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Abstract

For the group O(p, q) we give a new construction of its minimal unitary represen-
tation via Euclidean Fourier analysis. This is an extension of the q = 2 case, where
the representation is the mass zero, spin zero representation realized in a Hilbert
space of solutions to the wave equation. The group O(p, q) acts as the Möbius
group of conformal transformations on Rp−1,q−1, and preserves a space of solutions
of the ultrahyperbolic Laplace equation on Rp−1,q−1. We construct in an intrinsic
and natural way a Hilbert space of solutions so that O(p, q) becomes a continuous
irreducible unitary representation in this Hilbert space. We also prove that this rep-
resentation is unitarily equivalent to the representation on L2(C), where C is the
conical subvariety of the nilradical of a maximal parabolic subalgebra obtained by
intersecting with the minimal nilpotent orbit in the Lie algebra of O(p, q).
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1 Introduction

1.1 In this paper we study the symmetries of the ultrahyperbolic Laplace
operator on a real finite-dimensional vector space equipped with a non-degenerate
symmetric bilinear form. We shall work in coordinates so that the operator
becomes

�Rp−1,q−1 ≡ �z :=
∂2

∂z1
2 + · · ·+ ∂2

∂zp−1
2 −

∂2

∂zp
2 − · · · −

∂2

∂zp+q−2
2 ,

on Rn = R
p−1,q−1. In the case of Minkowski space (q = 2) we are study-

ing the wave equation, which is well-known to have a conformally invariant
space of solutions, see [14]. This corresponds to the fact that the equation
�Rp−1,q−1f = 0 in this case describes a particle of zero mass. Incidentally, it
may also be interpreted as the bound states of the Hydrogen atom, namely
each energy level corresponds to a K-type - for (p, q) = (4, 2). This gives
the angular momentum values by further restriction to O(3). In general the
indefinite orthogonal group G = O(p, q) acts as the Möbius group of mero-
morphic conformal transformations on Rp−1,q−1, leaving a space of solutions
to �Rp−1,q−1f = 0 invariant.

1.2 The main object of the present paper is to construct in an intrinsic
and natural way a Hilbert space of solutions of �Rp−1,q−1 so that the action
of O(p, q) becomes a continuous unitary irreducible representation in this
Hilbert space for (p, q) such that p, q ≥ 2 and p + q > 4 is even. From an
algebraic view point of representation theory, our representations are:
i) minimal representations if p+q ≥ 8 (i.e. the annihilator is the Joseph ideal).
ii) not spherical if p 6= q (i.e. no non-zero K-fixed vector).
iii) not highest weight modules of SO0(p, q) if p, q ≥ 3.

In a long history of representation theory of semisimple Lie groups, it is only
quite recent that our representations for p, q ≥ 3 have been paid attention,
especially as minimal unitary representations; they were first discovered by
Kostant [13] for (p, q) = (4, 4) and generalized by Binegar-Zierau [3] as sub-
representations of degenerate principal series representations. There is also
another algebraic approach to the same representations by using the theta
correspondence for the trivial representation of SL(2,R) by Huang-Zhu. Our
previous papers [11] and [12] treated the same representation by geometric
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methods and with other points of view. We think that such various approaches
reflect a rich structure of the minimal representations.

It is perhaps of independent interest that the (in some sense maximal group
of) symmetries O(p, q) of the space of solutions of �Rp−1,q−1f = 0 lead to such a
natural Hilbert space. Our inner product ( , )W defined by an integration over
a non-characteristic hyperplane (see (1.5.1)) is a generalization of the one
coming from energy considerations in the case of wave equations, and even
the translation invariance of the inner product contains some new information
about solutions.

It is also of independent interest from the representation theory of semisimple
Lie groups that our representations are unitarily equivalent to the represen-
tations on L2(C), where C is the null cone of the quadratic form on Rp−1,q−1.
This result is proved via the Fourier transform in Theorem 4.9. Such L2-
realizations of “unipotent representations” is expected from the philosophy of
the Kostant-Kirillov orbit method, but has not been proved except for some
special cases of highest weight modules or spherical representations.

We have avoided most of the references to the theory of semisimple Lie groups
and representation theory, and instead given direct constructions of the key
objects, such as for example the minimal K-type; this is given as an explicit
hypergeometric function, and we also calculate its Fourier transform in terms
of a Bessel function. By application of explicit differential operators forming
the Lie algebra of G we can generate the whole Hilbert space of solutions
beginning from the minimal K-type.

1.3 For q = 2 (or p = 2) we are dealing with highest weight representations
(when restricting to the identity component SO0(p, 2)), and these have been
studied by many authors, in particular in the physics literature. For a nice
introduction to this representation and its construction via geometric quan-
tization (and more), see [8]. In this case the K-types may be identified with
energy levels of the bound states of the Hydrogen atom, and the smallest one
with the bound state of lowest energy.

We can summarize the situation, covering both the classical Kepler problem
and its quantization in case q = 2, as in the diagram below. Here the left-hand
side represents the classical descriptions of respectively the Kepler problem
and geodesic flow on the sphere; by “symplectic transform” we are alluding to
the change of variables between these two Hamiltonian systems as presented
in [8]. The right-hand side involves the quantizations of these two systems,
where the wave-equation is considered as the quantization of geodesic flow,
also to be thought of as geometric optics. The quantum analogue of the “sym-
plectic transform” involves the Fourier transform. Finally we invoke conformal
geometry and combine it with the Fourier transform, which in a different (and
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new as far as constructing Hilbert spaces and unitary actions) way appears in
passing from the wave equation to the Fourier realization of solutions - this is
the last arrow on the right-hand side.

