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Abstract

For any Hermitian Lie group G of tube type we construct a Fock
model of its minimal representation. The Fock space is defined on the
minimal nilpotent K¢-orbit X in pc and the L2-inner product involves
a K-Bessel function as density. Here K C G is a maximal compact
subgroup and gc = €c + pc is a complexified Cartan decomposition.
In this realization the space of €-finite vectors consists of holomorphic
polynomials on X. The reproducing kernel of the Fock space is cal-
culated explicitly in terms of an I-Bessel function. We further find
an explicit formula of a generalized Segal-Bargmann transform which
intertwines the Schrédinger and Fock model. Its kernel involves the
same I-Bessel function. Using the Segal-Bargmann transform we also
determine the integral kernel of the unitary inversion operator in the
Schrédinger model which is given by a J-Bessel function.
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Introduction

The classical Segal-Bargmann transform is the integral operator
Bu(z) = 6_522/ e2z'$e_z2u(a:) dz.

It induces a unitary isomorphism
B: L*(R") = F(C),

where F(C") denotes the classical Fock space on C" consisting of entire
functions, square integrable with respect to the Gaussian measure e~ 7% 4z
This transform has many remarkable properties, e.g., it intertwines the har-
monic oscillator with the Euler operator, and it has been widely used in
physics problems such as field theory. For a detailed introduction to the
classical Segal-Bargmann transform and the classical Fock space we refer
the reader to the book of G. B. Folland [9].

In representation theory the unitary operator B intertwines two promi-
nent models of the same unitary representation of the metaplectic group
Mp(n,R), a double cover of the symplectic group, namely, the Schrédinger
and the Fock model of the Weil representation, which is also referred to as
the harmonic—Segal-Shale—Weil-oscillator-metaplectic representation.

We highlight the fact that the Weil representation consists of two min-
imal representations (see Definition of the simple Lie group Mp(n, R).
The aim of this article is to construct complete analogues of the above-
mentioned theory in the generality that the Weil representation w is re-
placed by a minimal representation of an arbitrary Hermitian Lie group G
of tube type. This includes the construction of

e the ‘Schrodinger model’ of minimal representations,
e the ‘Fock model’ of minimal representations, and
e the ‘Segal-Bargmann transform’ intertwining them.

The ‘Schrodinger model” of the corresponding unitary representations was
constructed earlier in this setting (see Vergne-Rossi [30]), and has been
extensively studied in a more general setting (see e.g. [12, [17, [18] 20]).

In order to construct the latter two objects, we recall the Kirillov—
Kostant—Duflo orbit philosophy, which suggests to understand minimal rep-
resentations in relation with real minimal nilpotent coadjoint orbits @gin in
a functorial manner. In fact, our key idea that underlies the construction
of the ‘Fock model’ and the ‘Segal-Bargmann transform’ is to define a geo-
metric quantization of the Kostant—Sekiguchi correspondence [29] of minimal

nilpotent orbits @fﬁn > @ﬁcn, which is summarized in the diagram below.



Qcc

min
C N
— G KC ~
= C . (O)min . . @min — X
Lagrangian Kostant—Sekiguchi Cayley trans.
$ ‘Geometric Quantization’ ¢
—_ Segal-Bargmann trans. Bz
L?(2) F(X)
Theorem C
Schrodinger model Fock model (Theorems A, B)
O
F=

unitary inversion (Theorem D)

The techniques of our proofs are twofold: discrete branching laws of min-
imal representations with respect to a distinguished subalgebra s ~ s[(2,R)
(see (1.2)) and the theory of Jordan algebras. We shall see for Hermitian
groups of tube type how the Jordan algebra structure allows generalizations
of many aspects of the classical case.

Let us explain our results more precisely. Suppose that V is a simple
Euclidean Jordan algebra. We denote by Co(V') and Str(V') the conformal
group and the structure group of V', respectively. We set G := Co(V)g
and L := Str(V)p the identity component groups. We denote by o the
Cartan involution of G given by conjugation with the conformal inversion
j(z) = —27! and let K = GV be the corresponding maximal compact sub-
group of G. Then G is the group of biholomorphic transformations on an
irreducible Hermitian symmetric space G/K of tube type. Conversely, any
simple Hermitian Lie group of tube type with trivial center arises in this
fashion (see Table [I}in the Appendix).

The Lie algebra g of G, also known as the Kantor—Koecher—Tits algebra,
has a Gelfand—Naimark decomposition g = n + [ + 1, where the abelian Lie
algebra n ~ V acts on V' by constant vector fields, [ := ste(V) C gl(V) is the
structure algebra acting by linear vector fields, and i = 9Jn acts by quadratic
vector fields.

Let G¢ be the complexification of GG, and K¢ that of K. There is a unique
minimal nilpotent coadjoint orbit of G¢, which we denote by @i‘fn C g¢.
We write gc = f¢ + pc for the complexified Cartan decomposition, and
g¢ = ¢ +pg for the dual. Then @fl‘icn N p¢ splits into two equi-dimensional

Ke pe. The inter-

Kc-orbits. We choose one of them, and denote it by O,
section @g‘fn N g* also splits into two equi-dimensional G-orbits. We write
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@gin for the component corresponding to (O)ﬁcn via the Kostant—Sekiguchi
correspondence. N N N
In what follows we denote by I,(z), J4(2), and K,(z), by the renormal-

ized Bessel functions (see Appendix [A.1)).

The Schrodinger model

Let us recall some known results on the L2-model (the ‘Schrédinger model’)
for minimal representations (see Subsection for details). For the state-
ment of the results we assume that dim V' > 1. The case V = R is discussed
at the end of this introduction.

We identify g* with g by the Killing form. Then the intersection = :=
@ﬁin N n is a Lagrangian submanifold of (O)gin endowed with the Kostant—
Kirillov—Souriau symplectic form (cf. [I12, Theorem 2.9]).

Let L?(Z, du) be the Hilbert space consisting of square integrable func-
tions on ZE with respect to a unique (up to scalar multiples) L-equivariant
Radon measure dp on =. Then the natural action of L X exp(n) extends
to an irreducible unitary representation, to be denoted by m, of a finite
cover GV of G. The resulting representation is a minimal representation
unless gc is of type A. The corresponding differential representation of g is
given by differential operators up to order 2. Its underlying (g, ¢)-module
is a lowest weight module of scalar type whose parameter A is the smallest
non-zero discrete point of the Wallach set (see ) The corresponding
one-dimensional minimal €-type is given by Ctg in this L?-model, where g
is defined by

o(x) = e (@)
Here, tr(—) denotes the trace function of the real Jordan algebra. We further
remark that on = we have tr(z) = |z|, where |z| = (CL‘|$)% is the norm on V'

induced by the trace form (—|—). The trace form is extended C-bilinearly
to V.

The Fock space

Let us explain the construction of a new model for the same representation
on a space of holomorphic L2-functions which resembles the classical Fock
space. The geometry for this space is given by the complexification X in V¢ of
the orbit =, on which the complexified structure group L¢ acts transitively.
Up to scalar multiples there is a unique Lc-equivariant measure dv on X.
We further define a density

w(z) = Kx_1(|z]), z €X,

in terms of the renormalized K-Bessel function. Here, |z| = (z|§)% and
A is given by ([1.12]) as explained above. Denoting by O(X) the space of



holomorphic functions on the complex manifold X, we then define a ‘Fock
space’ by

FX)= {F € 0(X): /X|F(z)|2w(z) drv(z) < oo} (0.1)

endowed with a pre-Hilbert structure by
(F,G) = / F(2)G(2)w(z)dv(z), F,G € F(X). (0.2)
X

We then have:
Theorem A (Theorems and 3.7). (1) The Fock space F(X) is

a Hilbert space.
(2) The reproducing kernel of F(X) is given by

K(z,w) = PV (VD).

(3) Ewvery function in F(X) can be extended to an entire holomorphic func-
tion on the ambient space V. Further, the space P(X) of restrictions
of holomorphic polynomials on Vi to X is dense in F(X).

Note that the renormalized I-Bessel function fa(t) is an even function
and hence I,(+1/t) is an entire function on C.

Since the Cayley transform (see (|1.7])) induces an isomorphism of com-
plex groups ¢ : K¢ = L¢ and a biholomorphic map @fgfn 5 X, the right-
hand side of gives an intrinsic definition of the Fock space built on the
minimal K¢-nilpotent orbit @ﬁfn, namely, the space of holomorphic, square
integrable functions on @ﬁcn against the measure wdv.

Theorem [A| (1) and (3) assert that the intrinsic definition of the
Fock space F(X) coincides with the extrinsic definition built on the embed-
ding X C V. This feature is noteworthy even in the classical Fock model
of the Weil representation, where Ve = Sym(n,C) and X is a submani-
fold consisting of rank one matrices in Sym(n, C); Theorem [A] (3) says that
any holomorphic, square integrable function on the n-dimensional complex
submanifold X extends holomorphically to the %n(n + 1)-dimensional space

Sym(n, C).

Fock model of minimal representations

A remarkable property of our Fock space F(X) is that the conformal group G
or its covering group acts on F(X) as an irreducible unitary representation.
To construct the action p, we begin with a ‘holomorphic continuation 7¢’ of
the Schrodinger model (7, L2(Z, du)). The differential representation dmc
of the Lie algebra g is well-defined as a representation on the space P(X) of



regular functions, but unfortunately, P(X) does not contain non-zero ¢-finite
vectors. Our idea is to define the infinitesimal representation by

dp:= dncoec,

where ¢ € Int(gc) is a Cayley-type transform (see (1.3)). The resulting
action dp(Y) (Y € g) on P(X) is still a differential operator up to order
two. We then obtain:

Theorem B (Fock model). (1) The representation (dp, P(X)) is an ir-
reducible g-module such that p(Y) is skew-Hermitian with respect to
the L?-inner product forany Y € g.
(2) The Lie algebra ¥ acts locally finitely, and we have the following €-type
decomposition

PX) =P P (X),
m=0

where P™(X) denotes the subspace of homogeneous polynomials of de-
gree m.

(3) The (g, t)-module integrates to an irreducible unitary representation p
of the finite cover GV of G on F(X).

We give a direct proof for the irreducibility and unitarizability of ( dp, P(X))
in Propositions [2.15| and by using an explicit formula of dp, for which
the crucial part is given by means of the Bessel operators in the Jordan
algebra as introduced by H. Dib [7] (see also [12]). The minimal cover G
to which the representation integrates was determined in [I2, Theorem 2.30].

Segal-Bargmann transform

The two irreducible unitary representations of the group GV, (7, L*(Z, du))
(the Schrédinger model) and (p, (X)) (the Fock model) are isomorphic to
each other. We prove this by constructing an explicit intertwining operator
as follows (see Theorem [3.5)):

Theorem C (Segal-Bargmann transform). For f € L%(Z, du) the integral
(B=/)(2) := T(V)e 7" ) / L1 (2V/(f2))e™ " f(2) dp(z), = € Ve,

converges uniformly on compact subsets in Vg and defines a holomorphic
function Bz f € F(X). This gives a unitary isomorphism

Bz : L*(Z, du) = F(X)

intertwining the representations w and p.



Here are some remarks on related works:

Once the Schrédinger model L?(Z, du) and the Fock model F(X) are
properly constructed, there is an alternative method to obtain the Segal—-
Bargmann transform Bz. That is, Bz appears as the unitary part in the
polar decomposition RL = Bz o \/R=zRZ, where RZ is the adjoint of the
unbounded operator Rz : F(X) — L*(Z, du), F(z) — e‘étr(z)F(x). This
method has been used before to construct analogues of the classical Segal-
Bargmann transform or the Laplace transform (see e.g. [3, [13] 26]), and we
revisit this point in Subsection where we also find the heat kernel.

In works of Brylinski-Kostant [6] and Achab-Faraut [I] models of mini-
mal representations on spaces of holomorphic functions were constructed by
using the work of Kronheimer and Vergne. Aside from the fact that their
cases (non-Hermitian Lie groups) and our cases (Hermitian of tube type) are
disjoint, there are one basic common point (0) and two major differences (1),
(2) between their construction and our construction of the Fock model (up
to a Cayley transform):

(0) (K-structure) In both models, the space of regular functions on the
minimal nilpotent Kc¢-orbit @ﬁcn is the space of ¢-finite vectors of the
minimal representation;

(1) (Lie algebra action) The action of pc on their Fock-type model is given
via pseudodifferential operators, but our action is given by differential
operators up to order two;

(2) (measure on OXE) Their measure on OXE defining the L2-structure
is not positive, whereas our measure is given by a K-Bessel function
and positive.

In fact these two major points have enabled us to construct explicitly an
intertwiner between the L?-model and the holomorphic model, whereas an
analogous explicit operator is not known for their model.

Unitary inversion operator F=

In the Schrédinger model L2(Z, du), there is a distinguished unitary opera-
tor Fz, that is, the unitary inversion operator (see Section [4f for the precise
definition). From the representation-theoretic viewpoint, the operator Fz
generates the action m on L?(Z, du) of the whole group GV together with
the relatively simple action of a maximal parabolic subgroup.

As a corollary of Theorem [C] we find an explicit integral kernel for the
unitary inversion operator Fz in Theorem as follows.

Theorem D (unitary inversion operator). The operator F= is given by

Feu(x) = 2T () / Tro1 23/ @l)uly) duy).



Theorem |§| was established earlier in the case of g = s0(2,n) by two
different methods by Kobayashi-Mano ([17, Theorem 6.1.1] and [I8, Theo-
rem 5.1.1]). Our approach using the Segal-Bargmann transform gives yet
another new approach even in the case g = s0(2,n) (see Section @

A theory of spherical harmonics

A crucial role in the study of the structure of our representations is played
by a subalgebra s ~ s[(2,R) spanned by a specific sly-triple (E, F, H) in
g. A distinguished property is that the representation dp of g is discretely
decomposable in the sense of [I5] when we restrict it to the subalgebra s.
In the Schrodinger realization, Be := —v/—1dn(F) is an elliptic second
order differential operator on = which extends to a self-adjoint operator on
L?(Z, du), and further to a holomorphic differential operator on X. We
define an analogue of the space of spherical harmonics of degree m by

H™(X) :={plx : p € P"(Vi), Bep = 0}.

Then H™(X) is naturally acted upon by the centralizer Zgv(s) of s in GV
which turns out to be compact. This action is irreducible and we give
explicit formulas for its highest weight vector and its spherical vector (see

Propositions and |1.19)). We further define H™(Z) to be the restriction
to E C X of all elements of H™(X). The orbit Z has a polar decomposition

ZE=R, xS, S={ze=:|z| =1}

Since polynomials in ‘H"(Z) are homogeneous, they are already uniquely
determined by their values on S and we let H™(S) be the space of all re-
strictions to S of polynomials in H™(Z). Then the embeddings S C = C X
induce isomorphisms H™(S) ~ H™(E) ~ H™(X) of Zgv (s)-representations.

Let €' be the Lie algebra of K := L N K which equals the identity
component of Zgv(s). Then (s, ") forms a reductive dual pair (see Proposi-
tion [1.22)). Using the harmonics H™(X) resp. H™(S) we obtain an explicit
branching law of our minimal representation with respect to the dual pair
(s,€"), generalizing an earlier result in [I7, Section 1.3]:

Theorem E. (1) (Theorem|2.24)) The Fock space decomposes as a multiplicity-
free direct sum of irreducible (s, Zgv (s))-bimodules

P(X) ~ B Wirpom BH™(X),

m=0

where s acts on the first tensor factor and Zgv (s) on the second. Here
Wiatzom = span{tr®(z) : k € N} and s ~ sl(2,R) acts irreducibly on
Wiatom with lowest weight rA 4+ 2m, the integer r being the rank of
G/K.



(2) (L*-dual pair correspondence, see Theorem [1.24) The Schrédinger
model L*(Z, du) decomposes discretely into a multiplicity-free sum of

irreducible unitary representations of SL(2,R) x Zgv(s)

(2, di) = 37 LRy, 2™ da) RH™(S),
a=0

with respect to the natural homomorphism Sm) X Zgv(s) — GV,
Here SL(2,R) acts irreducibly on the first factor of each summand
L2(Ry, 2™ =1 dr) R H™(S) with lowest weight r\ + 2m.

We may think of Theorem E as giving a variant of theorems that func-
tions spaces are isomorphic to the tensor product of invariants of a group H
and the set of all H-harmonic functions.

Alternatively, the above irreducible decomposition may be obtained by
using the see-saw dual pair in the case g = su(k,k) and so*(4k). Our
proof for Theorem [E] is uniformly for all Hermitian Lie algebras of tube
type including the dual pair (sl(2,R),f4) in the exceptional Lie algebra g =
e7(—25)- In this case H™(S) is the space of spherical harmonics defined on
the octonionic projective space P?(Q) ~ F;/Spin(9).

Folding maps and relations with the classical Fock space

The classical Schrodinger model for the Weil representation of the metaplec-
tic group Mp(n, R) is realized in L?(R"), whereas our Schrodinger model in
the case of the Jordan algebra V' = Sym(n,R) is realized in a somewhat
different space, that is, the Hilbert space L?(Z) where Z is the set of all
positive definite real symmetric matrices of rank one. Since the folding map

p:R"\ {0} = Z, 22l

is double covering, it induces an isomorphism p* : L?(Z, du) = L2 ., (R™),
the even part of L?(R"), see Subsection

Further we discuss in Subsection B.2] that there is a close relation of our
Fock space F(X) and the Segal-Bargmann transform Bz with the classical
objects in the case where V' = Herm(n,F), F = R, C or H, via the com-
plexified folding map, and we give in Theorem [3.10| an alternative proof to
a part of Theorems [A] and [C]in these special cases.

