The Restriction of A_0 (λ) to Reductive Subgroups II

By Toshiyuki KOBAYASHI

Department of Mathematical Sciences, University of Tokyo (Communicated by Shokichi IYANAGA, M. J. A., Jan. 12, 1995)

§ 1. Introduction. In this paper we continue the investigation of the restriction of irreducible unitary representations of real reductive groups, with emphasis on the discrete decomposability. We recall that a representation π of a reductive Lie group G on a Hilbert space V is G-admissible if (π, V) is decomposed into a discrete Hilbert direct sum with finite multiplicities of irreducible representations of G. The same terminology is used for a (g, K)-module on a pre-Hilbert space, if its completion is G-admissible.

Let H be a reductive subgroup of a real reductive Lie group G, and (π, V) an irreducible unitary representation of G. The restriction ($\pi_{|H}$, V) is decomposed uniquely into irreducible unitary representations of H, which may involve a continuous spectrum if H is noncompact. In [5],[6], we have posed a problem to single out the triplet (G, H, π) such that the restriction of (π_{1H}, V) is H-admissible, together with some application to harmonic analysis on homogeneous spaces. The purpose of this paper is to give a new insight of such a triplet (G, H, π) from view points of algebraic analysis. In particular, we will give a sufficient condition on the triplet (G, H, π) for the H-admissible restriction as a generalization of [5],[6] to arbitrary H, and also present an obstruction for the H-admissible restriction.

§ 2. A sufficient condition for discrete decomposability. Let K be a compact Lie group. We write \mathfrak{k}_0 for the Lie algebra of K, and \mathfrak{k} for its complexification. Analogous notation is used for other groups. Take a Cartan subalgebra \mathfrak{k}_0^c of \mathfrak{k}_0 . The weight lattice L in $\sqrt{-1} (\mathfrak{k}_0^c)^*$ is the additive subgroup of $\sqrt{-1} (\mathfrak{k}_0^c)^*$ consisting of differentials of the weights of finite dimensional representations of K. Let $\bar{C} \subset \sqrt{-1} (\mathfrak{k}_0^c)^*$ be a dominant Weyl chamber. We write K_0 for the identity component of K, and \widehat{K}_0 for the unitary dual of K_0 . The Cartan-Weyl theory of finite dimensional representations establishes a bijection:

$$L \cap \bar{C} \xrightarrow{\sim} \widehat{K_0}, \lambda \mapsto F(K_0, \lambda).$$

Suppose X is a K-module (possibly, of infinite dimension) which carries an algebraic action of K. The K_0 -multiplicity function of X is given by

$$m \equiv m_X : L \cap \bar{C} \to N \cup \infty,$$

$$m(\lambda) := \dim \operatorname{Hom}_{K_0}(F(K_0, \lambda), X).$$

The asymptotic K-support $T(X) \subseteq \bar{C}$ was introduced in [3] as follows:

 $S(X) := \{ \lambda \in L \cap \bar{C} : m_X(\lambda) \neq 0 \},$

 $T(X) := \{ \lambda \in \bar{C} : V \cap S(X) \text{ is not relatively compact for any open cone } V \text{ containing } \lambda \}.$

Hereafter we assume a growth condition on m_X : there are constants A, R>0 such that (2.1) $m_X(\lambda) \leq A \exp(R|\lambda|)$ for any $\lambda \in L \cap \bar{C}$. This condition assures that the character of the representation X is a hyperfunction on K, whose singularity spectrum we can estimate in terms of T(X).

Suppose H is a closed subgroup of K. Let $\operatorname{pr}_{K\to H}: \mathfrak{k}^* \to \mathfrak{h}^*$ be the projection dual to the inclusion of Lie algebras $\mathfrak{h} \subset \mathfrak{k}$. Put $\mathfrak{h}^1:= \operatorname{Ker}(\operatorname{pr}_{K\to H}: \mathfrak{k}^* \to \mathfrak{h}^*)$. We set (2.2) $\bar{C}(\mathfrak{h}):=\bar{C}\cap \operatorname{Ad}^*(K)\mathfrak{h}^1\subset \sqrt{-1}(\mathfrak{t}_0^c)^*$. Note that $\bar{C}(\mathfrak{k})=\{0\}$ and $\bar{C}(0)=\bar{C}$.