Classical =⇒ Quantum

Kepler problem =⇒ Hydrogen atom

symplectic transform ⇓ ⇓ Fourier transform

geometric optics =⇒ (A) wave equation

conformal geometry

⇓ Fourier transform

(B) other realizations and

explicit inner products

of minimal representations

The main focus of this paper is on the boxes (A) and (B). In particular, we
give an explicit inner product in the model (A) (Theorems 1.4 and 1.5) and
construct via Fourier transform a new realization of the minimal representation
(Theorem 1.6) for general p, q.

1.4 From now, suppose that n := p+ q − 2 is an even integer greater than
2, and p, q ≥ 2. Let us briefly state some of our main results in a more explicit
way.

First, we find a formula of Green’s function E0 for the ultrahyperbolic Laplace
operator �Rp−1,q−1 , in Proposition 4.2, namely, E0 is given by a constant mul-
tiple of the imaginary part of the regularized Schwartz distribution:

e
√
−1π(q−1)

2 (x1
2 + · · ·+ xp−1

2 − xp2 − · · · − xp+q−1
2 +
√
−10)1−n

2 .

See also the recent paper of Hörmander [9] for further details on distributions
associated with this ultrahyperbolic equation. Then we construct solutions of
�Rp−1,q−1f = 0 by the integral transformation:

S : C∞0 (Rn)→ C∞(Rn), ϕ 7→ E0 ∗ ϕ (see (4.3.1)).

The image S(C∞0 (Rn)) turns out to be “large” in Ker�Rp−1,q−1 (see § 4.7,
Remark (2)). On this image, we define a Hermitian form ( , )N by

(f1, f2)N :=
∫
Rn

∫
Rn
E0(y − x)ϕ1(x)ϕ2(y) dxdy, (1.4.1)
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where fi = E0 ∗ ϕi (i = 1, 2). Here is a part of Theorem 4.7, which is the first
of our main results:

Theorem 1.4 ( , )N is positive-definite on the image of S. Furthermore,
O(p, q) acts as an irreducible unitary representation on its Hilbert completion
H.

We shall write ($min
Rp−1,q−1 ,H) for this unitary representation. We also prove

that this representation is isomorphic to the minimal representation of O(p, q),
constructed previously by Kostant, Binegar-Zierau ([13], [3]) and also in our
previous papers [11], [12] from different viewpoints. Thus, Theorem 1.4 may
be regarded as a realization of the minimal representation (with an explicit
inner product) in the solution space of the ultrahyperbolic equation.

1.5 The above definition of the inner product ( , )N (see (1.4.1)) uses the
integral expression of solutions of �Rp−1,q−1f = 0. Can we write the inner
product without knowing the preimage? Yes, the second of our main results
is to give an intrinsic inner product on the same solution space by using the
Cauchy data. For simplicity, we take z1 = 0 as a non-characteristic hyperplane.
Then, we decompose a solution

f = f+ + f−

such that f±(z1, . . . , zn) is holomorphic with respect to the first variable z1 in
the complex domain of {z1 ∈ C : ± Im z1 > 0} of the z1-variable. This is an
expression of f as a hyperfunction, and such a pair (f+, f−) can be obtained
by the convolution in the z1-variable (see (6.2.3)):

f±(z) =
1

2π
√
−1
· ∓1

z1 ±
√
−10

∗ f(z1, . . . , zn),

where the integration makes sense for f with suitable decay at infinity. Then
we define a Hermitian form

(f, f)W :=
1√
−1

∫
Rn−1

(
f+
∂f+

∂z1

− f−
∂f−
∂z1

)
|z1=0 dz2 · · · dzn. (1.5.1)

Then we shall prove that ( , )W is independent of the specific choice of a
non-characteristic hyperplane, as follows from the (non-trivial) isometric in-
variance. Much more strongly, ( , )W is conformally invariant. A precise for-
mulation for this is given in Theorem 6.2, which includes:

Theorem 1.5 4π( , )W = ( , )N . In particular, ( , )W is positive definite
and O(p, q)-invariant.

Hence, in place of Theorem 1.4, we can obtain the same irreducible unitary
representation of O(p, q) on the Hilbert completion of a space of solutions with
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respect to the inner product ( , )W .

An interesting property of this inner product is its large invariance group.
Even in the case of the usual wave equation (q = 2 case) our approach to the
Hilbert space of solutions and the corresponding representation offers some
new points of view. In this case, if we take the non-characteristic hyperplane
as fixed time coordinate (namely, if z1 stands for the time), then the transla-
tional invariance amounts to a remarkable “conservation law”. Instead, we can
take the non-characteristic hyperplane by fixing one of the space coordinates,
and an analogous integration over the hypersurface (containing the time coor-
dinate) still gives the same inner product ! As a final remark in § 6.7, we note
the connection to the theory of conserved quantities for the wave equation
(q = 2 case), such as the energy and others obtained by the action of the
conformal group.

1.6 The Gelfand-Kirillov dimension of our representation ($min
Rp−1,q−1 ,H) is

p + q − 3. So, we may expect that the representation could be realized on a
(p+ q − 3)-dimensional manifold. For this purpose, we define the null cone of
the metric as

C := {ζ ∈ Rn : ζ1
2 + · · ·+ ζp−1

2 − ζp2 − · · · − ζn2 = 0}.

The third of our main results is another realization of the unitary representa-
tion ($min

Rp−1,q−1 ,H) in a function space on a (p + q − 3)-dimensional manifold
C. The Fourier transform F maps solutions of �Rp−1,q−1f = 0 to distributions
supported on the null cone C. Surprisingly, the inner product of our Hilbert
space turns out to be simply the L2-norm on C with respect to a canonical
measure dµ (see (3.3.3)) ! Here is a part of Theorem 4.9: We regard L2(C) as
a subspace of distributions by a natural injective map T : L2(C)→ S′(Rn).