However, our main approach to Theorems[A]—[E]is uniform for all Hermi-
tian Lie algebras g of tube type, and especially for the case of the indefinite
orthogonal group g = s0(2,n) we obtain a new Fock model for the min-
imal representation as well as a Segal-Bargmann transform between the
Schrodinger model (constructed by T. Kobayashi and B. Qrsted in [20]) and
the new Fock model. We examine this case in more detail in Section [6
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One-dimensional Jordan algebra V' =R

For V. = R we have g = s[(2,R) for which the Wallach set is given by
W = {0} U (0,00). In this case, our results still hold, with continuous pa-
rameter A € (0,00) (see Theorems [2.10} [2.17|(2), [2.26] and [4.3). For the
Schrodinger moie\l,/ we may use an L?-model of the lowest weight represen-

tations 7y of SL(2,R) on L?(R,2z*~!dx) with lowest weight A studied by
B. Kostant [21] and Ranga Rao [27] (see Subsection [L.6]). For these repre-
sentations we also obtain a new Fock space realization on X = C\ {0} and
a Segal-Bargmann transform intertwining Schrédinger and Fock model as
in the cases explained above. The Fock space F(X) consists of holomorphic
functions on C\ {0} which have finite norm coming from the inner product

(P.G) = [ FEGEIR-A (D]

Theorem [2.26| applied to this special case means that the origin 0 is a remov-
able singularity of any F(z) € F(X) = O(C\ {0})NL3(C\ {0}, |2|>*~D dz).
Further the reproducing kernel of the Fock space F(X) is given by

K(z,w) = T(\) L1 (Vzw0), z,w e C\ {0},

and the Segal-Bargmann transform takes the form
B=f(z) = F()\)eéz/ L1 (2Vzz)e  f(z)a? da, z e C.
0

Theorem D in the case where g = s[(2,R) shows that the unitary inversion
operator Fz is simply a Hankel transform (see also [2I, Theorem 5.8])

Feule) =200 [T Ravm@ut n we R

Notation: N=1{0,1,2,...}, Ry ={z€R:2 > 0}.

1 The Schrodinger model for minimal representa-
tions

In this section we set up the notation and recall briefly the construction of
L?-models for minimal representations of covering groups G of conformal
groups associated to simple real Jordan algebras from [12]. Using elliptic,
self-adjoint differential operators Be on (L*(Z), du) (Lemma , we de-
velop a theory of spherical harmonics in this context, and thus find the
branching law for all minimal representations when restricting to a distin-
guished subalgebra s ~ s[(2,R). For the basic notion of the Jordan algebra,
we refer the reader to an excellent book of Faraut—Korényi [8].
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1.1 Minimal representations

For a complex simple Lie algebra gc not of type Ay, A. Joseph [I4] intro-
duced a unique completely prime indeal 7 in U(gc) such that the associated
variety V(J) is equal to the closure of the (complex) minimal nilpotent coad-
joint orbit (D)g‘fn in g¢. This ideal is primitive and called a Joseph ideal.

Definition 1.1. For an irreducible unitary representation 7 of a real simple
Lie group G, we say 7 is a minimal representation if the annihilator of the
differential representation dr is the Joseph ideal.

In this paper we apply this terminology only to Hermitian Lie groups.
Here, a simple non-compact Lie group G or its Lie algebra g is said to be
Hermitian if the associated Riemannian symmetric space G/K is a Hermi-
tian symmetric space, or equivalently, if the center 3(¢) of the Lie algebra £
is one-dimensional. We say a Hermitian Lie group is of tube type if G/K
has a realization as a tube domain.

We write gc = &c + pc for the complexified Cartan decomposition. If
G is a Hermitian Lie group, then the K-module pc decomposes into two
irreducible K-modules pc = p4 + p—, and p_ can be identified with the
holomorphic tangent space at the base point in G/K. An irreducible (g, €)-
module X is said to be a lowest weight (g, £)-module if

XPti={veX:Yv=0 foranyY €p;}

is non-zero. We say X is of scalar type if dim XP+ = 1. Likewise, it is a
highest weight (g, £)-module if XP- is non-zero. For a Hermitian group G,
it is known that minimal representations are either highest weight modules
or lowest weight modules.

1.2 The Schrodinger model for minimal representations

First, we recall the construction of the Schrédinger model (L2-model) for
minimal representations.

Jordan algebras and related groups

Let V be a simple Euclidean Jordan algebra, and Co(V)g the conformal
group of V. We set G := Co(V)y, the identity component group. We denote
by ¢ the Cartan involution of G given by ¥(g) = j o g o j, where j is the
conformal inversion j(z) = —2z~!. Then K := GV is a maximal compact
subgroup of G, and G is the group of biholomorphic transformations on an
irreducible Hermitian symmetric space G/K of tube type. In particular, G
is the adjoint group. Conversely, any simple Hermitian Lie group of tube
type with trivial center arises in this fashion.

The Lie algebra g of G has a Gelfand—Naimark decomposition g =

n+ [+ 7, where n >~ V (abelian Lie algebra), [ = ste(V) C gl(V) is the

12



structure algebra and n = ¢n. As the differential action of the conformal
transformations of G on V', the Lie algebra g acts on V as follows: for
X=wTwv)eValaV 2nd[dn =g, the vector field on V is given by

X(z)=u+Tz— P(z)v, zeV,
where
P(z) =2L(z)* — L(z%), =zeV,

denotes the quadratic representation of V' and L(x) the left multiplication by
x. Thus, n = {(«,0,0) : uw € V} acts via constant vector fields, [ via linear
vector fields and 7 = {(0,0,v) : v € V} by quadratic vector fields. The
Cartan involution ¥ leaves L invariant, and K := LN K = L? is a maximal
compact subgroup of L. Correspondingly, we have a Cartan decomposition
[ = €'+ p' of the structure Lie algebra [ = str(V), where

t'=aut(V)={Degl(V):D(z-y)=Dz-y+z-DyVa,ycV},
p'=L(V) ={L(z):x€V}.
The Cartan involution ¢ acts on g = n + [+ n by the following formula:
Y(u, D+ L(a),v) = (—v,D — L(a), —u),
and hence ¢ = g” is given by
t={(u,D,—u):uecV,Dct}.
We set
E := (e,0,0), H :=(0,2id,0), F:=(0,0,e). (1.1)
Then {H, E, F'} forms an sly-triple in g. We define a subalgebra s of g by
s:= RH 4+ RE + RF, (1.2)

denote by S C G the corresponding subgroup of G, S ~ PSL(2,R). Let

G be the universal covering group of G, and denote by S ~ SL(2,R) the
corresponding subgroup in G. We define ¢ € Int(gc) by the formula

¢ = exp(—3v—1ad(E)) exp(—v—1ad(F)). (1.3)
It is then routine to check the following formulas:
c(a,0,0) = (,v—1L(a), a), (1.4)
¢(0,L(a) + D,0) = (vV—1%, D, —/—1a), (1.5)
c(0,0,a) = (4, —v-1L(a),a). (1.6)

Therefore, the complexifications £¢ and [¢ are isomorphic to each other by
the transform e:
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Lemma 1.2 (Cayley transform). The transform c induces an isomorphism
of complex Lie algebras:

c:tc =g, (u, D, —u) — D+ 2v/—1L(u). (1.7)

It is convenient to give the corresponding matrix computation in SL(2, C).
For this, we take the standard slo-triple {h, e, f} in s[(2,R) as follows:

e=(n o) m=(y %) 1=(10)

Then the element
C = exp(—3v/—1e) exp(—V—1f) = < _\%_71 —3v—1 > € SL(2,C)

defines a Cayley transform on s((2,C) by Ad(C), that is,
0 -1 1 0
s = (5 L) En

By the inverse Cayley transform, we get another slo-triple {?L, €, f} by
g:=Ad(0) te=(e+ f —V—1h),

h:=Ad(C) 'h=—v—=1(e— f),

fi=AdC)'f = i(e + f+V/~1h).

Likewise, by the inverse Cayley transform, we get another slo-triple {Ef E.F }
in g by:

E:=cYE)=(E+F—+—1H) = (e,—2v—1id,e),
H:=c'(H)=-/=1(E-F) =—v—1(e,0,—e),
F:=cY(F)= %(E—i— F++V-1H) = %(e, +2+v/—1id, e).

The Lagrangian submanifold =

The structure group L = Str(V)y € G acts on the Jordan algebra V' by
linear transformations, and V' decomposes into finitely many L-orbits. The
open orbit 2 = L-e is a symmetric cone. There is a unique minimal non-zero
L-orbit in the closure of 2, which we denote by =Z. Note that for V = R,
ie. g =sl(2,R), we have 2 = R} and hence also Z = R;. The orbit Z is
the orbit of any primitive idempotent ¢; € V. From now on we fix such an
idempotent cy.

For z € V, we denote by V(x,v) the eigenspace of L(x) with eigenvalue
v. Then the tangent space of = is given as follows:

14



Lemma 1.3. For any z € =,
_ 1

Proof. We begin with the case |z| = 1. Then z is a primitive idempotent,
and therefore

V= V(0 & V(s %) ® V(1)

Since L(V') C [, the tangent space T,Z = [ -z contains at least V(z,1) and

V(z,1). But dim V(z,1) = 1, dim V(z, ) = (r — 1)d, and by [12, Lemma

1.6] we also have dimZ =1+ (r — 1)d. Hence T,Z = V(z,1) ® V (z, %) For
x

general x € =, we note that To] is a primitive idempotent. Further, since

Z is a cone, the tangent space T,.Z is identified with Tﬁ =, which equals
V(# I)GBV(li—‘, 1) = V(x,|z|)®V (z, 3|z[). Thus the Lemma is proved. [

m7

Let P(Z) be the space of restrictions of polynomials on V' to the orbit
E. The space P(Z) has a natural grading

PE) =P PE) (1.8)

where P™(Z) is the space of restrictions of homogeneous polynomials of
degree m.
The orbit = is conical, and we have a polar decomposition

Ry xS 5 Z, (t,x) — tx, (1.9)
where we set
Si={zeZ:|z|=1} =KL ¢. (1.10)

Let dk be the Haar measure on K~ such that fKL dk = 1.
We define a Radon measure duy on = by using the polar coordinates

[C9):
rA oo
/f(:c) dpa(z) = I‘?r)\) /KL/U f(kte)t™"tdtdk for f € C.(Z).

1]

(1.11)

Let d be the multiplicity of the short roots for G/K and put
A= g for r > 1, (1.12)
A€ (0,00) for r = 1. (1.13)

See Table [1}in the Appendix for the explicit value of A\. Then duy is (up to
scalar multiples) the unique Radon measure on = transforming by

dpa(gz) = dety(g) dux(x)
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for g € L. We have normalized the measure duy such that the L?-norm of
the function vy (z) = e ¥*®) (see (L.I7) below) is equal to 1. We will often
write simply du when dim V' > 1, as in this case A is determined uniquely
by V.

Construction of the representation

The Bessel operator B = B, is a vector-valued second order differential
operator on V' defined by

0 0
By=P | A— 1.14
A <8x> A (1.14)
where 8% denotes the gradient with respect to the trace form (—|—). In

an orthonormal basis (eq), of V' with respect to (—|—) and coordinates
T =), Ta€y this means

9%u ou
= P 3 o
Byu ; radrs (€a,€8)T + Ea; Fr e

The Bessel operator B) is tangential to the orbit = and defines a differential
operator acting on C*°(Z).
Applying the construction in [I2] to our setting (that is, V' is Euclidean),

we obtain an irreducible unitary representation 7 of the universal covering G
of G on the Hilbert space L?(Z, du), where dp = du, is defined by .
It is a minimal representation of G if gc is not of type A (see [12, Theorem
B]).

Note that for r > 1 the representation 7 descends to a finite cover GV
of G, whereas for r = 1 it descends to a finite cover of G = PSL(2,R) if and
only if A € Q.

The corresponding Lie algebra action dr is given by

dn(u,0,0) = vV—1(u|x),
dr(0,T,0) = Dpes + %Tr(T*), (1.15)
dr(0,0,v) = v/—1(v|B).

Here n = dim V,
r
(aly) = ~T(E(ay))
denotes the trace form on the Jordan algebra V', and T™ is the adjoint of T'

with respect to the trace form (—|—). Further, the notation D, u € V| is
used for the directional derivative:

Duf(z) = % St (1.16)
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We define a function g on = by
Yo(z) = e 7@ = =l (1.17)

Then the function g transforms by a character under the action of K and
constitutes the minimal -type Wy = Cipg. Our normalization of the measure

(1.11)) shows that

A o0
/:lwo(a:)ﬁdm(x): F?M)/O e A dt = 1. (1.18)

Let L?(Z, du)e denote by the space of €-finite vectors of the representa-
tion (7, L*(Z, du)), and P(Z) denote by the space of restrictions of poly-
nomials on V' to Z. Then we have the following description (see e.g. [8
Proposition XIII.3.2]):

L*(E, dp)e = {f(x)to(@) : f € P(E)}. (1.19)

Let ag denote the highest weight of the one-dimensional representation
Wp. Then the complete decomposition of 7 into £-types is given by

L*(Z, dp) ~ iEBWm:

m=0

where W, is of highest weight ag + m~ for a certain root ~.

In particular, the underlying (g,€)-module on L?(Z, du)e is an irre-
ducible, unitarizable, lowest weight module of scalar type. We recall that
irreducible unitary lowest weight representations of simple Hermitian groups
were classified by Enright, Howe, and Wallach and also by Jakobsen, inde-
pendently. Among them, those with scalar minimal ¢-type (scalar type) of
the universal covering group G are parameterized by the so-called Berezin—
Wallach set W. The parameter of our representation amounts to A defined

in (1.12) or (1.13]) in the normalization of [§], where W is given by:
W= {0,%,...,(7“71)%}U((r71)%,oo).

Here r is the rank of the Hermitian symmetric space G/K. Thus, our
representation corresponds to the smallest non-zero element of W if r > 1.

For gc is of type A,,, the Joseph ideal is not defined. For g = su(n, n), the
representation 7 still has the property that the associated variety V(Ann dr)

of the annihilator Ann(dn) in U(gc) is the closure of the complex minimal
nilpotent coadjoint orbit (O)gicn. By an abuse of notation, we shall say « is a
minimal representation also for g = su(n,n).
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1.3 The Schrodinger model for complex groups

Let V¢ be the complexified Jordan algebra of V', and Co(V¢) the struc-
ture group of Vg. Then G¢ := Co(V¢)o is a natural complexification of
G = Co(V)p. In [12] the authors also construct an L2model of an irre-
ducible unitary representation of the complex group G¢ = Co(V¢)o that
attains the minimum of the Gelfand—Kirillov dimensions among all infinite-
dimensional irreducible unitary representations of G¢. It should be noted
that this representation is not a lowest weight representation in contrast to
the minimal representation of G = Co(V)p in Subsection We review
the construction briefly.

Asin the Euclidean case, the space V¢ decomposes into finitely many L¢-
orbits, where the corresponding structure group L¢ = Str(Vg)o is a natural
complexification of L. The orbit L¢-e of the identity element is an open cone
and we denote by X the unique minimal non-zero Lc-orbit in its boundary.

Comparing this complex setting with the setting of Subsection [I.2] we
see that

e X = L(C + C1,
e = = L - cis a totally real submanifold in X,
e X is closed under the complex conjugation with respect to V' C V.

Let dety(g) be the real determinant of the R-linear action of g € L¢ on
W = Vg, viewed as a real vector space. Again, there is a unique Lc-
equivariant measure dv on X up to scaling, subject to the equivariant con-
dition: dv(gz) = detW(g)% dv(z). In terms of the polar decomposition
X = KR, ¢, where K¢ is a maximal compact subgroup in L¢, we nor-
malize dv by

1 [e.9]
/ F(z)dv(z) = / / F(utey )t~ dt du, (1.20)
X Cr X JKLc Jo

where du denotes the normalized Haar measure on K¢ and

ern =220 (PA) T ((r — DA+ 1)

(This normalization is chosen such that in the Fock model the constant
polynomial 1 is a unit vector.) Then we can construct an irreducible unitary
representation, to be denoted by 7, of G¢ on the Hilbert space L?(X, dv)
([12]). The Lie algebra action dr is given by

d7(u,0,0) = vV—1(u|z)w,

A
dr(0,T,0) = Dy, + ;—nTrW(T*),
d7(0,0,v) = vV—1(v|B" )w.

18



Here (z|lw)w = 2 ((Re(2)|Re(w)) + (Im(z)|Im(w))) defines an inner product
on the real Jordan algebra W = V¢, by Tryy we mean the real trace of an
operator on the real vector space W, and BV = BKV denotes the real Bessel
operator of W. The Bessel operator can be defined using a real basis (eq)q
of W and its dual basis (€4) with respect to the non-degenerate bilinear
form (trace form) (z,w) — 2 ((Re(z)|Re(w)) — (Im(2)|Im(w))):

0? 0
w o — _ _
By = 56 axaaxgp(ea’eﬁ)$+ Ea 8—%6&.

Note that dr does not act via holomorphic differential operators, but via
real differential operators up to second order on X.

We shall find an action on the Fock space by holomorphic differential
operators later. For this, we observe that dm acts on C°°(V') by polynomial
differential operators. Using the Wirtinger derivative

0 1/0 0

— = _/1=

0z 2 <6$ Gy)
the action dm extends uniquely to a C-linear action dmnc of gc on C*° (V)
by holomorphic differential operators. In particular,

dne(a,0,0) = v—1(alz),
dﬂ-(C(anaa) =V _1(0”8)7
where (—|—) denotes the extension of the trace form on V' to a C-bilinear

form on V¢ and the Bessel operator B extends to a holomorphic differential
operator on V¢ by the formula

d d
B=P <az> dtAs (1.21)

To show that dmc indeed defines an action on C*°(X), we use the following
result which expresses dmc also as a kind of Wirtinger derivative.