Theorem 2.3. Let X be a K-module satisfying (2.1). If a closed subgroup H of K satisfies $T(X) \cap \bar{C}(\mathfrak{h}) = \{0\},$

then the restriction $X_{\mid H}$ is H-admissible.

Now, let us apply Theorem (2.3) to some standard (g, K)-modules. Suppose that G is a real reductive linear Lie group and that K is a maximal compact subgroup of G. A dominant element $a \in \sqrt{-1}$ \mathfrak{t}_0^c defines a θ -stable parabolic subalgebra $\mathfrak{q} = \mathfrak{l} + \mathfrak{u}$, where \mathfrak{l} , \mathfrak{u} are the sum of eigenspaces of $\mathrm{ad}(a)$ with 0, positive eigenvalues, respectively. Let L be the centralizer of a in G. Zuckerman introduced the cohomological parabolic induction $\mathcal{R}_{\mathfrak{q}}^j \equiv (\mathcal{R}_{\mathfrak{q}}^9)^j$ $(j \in N)$, which is a covariant functor from the category of metaplectic $(\mathfrak{l}, (L \cap K)^{\sim})$ -modules to that of (\mathfrak{g}, K) -modules, as a generalization of the Borel-Weil-Bott con-

struction of finite dimensional representations of compact groups. In particular, we write $A_{\mathbf{q}}(\lambda) := (\mathcal{R}_{\mathbf{q}}^{\mathbf{g}})^{S}(C_{\lambda})$ for a metaplectic unitary character C_{λ} in the good range of parameter (see [8] Definition 2.5), where $S := \dim_{\mathbf{C}}(\mathfrak{u} \cap \mathfrak{k})$. Then $A_{\mathbf{q}}(\lambda)$ is an irreducible unitarizable (g, K)-module (see [7] Theorem 6.8), and we write $\overline{A_{\mathbf{q}}(\lambda)} \in \hat{G}$ for its completion.

The K-module structure of the alternating sum $\sum_{j}(-1)^{j}(\mathcal{R}_{q}^{\theta})^{j}(W)_{|K}$ is known as a generalized Blattner formula (see [7] Theorem 6.34). Its proof also gives an upper estimate of each term $(\mathcal{R}_{q}^{\theta})^{j}(W)_{|K}$, which leads us to:

Theorem 2.4. If W is a finite dimensional metaplectic $(1, (L \cap K)^{\sim})$ -module, then the restriction $(\mathcal{R}_{0}^{0})^{j}$ $(W)_{|K|}$ satisfies (2.1) and

 $T((\mathcal{R}_{\mathfrak{q}}^{\mathfrak{g}})^{j}(W)_{|K}) \subset \mathbf{R}_{+}\langle \mathfrak{u} \cap \mathfrak{p} \rangle \cap \bar{C} \ (j \in \mathbf{N}).$ Here, we recall $\mathfrak{q} = \mathfrak{l} + \mathfrak{u}$ (Levi decomposition) and $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ (Cartan decomposition), and we define a closed cone by

 $R_+ \langle \mathfrak{u} \cap \mathfrak{p} \rangle := \{ \sum_{\alpha,\beta' \in \mathcal{A}} n_{\beta}\beta : n_{\beta} \geq 0 \} \subset \sqrt{-1} (\mathfrak{t}_0^c)^*.$

Corollary 2.5. In the setting of Theorem (2.3), if

 $\bar{C}(\mathfrak{h}) \cap \mathbf{R}_{+} \langle \mathfrak{u} \cap \mathfrak{p} \rangle = \{0\},\,$

then the restriction $(\mathcal{R}_{\mathfrak{q}}^{\mathfrak{g}})^{j}$ $(W)_{|H}$ is H-admissible for any finite dimensional metaplectic $(\mathfrak{l}, (L \cap \underline{K})^{\sim})$ -module W and for any $j \in N$. In particular, $A_{\mathfrak{q}}(\lambda)_{|H}$ is decomposed discretely into irreducible unitary representations of H.