Theorem 1.6 (2π)−
n
2 T−1 ◦ F is a surjective unitary operator from H to

L2(C).

Theorem 1.6 defines an irreducible unitary representation of G = O(p, q) on
L2(C), denoted by π, which is unitarily equivalent to ($min

Rp−1,q−1 ,H). Since
the maximal parabolic subgroup Pmax of G (see § 2.7) acts on Rp−1,q−1 as
affine transformations, the restriction π|Pmax has a very simple form, namely,
the one obtained by the classical Mackey theory (see (3.3.5)). In this sense,
Theorem 1.6 may be also regarded as an extension theorem of an irre-
ducible unitary representation from the maximal parabolic subgroup Pmax to
the whole group G.

1.7 The fourth of our main results is about the representation (π, L2(C))
as a (g, K)-module on the Fourier transform side, especially to find an explicit
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vector in the minimal K-type.

In the realization on L2(C), the action π(g) is not simple to describe except
for g ∈ Pmax. Instead, we consider the differential action dπ of the Lie algebra
g0 on smooth vectors of L2(C), which turns out to be given by differential
operators at most of second order (see § 3.2). This makes the analogy with
the metaplectic representation (where G is replaced by the symplectic group)
a good one. Here we are recalling the fact, that the even part of the meta-
plectic representation may be realized as an L2-space of functions on the cone
generated by rank one projections in Rn.

Moreover, by using a reduction formula of an Appell hypergeometric function,
we find explicitly the Fourier transform of a Jacobi function multiplied by
some conformal factor which equals to a scalar multiple of

ψ0,e(ζ) := |ζ|
3−q

2 K q−3
2

(2|ζ|)dµ ∈ S′(Rn).

Here Kν(ζ) is a modified Bessel function of the second kind. This vector ψ0,e(ζ)
corresponds to the bound state of lowest energy for q = 2 case . For general
p, q, the K-span of ψ0,e(ζ) generates the minimal K-type in the realization on
L2(C).

We define a subspace U of S′(Rn) to be the linear span of its iterative differ-
entials

dπ(X1) · · · dπ(Xk)ψ0,e(ζ) (X1, . . . , Xk ∈ g0 ⊗R C).

What comes out of § 5 may be formulated in this way (combining with Theo-
rem 4.9, see § 3.2 for notation): Suppose p+ q ∈ 2Z, p+ q > 4 and p ≥ q ≥ 2.

Theorem 1.7 1) |ζ| 3−q2 K q−3
2

(2|ζ|) is a K-finite vector in L2(C).

2) U is an infinitesimally unitary (g, K)-module via $̂n−2
2
,ε.

3) U is dense in the Hilbert space T (L2(C)).
4) The completion of (2) defines an irreducible unitary representation of G
on T (L2(C)), and then also on L2(C).

In the paper [4] one finds a similar construction of Hilbert spaces and unitary
representations for Koecher-Tits groups associated with semisimple Jordan
algebras under the assumption that the representations are spherical, and
there also occur Bessel functions as spherical vectors. In our situation the
representations are not spherical if p 6= q. Our approach is completely different
from [4] that treats some spherical representations, and contrary to what is
stated in [4] (p. 206) we show that for G = O(p, q) (p+q even) it is possible to
extend the Mackey representation of the maximal parabolic subgroup to the
whole group. Furthermore, even for p = q case, our approach to Theorem 1.7
has an advantage that we give the exact constants normalizing the unitary
correspondence between the minimal K-type in other realizations and the
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Bessel function in our realization on L2(C) (see Theorem 5.5).

1.8 The paper is organized as follows: We begin by recalling some results
from conformal geometry and facts about the conformal group, in particular
in [11]. In section 3 we give the basic setup for a realization on the null cone
via Fourier transform. Then we construct the intertwining operator from the
minimal representation to the model treated here and calculate the new ex-
pression for the inner product (see Theorem 1.4). We show in Proposition 4.2
that the Green function of �Rp−1,q−1 has a Fourier transform equal to the in-
variant measure on the null-cone, allowing one more expression for the inner
product (see Theorem 1.6); also we obtain from this an intertwining opera-
tor from test functions to solutions. Indeed, in section 4 Proposition 4.6 we
prove that the Green function is up to a constant exactly the kernel in the
Knapp-Stein intertwining integral operator between degenerate principal se-
ries representations at the parameters we study; this enables us to understand
the unitarity of the minimal representation on the model Rp−1,q−1 in an ele-
mentary and explicity way. Note that all normalizing constants are computed
explicitly. Lemma 2.6 states the irreducibility and unitarizability, which we
use; we give in [12], sections 7.6 and 8.3 independent proofs of these facts.

In section 5 we construct the lowest K-type as a modified Bessel function,
whose concrete properties are important for K-type information about L2(C).
The idea here is to use a classical formula on the Hankel transform due to Baily
in 1930s, and then apply reduction formulae of an Appell hypergeometric
function of two variables.