Proposition 1.4. For X € gc we have

dre(X) = % (dr(X) — vV—Idr(v=IX)). (1.22)

In particular, for every X = (u,T,v) € gc and all F,G € C*(X) we have

/ dre(u, T, v)F(2) - G(2) dv(2) = / P(2) - dme(u, —T, v)G(2) du(2).

X X

Proof. Let (e;) be any orthonormal basis of V' with respect to the trace form
(=|=). Write z = >, x;e;. Then 8% =2, %ej.
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We now view W = V¢ as a real Jordan algebra. Then f; := \/563 and
gj = %v—lej constitute an R-basis of V¢ with dual basis with respect
to the trace form given by (f; = fj); U (g; == —gj);. We write z =
djzie = D, (a]fj—l—b]g]) with a;,b; € R and z; = v2(a; + v—1b;).
Hence, ai 787 and 8 = \lfay with z; = z; + V—1y;, zj,y; € R.
Then the gradlent in W, v1ewed as real Jordan algebra, is given by

Za fﬂ+23b 9; = Z<aij ﬁﬁ,)‘fj

0y

which is the same as the Wirtinger derivative in the complex Jordan algebra
Ve. Now is easily verified by explicit computations.

The integral formula follows from using the fact that d7(X) is given
by skew-adjoint real differential operators operators on L?(X, dv) with real
coefficients if X = (0,7,0) € g and purely imaginary coefficients if X =
(u,0,v) € g. O

Since dr restricts to an action on C*°(X) by differential operators, the
same is true for dmc by the previous proposition. Therefore dnc is a rep-
resentation of gc on C*°(X) by differential operators of order at most 2.

1.4 The Bessel operator and a related second order ODE

Let B = By be the Bessel operator defined in (1.14). We first recall the
product rule of the Bessel operator which will be used repeatedly.

Lemma 1.5 (|23 Lemma 1.7.1]).

B (2)9(:) = B1(la() + 2P (510, 52 ) =+ £ 1Bl

We further introduce the identity component of the Bessel operator by
Be := —v—1dn(F) = (e|B), (1.23)

where we recall F = (0,0,e). Here we give some basic properties of the
operator Be. An analogue of the heat kernel corresponding to Be will be
discussed in Section [

Lemma 1.6. Be is an elliptic differential operator of second order on =.
Further, it defines a self-adjoint operator on L*(Z, dpu).

Proof. We already know that Be is a differential operator of second order
along =. Let us compute the principal symbol. For x € = we identify T, =
with TI: via the trace form (—|—) on V. Then the principal symbol of Be
at € = in direction £ € T= is given by

(P(&)zle) = (z|P(€)e) = (x]€%) = (L()&[€).
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By Lemma L(z) has eigenvalues |z| and 3|z| on T;=. Therefore,

(L) > Diep

which implies that Be is an elliptic operator.
The last statement follows from the fact that (7, L?(Z, du)) is a unitary
representation. [

Remark 1.7. In [22] G. Meng studies some physics-related aspects of the
lowest weight representations of Hermitian Lie groups of tube type. In par-
ticular, he constructs a Riemannian metric on the cone =. Its corresponding
Laplace operator A has principal symbol ( ({ |L(x)¢) and hence the prin-

cipal symbols of tr(z)A and Be agree.

Using the product rule one can calculate the action of Be on products of
homogeneous polynomials and powers of the trace. For this we let P™ (V')
be the space of homogeneous polynomials on V' of degree m.

Lemma 1.8. For every p € P™(V) and every k € N we have
Be(tr*(2)p) = k(rA + 2m + k — Dtr* 1 (2)p + tr*(2) Bep.

Proof. First note that the commutator relation [Be,tr(z)] = 2€ + rA holds
where £ = (ZE|%) is the Euler operator. In fact, using Lemma we obtain

Be(tr(x) f(z)) = Betr(z) - f(z) + 2 (P (;)xtr(x), gi(x)) x
=rAf(x) + 28f(z) + tr(z) - Bef(z).

e>+mm@-aJ@0

To show the claim we now proceed by induction on k. For k = 0 the claim
is trivial. For k£ > 0 we find on P"(V):

[Be, tr¥ ()] = [Be, tr* 1 (z)]tr(z) + tr* 71 (2)[Be, tr(z)]
= (k=D (A+2(m+ 1)+ k —2)tr* Y x) + (rA + 2m)trF 1 (z)
k(rA +2m + k — Dtr* ()

since € acts on P™ (V') by the scalar m. O

Further we need the following simple result on the quadratic representa-
tion on the orbit X:

Lemma 1.9. For z € X we have
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Proof. Write z = gc1 with g € Le. We recall that P(cp) is the orthogonal
projection onto Cc; and hence given by P(c1) = (¢1]—)ci. Thus, we obtain
for w € Vg

P(z)w = P(ge1)w = gP(c1)g™w = (e1]g"w)ger = (z|w)z. O

For the statement of the next formula denote by B, the Bessel operator
B acting in the variable z € V.

Lemma 1.10. For z € V¢ and w € X we have
B.(z|w)* = k(A + k — 1) (z|w)* tw. (1.24)
Proof. Since %(z\w)k = k(z|w)*~1w, we obtain
B.(zlw)k = k(k — 1)(z|w) 2 P(w)z + kA(z|w)F 1w,
Now, w € X and hence P(w)z = (z|w)w by Lemma This yields
B.(zlw)F = k(A + k — 1)(z|w) 1w, O

Since the map
EXE—=R, (z,y) — (z]y),

has nowhere vanishing derivatives, the pullback u((z|y)) € D'(E x E) is
well-defined for any distribution v € D'(R) on R. We write u(x|y) for short.

Proposition 1.11. Let u € D'(R). Then
Bru(zly) = yu(zly)
if and only if u solves the differential equation
tu” + M/ —u=0. (1.25)

Moreover, for X\ ¢ (—N) the renormalized Bessel functions (see Appendix

~ 1
L_1(2vVt) = ——oF1(\;t d
A—1(2V) AEIR 1(At) an
Ky (2v)
form a fundamental system of solutions to (L.25) on Ry. In particular

o TA_1(2\/E) is the unique (up to scalar multiples) entire solution of

[C25) and
o K)_1(2V/1) is the unique (up to scalar multiples) solution to (1.25)

which decays exponentially as t tends to +oo.
Proof. Since B, = P(a%)x + /\8% and a%(:dy) =y, we obtain
Bru(zly) — yu(zly) = P(y)zu” (zly) + yu' (zly) — yu(]y).
Now, for y € = we have P(y)z = (z|y)y by Lemmall.9] Therefore we obtain
Bru(zly) — yu(zly) = ((zly)u"(z]y) + M/ (zly) — u(zly)) y

which gives the claim. O
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1.5 A theory of spherical harmonics

The geometry = for the Schrodinger model has the polar coordinates
=~ R+ X S7

where S := K . ¢; is a compact manifold. As a homogeneous space, S ~
KL/KL where KL = Stabg.(c;). Since K*/K[ is a compact symmetric
space, the irreducible decomposition of L?(S) is multiplicity-free and we can
tell explicitly the highest weights of these irreducible representations of K
by the Cartan-Helgason theorem for K% semisimple and by usual Fourier
expansion for K* ~ SO(2) (no other cases occur). This subsection takes a
Jordan theoretic approach to define the space of spherical harmonics

H™S)=H™E)  (meN)

by using the elliptic differential operator Be, introduced in , and give
a concrete decomposition of the left-regular representation of K* on L%(S).

In the case V = Herm(k,F), F = R, C, or H, we discuss in Subsection
a relation of our spherical harmonics with the classical spherical harmonics
on the sphere.

Throughout this subsection we assume r > 1 because for r = 1 the orbit
S consists of a single point.

We complete the idempotent ¢; to a Jordan frame ¢y, co,...,c, and de-
note the corresponding Peirces spaces by V;;, 1 < ¢,7 < r. Choose any
T € Vig with ||zo]|? = 2 and put Xy := [L(c1), L(zo)] and t := RX, C €.
We further define v € tf by v(Xo) = 1v—1.

Proposition 1.12. t is a mazximal abelian subspace in the orthogonal com-
plement of Ezl in €. Moreover, the restricted root system @(Eé,t(c) 18 given

by

0 ford=1,r=2,
BEL, te) = {7} ford=1,r>2,
{£2v} ford>1,r=2,

{£v,£2v} ford>1.

Proof. We note that

[ [ [

i<j
where
(Y ={Dect:De;=0 forall i=1,...,7},
t; = {[L(c:), L(2)] = ~[L(c;), L(2)] : @ € Vig}.
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In this notation

t,=to P m = (¢, = Pl
=2

1<i<j

(1) We first show that t is a maximal abelian subspace in m. Suppose
y € @;_, Vii with [Xo,[L(c1), L(y)]] = 0. Write y = ¢’ + 3" with
y € Vigandy” € @;_; Vi;. Then it is easy to see that Xoy' € Vi1®Va
and Xoy” € @;_5 Vai. Therefore [L(c1), L(Xoy)] = 0 and hence

0 = [Xo, [L(e1), L(y)]]
= [L(Xoc1), L(y)] + [L(c1), L(Xoy)]
= —[L(%), L(y)].

We obtain [L(x), L(y)] = 0. Applying this operator to ¢y gives

By [8, Lemma IV.2.2] we obtain ||zy”||? = &[|z|/?||y”||* and hence y” =
0. Therefore y = 3 € Vi5. Applying the operator [L(x), L(y)] = 0 to
x this time gives

and hence y = (xzﬁzn and therefore [L(c1), L(y)] € t. Thus t is maximal
in m.

(2) We now calculate the root system ®(tf, tc). For this we observe the
following mapping properties of ad(Xj):

e Dctl
ad(Xo)D = —[L(c1), L(Dxg)] € €.
o [L(c1), L(y)] € ty:
ad(Xo)[L(c1), L(y)] = —%[L(wo),L(y)] € .
e [L(c1),L(y)] € &, i > 3:
ad(Xo)[L(er), Liy)] = 5[Lle), Llaoy)] €

o [Licz), L(y)] € by, i > 3

ad(Xo)[L(c2), L(y)] = 5 [L(c1), L(zoy)] € &3,

N | =
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.DEE[<

i 2 <1 <]

ad(Xo)D = 0.

From this one easily obtains the following root spaces:

(6C)sy = {Q[L(Cl)7L(-TOy)] +V=1[L(c2), L(y)) : y € P (Véz')c} 7
=3
(6C)+2y = {2[L(c1), L(y)] £ V—-1[L(z0), L(y)] : y € (Viz)c,y L zo}

(th)o = {D € (th)c: Dao =0} & CXo & €D (E))e,

2<i<g
which shows the claim. O

Remark 1.13. The case r = 2 and d = 1 occurs exactly for the Jordan
algebra V = Sym(2,R) ~ R!? with conformal Lie algebra g = sp(2,R) ~
50(2,3). In this case &' ~ 50(2). In all other cases €' is semisimple (see e.g.

Table .

Recall the identity component Be = (e|B) of the Bessel operator (see
(11.23)).

Suppose p € P™(E), a homogeneous polynomial on = (see (L.8)). We
say p is a spherical harmonic on Z of degree m if Bep = 0. We define the
space of harmonic polynomials on = of degree m by

H™(E) = {p e P™(E) : Bep = 0}, (1.26)

and set H™(S) := {p|s : p € H™(E)}. Since homogeneous polynomials are
already determined by their values on the sphere S = {z € = : || = 1}, we
have an obvious isomorphism H™(Z) = H™(S) by restriction.

Recall the subalgebra s ~ sl(2,R) of g introduced in (1.2). We will
later see (Proposition that Z4(s) = €' and hence Zg(s) is a possibly
disconnected subgroup of G with Lie algebra €.

Proposition 1.14. (1) Let r > 2 or d > 1. Then each H™(S) is an
irreducible KCL1 -spherical representation of K of highest weight 2m-y.
(2) Let r =2 and d = 1, i.e. V ~ RY2 ~ Sym(2,R). Then H™(S) is
an irreducible representation of Zg(s) ~ O(2). It decomposes into two
irreducible non-isomorphic representations of K* ~ SO(2) for m > 0

and is the trivial representation of K* for m = 0.

Proof. (1) Let r > 2 or d > 1. Then ¢'is semisimple. The Killing form on
t' is a scalar multiple of the trace form

t'xe' =R, (D, D) Try(DD').
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Examining closely the mapping properties of elements in m = (E}n )+ C
t' one can show that on m the trace form is again a scalar multiple of
the Eél—invariant inner product

K([L(c1), L(z)], [L(c1), L(y)]) = (zly),  for z,y € V(e,3).

We denote by k also its extension to the scalar multiple of the Killing
form on €'. Let Q € U(") be the Casimir operator corresponding to
this form and denote its action on a function p € C*°(S) by Q- p. We
show that  acts on the spherical ¢"-representation with highest weight
k7 by the scalar —35k(rd + k — 2) and that Q acts on H™(S) by the
scalar —ém(%ij—l). Note that the scalars —3—12k:(7“d+k—2), keN,
are all distinct. Since H™(S) C L2(S) is a K -invariant subspace, it
then has to be an irreducible K-representation with highest weight
2my.

(1) The Casimir operator  acts on the irreducible £-representation
with highest weight « as a scalar K(a, o + 2p), where 2p is the
sum of all positive roots. Here £ denotes the bilinear form on m¢
corresponding to x under the identification m* ~ m via k. We

find that
1
p= 5 (may 2y +my - 7)
1
=5([d=1)-2y+(r—2)d-7)

rd
=(—-1])~.
(3-1)
For a = kv we then obtain
1
Rla,a+2p) = k(rd+ k — 2)k(v,v) = —&k(rd + k — 2)k(Xo, Xo)
1

(2) Since Q is K’-invariant, it suffices to show that

(@ p)(er) = —gm(y +m~Dp(er)

for every p € H™(S). For each j = 2,...,r we choose an orthonor-
mal basis (ejx)k=1,..a of Vi;. Then the elements [L(c1), L(ejx)],
j=2,...,r, k=1,...,d, form an orthonormal basis of m with
respect to the inner product «. Since for every element X € Egl
we have (X - p)(c1) = %’tzop(etxcl) = 0, we obtain

r d

(Q : p) (Cl) = Z Z D[2L(cl)7L(ejk)]xp(z)

=2 k=1 A
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(see (1.16]) for the definition of D,, u € V). Fix j and k and put
A = [L(c1), L(ejx)]. Then Ac; = —3ejp, and Aej, = 1(c1 — ¢;)

and we find
0 dp

D3%,p(cr) = (Aq
Op

1

0 op
8$jk ox T=cC

Op 1 d Op
8713(61) + TG (63k a.’Ejk al':v:q)
1 0%
T <6901(Cl) - Oxj(cl)> + 1767(9213?]6 (c1),

where 71 and z; denote the coordinates of ¢; and ¢; and z; the
coordinates of ej; in an arbitrary extension to an orthonormal
basis. Hence,

9%p d ~ 9p rd Op
(Q'p)(cl)zﬁ ‘ TQ'kJFE A T%(Cl)*ﬁafm(cl)-

J J=1
We now use that p is harmonic and calculate the action of the
Bessel operator Be at the point = ¢;. Let (eq)a € V be an
orthonormal basis of V' extending (x;x);x U (¢j); such that every
element is contained in some V};. For this note that

1 ifeq=ceg€ Vi1,
(P(easep)cile) = % ifea =egeVij, j=2,...,r,
0 else,
and
1 ifeqyeVjjforj=1,...,r,
eale) =
(¢ale) {0 else.
We find
0? 0
=Bale) =35, oy D Plemeele) 33 o (en)en
0%p 1<~ 0%p d ~— Op
=5+ ) () + 5 o —(c).
Oy 2 =i o5, 2 = O



(2)

which shows the claim.

For V = Sym(2,R) we have G = Sp(2,R)/{+1}, K = SO(2)/{£1}
and Zg(s) = O(2)/{£1}. It is easy to check that via the folding
map p : R?\ {0} — Z the space H™(Z) becomes H>™(R?), the
classical spherical harmonics of degree 2m on R2?. This is certainly
an irreducible O(2)-representation which decomposes into two non-
isomorphic irreducible SO(2)-representations. O

Theorem 1.15. The left-reqular representation of K* on L*(S) decomposes
into a multiplicity-free direct sum of irreducible representations of K. More
precisely,

L2(S) = i®Hm(S).
m=0

with H™(S) irreducible forr > 2 ord > 1 orm = 0 and H™(S) decomposing
into two non-isomorphic irreducible components forr =2, d =1 andm > 0.

Proof. (1) Let us first assume that 7 > 2 or d > 1 so that €' is semisimple.

Since S ~ KL/KCL1 is a semisimple symmetric space, the space L2(S) is
the multiplicity-free direct sum of all K cLl—spherical K -representations
by a theorem of E. Cartan. By Proposition the only possible
highest weights that can appear in L%(S) are given by

{my:meN} ford=1,
{2my:m e N} ford> 1.

If d > 1 then by Proposition these representations in fact appear
in L2(S) and hence their direct sum has to be dense in L?(S). The
same argument applies to the case of d = 1 (i.e. V ~ Sym(n,R),
n > 2) where it only remains to show that the weights m~ for m € N
odd do not appear as highest weights of K CLl—spherical representations.
This is done in the next lemma.

In the case V = Sym(2,R) we have S ~ P}(R) = S'/{+£1} and the
decomposition is simply the expansion into Fourier coefficients since
H™(S) ~ HZ™(S1) = Ce2™V =10 @ Ce=2™V=10 for m > 0 and HO(S) ~
C. O

Lemma 1.16. Let V = Sym(k,R), k > 3. Then the weights m~y for m € N
odd are not highest weights of K,:L1 -spherical irreducible representations of

Kt
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Proof. In this case K = PSO(k) acting by conjugation on V = Sym(k, R).
Since ¢1 = diag(1,0...,0), its stabilizer in K* is given by KX = S(O(1) x
O(k —1)). It is known that the irreducible SO(k)-representation of highest
weight my is the representation on the space H™(R¥) of spherical harmonics
of degree m in R*. Obviously, the group KCLl fixes a non-zero vector in
H™(R¥) if and only if m is even which shows the claim. O

Now we also determine the spherical vectors and the highest weight
vectors (with respect to a maximal torus in £ containing tc) in each H™(S).

