a G′
C-equivariant differential operator from VXC to WYC in the coordinates of n−

owing to Theorem 3.5 below. This is what we wanted.

Remark 3.4. In Step 2 we can find all such W if we know a priori (abstract)
explicit branching laws. This is the case, e.g., in the setting of Theorem 2.5. See
Remark 2.6.

Conversely, the differential equations in Step 3 sometimes give a useful infor-
mation on branching laws even when the restrictions are not completely reducible,
see [9].

For concrete constructions of equivariant differential operators by using the F -
method in various geometric settings, we refer to [9, 10]. A further application
of the F -method to the construction of non-local operators will be discussed in
another paper.

The key tool for the F-method is summarized as:

Theorem 3.5 ([10]). Let P ′
C be a parabolic subgroup of G′

C compatible with a
parabolic subgroup PC of GC. Assume further the nilradical n+ of p is abelian.
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Then the following diagram commutes:

HomC(W
∨, indgp(V

∨)) ≃ Pol(n+)⊗HomC(V,W )
Symb⊗Id

∼←− Diffconst(n−)⊗HomC(V,W )
∪ ⟳ ∪

Homp′(W∨, indgp(V
∨))

DXC→YC−→ DiffG′
C
(VXC ,WYC).

Diagram3. 1
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Birkhäuser Boston, 1997.

[3] G. van Dijk, M. Pevzner, Ring structures for holomorphic discrete series and Rankin–Cohen
brackets. J. Lie Theory, 17, (2007), pp. 283–305.

[4] A. Juhl, Families of Conformally Covariant Differential Operators, Q-Curvature and Holog-
raphy. Progress in Mathematics, 275. Birkhäuser, Basel, 2009.
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