Section 6 contains formulae for the inner product ( , )W in terms of integration
over a Cauchy hypersurface. Summarizing, we give five different realizations
of the inner product together with the normalizations of these relative to each
other. Namely, in addition to ( , )N and ( , )W we also define three more:
( , )M (coming from a pseudo-differential operator on M = Sp−1 × Sq−1),
( , )A (coming from a normalized Knapp-Stein intertwining operator), and
finally ( , )C , which is just L2(C). This is seen in the key diagram (see section
4.11)

C∞0 (Rn)
S→ Ψ∗n−2

2

(∆̃M)
F→ S′(Rn)

T←↩ L2(C)

∩

Ker�Rp−1,q−1

where the spaces correspond to four different ways of generating solutions to
our ultrahyperbolic equation. S will be an integral transform against the Green
kernel (essentially, a Knapp-Stein intertwining operator with a specific param-
eter), and F the Fourier transform, mapping solutions to distributions sup-
ported on the null cone C. Correspondingly to the various ways of generating
solutions, we write down explicitly the unitary inner product and its Hilbert
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space. We have tried to avoid the use of any semi-simple theory and stay
within classical analysis on spheres and Euclidean spaces; still our treatment
may also be of interest to people working with the classification of the unitary
dual of semi-simple Lie groups, since we are providing new models of some
unipotent representations. Tools like the standard Knapp-Stein intertwining
operators become very natural to use here, also from the more elementary
viewpoint, and the close connection between these and Green functions for
ultrahyperbolic differential operators seems not to have been noticed before.

The first author expresses his sincere gratitude to SDU - Odense University
for the warm hospitality.

2 Ultrahyperbolic equation on Rp−1,q−1 and conformal group

2.1 As explained in the Introduction, we shall give a flat picture, the so-
called N -picture, of the minimal representation, which is connected to classical
facts about conformal geometry in Rn. We shall give a unitary inner product
in this realization (see Theorem 6.2) and also in its Fourier transform (Theo-
rem 4.9), together with an explicit form of minimal K-type in this realization
(see Theorem 5.5).

We shall assume p + q ∈ 2N, p ≥ 2, q ≥ 2 and (p, q) 6= (2, 2). The parity
condition p+q ∈ 2N is not necessary when we consider a representation of the
parabolic subgroup Pmax or of the Lie algebra g. Indeed, it will be interesting
to relax this parity condition in order to obtain an infinitesimally unitary
representation, which does not integrate to a global unitary representation of
G.

Throughout this paper, we let

n = p+ q − 2.

This section is written in an elementary way, intended also for non-specialists
of semisimple Lie groups. § 2.2 and § 2.6 review the needed results in [11].

2.2 We recall some basic fact of the distinguished representation of a con-
formal group (see [11], § 2). Let M be an n-dimensional manifold with pseudo-
Riemannian metric gM . We denote by ∆M the Laplace operator on M , and
by KM the scalar curvature of M . The Yamabe operator is defined to be

∆̃M := ∆M −
n− 2

4(n− 1)
KM .
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Suppose (M, gM) and (N, gN) are pseudo-Riemannian manifolds. A local dif-
feomorphism Φ : M → N is called a conformal map if there exists a positive-
valued function Ω on M such that Φ∗gN = Ω2gM . For λ ∈ C, we introduce a
twisted pull-back

Φ∗λ : C∞(N)→ C∞(M), f 7→ Ωλ · f ◦ Φ. (2.2.1)

Then the conformal quasi-invariance of the Yamabe operator is expressed by:

Φ∗n+2
2

∆̃N = ∆̃MΦ∗n−2
2
. (2.2.2)

Let G be a Lie group acting conformally on M . If we write the action as
x 7→ Lhx (h ∈ G, x ∈ M), we have a positive function Ω(h, x) ∈ C∞(G×M)
such that

L∗hgM = Ω(h, ·)2 gM (h ∈ G).

We form a representation $λ of G, with parameter λ ∈ C, on C∞(M) as
follows:

$λ(h
−1)f(x) = Ω(h, x)λf(Lhx), (h ∈ G, f ∈ C∞(M), x ∈M). (2.2.3)

Note that the right-hand side is given by the twisted pull-back (Lh)
∗
λ according

to the notation (2.2.1). Then, Formula (2.2.2) implies that ∆̃M : C∞(M) →
C∞(M) is a G-intertwining operator from $n−2

2
to $n+2

2
. Thus, we have con-

structed a distinguished representation of the conformal group:

Lemma 2.2 (see [11], Theorem 2.5) Ker ∆̃M is a representation space of
the conformal group G of a pseudo-Riemannian manifold (M, gM), through
$n−2

2
.

If (N, gN) is also a pseudo-Riemannian manifold on which the same group G
acts conformally, then one can also define a representation $λ,N on C∞(N).
Then the twisted pull-back Φ∗λ is a G-intertwining operator.

2.3 Here is a setup on which we construct the minimal representation of
O(p, q) by applying Lemma 2.2. Let p, q ≥ 2. We note n = p+ q− 2. We write
{e0, . . . , en+1} for a standard basis of Rp+q and the corresponding coordinate
as

(v0, . . . , vn+1) = (x, y) = (v0, z
′, z′′, vn+1),

where x ∈ Rp, y ∈ Rq, z′ ∈ Rp−1, z′′ ∈ Rq−1. The notation (x, y) will be used
for Sp−1×Sq−1, while (z′, z′′) for Rn = R(p−1)+(q−1). The standard norm on Rl

will be written as | · | (l = p− 1, p, q − 1, q).