Proposition 1.17. Assume r > 2 or d > 1. For every m € N the space
L

Hm(S)KCI of KCL1 -invariant harmonics of degree m is one-dimensional and

spanned by the function ¢, € H™(S) given by

om(z) = 21 (=m,m + 1A — 1\ (z]er)), x €S,

where 1 is the rank of V' (or the rank of the symmetric space G/K) and
A= % is the smallest non-zero discrete Wallach point (see ((1.12))).

Remark 1.18. The function o Fy(—m,m + rX — 1; A; z) is a polynomial of
z of degree m, which can be expressed in terms of the Jacobi polynomials
Péa’ﬁ)(z):

2F1(—m,m+r)\—1;)\;z):(_i(_;)P)‘ Lr=DA- 1)(1—22).

In the case V = Sym(k,R), we have A = ¢ = 1 and r = k and the spherical
vector reduces
2m)! (rA — 3

1 em)'l 2m 1 Cg?nfl(z)a
(3)m2rA =2)p(m 471X = 5)m
by the change of the coordinates z — 22 (see (A.2)) in the Appendix). Here
C)(z) denotes the Gegenbauer polynomial. This corresponds to the well-
known fact that if f € C°(S™~!) is invariant by O(n — 1) acting on the last

n — 1 coordinates and satisfies Agn-1f = —k(k +n—2)f, then f is a scalar

o Py (—m,m 41X — 150 2%) = (=1)™

multiple of the Gegenbauer polynomial C’ (z1), (z1,...,2,) € S*L

Proof of Proposition[I-17. Since ¢y, is clearly K% -invariant, it only remains
to show that the m—homogeneous extension

P (@) = tr(z)™ om(13), z €V,

to a polynomial @,,, € P™ (V) is harmonic. Note that @, (x) = tr(z)™u
with u(z) = oF1(—m,m +rA — 1;\;2). Then

Ben () = Botr(x)" u((f'ﬁj)))+2(P<8§lm<x)vais“<(<z|\2>)>>x
s i ()]
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(z) = mtr(z)™ e, Betr(z)™ = m(rA +m — 1)tr(x)™ L

otr™ 0 (z|c1) 1 0 x|er)
P (), = = mtr(z)™ =z
(7 o @ g (i) ) ole) =t () (G
= mtr(z)™ 1€ [u (($|Cl)> )
o («le
where €& = (:L'|8%) is the Euler operator. Since the Euler operator is a radial

operator and u (%) is invariant under dilations, this term vanishes and
we find

Ban(a) = m(r-+m — Va1 ({25 )) ()’”Be[u((x'“))]

(le) (ale)
To calculate the action of Be on ( > ) be an orthonormal bas
of V' and denote by z, the ¢ of z € V with respect to this bas
Then

e (o)) - <(f§r’3) ) ()

o (i)~ (o~ JJS’ (e ) (66)

by the differential equation for the hypergeometric function. Hence, Be®p,,, =
0. O
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Let t¢c C E([C be a maximal torus containing tc. Abusing notation, we
denote by v also the element in t which vanishes on Pgl and equals v on
(Eél)L. We choose an ordering on @(E(E:,YC) such that v is positive.

Proposition 1.19. Assumer > 2 ord > 1. For every m € N the function
Om on S defined by

Om(z) == (x| + V—1ag — c2)™, x €S,
is a highest weight vector with respect to tc in H™(S).

Proof. Let us write a = ¢1 + v/ —1xg — co for short. We divide the proof into
two steps.

(1) Claim: ¢,, € H™(S). Clearly ¢, defines a homogeneous polynomial
of degree m by the same formula ¢,,(z) = (z|a)™. Since %(az\a) =a
we obtain

Be¢m(z) = m(m — 1)(z|a)™*(P(a)zle) + mA(z|a)" " (ale)
=m(m — 1)(z]a)™ %(z|a®) + mA(z]a)™ tr(a) = 0

since a? = 0 and tr(a) = 0. Hence, ¢,, € H™(X).
(2) Claim: ¢,, is a weight vector of weight 2m-~y. Note that

C1 — Co i) 1

i
Xoa = Xoc1 + vV—1Xgx9 — Xgco = —ZO—I—\/—l 5 1 5

Hence,
Xo - Qbm(x) = _Don(bm(x) = - <X().CU a;i’r:n(x)>

= —m(z]a)(Xoz|a) = m(z|a)(z| Xoa)
= TV ()™ = 2my(Xo) ().

Hence, ¢, € H™(S)2m~. Since H™(S) is a highest weight representation
with highest weight 2my, the claim follows. O

1.6 Branching laws with respect to s((2,R)

We recall from that there is a distinguished subalgebra s ~ s[(2,R) of
g=co(V). Let SY = SL(2,R)" denote the connected subgroup of G¥ with
Lie algebra s ~ s[(2,R). We shall prove that our minimal representation
splits discretely into a direct sum of irreducible unitary representations when
we restrict it to the subalgebra s. For each irreducible representation m; of
SL(2,R)Y, the multiplicity space Homgy, 2 ryv (7, L?(E)) is described by the
space of generalized spherical harmonics, on which the compact subgroup

31

— = —-v—la.



KT of G acts naturally. We will even see that the possibly disconnected
compact subgroup Zgv(s) € GV with Lie algebra £' acts on the space of
generalized spherical harmonics. Thus we shall find the branching law of
the minimal representation with respect to SL(2,R)" x Zgv(s) in Theorem
[[.24) for the Schrodinger model and in Theorem [2.:24] for the Fock model.

Discretely decomposable restriction

First of all, we give a quick review of a general theory of discretely decom-
posable representations.

We begin with a general setting. Let g’ = & + p’ be a Cartan decompo-
sition of a semisimple Lie algebra over R. The following notion singles out
an algebraic property of unitary representations that split into irreducible
representations without continuous spectra.

Definition 1.20. Let (w, X) be a (¢, ¢)-module.

(1) We say w is '-admissible if dim Homy (7, w) < oo for any irreducible,
finite dimensional representation 7 of .

(2) ([15, Definition 1.1]) We say w is a discretely decomposable if there
exist an increasing sequence of (g, ¢')-modules { X} ;e of finite length
such that

[e.o]
x=Jx;,
j=0

(3) We say w is infinitesimally unitary with respect to a Hermitian inner
product (1, ) on X if

(@(Y)u,v) = —(u,w(Y)v) forany Y € ¢’ and any u,v € X.
We collect some basic results on discretely decomposable (g’, ¢)-modules:
Fact 1.21 (see [I5]). Let (w, X) be a (¢, ¥)-module.

(1) If w is ¥'-admissible, then w is discretely decomposable as a (g',¥)-
modules.

(2) Suppose w is discretely decomposable as a (g',¢)-module. If w is in-
finitesimally unitary, then w is isomorphic to an algebraic direct sum
of irreducible (g', ¢ )-modules.

The point here is that (ww, X) is not necessarily of finite length as a
(¢, ¥)-module. We shall apply this concept to the specific situation where
g’ =sl(2,R).
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The dual pair

Recall that s ~ s[(2,R) is the subalgebra of g = co(V') spanned by E, F' and
H and that the compact group K% has Lie algebra &' = aut(V).

Proposition 1.22. (s, aut(V)) is a reductive dual pair in co(V).

Proof. Let Z.ov)(s) denote the centralizer of 5 in co(V'). We first show that
Zeovy(s) = aut(V). An element (u,T,v) € co(V) is in the centralizer of 5 in
co(V) if and only if the following three equations hold:

0= [(u,T,v), E] = (Te, —2e[v,0) (1.27)
0=[(u,T,v),H = (—u,0,v) (1.28)
0= [(u,T,v), F] = (0,2ule, —T%e). (1.29)

Equation implies immediately that u = 0 = v and yields Te = 0
which is equivalent to 7' € aut(V). In this case, all equations are satisfied
and we obtain Z.,y)(s) = aut(V).

Conversely let us prove that Z.(aut(V)) = 5. We have (u,T,v) €
Zeovy(aut(V)) if and only if

0= [(u,T,v),(0,8,0)] = (=Su, [T, S], S7v) V.S € aut(V).

First, by the next lemma we obtain that u,v € Re. It remains to show that
T € Rid. Write T'= L(z) + D. Then [T,S] =0 for all S € aut(V') implies
Sz =0 and [S,D] = 0 for all S € aut(V). Again by the next lemma, we
obtain x € Re, so it remains to show that D = 0. Let Z([) denote the center
of [.. We know that Z(I) = Ridy and [ = [[,[] & Z(I) with [[, ] semisimple.
Since aut(V) is generated by the derivations [L(z), L(y)], z,y € V, we have
aut(V') C [I, []. Therefore aut(V) is a symmetric subalgebra of the semisimple
Lie algebra [I,1] and hence semisimple itself. Thus, [S,D] = 0 for all S €
aut(V') implies D = 0 and the proof is complete. O

Lemma 1.23. Let x € V. If Dx =0 for all D € aut(V') then = € Re.

Proof. Write xz = ZK]- x;j, x;j € Vij. For convenience we put x;; := x;; for
i < j. For D = [L(¢;), L(y)], y € Vij, i # j, we obtain

0 = Dx = ¢i(zy) — y(cix)

1
=¢ Ziﬂzky + Zéﬁkg‘y +Tiy | —y | vu+ B Zfﬂzk
k#j ki ki
1 1 Tii|y 1
= Ty + 5 Z Ty + (%Hci —ray =5 ZfUzky
k#i k#i
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The c;-component of this expression is (2;;|y)c; which has to vanish for
every y € V;j. Since 7 is non-degenerate, this means that z;; = 0 for all
i # j. Hence, x =) ;% tic;. From the above calculation we obtain

titp ot ti—t
0 = — —_ —_ — =
PR T
which implies ¢; = ¢;. Since this has to hold for all 4,5 =1, ..., 79, we obtain
z € Re. O

The s((2,R)-representations

The integral formula (1.11]) with respect to the polar decomposition = ~
R4 X S leads us to the isomorphism of the Hilbert space:

L2, dp) ~ L2(Ro, M LdH)®LA(S).

By using Theorem [I.15] we obtain:

o0
LAE, dp) = > LRy, 7 dt) @ H™(S). (1.30)

m=0

We show in Theorem that this is the decomposition of the representa-
tion 7 into irreducible SV x Zgv(s)-representations. The proof essentially
coincides with Kobayashi-Mano [I7, Section 1.3] in the case V' = Sym(k, R)
and V = RV =1 or in the deformed setting [4, Theorem 3.28], but we use
the Jordan algebra to carry out necessary computations.

First of all, we review a realization of a series 75 (—1 < s < 00) of lowest
weight representations of the universal covering group of SL(2,R) on L*(R.)
(see B. Kostant [21] or an earlier work by Ranga Rao [27]). Following [21]
(but the vectors e and f are replaced by —e and — f which amounts to a Lie
algebra isomorphism), we define the differential action d7 of the Lie algebra
s[(2,R) on L?(R,) by the following skew-adjoint operators, ¢ denoting the
variable in R :

d7~T5(€) = \/jlta

d
d7y(h) = 2= +1,
7s(h) dt+

d? d s?
drs(f) =vV-1|{t—5+——— ).
7s(f) ( ATERT 4t>
Further, the underlying (g, £)-module is spanned over C by the functions
GL(t) = the " Li(20), ken,

where L& (z) denote the Laguerre polynomials.
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Let 1 € R (we shall take a specific u later), and transfer these represen-
tations to L?(Ry,t* dt), through the unitary isomorphism

U:LA(Ry) — LARy, 1" dt), UF(t) =t 2 f(t).
Define the representation 7, on L?(R.,t*dt) by
e i =UoTe_10U L.

(Note that the parameterization of 75 follows [8] and the parametrization of
7s follows [2I]. The parameterizations are such that s is the lowest weight
of s ~ Ts_1.) Then its differential representation is given by

drs(e) = \/jltv

d
dry(h) = 20— + (i + 1),

2 s—1)2 — 12
dry(f) = V=1 <t(j‘t P th“) |

The underlying (s[(2,R), s0(2))-module Vs is spanned by the functions

Gi(t) = UG (1) =t 5 e 'L3(20), keN.
We obtain representations (s, L?(R, t* dt)) of SL(2,R) for s € (0, 00) with
underlying Lie algebra modules ( dms, Vs).

Now put g := rA —1 and s := rA + 2m, m € N. We collect some
additional information on the resulting representations. The action of the
inverse Cayley transformed sly-triple (€, f,h) (see Subsection on the
basis ¢}, is given by

drs ()b = 2vV—1¢} 11,
dmg ()¢5 = (rA + 2m + 2k) 3,

drs(f)f = sk(rA +2m +k — 1)vV/—1¢}_;.

where for convenience we put ¢, = 0. Hence, the vector ¢(t) = t*™me!

is a lowest weight vector, i.e. dmg(f)¢§ = 0. The lowest weight is given by
rA+ 2m.
For each m € N, we define a linear map ®,,, by

D, LA(R 71 dE) @ H™(S) — L2(Z, dp), (1.31)
O (f @ ¢)(x) = f(lz) ().

This constructs each summand in (1.30]), and ®,, respects the actions of

—_—

SL(2,R) x Zgv(s) as follows:
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Theorem 1.24. (1) The linear map ®,, respects the action of sl(2,R),

that 1is,
dn(E) o @, = @y, o (d7prsom(e) ®id),
dr(H) o @, = @y, 0 (d7mprsom(h) ®id),
dn(F) o @, = &y, o (dmprpom(f) ®id).
(2) The (s1(2,R),s0(2))-module ®p,(Vrryom ® H™(S)) is contained in the

space L?(Z)¢ of E-finite vectors of L*(Z, du).
(3) The representation (m,L*(Z, du)) decomposes into a multiplicity-free
sum of irreducible representations of SL(2,R) x Zgv(s) as follows:

- o~ m
LQ(:‘a dH) = Z Tratom XH (S),

m=0

and its underlying (g, €)-module decomposes under the action of the
dual pair (s,€") as

L*(E, dp)e ~ @D Virsom RH™(S), (1.32)

m=0

where Vs is the irreducible representation of s ~ sl(2,R) of lowest
weight s and H™(S) is an irreducible €'-module for r > 2 ord > 1 or
m = 0 and decomposes into two irreducible non-isomorphic €'-modules
forr=2,d=1 and m > 0.

Remark 1.25. (1) Suppose G’ is a reductive subgroup of G. In general
¥-finite vectors are not necessarily E-finite vectors in the irreducible
unitary representation m of G. The first statement of Theorem
constructs a discrete part of the branching law of the restriction |gr,
and the second statement implies that there is no continuous spectrum
[15].

(2) For g = s0(2,k) and g = sp(k,R) this decomposition was given in
[17, Section 1.3] and extended to a Dunkl setting in [5]. See also [19)
Theorem 7.1] for the branching law for the minimal representation
of O(p,q) to the subgroup O(p,q1) x O(g2) when p + ¢ is even and

41+ g2 =q.
Proof of Theorem[1.2]]. (1) Let f® ¢ € L2(R+,t%71 dt) ® H™(S). Then
dm(E)(@m(f ® ¢))(z) = V-1tr(z) f(|2])o ()
= P (dmpatom(e) f ® ¢)(z),
A (H)(@(f @ 6)) ) = (2Ds + ) [£(a)0(2)]
= (2| f'(Jz]) +rAf(2)) o(5)
= @ (dmrasom(h) f © ¢)(2).
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For the action of F we use Lemma [I.5] to obtain

Ar(F)(@m(f © 6))(2)
= V=18, [ (2o ()]

_F(B Flla)) - o) +

F(lel) - Boo(1)) -

By using the formulae

2(P (10D, £o(2)) ale)

Bef(|2]) = |zl (j2l) + rAf (),
2 f(ial) = £(al)e,

we find that

(7 (goflel goote ) o

)

= ') [~mlal () (Ple. e)ale) + a7 ( P (e, 22(2)) ] )]

)
Fal) [=mo(E) + ol (=
1al) [~mo(

2@)]

6() + mlal ()| = 0.

Further, for the last term we have with Lemma [I.8}

Bed( ) = B [tr(2) " (a)]

= —m(rA+m — 1|z o) = -—m@EA+m—1)|z| o

Putting things together gives
dr(F)(2(f ® ¢))(x)
= V=1 (Jlf"(|=]) + rAf (|2])
= (I)m(dﬂ-r/\-i-Qm(f)f & ¢)($)
We recall from that

—m(rA+m = 1]z~ f(J2]) o)

L2(E)e = P(E)e .

Since qﬁg’\+2m(t) = t?"e! is a lowest weight vector in V, o, and

B (052 @ H™(S)) € P(R)e ! = L(@),

the second assertion holds.
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(3) Note first that each summand V, )42, KH™(S) is an s-isotypic compo-
nent and hence not only K but also the possibly disconnected group
Zgv(s) acts on H™(S). Since L?(Z)e is discretely decomposable as
an s @ t-module, taking e-finite vectors in now yields the third
statement. U

Remark 1.26. In the above proof, we have used a specific fact on the
Schrédinger model, namely, L?(Z) coincides with P(Z)e~1#l. Alternatively,
we can use a representation theoretic result, namely, Fact (1). In fact,
any lowest weight (g,€)-module is 3(¢)-admissible where 3(€£) denotes the
center of . In our setting 3(¢) = R(—F + F) C sl(2,R), and thus the

assumption of Fact is fulfilled.