As a special case of Corollary (2.5), we obtain a new and unified proof of some of the main results in [5],[6], where we imposed some assumptions on a subgroup H.

First, suppose that $H \subset K$ is a symmetric pair defined by an involution $\sigma \in \operatorname{Aut}(K)$. Take a maximal abelian subspace \mathfrak{a}_0 in $\{Y \in \mathfrak{k}_0 : \sigma(Y) = -Y\}$ and extend it to a Cartan subalgebra \mathfrak{t}_0^c of \mathfrak{k}_0 . We take a dominant Weyl chamber \bar{C} so that $\sqrt{-1} \mathfrak{a}_0^* \cap \bar{C}$ is also a dominant Weyl chamber for the restricted root system $\Sigma(\mathfrak{k},\mathfrak{a})$.

Corollary 2.6 (cf. [5] Theorem 1.2; [6] Theorem 3.2). Retain the above setting. If

 $\sqrt{-1}a_0^* \cap \bar{C} \cap \mathbf{R}_+ \langle u \cap \mathfrak{p} \rangle = \{0\},$ then the restriction $(\mathfrak{R}_q^{\mathfrak{g}})^j (W)_{|H} (j \in \mathbf{N})$ is H-admissible for any finite dimensional metaplectic $(1, (L \cap K)^{\sim})$ -module W.

Next, suppose K is (locally) isomorphic to a direct product $K_1 \times K_2$. We note that the Cartan

subalgebra t_0^c is also decomposed into a direct sum $t_0^c = (t_1^c)_0 + (t_2^c)_0$.

Corollary 2.7 (cf. [6] Corollary 4.4; [4] Proposition 4.1.3). In the setting as above, if a θ -stable parabolic subalgebra \mathfrak{q} is given by $a \in \sqrt{-1} \left(t_1^c \right)_0$, then the restriction $\left(\mathcal{R}_{\mathfrak{q}}^{\mathfrak{g}} \right)^j \left(W \right)_{|K_1} (j \in N)$ is K_1 -admissible for any finite dimensional metaplectic $(\mathfrak{l}, (L \cap K)^{\sim})$ -module W.

We note that Corollaries (2.6),(2.7) are deduced from Corollary (2.5) by using $\bar{C}(\mathfrak{h})=\sqrt{-1}\ \mathfrak{a}_0^*\cap \bar{C}$, $\bar{C}(\mathfrak{k}_1)=\sqrt{-1}\ (\mathfrak{t}_2^c)_0^*\cap \bar{C}$, respectively.

Remark 2.8. The above corollaries (2.4),(2.5),(2.6) are valid if we replace H by any reductive subgroup H' containing H, because of Corollary (1.3) in [6].

§ 3. A necessary condition for discrete decomposability. In § 2, we have given a sufficient condition that the restriction of a (g, K)-module X has an H-admissible restriction with respect to a subgroup H. Conversely, we will find a necessary condition in terms of associated varieties of g-modules in this section.

We recall that the associated variety of a (g, K)-module X of finite length is defined by

 $\mathscr{V}(X) \equiv \mathscr{V}_{\mathcal{G}}(X) = \operatorname{Supp}_{\mathscr{S}(\mathfrak{g})}(\operatorname{gr}(X)) \subset \mathfrak{g}^*,$ as the support in \mathfrak{g}^* of the associated graded module $\operatorname{gr}(X)$ over the symmetric algebra $S(\mathfrak{g}),$ with respect to a good filtration (see [1]). It is known that $\mathscr{V}(X)$ is a subset of the nilpotent cone $\mathscr{N}^* \equiv \mathscr{N}^*(\mathfrak{g}) \subset \mathfrak{g}^*.$

Let H be a closed subgroup that is reductive in G. We fix a Cartan involution θ of G which makes H stable so that $H \cap K$ is a maximal compact subgroup of H. Write the projection pr_{G-H} : $\operatorname{g}^* \to \operatorname{\mathfrak{h}}^*$ as before.