We denote by Rp,q the pseudo-Riemannian manifold Rp+q equipped with the
flat pseudo-Riemannian metric:

gRp,q = dv0
2 + · · ·+ dvp−1

2 − dvp2 − · · · − dvn+1
2. (2.3.1)

10



We put two functions on Rp+q by

ν : Rp+q → R, (x, y) 7→ |x|, (2.3.2)

µ : Rp+q → R, (v0, . . . , vn+1) 7→ 1

2
(v0 + vn+1). (2.3.3)

and define three submanifolds of Rp,q by

Ξ := {(x, y) ∈ Rp,q : |x| = |y| 6= 0},
M := {v ∈ Rp,q : ν(v) = 1} ∩ Ξ = Sp−1 × Sq−1,

N := {v ∈ Rp,q : µ(v) = 1} ∩ Ξ ∼←
ι
R
n.

where the bijection ι : Rn → N is given by

ι : Rn → N, (z′, z′′) 7→ (1− |z
′|2 − |z′′|2

4
, z′, z′′, 1 +

|z′|2 − |z′′|2

4
). (2.3.4)

We say a hypersurface L of Ξ is transversal to rays if the projection

Φ : Ξ→M, v 7→ v

ν(v)
(2.3.5)

induces a local diffeomorphism Φ|L : L→M . Then, one can define a pseudo-
Riemannian metric gL of signature (p−1, q−1) on L by the restriction of gRp,q .
In particular, M itself is transversal to rays, and the induced metric gSp−1×Sq−1

equals gSp−1 ⊕ (−gSq−1), where gSn−1 denotes the standard Riemannian metric
on the unit sphere Sn−1. Likewise, the induced pseudo-Riemannian metric on
R
n through ι : Rn ↪→ R

p,q coincides with the standard flat pseudo-Riemannian
metric gRp−1,q−1 on Rn.

2.4 Let Ip,q := diag(1, . . . , 1,−1, . . . ,−1) ∈ GL(p + q,R). The indefinite
orthogonal group

G = O(p, q) := {g ∈ GL(p+ q,R) : tgIp,qg = Ip,q},

acts isometrically on Rp,q by the natural representation, denoted by v 7→ g · v.
This action stabilizes the light cone Ξ. We note that the multiplicative group
R
×
+ := {r ∈ R : r > 0} also acts on Ξ as dilation, which commutes with the

linear action of G. Then, using dilation, one can define an action of G on M ,
and also a meromorphic action on Rp−1,q−1 as follows:

Lh : M →M, v 7→ h · v
ν(h · v)

(h ∈ G), (2.4.1)

Lh : Rp−1,q−1 → R
p−1,q−1, z 7→ ι−1

(
h · ι(z)

µ(h · ι(z))

)
(h ∈ G). (2.4.2)
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Then, both of these actions are conformal:

(Lh)
∗gM = ν(h · v)−2gM , (2.4.3)

(Lh)
∗gRp−1,q−1 = µ(h · ι(z))−2gRp−1,q−1 . (2.4.4)

We note that (2.4.2) and (2.4.4) are well-defined if µ(h · ι(z)) 6= 0. In fact, G
acts only meromorphically on Rp−1,q−1. An illustrative example for this feature
is the linear fractional transformation of SL(2,C) on P1

C = C ∪ {∞}, which
is a meromorphic action on C. This example essentially coincides with (2.4.2)
for (p, q) = (3, 1), since SL(2,C) is locally isomorphic to O(3, 1) and C ' R2.

2.5 The (meromorphic) conformal groups for the submanifolds M and N of
Ξ are the same, namely, G = O(p, q), while their isometry groups are different
subgroups of G, as we shall see in Observation 2.5. In order to describe them,
we define subgroups K, Mmax, Nmax, Amax and Nmax of G as follows:

First, we set

m0 := −Ip+q,
K := G ∩O(p+ q) = O(p)×O(q),

Mmax
+ := {g ∈ G : g · e0 = e0, g · en+1 = en+1} ' O(p− 1, q − 1),

Mmax := Mmax
+ ∪m0M

max
+ ' O(p− 1, q − 1)× Z2.

The Lie algebra of G is denoted by g0 = o(p, q), which is given by matrices:

g0 ' {X ∈M(p+ q,R) : XIp,q + Ip,q
tX = O}.

Next, we keep n = p+ q − 2 in mind and put

εj =

1 (1 ≤ j ≤ p− 1),

−1 (p ≤ j ≤ n),
(2.5.1)

and define elements of g0 as follows:

N j := Ej,0 + Ej,n+1 − εjE0,j + εjEn+1,j (1 ≤ j ≤ n), (2.5.2)(a)

Nj := Ej,0 − Ej,n+1 − εjE0,j − εjEn+1,j (1 ≤ j ≤ n), (2.5.2)(b)

E := E0,n+1 + En+1,0, (2.5.2)(c)

where Eij denotes the matrix unit. Now, we define abelian subgroups of G by

Nmax := exp(
n∑
j=1

RN j), Nmax := exp(
n∑
j=1

RNj), Amax := exp(RE).

For example, Mmax
+ is the Lorentz group and Mmax

+ Nmax is the Poincaré group
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if (p, q) = (2, 4). It is convenient to identify Rn with Nmax by putting

na := exp(
n∑
j=1

ajNj) ∈ Nmax for a = (a1, . . . , an) ∈ Rn. (2.5.3)

The geometric point here will be the following:

Observation 2.5 1) On Sp−1×Sq−1, G acts conformally, while K isometri-
cally.
2) On Rp−1,q−1, G acts meromorphically and conformally, while the motion
group Mmax

+ Nmax isometrically.

2.6 Next, let us consider the pseudo-Riemannian manifold M = Sp−1 ×
Sq−1. It follows from (2.3.3) and (2.4.3) that we can define a representation
$λ,M of G on C∞(M) by

($λ,M(h−1)f)(v) := ν(h · v)−λf(Lhv).

The Yamabe operator on M is of the form:

∆̃M = ∆Sp−1 −∆Sq−1 − (
p− 2

2
)2 + (

q − 2

2
)2 = ∆̃Sp−1 − ∆̃Sq−1 .