1.7 Folding maps and the Schrodinger model

The classical Schrédinger model for the Weil representation of the metaplec-
tic group Mp(n, R) is realized on L?(R"), whereas our Schrédinger model for
g = sp(n,R) is realized in a somewhat different space, namely, the Hilbert
space L?(Z) where Z is the manifold consisting of symmetric matrices of rank
one. In this subsection we relate these two Hilbert spaces by the folding map
(see below), and also explain the irreducible decompositions in Theo-
rem not only for g = sp(k,R) but also for the cases g = su(k, k), s0*(4k).
Let V = Herm(k,F), F = R,C, or H. We let d = dimgF =2\ is 1, 2 or 4.
The minimal L-orbit = is given as the image of the folding map

p:FP\ {0} = &, x> zz*, (1.33)

where z* = T denotes the composition of transposition and conjugation.
The folding map p is a principal bundle with principal fiber U(1;F) and
hence

p* LA(E, dp) S LQ(]F]C)U(I‘F).

Correspondingly to Herm(k,F) C Herm(kd,R) = Sym(kd,R), there is a
natural homomorphism g — sp(kd,R). The isomorphism p* intertwines
the representation 7 of GV on L?(Z, du) with the restriction of the Weil
representation of Mp(kd, R) on L?(R*) ~ L?(F¥). We recall the dual pair
correspondence with respect to

e

SL(2,R) x O(n) — Mp(n,R)

amounts to a multiplicity-free decomposition of the Schréodinger model as a

—~—

representation of SL(2,R) x O(n):
® o ‘
LP(R") ~ ) mjn RH/(RY).
§=0

Now we take U(1; F)-invariants on both sides and obtain:
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(1) g =sp(k,R). We have U(1;F) = O(1) = {£1} and hence the O(1;F)-
invariants are exactly the terms with sperical harmonics of even degree.
This yields

- — @ m
LA(E, dp) ~ LA(RF)OW) ~ Z_jo Toms s BH(RY)

which is (1.32)) since rA = %
(2) g =su(k,k). We have U(1;F) = U(1) and in the decomposition

Hj(R2k) — @ Ha,,@’((ck)
atp=j
into U(k)-irreducibles the U(1)-invariants are exactly those HeP (CF)
with o« = 3. This yields

IA(E, dp) ~ 2RO o 3 Oy, RH™T(CH)
m=0

which is ((1.32)) since A = k.
(3) g =s0"(4k). We have U(1;F) = Sp(1) and in the decomposition

H(R™) = P HPHEF) et
p+a=j
p=q20
into Sp(k)-irreducibles the Sp(1)-invariants are exactly those H4(H¥)
with p = ¢. This yields

L2(Z, dp) ~ L*(R*)%P() ~ Z@W2m+2k X H™™ (HF)

m=0

which is ([1.32) since rA = 2k.

2 A Fock space realization for minimal represen-
tations

In this section we construct a Fock space F(X) on a complex submanifold
X in the complex Jordan algebra Vi defined in Subsection [I.3] which is
biholomorphic to the minimal nilpotent K¢-orbit @ﬁ‘fn in pc via the Cayley
transform. For this we introduce a density on X given explicitly by a K-
Bessel function, and define an action of the conformal Lie algebra g on the
space P(X) of regular functions. A remarkable feature is that the action
is given not by pseudodifferential operators (cf. [6]) but by polynomial
differential operators up to second order. We then find the reproducing
kernel of the Fock space F(X), and give a proof of the irreducibility and
unitarizability of the (g, £)-module P(X) by using the Bessel operators. In
the next section we see that the two representations on L?(Z, du) (Section
and on F(X) (Section [2) are isomorphic to each other.
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2.1 Polynomials on X

Recall that X is the minimal non-zero L¢-orbit in Vi which is a complexifica-
tion of the real L-orbit = through a primitive idempotent ¢; in the Euclidean
Jordan algebra V. Let A; denote the principal minors of V' with respect to
a fixed Jordan frame cy,...,c,. For m € N" we define

Am(x) = Ar(z)™ ™2 Ap g ()T A ()™

All these polynomials are extended holomorphically to V. Denote by P (V)
the space of all holomorphic polynomials on V. We further let P™ (V)
denote the subspace of P(V¢) spanned by the polynomials Ay, (gx), g € Lc.
The following decomposition is a Jordan theoretic reformulation of the Hua—
Kostant—Schmid theorem in the tube case:

Theorem 2.1. The space P(V¢) of holomorphic polynomials on Vi decom-
poses into a multiplicity-free sum of irreducible Lc-modules:

P(Ve) = P P™ (Vo).

Remark 2.2. Note that if z € X, then As(z) = ... = A,(2) = 0 and
hence Ay, # 0 on X iff mg = ... = m, = 0. Therefore the space P(X) of
restrictions of holomorphic polynomials on V¢ to X decomposes under the
Lc-action as

P(X) = P P"(X),
m=0

where
P = {plx s p € PO (1)),

In fact, it is clear that the restriction map P00 (Ve) — P™(X) is an
isomorphism of Lc-modules since it is a surjective Le-homomorphism and
Pm0:-0) (V) is irreducible.
2.2 Construction of the Fock space
We introduce a density w on X by

w(z) = R}\,lﬂz]) z €X,

where |z| := (z|§)% and Ko(z) = (5)"“Kqa(z) is the renormalized K-Bessel

function. In view of the integral formula (1.20) and the asymptotic be-
haviour of the K-Bessel function (see Appendix [A.1)), the L?-inner product

(F.G) = /X F(2)GE)w(z) dv(2)
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is finite for any F, G € P(X) and hence turns P(X) into a pre-Hilbert space.
We denote its completion by F(X). Let O(X) be the space of holomorphic
functions on the complex manifold X. In Theorem [2.26] we will prove that
the space F(X) coincides with the Fock space (as defined in the introduction)

F(X) = {F € O(X) : /X F(2)[2w(2) du(z) < oo} . (2.1)

Proposition 2.3. F(X) is a closed subspace of L*(X,wdv) and the point
evaluation F(X) — C, F' +— F(z) is continuous for every z € X. In par-
ticular, F(X) C F(X) and the point evaluation F(X) — C, F +— F(z) is
continuous for every z € X.

Proof. This is a local statement and hence, we may transfer it with a chart
map to an open domain  C CF. Here the measure wdy is absolutely
continuous with respect to the Lebesgue measure dz and hence it suffices
to show that O(C?) N L?(C%, dz) C L%(C%, dz) is a closed subspace with
continuous point evaluations. This is done e.g. in [11l Proposition 3.1 and
Corollary 3.2]. O

We recall that B is a vector-valued holomorphic differential operator BB
introduced in (1.21)). Then the density w satisfies the following.

Lemma 2.4. Bw(z) = 2w(z).

Proof. In view that w(z) = u( (Zf)) where u(t) = Kx_1(2v/t), Lemma follows

from Proposition [I.11] O

Proposition 2.5. The adjoint B* of B on F(X) is the multiplication oper-
ator by 3.

Proof. Let F,G € F(X). Then by Proposition we know that

[ BFGGE) dulz) = | FEBGEWE) du(e)
X X

The function G(z) is antiholomorphic and hence %G(Z) = 0. Using Lemma
[L5l we obtain

[ FOBE@EWE) dve) = [ PEGEBL:) du(e).
X X

Now Proposition follows from Lemma O

41



2.3 The Bessel-Fischer inner product

We introduce another inner product on the space P(X) of polynomials,
namely the Bessel-Fischer inner product. For two polynomials p and ¢
it is defined by

[p, 4] == p(B)g(42)].—

where g(z) = ¢(Z) is obtained by conjugating the coefficients of the polyno-
mial q. A priori it is not even clear that this sesquilinear form is positive
definite.

Proposition 2.6. For p,q € P(X) we have

[p, ] = (p.q)- (2.2)

The proof is similar to the proof of [5, Proposition 3.8]

Proof. First note that for all p,q € P(X)

[(al§)p, q] = [p, (a|B)q] for a € Ve,
). q) = (p, (@B)q) for a € Vg.

In fact, the second equation follows from Proposition [2.5] The first equa-
tion is immediate since the components (a|B), a € V¢, of the Bessel op-
erator form a commuting family of differential operators on X. Therefore
(a|B)p(B)q(4z) = 4p(B)(a|B)q(4z) and the claim follows. To prove we
proceed by induction on deg(q). First, if p = ¢ = 1, the constant polynomial
with value 1, it is clear that [p,q] = 1. With the integral formula ((1.20) we
further find that

(D, q) = cn,\/w(z) dv(z) :/ [?A_l(t)tZTA—l dt
X 0
— 92rA=2p (rANT((r—1)A+1) = Crx-
where we have used the integral formula (A.1]) for the last equality. Thus,

(2.2)) holds for deg(p) = deg(q) = 0. If now deg(p) is arbitrary and deg(q) =
0 then (a|B)g = 0 and hence

and

Therefore ([2.2)) holds if deg(q) = 0. We note that (2.2)) also holds if deg(p) =
0 and deg(q) is arbitrary. In fact,

[p,q] = p(0)q(0) = [g,p], and (p,q) = (¢, p)
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and ([2.2)) follows from the previous considerations. Now assume ([2.2)) holds
for deg(q) < k. For deg(q) < k+ 1 we then have deg((a|B)q) < k and hence,
by the assumption

[(al5)p, q] = [p, (@|B)g] = (p, (@|B)q) = ((a, )p, q)-

This shows (2.2]) for deg(q) < k+ 1 and p(0) = 0, i.e. without constant
term. But for constant p, i.e. deg(p) = 0 we have already seen that ({2.2])
holds and therefore the proof is complete. O

The previous theorem provides us with a new expression for the inner
product on F (X). The Bessel-Fischer inner product is more suitable for
explicit computations. If we denote by P™(X) C P(X) the subspace of
homogeneous polynomials of degree m € N, then the following result is
immediate with the Bessel-Fischer inner product.

Corollary 2.7. The subspaces P"™(X) are pairwise orthogonal.

Proof. Let p € P™(X) and ¢ € P™(X) with m # n. We may assume
without loss of generality that m < n. It is clear that for a € V¢ we have
(a|B)g € P"1(X). Therefore p(B)g(4z) € P*~™(X). Since m—n # 0, every
polynomial in P~ (X) vanishes at z = 0 and hence, [p, ¢] = 0. O

Proposition 2.8.
{F|X :Fe (’)(V@),/X |F(2)|?w(2) dv(z) < oo} C F(X).

Proof. Let F' € O(V¢). Then F has a Taylor expansion F'(z) =Y~ pm(2)
into homogeneous polynomials p,, of degree m which converges uniformly
on bounded subsets. We show that this series also converges in F(X). Then,
since point evaluation in F(X) is continuous, it follows that F' as the limit
of this series is also in F(X).

For R > 0 we put Xp := {2z € X: |z| < R}. Since Xp is bounded, the series
> oo Pm converges uniformly on Xg. Hence, we obtain

2
00 >/X|F(z)\ w(z)dv(z)

= lim |F(2)Pw(z) dv(z)

R—o00 Xg

~ lim Z: /X P (IpalEIe() ()

R—o00

We claim that for m # n and R > 0 we have

/ Pm(2)pn(2)w(2) dv(z) = 0.
Xr
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In fact, we already know that (p,,, p,) = 0. With the integral formula (|1.20))
we find

0 :/ / P (utey)pp (uter )w(utey )t~ dt du
Ktc Jo

o0
= Pm(ucy)pp(ucy) du - w(tey ) tmTmrrA=l qe,
Kk 0

Using the integral formula (A.1]) we find that the second factor is a product
of Gamma functions and never vanishes. Therefore the first factor has to
vanish. But then the same calculation yields

/ P (2)m (2)e(2) dr(2)
Xr

o R
= / P (uct)pn(ucy) du - / w(tey ) tmTm A=l g = 0.
KL¢ 0

We then obtain that

Now we can interchange the limits since the right hand side converges ab-
solutely. This yields

o
> lpml? < o0
m=0

which is nothing else but the convergence of the series Y ~°_; pr, in F(X). O

2.4 The reproducing kernel

We can now calculate the reproducing kernel of the Hilbert space F (X).
For this we first calculate the reproducing kernels on the finite-dimensional
subspaces P (X).

Proposition 2.9. The reproducing kernel K™ (z,w) of the Hilbert space
P™(X) is given by

_ 1
A (N,

Proof. Write K'(z) = K™ (z,w). We use the Fischer inner product to show
that p(w) = [p,K}] = p(B)K(42)|,=o for any polynomial p € P™(X).
For this we note that by the action of the Bessel operator on the
polynomials (z|w)* is given by

K™ (z,w) (z|lw)™, z,w e X.

B.(z|w)* = k(A + k — 1) (z|w)* 1w.
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Now suppose p is a monomial, i.e. p(z) =[]}, (a;]2) with a; € Vc. Tterat-

ing (1.24]) we obtain

[p, (—[)™] = p(B)(4z[w)™|,_y = 4™ | [ ] (a;1B) | (z[w)™
j=1 z=0
:4m(m(m— 1)---1)(()\+m— 1)(>\+m—2)---)\> IT (a;lw)
j=1
=4"m!(N)mp(w). O

We give a closed formula of the reproducing kernel of F(X) in terms of
the renormalized I-Bessel function I,(z) = (5) “Ia(2) (see Appendix .

Theorem 2.10. The reproducing kernel K(z,w) of the Hilbert space .7::(X)
s given by

K(z,w) = T\ -1/ (z[w)), z,w e X.

Proof. By the previous result K™(z,w) is the reproducing kernel of P (X).
Further we know by Corollary that the spaces P™(X) are pairwise or-
thogonal. Therefore by [24, Proposition 1.1.8], the sum

DKM (ew) = 3 g ()™ = T (/).
m=0 m=0 m

converges pointwise to the reproducing kernel K(z, w) of the direct Hilbert

sum P(X) = P,._, P™(X). O

The following consequence is a standard result for reproducing kernel
spaces and can e.g. be found in [24], page 9].

Corollary 2.11. For every F € f(X) and every z € X we have
1
[F(2)] <K(z, 2)2||F].

2.5 Unitary action on the Fock space

In Subsection we have already verified that the complexification dn¢ of
the action dm defines a Lie algebra representation on C*°(X) by polynomial
differential operators in z. Thus the action dmc preserves the subspace P(X)
of holomorphic polynomials. We shall define the action, to be denoted by dp,
as the conjugation of dmc by the Cayley transform ¢ € Int(gc) introduced

in .
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Definition 2.12. On P(X) we define a g-action dp by
dp := dmcoec. (2.3)
By the formulae ([1.4)), (1.5) and (|1.6]), this definition amounts to

dp(a,0,0) = drc(§,vV—1L(a), a),
dp(0, L(a) + D,0) = drc(v—1%, D, —v—1a),
dp(0,0,a) = drc(§, —v—1L(a),a),
for a € V and D € aut(V) in terms of the Jordan algebra.

Remark 2.13. By Lemmal[L.2] the decomposition of ( dp, P(X)) into &-types
equals the decomposition of (dnc, P(X)) into [-types. The action of [ under
dm is induced by the geometric action of L on the orbit X = L¢ - ¢; up to
multiplication by a character. In particular, P(X) is ¢-finite via dp. In view
of Remark P(X) decomposes into E-types as follows:

PX) =P P(X).
m=0

The unique (up to scalar) £-invariant vector in the £-type P™(X) is the m-th
power of the trace:

U, (z) :=tr(z)™.

The sly-triple (E, F, H) = (¢ 'E, ¢ 'F,¢" H) acts on P(X) by

dp(E) = drc(E) = v/ —1tr(z),
dp(H) = drc(H) = 2E + 7\
dp(F) = dmc(F) = V=18,

where £ = (x]a%) is the Euler operator and Be the identity component
of the Bessel operator (see ((1.23)). Since P"(X) consists of homogeneous
polynomials of degree m, we have

dp(H)|pm(z) = 2m + 7. (2.4)

Then it is easy to see the following mapping properties of the sl acting on
the &-types:

dp(E) : P™(X) — P (X), (2.5)

dp(F) : P™(X) — P L(X). (2.6)

Let us compute how they act on W,,:
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Lemma 2.14. For z € X and m € N we have

dp(E)tr(2)™ = v/—1tr(z)™ 1,
dp(H)tr(2)™ = (rA + 2m)tr™(z2),
dp(F)tr(2)™ = m(rA +m — 1)v/—1tr(z)™ .

Proof. Since tr(z) = (z|e) and %(z]e) = e, we have

Betr(2)™ = m(m — D)tr(2)"2(P(e)z|e) + mAtr(z)™ (e|e)
=m(% +m— Dtr(2)™ .
The other statement for dp(E) and dp(H) are clear. O

We are ready to give two basic properties of the (g, £)-module P(X) via
dp, namely, Proposition and Lemma [2.14]

Proposition 2.15. P(X) is an irreducible (g, t)-module.
Proof. By Remark the ¢-type decomposition of P(X) is given by

PX) = P P"(X).
m=0

Therefore it suffices to show that for each m € N there exists a vector
v € P™(X) and X,Y € g¢ such that 0 # dp(X)v € P 1(X) (m > 1)
and 0 # dp(Y)v € P™TH(X). But this follows immediately from Lemma
214 O

Proposition 2.16. The (g, t)-module P(X) is infinitesimally unitary with
respect to the L?-inner product (—,—).

Proof. Using Proposition[2.5it is immediate that dp(a,0,a)and dp(0, L(a),0),
a € V, act on P(X) by skew-symmetric operators. It remains to con-
sider dp(a, D, —a) for a € V and D € ¢ = aut(V). Then dp(a, D, —a) =
dre(0, D + 2¢/—1L(a), 0).