Theorem 3.1. Suppose X is a (g, K)-module of finite length. Assume that the restriction $X_{|H}$ is H-admissible. Let Y be any $(h, H \cap K)$ -module occurring as a direct summand of X. Then we have

 $\operatorname{pr}_{G\to H}(\mathscr{V}_G(X)) \subset \mathscr{V}_H(Y)$.

This theorem gives rise to an obstruction for the admissibility of the restriction of a unitary representation.

Corollary 3.2. Suppose X is a (g, K)-module of finite length. Assume that the restriction $X_{|H}$ is H-admissible. Then

 $\operatorname{pr}_{G \to H}(\mathscr{V}_G(X)) \subset \mathscr{N}^*(\mathfrak{h}).$

Applying Corollary (3.2) to $X = A_{\mathfrak{q}}(\lambda)$, we have:

Corollary 3.3. Let us identify g^* with g via the Killing form. Assume a θ -stable parabolic subalgebra g = 1 + u of g satisfies

 $\operatorname{pr}_{G\to H}(\operatorname{Ad}(K_C)(\mathfrak{u} \cap \mathfrak{p})) \not\subset \mathcal{N}^*(\mathfrak{h}).$ Then the restriction of $A_{\mathfrak{q}}(\lambda) \in \hat{G}$ to H is not H-admissible.

Remark 3.4. If H=K, then the assumption of Theorem (3.1) is always satisfied. In this special case, Theorem (3.1) implies a well-known result $\operatorname{pr}_{G-K}(\mathscr{V}_G(X))=\{0\}$ (see [9] Corollary 5.13) because the associated variety of a finite dimensional representation is zero. In a general case where H is non-compact, $\operatorname{pr}_{G-H}(\mathscr{V}_G(X))$ is not necessarily $\{0\}$.

Finally, we mention a useful information about \hat{H} occurring as direct summands of the restriction $X_{|H}$, as an elementary application of associated varieties. This helps us to understand a strange phenomenon about the direct summands occurring in the restriction of $\overline{A_{\mathbf{q}}(\lambda)}_{|H}$, which was pointed out in [6] Introduction.

Theorem 3.5. Suppose X is an irreducible (g, K)-module. Assume that X is H-admissible. Let Y_1 , Y_2 be any irreducible (\mathfrak{h} , $H \cap K$)-module occurring as a direct summand of the restriction X to (\mathfrak{h} , $H \cap K$). Then we have

$$\mathscr{V}_H(Y_1) = \mathscr{V}_H(Y_2).$$

References

- [1] W. Borho and J. L. Brylinski: Differential operators on homogeneous spaces. I. Invent. Math., 69, 437-476 (1982).
- [2] M. Kashiwara, T. Kawai and T. Kimura: Foundations of Algebraic Analysis. Princeton Math. Series, 37 (1986).
- [3] M. Kashiwara and M. Vergne: K-types and singular spectrum. Lect. Notes in Math., vol. 728, pp. 177-200 (1979).
- [4] T. Kobayashi: Singular Unitary Representations and Discrete Series for Indefinite Stiefel Manifolds U(p, q; F)/U(p-m, q; F). vol. 462, Memoirs A. M. S. (1992).
- [5] T. Kobayashi: The restriction of $A_q(\lambda)$ to reductive subgroups. Proc. Japan Acad., 69A, 262-267 (1993).
- [6] T. Kobayashi: Discrete decomposability of the restriction of $A_q(\lambda)$ with respect to reductive subgroups and its applications. Invent. Math., 117, 181-205 (1994).
- [7] D. Vogan: Unitary Representations of Reductive Lie Groups. Ann. Math. Stud., 118, Princeton U. P. (1987).
- [8] D. Vogan: Irreducibility of discrete series representations for semisimple symmetric spaces. Advanced Studies in Pure Math., 14, 191-221 (1988).
- [9] D. Vogan: Associated varieties and unipotent representations. Harmonic Analysis on Reductive Lie Groups, vol. 101, Birkhäuser pp. 315-388 (1991).