Applying Lemma 2.2, we obtain a representation of the conformal group G =
O(p, q), denoted by ($p,q, V p,q), as a subrepresentation of $ p+q−4

2
,M :

V p,q := Ker ∆̃M = {f ∈ C∞(M) : ∆̃Mf = 0},
($p,q(h−1)f)(v) := ν(h · v)−

p+q−4
2 f(Lhv), for h ∈ G, v ∈M, f ∈ V p,q.

The restriction of $p,q from the conformal group to the isometry group gives
useful knowledge on the representation $p,q. For this, we recall the classical
theory of spherical harmonics, which is a generalization of Fourier series for
S1. For p ≥ 2 and k ∈ N, we define the space of spherical harmonics of degree
k by

Hk(Rp) = {f ∈ C∞(Sp−1) : ∆Sp−1f = −k(k + p− 2)f}, (2.6.1)

= {f ∈ C∞(Sp−1) : ∆̃Sp−1f =
(

1

4
− (k +

p− 2

2
)2
)
f}.

ThenO(p) acts irreducibly on Hk(Rp) and the algebraic direct sum
⊕∞

k=0 Hk(Rp)
is dense in C∞(Sp−1). We note that Hk(R2) 6= {0} only if k = 0 or 1.

Now, we review a basic property of this representation ($p,q, V p,q) on M =
Sp−1 × Sq−1:

13



Lemma 2.6 (see [3]; [11],§3) Assume p, q ≥ 2, p+q ∈ 2N and (p, q) 6= (2, 2).
1) ($p,q, V p,q) is an infinite dimensional irreducible representation of G.
2) (K-type formula) V p,q contains the algebraic direct sum

⊕
a,b∈N

a+ p
2

=b+ q
2

Ha(Rp)⊗Hb(Rq) (2.6.2)

as a dense subspace with respect to the Fréchet topology on C∞(M).
3) G preserves the norm on V p,q defined by

‖F‖2
M := ‖(1

4
− ∆̃Sp−1)

1
4F‖2

L2(M) =
∑

a≥max(0, p−q
2

)

(a+
q − 2

2
)‖Fa,b‖2

L2(M),

if F =
∑
a Fa,b ∈ V p,q with Fa,b ∈ Ha(Rp) ⊗Hb(Rq) and b = a + p−q

2
. Here,

(1
4
− ∆̃Sp−1)

1
4 is a pseudo-differential operator on M , which is equal to (1

4
−

∆̃Sq−1)
1
4 on Ker ∆̃M .

We write ( , )M for the corresponding inner product. We denote by V p,q

the Hilbert completion of V p,q, on which G acts as an irreducible unitary
representation of G. We shall use the same notation $p,q to denote this unitary
representation.

If p ≥ q then V p,q contains the K-type of the form 1 � H
p−q

2 (Rq). This K-
type is called a minimal K-type in the sense of Vogan, namely, its highest
weight (with respect to a fixed positive root system of k0) attains the minimum
distance from the sum of negative roots of k0 among all highest weights of K-
types occurring in $p,q. Likewise for p < q.

Remark 1) If p + q ≥ 8, $p,q is called the minimal representation in the
representation theory of semisimple Lie groups, in the sense that the annihi-
lator is the Joseph ideal.
2) The formula (2.6.2) is regarded as a branching law from the conformal
group G to the isometry subgroup K of the pseudo-Riemannian manifold
M = Sp−1 × Sq−1 (see Observation 2.5). In [12], we generalized this branch-
ing law with respect to a non-compact reductive subgroup and proved the
Parseval-Plancherel formula, in the framework of discretely decomposable re-
strictions [10].

2.7 Let us consider the flat pseudo-Riemannian manifold Rp−1,q−1. The
Yamabe operator on Rp−1,q−1 is of the form:

�Rp−1,q−1 ≡ �z :=
∂2

∂z1
2 + · · ·+ ∂2

∂zp−1
2 −

∂2

∂zp
2 − · · · −

∂2

∂zp+q−2
2 ,
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because the scalar curvature on Rp−1,q−1 vanishes. Since G = O(p, q) acts
on Rp−1,q−1 as a (meromorphic) conformal transform by (2.4.4), we obtain a
‘representation’ with parameter λ ∈ C as in (2.2.3):

$λ,ε,Rn(g−1)f(z) = |µ(gι(z))|−λχε(sgn(µ(gι(z))))f(Lgz), (g ∈ G). (2.7.1)

Here, for ε = ±1, we put
χε : R× → {±1}

by χ1 ≡ 1 and χ−1 = sgn. We may write $λ,ε,Rp−1,q−1 for $λ,ε,Rn if we emphasize
a view point of conformal geometry on the flat space Rp−1,q−1.

We note that C∞(M) is not stable by $λ,ε,Rp−1,q−1(g−1) because Lg is mero-
morphic. To make (2.7.1) a representation, we need to consider suitable class
of functions controlled at infinity. One method for this is to use a conformal
compactification

R
p−1,q−1 ↪→ (Sp−1 × Sq−1)/ ∼ Z2,

and to take a twisted pull-back Ψ∗λ from C∞(M) by a conformal map Ψ. This
method is easy, and we shall explain it soon in § 2.8 and § 2.9. The other is to
find an inner product for specific parameter λ so that G acts as a continuous
unitary representation on the Hilbert space. This is particularly non-trivial
for a subrepresentation, and we shall consider it for Ker�Rp−1,q−1 in § 6.