(a) We first treat the case of dp(0,D,0) = drc(0,D,0), D € €. Using
Proposition [I.4] we have

/ dp(0, D,0)F(2) - G(2)w(z) dv(z) = —/ F(z)- dp(0,D,0)(G(2)w(z)) dv(z).
X X

Since w(z) is invariant under K we have dp(0,D,0)w(z) = 0 and
hence dp(0, D,0) is skew-symmetric.
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(b) Now consider dp(a,0, —a) = drc(0,2v/—1L(a),0) = 2v/—1dnc(0, L(a),0).
It suffices to show that dnc(0,L(a),0) = D, + % is symmetric with
respect to the inner product in L?(X,wdv). Using Proposition we
find that

/X dmc(0, L(a),0)F(z) - G(2)w(z) dv(z)
_ /X F(2) - dme(0, L(a), 0)(G(=)w(z)) du(2).

Since G(z) is antiholomorphic, we have D,.G(z) = 0 and hence

. /X F(2)G(2) - dne(0, L(a), 0)w(z) du(2).

Now, dnc(0,L(a),0)w(z) = dmc(0,L(a),0)w(z). In fact, w(z) =
#(2|Z) with ¢ € C*°(R) real-valued and hence

Da:w(z) = (az]2)¢/(2[2) = (azl2)¢'(2]7)
= (Z|az)¢'(2|Z) = Dyw(2).

Therefore we obtain

/X dmc(0, L(a),0)F(2) - G(z)w(z) dv(z)

_ - /X F(2)G(z) - drc(0, L(a), 0)w(2) du(z)

_ /X F()G(z) - dre(0, L(a), 0)w(z) du(z)

and the same argument as in the beginning, interchanging F' and G,
shows that

F(2) - dmc(0, L(a),0)G(2)w(z) dv(z)

I
= /XF(Z) - dmc(0, L(a),0)G(2)w(z) dv(z).

Hence, also dp(a,0, —a) is skew-adjoint and the proof is complete. [

Theorem 2.17. The (g, £)-module P(X) integrates to an irreducible unitary
representation p of the universal cover G of G on F(X).

(1) Forr > 1 this representation factors to a finite cover GY of G given by
GV := G/T, where T = exp(knZ(e,0,—e)) and k € Ny is an integer
such that k% = k™ € 7.
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(2) Forr =1 this representation factors to a finite cover of G = PSL(2,R)
if and only if A € Q. In this case, a finite cover G¥ of G to which
P(X) integrates is given by G¥ := G /T, where T’ = exp(knZ(e,0, —e))
and k € N is an integer such that k% €.

Proof. By the previous results it only remains to check in which cases the
minimal £-type P%(X) = C1 integrates to a finite cover. Since the center of
t is given by Z(¢) = R(e,0,—e) and ¢ = Z(¢) & [¢, ] with [¢, €] semisimple,
it suffices to check the action of Z (). The ¢-action on 1 is given by

dp(a, D, —a)1 = dnc(0, D +2v/—1L(a),0)1 = %T&«@ML(am
= \/—1(ale)1.
Therefore, the center Z(£) = R(e, 0, —e) acts by
dp(e,0,—e)1 = rAy/—11.

m(e,0,—e)

In K we have e = 1 and hence, the claim follows. ]

Remark 2.18. The finite cover G¥ of G constructed in Theorem may
not be minimal with the property that dp integrates to a representation of
it. The minimal cover of G to which dp integrates is determined in [12]
Theorem 2.30].

Remark 2.19. The reproducing kernel of the Fock space and the density
w(z) for the measure on X only depend on A\ = % which is constant for
the series g = sp(k,R) (d = 1), g = su(k,k) (d = 2) and g = so*(4k)
(d = 4) and therefore should give also a Fock model for the corresponding
infinite-dimensional groups (see [25] for the Schrédinger models).

2.6 Action of the sl and harmonic polynomials

Let
H™(X) :=={p e P"™(X) : Bep =0}

be the space of harmonic polynomials on X. Note that since Z C X is totally

real, the restriction to Z defines an isomorphism H™(X) — H™(Z), where
H™(E) was defined in Subsection Therefore H™(X) is an irreducible
representation of the compact group Zgv(s).

Remark 2.20. For V = R the one-dimensional Jordan algebra we have
2
X =C* and Be = z% + )\%. Hence, all solutions u € C*°(X) of Beu =0
are given by
Clz1_>‘ + Cy for A # 1,
u(z) =
Ciln(z)+Cy for A =1,
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C1,Cy € R. Since A > 0, only the constant functions are polynomial solu-
tions and therefore H™(X) = 0 for m > 0 and H°(X) = C1.

Proposition 2.21. Every polynomial p € P(X) decomposes uniquely into

where Ry, € H™*(X) is a harmonic polynomial. The polynomials Ry,
are explicitly given by

mk

LirA+2m —2K)I'(rA+2m —2k —j — 1)
JUEIT(rA +2m — B)T(rA +2m — 2k — 1)

tr/ (z)BEp.
]:0

In particular, we have

PX) = P tr"(2)H™(X).

k,m=0

Proof. The proof works in the same way as in [5, proof of Theorem 5.1]. We
first show uniqueness by induction on m. For this assume

> " (2) g = 0. (2.7)
for hpy,_1, € H™*(X). If m = 0 then trivially hg = 0 and we are done. Now
suppose m > 0. Applying BJ" to both sides yields, using Lemma [T.8}

m!(rA+m—1)---(rA\)hg =0,

whence hg = 0. Then (2.7 reads

m—1

k=

o

and the induction hypothesis applies.
To show the existence of the claimed decomposition as well as the explicit
formula, we proceed in three steps:

(1) Define

m
Qop =Y _ qmjtr? (2)Blp,
=0
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where

C(rA+2m—j—1)
JT(rA+2m—1)

dm,j ‘= (_l)j

Then Qop € H™(X). In fact, using Lemma we have

BeQop = Z Gmj (F(rX +2(m — ) + 5 — Dt/ "1 (2)Blp + tr7 (2) BT p)

<.
Il
o

I
NE

GOrA+2m — 3§ — D)gmj + @m.j—1) tr? " H(2)Blp = 0.

.
Il
—

We now define operators Q by applying Qo to BEp

??‘

m—

Qkp = QO gm— kjtr JB§+jp‘
=0

.

If we denote ay; := ¢— j—k for k=0,...,m and j = k,...,m, then
ao0 @1 ‘- Aom p Qop
0 aipo -+ aim tr(z)Bep tr(z)Q1p
0 - 0 amm tr(z)™BI'p tr(2)™Qmp
Since a = 1, the matrix on the left hand side is invertible and in
particular there exist constants by, ..., b, which are independent of p
such that
m
p= Z brtr(2)*Qpp. (2.8)
k=0

Since Qrp € H™ *(X) this shows the existence of the claimed decom-
position with h,,_r = bpQrp.
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(3) We now prove the explicit formula for h,,_. For this we have to find
the constants by, . . ., by,. If we substitute tr(z)*Qgp for p in ([2.8)) then
we obtain

tr(2)*Qrp = Z bitr(2)7Q;(tr(2)*Qrp).
§=0
Since we have already proved uniqueness, we find
tr(2)*Qrp = bitr(2)*Qr (tr(2)*Qrp)
and hence

Qrp = brQr(tr(2)*Qrp)
m—k

=0k > Gmkytr(2) BEH (t(2)Qrp).
=0

Applying Lemma [I.§8 again gives

E'T(rA+2m — k)
L(rA 4+ 2m — 2k)

Qkp-

= brGm—k,0 -

There are clearly polynomials p € P™(X) with Qxp # 0, e.g. for
tr(z)*q, ¢ € H™(X) it follows from the uniqueness that ¢ = b.Qg(tr(2)*q).

Hence,
b — L(rA+2m — 2k)
FTRIT(rA + 2m — k)
and the claimed formula for h,,_; = bp.Qrp follows. O

Recall from Remark that P™(X) ~ Pm™0--0)(V¢). Denote by dm
the dimension of P™ (V). Then, using the results of [8, Section XIV.5], we
obtain

(%) (1A )
dm = d(m,(),--wo) - W

For convenience we also put d_j := 0. The following dimension formula for
H™(X) is now immediate with Proposition

Corollary 2.22.
dim H"™(X) = dy, — dyp—1-
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Example 2.23. For V = Sym(k,R) we have r = k,d=1and n = %(k‘—l—l).
Hence, \ = % and

BB () _ <n+2m— 1) _ <n+2m— 1)

Ay = =2
m 2m n—1

2
m! (3)m (2m)!

which is exactly the dimension of the space of homogeneous polynomials of
degree 2m in n variables. For the dimension of H™(X) we obtain

i ) = <n+2m—1) - <n+2m—3>

n—1 n—1
which is the well-known formula for the dimension of H?™(R").

For fixed p € H™(X) the span of the polynomials tr(z)*p, k € N, is
invariant under the action of s[(2,R) by Lemma and Lemma and
defines an irreducible representation of sl(2, R) of lowest weight rA+2m. We
denote the corresponding representation on W, 4om := span{tr(z)k 1k e N}

by pra+om. With Lemma [2.14 and Lemma we find

dpesam(B)rH(2) = VoTtrh+(z),

Aprasam (H)*(2) = (rA + 2m + 2k)tr"(2),

dprasom (F)trF(2) = k(rA + 2m + k — 1)yV/=1tr" 71 (2).
The lowest weight vector is given by tr(z) = 1. Putting things together
gives:

Theorem 2.24. Under the action of (s,€") the representation (dp,P(X))
decomposes as

P(X) ~ @D Wirgam B H™(X),
m=0

where Wyx1om denotes the irreducible representation of s ~ sl(2,R) of lowest
weight A + 2m and H™(X) is an irreducible representation of Zgv(s).

Remark 2.25. The corresponding decomposition in the Schrodinger model
was given in Theorem

Using the theory of spherical harmonics we can now prove that the com-
pletion F(X) of the space of polynomials and the intrinsically defined Fock

space F(X) (see (2.1)) agree.
Theorem 2.26. We have F(X) = F(X).
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Proof. We first treat the case V = R. Here we have X = C* with norm
given by

||F||2=const-/ |F(2)Pw(z)]2[2AD dz.
C

Using the asymptotic behavior of the K-Bessel function near z = 0 (see
Appendix we find that in the Laurent expansion near z = 0 of function
F € F(X) all negative terms have to vanish and hence F' € O(C). By
Proposition such a function already belongs to F(X) and the proof is
complete.

Now suppose that r > 1. Put K’ = Z(K") x K”, where KV C G denotes
the maximal compact subgroup of GV corresponding to €. We note that
Z(KY) ~ SO(2) is given by {exp(t(E — F)) : t € R} and that Z(K") is
the intersection of K and the analytic subgroup of GV with Lie algebra
s ~ s[(2,R). Then by Theorem we have

F(X) g = F(X)gv = P(X).

Note that by Proposition [2.21] we further know that

PX) = P " (2)H™(X).

k,m=0

Now, the representation p|gs on F (X) (see Theorem | extends to a
unitary K'-representation on F(X) given by

(exp(t(E — F)), k) - F(z) = e MW TRV 1k 12), zeX.

We now calculate the K’-finite vectors in F(X) by finding the K'-finite
vectors in O(X) and then intersecting with L?(X,w dv). Note that the polar
coordinates map

¢:R. xSSECV, (r,z) — ru,
extends to a holomorphic embedding
qgc : C* xS¢c - X C Vg, (s,2) — sz,

onto the open subset {z € X : tr(z) # 0} C X, where S¢ = K&/(KE&)., C Vg,
Ké C G denoting the complexification of K L'in Ge. Then gc induces a
restriction map

gt O(X) — O(C* x S¢).
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Under this restriction the Lie algebra £} acts on O(Sc) via vector fields on
Sc and so0(2,C) acts by the Euler operator on O(C*). Therefore we obtain
the decomposition

O(C* x S¢)ir = D P tr(2)" H™(X).

k€Z m=0

We claim that tr(z)* only extends to a holomorphic function on X if & > 0.
For this we show that there exists z € X with tr(z) = 0. (Note that the
following argument only works for » > 1.) Let xg € Vi2 be any element
with |zo|> = 2. Then 23 = ¢; + c2. We claim that z = ¢; + v/ —1z¢ —
¢z € X, but clearly tr(z) = 0. To show that z € X we prove that z =
exp(2v/—1co0xg)er € Le - ¢; = X. In fact, we find

1
(CQD.T())Cl = 5%0,

(co0xzg)zo = 2,
(CQDJI())CQ =0

and the claim follows. Hence, we obtain

FX)w = P tr(2)"H"(X) = FX)xe
k,m=0
and therefore its completions F(X) and F(X) have to agree. O

From now on we only use the notation F(X) for the Fock space. In
Section 3| we shall give another equivalent definition (an ‘extrinsic definition’
with respect to the embedding X — V).

3 The Segal-Bargmann transform

Generalizing the classical Segal-Bargmann transform, we explicitly con-
struct an intertwining operator Bz between the Schrodinger model (Section
and the Fock model (Section [2) of the minimal representation of GV in
terms of its integral kernel. As an application, we establish the equivalence
of three different definitions for the Fock space F(X), including an ‘intrinsic
one’ and an ‘extrinsic one’ (Corollary . Further the Segal-Bargmann
transform Bz brings us naturally to a generalization of the classical Hermite
polynomials as the preimages of the monomials in the Fock model F(X).

3.1 Definition and properties

Let I,(t) := (£)7?I1.(t) be the renormalized I-Bessel function. Then I,(t)
is an entire function on C (see Appendix [A.1)). We set an entire function B
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on C by B
B(t) :== T\ _1(2V1). (3.1)

Clearly we have
B(0) = 1.

For x,z € V¢, we write simply B(x|z) = B((z|z)). We are ready to define
an integral transform Bz : C.(E) — O(V¢) by

B=i(z) := e~ 217(2) / B(xz]2)e "y (z) du(z) zeX, (3.2)

for a compactly supported continuous function ¢ € C.(Z). We call Bz is
the Segal-Bargmann transform.

Lemma 3.1. The Segal-Bargmann transform Bz is well-defined as a linear
map L*(Z) — O(V).

Proof. Since the kernel function e_%tr(z)B(a:\z)e*tr(x) is obviously analytic

in z, it suffices to show that its L?-norm in z has a uniform bound on
2]l < R for an arbitrary fixed R > 0. Using the asymptotic behaviour of
the I-Bessel function I, (t) as t — oo (see Appendix |A.1)) we obtain

1-2X\

(B < [t

62\t|% < |t|max(07 1_42A)62|t|% )
Since B(t) is analytic up to ¢ = 0, we have a uniform bound on C:
1
[BE)| S (L [0 M,

Then for z € E, z € V¢ with ||z]] < R, we find

—Lti(2) ) max(0,1522)) 2]2| [z|2 —[a]
le 2" B(z|z)e | < 1+ |(z]2)] i )e

< (1 + |Rx‘max(0,112)‘))62R%\x|%—|x\
which is L? in z with norm independent of z and the claim follows. O

Next, we show that Bz intertwines the action dm of g on the space
L?(Z)*° of smooth vectors with the action dp on F(X)>.

Theorem 3.2. For any X € g,
Bz o dn(X) = dp(X)oBz  on L*(E)*™.

Proof. Since dp = dmc o ¢ by definition, Theorem can be restated in
terms of the Jordan algebra as follows:

Bz o dm(a,0,0) = dmc(g, v—1L(a),a) o Bz,

Bz o dn(0, L(a) + D,0) = dnc(v—1%, D, —v—1a) o Bz,
Bz o dn(0,0,a) = dnc(§, —v—1L(a),a) o Bz,
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for any a € V and D € aut(V). The verification of these formulae is an
easy, though lengthy calculation. We outline the method and the crucial
steps. First note that the operators dn(X), X € g, are skew-symmetric on
L*(Z, dp). Therefore we have

(B= o dn(X)1)(2) = e 2O [ Blalz)e " (dr(X) o) du(o)

S 1) / dr(X) [Balz)e @) f(2) dpa).

Using the explicit formulas for the action d7(X) and especially for the action
of X € m the product rule for the Bessel operator (see Lemma , the
action of dz(X) on B(z|z)e~"®) can be computed. Further, we know that
B,B(x|z) = zB(z|z) and B,B(x|z) = 2B(x|z). The rest is standard. O

Next we examine how Bz acts on the lowest weight e-type. By a little
abuse of notation that will be justified soon, we set

Vg := B=vo, (3.3)
where we recall from ((1.17) that ¢g(x) = e~ tr(z)

Lemma 3.3. ¥((0) = 1.
Proof. From (|1.18)) we have

o(0) = B(0) [ e 2@ dpu(x). O

Proposition 3.4. (1) Bzyy = 1.
(2) Bz induces a (g, &)-isomorphism between L*(Z)e and P(X).

Proof. (1) First we regard ¥ as a holomorphic function on V¢. Since the
action on the Fock model is given by dp = dmc o ¢ and the Cayley
transform ¢ sends € to a totally real subspace of [¢ by

t—lc,(a,D,—a) — D+ 2v—1L(a).

Thorem [3.2]implies that Uy is [c-invariant. Hence, it has to be constant
on every Lc-orbit. Since ¥q is holomorphic on V¢ and Vi decomposes
into finitely many Lc-orbits, it follows that Wy is constant on V.
Hence the first statement follows from Lemma
(2) We know that the underlying (g, £)-module L?(Z)¢ of the Schrodinger
model (, L*(Z)) is irreducible. Further, P(X) is an irreducible (g, €)-
module by Proposition Since Bz is non-zero and Bz intertwines
the actions dm and dp, Bz gives an isomorphism of (g, ¢)-modules.
O
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Theorem 3.5. The Segal-Bargmann transform Bz is a unitary isomor-
phism L*(Z) — F(X).