Before taking a suitable class of functions, we first write a more explicit form
of (2.7.1). First, we note that the maximal parabolic subgroup

Pmax := AmaxMmaxNmax = (R×+ ×O(p− 1, q − 1)× Z2)nRn

acts transitively on the manifold ι(Rn) as affine transformations. Furthermore,
MmaxNmax acts on ι(Rn) as isometries (see Observation 2.5). Correspondingly,
the representation $λ,ε ≡ $λ,ε,Rn given in (2.7.1) has a simple form when
restricted to the subgroup Pmax:

($λ,ε(m)f)(z) = f(m−1z) (m ∈Mmax
+ ), (2.7.2)(a)

($λ,ε(m0)f)(z) = εf(z),

($λ,ε(e
tE)f)(z) = eλtf(etz) (t ∈ R), (2.7.2)(b)

($λ,ε(na)f)(z) = f(z − 2a) (a ∈ Rn). (2.7.2)(c)

Second, we write an explicit formula of the differential action of (2.7.1). We
define a linear map

ω : g0 → C∞(Rn)

by the Lie derivative of the conformal factor Ω(h, z) := µ(h · ι(z))−1 (see
(2.4.4)). For Y = (Yi,j)0≤i,j≤n+1 ∈ g0 and z ∈ Rn, we have

ω(Y )z :=
d

dt
|t=0Ω(etY , z) = −Y0,n+1 −

1

2

n∑
j=1

(Y0,j + Yn+1,j)zj. (2.7.3)
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We write the Euler vector field on Rn as

Ez =
n∑
j=1

zj
∂

∂zj
. (2.7.4)

Then the differential d$λ : g0 → End(C∞(Rn)) is given by

d$λ(Y ) = −λω(Y )− ω(Y )Ez (2.7.5)

−
n∑
i=1

(Yi,0 + Yi,n+1) +
|z′|2 − |z′′|2

4
(−Yi,0 + Yi,n+1) +

n∑
j=1

Yi,jzj

 ∂

∂zj

for Y = (Yi,j)0≤i,j≤n+1 ∈ g0 and z ∈ Rn. In particular, we have

d$λ(Nj) = −λεjzj − εjzjEz +
1

2
(|z′|2 − |z′′|2)

∂

∂zj
, (1 ≤ j ≤ n). (2.7.6)

2.8 We recall M = Sp−1×Sq−1. This subsection relates the representation
$λ,M and $λ,Rp−1,q−1 by the stereographic projection Ψ−1 : M → R

p−1,q−1

defined below.

We set a positive valued function τ : Rn → R by

τ(z) ≡ τ(z′, z′′) := ν ◦ ι(z)

=

(
(1− |z

′|2 − |z′′|2

4
)2 + |z′|2

) 1
2

=

(
(1 +

|z′|2 − |z′′|2

4
)2 + |z′′|2

) 1
2

=

(
1 + (

|z′|+ |z′′|
2

)2

) 1
2
(

1 + (
|z′| − |z′′|

2
)2

) 1
2

. (2.8.1)

We define an injective diffeomorphism as a composition of ι : Rp−1,q−1 ↪→ Ξ
(see (2.3.4)) and Φ : Ξ→M (see (2.3.5)):

Ψ : Rp−1,q−1 →M, z 7→ τ(z)−1ι(z). (2.8.2)

The image of Ψ is

M+ := {u = (u0, u
′, u′′, un+1) ∈M = Sp−1 × Sq−1 : u0 + un+1 > 0}. (2.8.3)

Then, Ψ is a conformal map (see [11], Lemma 3.3, for example) such that

Ψ∗gM = τ(z)−2gRp−1,q−1 . (2.8.4)
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The inverse of Ψ : Rp−1,q−1 →M+ is given by

Ψ−1(u0, u
′, u′′, un+1) = (

u0 + un+1

2
)−1(u′, u′′) = µ(u)−1(u′, u′′). (2.8.5)

Ψ−1 is nothing but a stereographic projection if q = 1. We note that Ψ induces
a conformal compactification of the flat space Rp−1,q−1:

R
p−1,q−1 ↪→ (Sp−1 × Sq−1)/ ∼ Z2.

Here ∼ Z2 denotes the equivalence relation in the direct product space Sp−1×
Sq−1 defined by u ∼ −u.

As in (2.2.1), we define the twisted pull-back by

Ψ∗λ : C∞(M)→ C∞(Rn), F 7→ τ(z)−λF (Ψ(z)). (2.8.6)

Let
C∞(M)ε := {f ∈ C∞(M) : f(−u) = εf(u), for any u ∈M}.

Then Ψ∗λ|C∞(M)ε is injective. The inverse map is given by

(Ψ∗λ,ε)
−1 : Ψ∗λ(C

∞(M)ε)→ C∞(M)ε,

f 7→

|
u0+un+1

2
|−λf(Ψ−1(u)) (u ∈M+)

ε|u0+un+1

2
|−λf(Ψ−1(−u)) (u ∈M−).

(2.8.7)

We note that (Ψ∗λ,ε)
−1f makes sense for f ∈ C∞0 (Rn), since we have

C∞0 (Rn) ⊂ Ψ∗λ(C
∞(M)ε).

Now, the representation $λ,ε,Rn is well-defined on the following representation
space: Ψ∗λ(C

∞(M)), a subspace of C∞(Rn) through $λ,M .

Then, by (2.2.2) (see [11], Proposition 2.6), we have:

Lemma 2.8 Ψ∗n−2
2

(V p,q) ⊂ Ker�Rp−1,q−1 , where V p,q = Ker ∆̃M .