Proof. It only remains to show that Bz is isometric between L?(Z)e and
P(X), because L?(Z) C L*(Z) and P(X) C F(X) are dense.

Since both L?(Z) and P(X) are irreducible, infinitesimally unitary (g, €)-
modules, Bz is a scalar multiple of a unitary operator. Since

(L) r2xwav) = 1 = (Y0, %0) 12(=, dp)>»
Bz must be a unitary operator by Proposition [3.4] O

Corollary 3.6. The inverse Segal-Bargmann transform is given by

BZ!F(z) = e~ %@ /X B(z[2)e 2" @ F(2)w(z) dv(z)

Proof.
(BZ'F,¢) = (F,Bz=v)
- /X F(2)B=0(z)w(2) du(2)

—/X/EF(Z)e_

:/:/Xe_%tr(z)B(£U|Z)e—tr(w)F(z)w(z)du(z)qﬁ(x)du(x) ]

N

MO Baf2)e (@) dule)w(z) du(z)

We can now use the Segal-Bargmann transform to obtain a different
description of the Fock space.

Theorem 3.7.
FX) = {F|X :Fe O(V@),/ |F(2)Pw(z) dv(z) < oo} :
X
Proof. The inclusion D holds by Proposition The other inclusion now
follows with Lemma |3.1| since Bz : L?(Z) — F(X) is an isomorphism. O

Remark 3.8. We note that the restriction map O(Vg) — O(X) is not
surjective, and therefore the above equivalence is non-trivial.

Combining Theorem [2.26] with Theorem [3.7, we have obtained three
equivalent definitions of the Fock space F(X) as follows:

Corollary 3.9. The following three subspaces are the same.

e OX)NLAX,wdv).
e The completion of P(X) in L*(X,wdv).
o {Flx: FeO(Ve)nLA(X,wdv).
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3.2 Relations with the classical Segal-Bargmann transform

In the cases V' = Herm(k,F) with F = R, C,H, we can relate our Segal—
Bargmann transform Bz directly with the classical Segal-Bargmann trans-
form by using the folding map.

As in Subsection [I.7] we let d = dimg F = 2 and define the complexifi-

cation of the folding map (1.33)) by
p(C:IFf: =FF@rC — X, z — 22"

The pc is a principal bundle with structure group Zy, C*, and SL(2,C), as
p : F¥\ {0} — = is the one with U(1;F), F = R, C, and H, respectively.
Note that the conjugation for z* = % is taken as the conjugation in F, and
not the one corresponding to the complexification F¢ = F Qg C.

Let F(C™) denote the classical Fock space on C" with respect to the
Gaussian measure e *I* dz, and B : L2(R") — F(C") the classical Segal-

Bargmann transform given by
Bu(z) = e‘éZZ/ e2z'$e_z2u(az) dz.
R

We consider the following diagram:

*

L2(E, du) L LQ(]Fk)U(l;IF) C LQ(Fk) ~ LQ(]de)

B \L]B

F(X) ————= F(FE)T0 € F(FE) = F(C™),

m

Theorem 3.10. pg o Bs is a scalar multiple of B o p*.

We shall give a proof of this theorem by comparing the integral kernels
of Bz and B. Conversely, we may use the above diagram for the definition of
the Segal-Bargmann transform for the minimal representations arising from

the Euclidean Jordan algebra V' = Herm(k,F), F =R, C or H.

Proof. The integral kernel for B o p* is obtained by integrating the kernel
of the classical Segal-Bargmann transform over U(1;F), i.e. over its orbit
S9=1 a (d — 1)-dimensional sphere, using the integral formula

/ e dw = 271'%;4_1(7“),
Sd—1 2
it amounts to a scalar multiple of the integral kernel of Bz, which is by (3.2])

T(\)e 2O (24/(z]z))e @),
Thus Theorem is proved. O
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Example 3.11. In the case F = R, we have g = sp(k,R). Then p* induces
an isomorphism L2?(Z, du) = L2,.,(R¥), the even part of the metaplectic
representation on even L2-functions on R¥, and pe induces an isomorphism
F(X) & Feven(CF) the even part of the Fock space on C¥. The kernel
function for the classical Segal Bargmann transform B : L?(R*F) — F(CF)
and that for our Segal-Bargmann transform is related by the integration of
SY (two points), namely,

e +e = (2775)(% coshr).

3.3 Generalized Hermite functions

Now let B := (e;); € V be any basis of V. For a multiindex o € N® we use
the notation

2 =[] (esl2),
j

B =] (e;1B).

J

Remark 3.12. The monomials z¢ do not form an orthogonal system in
P(X). In fact, the monomials z* are not linearly independent in P(X)
since there are polynomials that vanish on X. The space P(X) of regular
functions on X is defined to be the quotient of the space C|z] of (holomorphic)
polynomials on V¢ by the ideal generated by all polynomials vanishing on
X.

The generalized Hermite functions on Z are defined by
ha($> — etr(x)Boae—Qtr(x)’ T € E,
for « € NB. In particular, for o = 0 we have hy = 1. Note that
ha(x) = Ha(ar)e*tr(m),

where H,(z) is a polynomial of degree |a|. We call H,(x) the generalized
Hermite polynomial.

Now we can show that the Segal-Bargmann transform Bz maps the
Hermite functions h, onto the monomials z%.

Proposition 3.13. B=h, = 2.

Proof. Since the Bessel operator B is symmetric with respect to the inner
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product on L?(Z), we obtain

Beha(z) = e 2% | B(z|2)e " @ hy () du(z)

(1

— ef%tr(z) B(x]z) . Ba672tr(:r) du(l‘)

(1]

e 2tr(?) BEB(z|z) - e 2% @) dp(x)

(1]

— ¢~3t() 22 B(z]2)e 2@ dp(z)

(1

= za\I/()(Z). ]

Corollary 3.14. Each €-type W, C L*(Z, du) is spanned by the functions
ha for || =m.

Proof. Since in the Fock model each ¢-type P"(X) is spanned by the mono-
mials z% for |a| = m this is clear by the previous theorem. O

Remark 3.15. Suppose, the basis B = (e;); is chosen such that e; = e is
the identity of the Jordan algebra. Then for a = (m,0...,0) we obtain

R, (I) _ etr(x)BmefQ tr(z) )

e

Further,
2% =tr(z)™

and hence, z* is the unique (up to scalar) £-invariant vector in the &-type
P™(X). Since Bz is an intertwining operator and Bzh, = 2, we obtain
that h,, is the unique (up to scalar) £-invariant vector in the &-type W,,. By
[12] we know that also the Laguerre function

O (@) = e "L (2 tr(a))

is a €-invariant vector in the £-type W,, and hence, h, and E,)‘n have to be
proportional to each other, which means that

@ Bme=26(@) — congt - e W@ LA (2tr(x)).

4 The unitary inversion operator

The Schrédinger model of the minimal representation 7 on L?(Z) has an
advantage that the representation space is simple, namely, it is the Hilbert
space consisting of arbitrary L2-functions on Z. Another advantage is that
the group action of a maximal parabolic subgroup is also simple. Thus the
unitary inversion operator F= (see for the definition below) plays a
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key role in the global action of GV on L?(Z). See [I8, Chapter 1] for a com-
parison of different models of minimal representations. The operator F= is
essentially the Euclidean Fourier transform on the metaplectic representa-
tion L2(R") for g = sp(n,R). The program to find the integral kernel of the
unitary inversion operator Fz has been carried out in [I7] for g = s0(2,n)
and in [I8] also for a non-Hermitian Lie algebra g = so(p, ¢) (p+ ¢ even) in
terms of the Bessel function (or the ‘Bessel distribution’). In this section we
take another approach to find an explicit integral kernel of F= as an appli-
cation of the results in Section [3| on the Segal-Bargmann transform under
the assumption that G is a simple Hermitian Lie group of tube type.

In the framework of Jordan algebras, the unitary inversion operator is
the action 7(7) of the inversion element j = exps(5(e,0,—e)) € G up to a
phase factor (see [12, Section 3.3]). More precisely, we set

Fzi=e " _1%7r(}). (4.1)
The operator Fz is unitary on L*(Z, du) of order 2, i.e. F2 = id.
Let Jo(2) := (§)"“Ja(2) be the renormalized J-Bessel function, which

is an entire function on C (see Appendix [A.1]). We define an entire function
F on C by

F(z) = 27" B(—z) = 27" T(\) Ja_1(2v/Z) (4.2)

and write F(z|y) = F((z|y)), z,y € E, for short.

Denote by L?(Z)¢ the space of g-finite vectors of L2(Z). We know that
L%(Z)s = P(Z)e "), where P(Z) denotes the space of restrictions of poly-
nomials on V' to =.

Proposition 4.1. The formula

Th(z) = / F(alyyi(y) du(y)

defines an operator L*(Z)y — C™®(Z).

Proof. Use the integral formula and the asymptotic behaviour of
the J-Bessel function ja(z) (see Appendix to show that the integral
converges uniformly for z in a bounded subset and ¢(z) = p(x)e ®),
p € P(2). O

Proposition 4.2. The operator T extends to a unitary operator T : L*(E) —
L3(Z) with T+o = . Further, T leaves L*(Z); invariant and intertwines
the g-action with the g-action composed with Ad(j) : g — g.

Proof. By Proposition[I.11]the operator 7 intertwines the Bessel operator B
with the coordinate multiplication —z. Since both actions together generate
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the g-action the intertwining property follows. Further, for x € 2 C X we
find

Too(z) = / Flaly)e ™ dp(y)

_ /_ B(—(22|y))e=2"®) du(y)
= e @ Bgyg(—22)

_ e—tr(x) )

Since L%(Z)y = dn(U(g))vbo, it follows that 7 maps L?(Z); into L?(Z)e.

Now, since invariant Hermitian forms on L?(Z) are unique up to a scalar,
we find that 7 is a unitary isomorphism. O

Theorem 4.3. Fz=17.

Proof. By the previous proposition F= o 7! extends to a unitary isomor-
phism L?(Z) — L?(Z) which intertwines the g-action. Therefore by Schur’s
Lemma, F= is a scalar multiple of 7. Since F=1g = g = T 1o this gives

the claim. 0

Remark 4.4. Since the group G is generated by j and a maximal parabolic
subgroup whose action in the L?-model is simple, the action of j in the
L?-model is of special interest. For V = Sym(k,R), i.e. g = sp(k,R),
the operator Fz is basically the Euclidean Fourier transform, whereas for
V =RVl ie. g =s50(2,k), the integral kernel of F= was first calculated in
Kobayashi-Mano [16], and generalized to the non-Euclidean case RP~1:4~1
in [I§]. The integral kernel of F= may involve distributions with singular
support for non-Hermitian group O(p, q) (p,q > 2). For the case V =R, i.e.
g = sl(2,R), the operator F= depends on the parameter A € (0,00) and is
the Hankel transform studied in B. Kostant [21].

Remark 4.5. Since the functions x — F(z|y), y € E, are eigenfunctions
of the Bessel operator, the unitary inversion operator gives an expansion of

—

any function 1 € L?(Z) into eigenfunctions of the Bessel operator.
Define (—1)* on F(X) by (—1)*F(z) = F(—=z).

Proposition 4.6.
BE o .7:5 = (—1)* OBE.

Proof. We have dp(t(e,0,—e)) = dmc(2tv/=1(0,1,0)) = 2¢tv/=1(D, + 3).
Therefore we obtain

p(et(e,O,fe))F(Z) _ er)\\/jltF(GZt\/le).
For t = § we obtain the action of j which is given by V1% (—=1)*. O
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Proposition 4.7.
Feha = (=1)1%h,.

Proof. Since Bzhg = 2* and (—2)® = (—1)l*2® the claim follows. O
Theorem 4.8 (Bochner type identity). For any p € H™(S) we have

F= (pe—tr(x)) _ emwﬁpe—tr(x) ]

Proof. Write Fz = e "3V 1ezV-1tr@)=Be)  For p € H™(S) we calculate
with Lemma [L.5

—tr(z)
Be(pe—tr(gc)) _ Bepe—tr(;v) +2 (P ((9]9 Oe )

ox’ Oz

e) + pBee—tr(a:)

and since Bep = 0, 66:;;(1) = —¢"@e and Bee @) = (tr(z) — rA)e @),

we obtain

Ip —tr(x)
= -2 + —
(:z: - ) (tr(z) —rA)pe

= (tr(x) — rA — 2m)pe @),

because (:L‘|8%) = & is the Euler operator which acts on P,,(S) by the scalar
m. Now it follows that

(tr(z) — Be)(pe ")) = (rA 4 2m)pe @),

Exponentiating this gives the claim. O

5 Heat kernel and Segal-Bargmann transform

We recall from Lemma [1.6| that the second order differential operator Be =
(e|B) is an elliptic, self-adjoint operator on L?(Z, du). In this section, we
consider the corresponding heat equation

(Be — 0¢)u = 0. (5.1)
We find the heat kernel (5.2]) to the equation (5.1)), and see that the Segal—
Bargmann transform can be obtained also by using the ‘restriction principle’.
5.1 The heat equation and the heat kernel

Recall the function B(z|w), z,w € X, from (3.1) which occurs in the kernel
of the Segal-Bargmann transform and the unitary inversion operator. The
following reproducing property will be needed later:
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Lemma 5.1. For xz € Z and z € X the following identity holds

277“)\

e~ "OB(2|6) B(—(2[€)) du(€) = eI B(—(2]2)).

m\

Proof. For any ¢ € C°(Z) and z € X we have
BeFat(z) = 4 / Blale)e @ Fap(e) du(z)
=24 [ Bals) B(aly)e () duty) duta)
=2 300 [ OB ala) B (aly) du(o)(v) du(v)
On the other hand, by Proposition [£.6] we obtain

BeFzp(z) = By (-2
_62“(@/3 (yl2))e™ " @ (y) duly).

Therefore the integral kernels have to coincide, which gives

—-Tr —l r(z —tir{x l r(z —1r
2 "¢ / @) B(a]2) B(— (2ly)) dulz) = ¢4 B(— (y]2))e ).

This is the claimed formula. O

We define
F(t,l‘,y) — (Qt)—r)\e—%(tr(x)-Ftr(y))B <%‘ %) , t>0,z,y € E. (52)

Note that T'(t,z,y) > 0 for t > 0 and z,y € Z. We now show that I'(¢, z,y)
is the heat kernel to the heat equation (5.1]).

Theorem 5.2. The kernel I'(t,z,y) has the following properties:

(1) Dt z,y) =272 [ge " O B(—(2[€)) B(—(y1€)) du(§).

@) LTtn ) =1

(3) Jo U5, 2)T (b, 2) dp(z) = T +1,2,3).

(4) For every y € Z the function T'(t,z,y) solves the heat equation

1

The proof is standard (e.g. [28] for the Dunkl-Laplacian). For the sake
of completeness, we give a proof.

Proof. (1) This is immediate from Lemma
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(2) We have
Lr(ta Z, y) d:“’(@/) = (Qt)_r)‘e_itr(l’)/

and substituting 2z = £ we obtain

(3) We substitute (1) for the first factor in the integrand. This yields
/ P(s,2, 2)0(t,y, 2) dp(2)
07 [ [ OB (ale) B=(el)e 0O (Y] 2) aue) ducz)
and substituting z = tn gives
s [ (L B-e)8 (Y] ) duta) e 0O B~ (ole)) due).

Now Lemma [5.1] gives

_ 2%/ e (OO B(—(2]€)) B(—(y]€)) dpu(€)

1

=T(s+t,z,y)

by (1) again.
(4) This follows from (1) by differentiating under the integral. O

The kernel I'(¢, z, y) can be used to construct solutions to the heat equa-
tion (5.1). In fact, the heat semigroup etPe, t > 0, is explicitly given in
terms of the integral kernel I'(¢, z,y) as follows:

etBe f(7) = / It 2, 9) f(y) du(y).

Using this observation we now interpret the Segal-Bargmann transform
purely in terms of the slo-triple (E, F, H) which was introduced in ({1.1)).
Theorem 5.3.

B= _2r)\62tr68e _276—5\/7d7r( ) —\/—71d7r(F)‘

Proof. 1t is clear by definition that

Bef(z) = 2730 / I(L, 2 2)f(2) du(a).

Since dm(F) = v/—1tr(z) and dn(F) = /—1B8e the claimed formula holds.
O
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5.2 The Segal-Bargmann transform with the heat kernel

The formula R=F(x) =€ —gtr@) p F(z) defines an operator P(X) — L?(Z) and
hence we obtain a densely defined unbounded operator Rz : F(X) — L%(Z).
Therefore it makes sense to consider its adjoint RE : L3(Z) — F(X) as a
densely defined unbounded operator.

Proposition 5.4. For f € L?(Z) we have

R=R:f(z) = 2%

T

[(2,2,y) f(y) du(y)

and R=RLf € L?(Z). This defines a continuous linear operator with oper-
ator norm |R=RL|| < 22
Proof. We have
Rzf(z) = (RzfIKz)
= <f’REKZ>

_ / F(y)R=K-(y) duy)

_ /EB (%‘ %) =20 f(y) du(y)

_ 2zme;tr(z)/p(2,z,y)f(y) d(y)

and the formula follows. Now, Holder’s inequality gives

Lire.emsmia < [ r(z,ac,wdu(y))é ([ r(z,x,yﬂf(y)\?du(y)f

= (/EF(Q,az,y)U(y”QdM(y))%

where we have used Theorem [5.2/(2). Then we find, using Fubini’s theorem:
2

/ 02, 2,9)f(y) du(y)| dp(z)
24r)\// (2,2,9)|f(y ]2d,u(y) dp(z)
=2 [ 1) P duty) = 2717

and the proof is complete. ]

IR=REf|* = 2

By Proposition the operator R=RZ is a continuous, positive opera-
tor. Hence the operator |Rz| := \/R=zRE is well-defined. We now show that
the Segal-Bargmann transform can be constructed only from the restriction
map R=.
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Proposition 5.5. RL = Bz o \/R=RE.

Proof. The previous proposition and the properties of the heat kernel yield
[R=|f(z) = /R=Rz f(x)
=2 [ 10,0) () duly).

Hence, we obtain

[1

6 Example: g =s0(2,n)

We study the example g = s0(2,n) in more detail and discuss also the
relation with the results in [16] [17].

6.1 The Schrodinger model
Let V = RY"~! be the Euclidean Jordan algebra with multiplication

-y =(ziy1 +2 -y, 2y + i),

for r = (21,2'), y = (y1,9') € RY" 1 = R@ R" 1. The unit element is
given by e = (1,0,...,0). Then L = Str(V)o ~ Ry x SO(1,n — 1)p and
G = Co(V)y is the adjoint group of so0(2,n).

Take the primitive idempotent ¢; = (1,0,---,0,1). The L-orbit =
through the primitive element ¢; in V is given by the future light cone in
the Minkowski space R1"~1:

E={recRV" g =/ 22+ 422 >0},
The trace form of RM~! as a Jordan algebra takes the form

(zly) = 2(z1p1 + (') = 4(", %)

on =, where (, ) denotes the standard inner product on R"~!. Since the
volume of the Euclidean sphere in R"~! of radius % is given by
n—1

1 272

e
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our normalization of the measure du (see (|1.11))) on the orbit = is given by

n— n— n—1
= 2 ?T(T)r"*?’drdw (6.1)

du =
o Tn—2) &
2n72
=7 "3 dr dw
F(HT)TT 2
in polar coordinates Ry x S""2 — Z, (r,w) — (r,7w). We set

+1 fori=1, " 92 L9
€ = 0= Ei—s, E = Ti—.
! {—1 for 2 < i <n, ; law? ZZ:; "Ox;

Then the Bessel operator is of the form (see [12, Proposition 2.36])

1 n
B = —4;Bi€¢

with

B; = g;x;00 — (2E—|—n—2)a{i‘,

which are exactly the fundamental differential operators P; on the isotypic
cone introduced in [I8] (1.1.3)] with the signature (ni,n2) = (1,n — 1) in

our setting here.
The unitary operator in the Schrédinger model on L?(R™ 1, &—‘T) cor-

responding to the inversion element wo = exp(3 < 1 _0 ) was obtained

previously by Kobayashi—-Mano as the integral transform against the follow-

ing kernel function: N
Jn—a (4/ (2,3 /
vy (6:2)
ez gt Y|
See [16, Theorem D] as a special value of the holomorphic semigroup, or
alternatively as a special case of the indefinite orthogonal group O(n; +
1,n9 + 1) with (n1,n2) = (1,n — 1) in [I8, Theorem 1.3.1].
In view of ; = w, ! our Fourier inversion operator F= takes the form

_ mi(n=2) ~ mi(n—2)

F==e 2z w(j)=e 2z 7(wp).
Hence the kernel function (6.2) gives (of course) the same formula of the
Fourier inversion operator F= in Theorem [D| because
27AT(N) 12V (2ly)) dus(y)
=0 (") s (2020, 7)) i)
1 -~ dy
:W”?J"T_‘l@ 2($’,y’))m

by (6-1).
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6.2 The Fock model

The complex orbit X through the primitive idempotent c is given by
X={2€C":22 =254 -+ 221\ {0},

which contains = as a totally real submanifold. Put

Sx = {z€X:|z] = V2(|z1 P + - + [za[2) = 1}

12

and note that this is a compact symmetric space for the group Kc
SO(n) x U(1). In view of the polar decomposition

R-‘r X Sx = E, (Tv 77) =T,
the measure dv on E takes the form (cf. (1.20])

1
~ 22060 (n — 2)T'(2)

dv P25 dr dn

where dn denotes the unique K c-invariant measure on Sx with total volume
1. Therefore the inner product on the Fock space F(X) is given by

1 &0 —_—
F.G) = n// F(rn)Girn)r*" S drdn, F,G e F(X).
(£.6) = gspin ey o, Femae) n (X)
The Segal-Bargmann transform in Theorem [C] amounts to
on—2 ;i [ = Loy Ly 9 -3
(B=f)(2) = —= exp(—(2',2)2) Tz (4r2 (2, w)2)e” ™ frw)r™ ™ dr dw,
Tz 0 Jgn-2 2

for 2 = (21,7') € X, and f € L*(2).
The ring of regular functions on X is given by

P(X) =Cler, -, an] /(2] — 25 =+ = 23),

where (22 — 23 — - -+ — 22) denotes the ideal generated by 22 — 22 — ... — 22

Hence, the t-types P (X) are given by
P"(X) = Cpn[C" ] @ 21Cpppq [C"71]
and hence

dim P™(X) = dim C,,[C" ] + dim C,,,_1[C"]
_ <n+m2> N <n+m3>
m m—1
_(n+tm-—1 _ n+m-—3
- n n—1

= dim H™(R").
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In fact, an so(n)-equivariant isomorphism @ : P™(X) = H™(R") can be con-
structed as follows: Let p € P™(V¢), then the polynomial p(v/—1z21, 22, . . ., 2n)
has an expansion into classical spherical harmonics

|
p(V—121,22,...,2,) = Pom—ok(2) (22 + -+ -+ 22),
k=0
where hy,_or € H™ 2*(R™). Then put ®(plx) := hy,. This map is well-
defined since —z7 + 23 + - - - + 22 vanishes on X. It shows in particular that
every polynomial p € P(X) has a unique extension to a polynomial on V¢
in the kernel of the differential operator —88—22 + 3—22 4+ -+ 8—22.
27 023 0z2

wl3

A Appendix: Special Functions

A.1 Renormalized Bessel functions

Following [17, [I8], we renormalize the Bessel functions J,(z), I,(z) and
K,(z) by:

In the analysis of minimal representations, these functions appear naturally
rather than the usual Bessel functions. We refer the reader to [18| §7.2] for a
concise summary of the renormalized Bessel functions. Among others, J,(z)
and I,(z) are entire functions, Jo(v—12) = Io(2) and Jo(—2) = Ja(2),
I,(—2) = I,(z). In particular, J,(1/2) and I,(y/z) are entire functions.
Their Taylor expansions are given by

~ s —1)" "
Ja(2v/2) = ZJI“ULJ(ra)Jrl)n' ’

o
- 1
TRCNE ) Y —
(2v2) ;F(n+a+l)nlz

The function J,(z) solves the differential equation
2u” + (2a + 1)u' + 2u = 0,

whereas the functions I, (z) and Kq(z) are linear independent solutions to
the differential equation

2u” 4+ (2a+ 1)u' — zu = 0.
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The renormalized I-Bessel function (and also the corresponding J-Bessel
function) has the following asymptotic behaviour:

. 1
I0)=—

a(0) Ia+1)’
11a(2)] S ‘Z‘_a_%e‘zl as |z| — oo.

The asymptotic behaviour of the K-Bessel function is given by

% (%)72& +o(z72) ifa>0

Ko(z) ={ —log(%) +o(log(2)) ifa=0 as ¥ — 0,
@ +o0(1) ifa<0

T A,Vﬁ; TN\~ _% —x 1

Ka(x)—7<5) e 1+0 . as r — o0.

We further have the following integral formula for Re(8+1), Re(6—2a+
1) > 0 and Re(a) > 0 (see [10, formula 6.561 (16))):

/000 Ko(az)z® do = 287 1a 01T <ﬁ2+1> r <ﬁ—2204—|—1> . (A.1)

A.2 The Gaul hypergeometric function ,F(a,b;c; z)
The Gaufl hypergeometric function o F}(a, b; ¢; z) is for |z| < 1 defined by

o0
2Fi(a,bic2) = o
n=0
If a = —n € —N, then the series is finite and 2 F1(—n, b; ¢; 2) is a polynomial

and hence an entire function in z € C.
The GauB} hypergeometric function o F} (a, b; ¢; z) solves the following sec-
ond order ordinary differential equation:

(1—2)2u"(2) + (¢ — (a+ b+ 1)2)u/(2) — abu(z) = 0.

For ¢ = } and a = —n € —N we have by [2, equations (6.3.5), (6.4.23),
(3.1.1), (6.4.9)]

| Clp_p_1
2)n
o
2)n
= (B plenegienh

(Dalb+ 50 "
@)t (b—n+ 3, -
(1)n(2b —2n), (b + %)nc%z (=), (A.2)

— (-1
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where P}f"ﬁ ) is the Jacobi polynomial and C)(z) denotes the Gegenbauer
polynomial.
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SeIQaS[R O] SUIPUOdsolIod IO} PUR SRIGAS[R URPIOf weaplny o[dwig :T o[qR],

¥ Aquﬁgm\wﬁﬂ A ﬁ N Gmlv@w Ammlvg Q@ nmvﬁiwm
¢/(c—4) (z— som\: - vom 4S (T—3)os | AS(T—%'T)os | (¥ g)os (€ <) -y
z (1 —)dg x (1)ds)/(x)ds A ) 1—yd (3)ds A D (H YNs (y%),05 | (g <) (H‘y)uwioy
I (T—)nx(1 v )S/(1)NS = () 1—ad (4y)ns AP 6 Y8 (4 yms | (g <) (D 'y)uoy
/1 (1 =40 *x (1)0)S/(41)0S = (M) ;—yd (%)os D (A 9N (My)ds | (2 <) (F'y)wsg
(0‘0) 2 {1} 0 A (M ‘25 A
a DM/ =S [ =3] (Wus=1 [(W0n=8] A

74



References

[1]

[12]

[13]

[14]

D. Achab and J. Faraut, Analysis of the Brylinski—-Kostant
model for spherical minimal representations, preprint, available at
arXiv:1101.4402.

G. E. Andrews, R. Askey, and R. Roy, Special functions, Encyclopedia
of Mathematics and its Applications, vol. 71, Cambridge University
Press, Cambridge, 1999.

M. Aristidou, M. Davidson, and G. Olafsson, Laguerre functions on
symmetric cones and recursion relations in the real case, J. Comput.
Appl. Math. 199 (2007), no. 1, 95-112.

S. Ben Said, T. Kobayashi, and B. Orsted, Laguerre semigroup and
Dunkl operators, 74 pages, to appear in Compositio Math., available at
arXiv:0907.3749.

S. Ben Said and B. Orsted, Segal-Bargmann transforms associated with
finite Coxeter groups, Math. Ann. 334 (2006), no. 2, 281-323.

R. Brylinski and B. Kostant, Minimal representations, geometric quan-
tization, and unitarity, Proc. Nat. Acad. Sci. U.S.A. 91 (1994), no. 13,
6026-6029.

H. Dib, Fonctions de Bessel sur une algébre de Jordan, J. Math. Pures
Appl. (9) 69 (1990), no. 4, 403-448.

J. Faraut and A. Korédnyi, Analysis on symmetric cones, The Clarendon
Press, Oxford University Press, New York, 1994.

G. B. Folland, Harmonic analysis in phase space, Annals of Mathemat-
ics Studies, vol. 122, Princeton University Press, Princeton, NJ, 1989.

I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and prod-
ucts, Academic Press, New York, 1965.

S. Helgason, Differential geometry and symmetric spaces, Pure and Ap-
plied Mathematics, Vol. XII, Academic Press, New York, 1962.

J. Hilgert, T. Kobayashi, and J. Moéllers, Minimal representations via
Bessel operators, (2011), preprint, available at arXiv:1106.3621.

J. Hilgert and G. Zhang, Segal-Bargmann and Weyl transforms on com-
pact Lie groups, Monatsh. Math. 158 (2009), no. 3, 285-305.

A. Joseph, The minimal orbit in a simple Lie algebra and its associated
mazximal ideal, Ann.Sci. Ecole Norm.Sup. 9 (1976), 1-29.

75


http://arxiv.org/abs/1101.4402
http://arxiv.org/abs/0907.3749
http://arxiv.org/abs/1106.3621

[15]

[16]

[17]

[21]

22]

23]

T. Kobayashi, Discrete decomposability of the restriction of Aq(X\) with
respect to reductive subgroups. III —restriction of Harish-Chandra mod-
ules and associated varieties, Invent. Math. 131 (1998), 229-256.

T. Kobayashi and G. Mano, Integral formulas for the minimal repre-
sentations for O(p,2), Acta Appl. Math. 86 (2005), 103-113.

, The inversion formula and holomorphic extension of the min-
1mal representation of the conformal group, Harmonic analysis, group
representations, automorphic forms and invariant theory: In honor of
Roger Howe, (eds. J.-S. Li, E.-C. Tan, N. Wallach and C.-B. Zhu),
World Scientific, 2007, pp. 159-223, (cf. math.RT/0607007).

, The Schriodinger model for the minimal representation of the
indefinite orthogonal group O(p,q), Memoirs of the Amer. Math. Soc.
213 (2011), no. 1000.

T. Kobayashi and B. Orsted, |Analysis on the minimal representation
of O(p,q). II. Branching laws, Adv. Math. 180 (2003), no. 2, 513-550.

, Analysis on the minimal representation of O(p,q). 111 Ul-
trahyperbolic equations on RP~H4=1 Adv. Math. 180 (2003), no. 2,
551-595.

B. Kostant, On Laguerre polynomials, Bessel functions, Hankel trans-
form and a series in the unitary dual of the simply-connected covering
group of S1(2,R), Represent. Theory 4 (2000), 181-224 (electronic).

G. Meng, Generalized Kepler Problems I: Without Magnetic Charges,
(2011), preprint, available at arXiv:1104.2585.

J. Mollers, Minimal representations of conformal groups and general-
ized Laguerre functions, Ph.D. thesis, University of Paderborn, 2010,
available at larXiv:1009.4549.

K.-H. Neeb, Holomorphy and convezity in Lie theory, de Gruyter Ex-
positions in Mathematics, vol. 28, Walter de Gruyter & Co., Berlin,
2000.

K.-H. Neeb and B. Orsted, Representation in L*-spaces on infinite-
dimensional symmetric cones, J. Funct. Anal. 190 (2002), no. 1, 133—
178, Special issue dedicated to the memory of 1. E. Segal.

G. Olafsson and B. Qrsted, Generalizations of the Bargmann transform,
Lie theory and its applications in physics (Clausthal, 1995), World Sci.
Publ., River Edge, NJ, 1996, pp. 3—14.

R. Ranga Rao, Unitary representations defined by boundary
conditions—the case of sl(2,R), Acta Math. 139 (1977), 185-216.

76


http://dx.doi.org/10.1007/s002220050203
http://dx.doi.org/10.1007/s10440--005--0464--2
http://arxiv.org/abs/math.DG/0607007
http://dx.doi.org/10.1090/S0065-9266-2011-00592-7
http://dx.doi.org/10.1016/S0001-8708(03)00013-6
http://dx.doi.org/10.1016/S0001-8708(03)00013-6
http://dx.doi.org/10.1016/S0001-8708(03)00014-8
http://dx.doi.org/10.1016/S0001-8708(03)00014-8
http://arxiv.org/abs/1104.2585
http://arxiv.org/abs/1009.4549

[28] M. Résler, Dunkl operators: theory and applications, Orthogonal poly-
nomials and special functions (Leuven, 2002), Lecture Notes in Math.,
vol. 1817, Springer, Berlin, 2003, pp. 93-135.

[29] J. Sekiguchi, Remarks on real nilpotent orbits of a symmetric pair, J.
Math. Soc. Japan (1987).

[30] M. Vergne and H. Rossi, Analytic continuation of the holomorphic dis-
crete series of a semi-simple Lie group, Acta Math. 136 (1976), 1-59.

JoAcHIM HILGERT
INSTITUT FUR MATHEMATIK, UNIVERSITAT PADERBORN, WARBURGER
STR. 100, 33098 PADERBORN, GERMANY.
E-mail address: hilgert@math.uni-paderborn.de

TOSHIYUKI KOBAYASHI
Kaviul IPMU AND GRADUATE SCHOOL OF MATHEMATICAL SCIENCES,
THE UNIVERSITY OF TOKYO, 3-8-1 KoMABA, MEGURO, TOKYO, 153-
8914, JAPAN.
E-mail address: toshi@ms.u-tokyo.ac.jp

JAN MOLLERS
INSTITUT FOR MATEMATISKE FAG, AARHUS UNIVERSITET, NY MUNKEGADE
118, BYGNING 1530, LOKALE 423, 8000 AARHUS C, DENMARK.
E-mail address: moellers@imf.au.dk

BENT (DRSTED
INSTITUT FOR MATEMATISKE FAG, AARHUS UNIVERSITET, NY MUNKEGADE
118, BYGNING 1530, LOKALE 431, 8000 AARHUS C, DENMARK.
E-mail address: orsted@imf.au.dk

77



	Introduction
	The Schrödinger model for minimal representations
	Minimal representations
	The Schrödinger model for minimal representations
	The Schrödinger model for complex groups
	The Bessel operator and a related second order ODE
	A theory of spherical harmonics
	Branching laws with respect to sl(2,R)
	Folding maps and the Schrödinger model

	A Fock space realization for minimal representations
	Polynomials on X
	Construction of the Fock space
	The Bessel--Fischer inner product
	The reproducing kernel
	Unitary action on the Fock space
	Action of the sl2 and harmonic polynomials

	The Segal--Bargmann transform
	Definition and properties
	Relations with the classical Segal--Bargmann transform
	Generalized Hermite functions

	The unitary inversion operator
	Heat kernel and Segal--Bargmann transform
	The heat equation and the heat kernel
	The Segal--Bargmann transform with the heat kernel

	Example: g=so(2,n)
	The Schrödinger model
	The Fock model

	Appendix: Special Functions
	Renormalized Bessel functions
	The Gauß hypergeometric function 2F1(a,b;c;z)