2.9 In the terminology of representation theory of semisimple Lie groups,
Ψ∗λ is a G-intertwining operator from the K-picture ($λ,M , C

∞(M)ε) to the
N -picture ($λ,ε,Rn ,Ψ

∗
λ(C

∞(M))). To see this in an elementary way, we argue
as follows: For ν ∈ C, we denote by the space

Sν(Ξ) := {h ∈ C∞(Ξ) : h(tξ) = tνh(ξ), for any ξ ∈ Ξ, t > 0}, (2.9.1)

of smooth functions on Ξ of homogeneous degree ν. Then G acts on Sν(Ξ) by
left translations. Furthermore, for ε = ±1, we put

Sν,ε(Ξ) := {h ∈ Sν(Ξ) : h(−ξ) = εh(ξ), for any ξ ∈ Ξ}. (2.9.2)
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Then we have a direct sum decomposition

Sν(Ξ) = Sν,1(Ξ) + Sν,−1(Ξ),

on which G acts by left translations, respectively. Then Sν,ε(Ξ) corresponds
to the degenerate principal series representation (see [11] for notation):

C∞- IndGPmax(ε⊗ Cλ) ' S−λ−
n
2
,ε(Ξ), (2.9.3)

where Pmax = MmaxAmaxNmax.

Lemma 2.9 1) The restriction S−λ,ε(Ξ) → C∞(M)ε, h 7→ h|M induces the
isomorphism of G-modules between S−λ,ε(Ξ) and ($λ, C

∞(M)ε) for any λ ∈ C.
2) The restriction S−λ,ε(Ξ)→ C∞(Rn), h 7→ h|Rn induces the isomorphism of
G-modules between S−λ,ε(Ξ) and ($λ,ε,Rn ,Ψ

∗
λ(C

∞(M)ε)) for any λ ∈ C.

PROOF. See [11], Lemma 3.7.1 for (1). (2) follows from the commutative
diagram:

S−λ,ε(Ξ)

r1 ↙ ↘ r2 (2.9.4)

C∞(M)ε
Ψ∗λ−→ C∞(Rn),

because r1 is bijective and r2 is injective. 2

2.10 A natural bilinear form 〈 , 〉 : S−λ−
n
2 (Ξ) × Sλ−n2 (Ξ) → C is defined

by

〈h1, h2〉 :=
∫
M
h1(b)h2(b) db (2.10.1)

= 2
∫
Rn
h1(ι(z))h2(ι(z)) dz (see (2.3.4)). (2.10.2)

Here, db is the Riemannian measure on M = Sp−1×Sq−1. The second equation
follows from (h1h2)(ι(z)) = τ(z)−n(h1h2)(Ψ(z)) and the Jacobian for Ψ : Rn →
M is given by τ(z)−n (see (2.8.4)). Then 〈 , 〉 isK-invariant andNmax-invariant
from (2.10.1) and (2.10.2), and thus G-invariant since G is generated by K
and Nmax.

3 Square integrable functions on the cone

3.1 In this section we shall study the irreducible unitary representation of
the motion group Mmax

+ Nmax ' O(p − 1, q − 1) n Rp+q−2 and the maximal
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parabolic subgroup Pmax = MmaxAmaxNmax on the space of solutions to our
ultrahyperbolic equation �Rp−1,q−1f = 0. This is a standard induced repre-
sentation by the Mackey machine, and will be later extended to the minimal
representation of G = O(p, q) (see Theorem 4.9 (3)).

3.2 In the flat picture Rp−1.q−1, our minimal representation V p,q of O(p, q)
can be realized in a subspace of Ker�Rp−1,q−1 (see Lemma 2.8). We shall study
the representation space by means of the Fourier transform.

We normalize the Fourier transform on S(Rn) by

(Ff)(ζ) =
∫
Rn
f(z)e

√
−1(z1ζ1+···+znζn)dz1 · · · dzn,

and extends it to S′(Rn), the space of the Schwartz distributions.

By composing the following two injective maps

C∞(M)ε

Ψ∗n−2
2−→ C∞(Rn) ∩ S′(Rn)

F−→ S′(Rn),

we define a representation of G and g on the image FΨ∗n−2
2

(C∞(M)), denoted

by $̂λ,ε ≡ $̂λ,ε,Rn , so that F ◦Ψ∗n−2
2

is a bijective G-intertwining operator from

the representation space ($λ,M , C
∞(M)ε) to ($̂λ,ε,FΨ∗n−2

2

(C∞(M)ε)). Then,

it follows from (2.7.2) that the representation $̂λ,ε has a simple form when
restricted to the subgroup Pmax = MmaxAmaxNmax:

($̂λ,ε(m)h)(ζ) = h(tmζ) (m ∈Mmax
+ ), (3.2.1)(a)

($̂λ,ε(m0)h)(ζ) = εh(ζ),

($̂λ,ε(e
tE)h)(ζ) = e(λ−n)th(e−tζ) (t ∈ R), (3.2.1)(b)

($̂λ,ε(na)h)(ζ) = e2
√
−1(a1ζ1+···+anζn)h(ζ) (a ∈ Rn). (3.2.1)(c)

We remark that in the above formula, we regarded h as a function. The action
of Amax on the space of distributions is slightly different by the contribution
of the measure dζ:

($̂λ,ε(e
tE)φ)(ζ) = eλtφ(e−tζ) (t ∈ R), (3.2.1)(b′)

if we write φ(ζ) = h(ζ)dζ ∈ S′(Rn).

The differential representation d$̂λ,ε of g0 on FΨ∗n−2
2

(C∞(M)) is given by the

following lemma:

Lemma 3.2 We recall that Eζ is the Euler operator (see (2.7.4)). With no-
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tation in (2.5.2), we have

d$̂λ,ε(N j) = 2
√
−1ζj (1 ≤ j ≤ n),

d$̂λ,ε(Nj) =
√
−1

(
(λ− n)εj

∂

∂ζj
− Eζεj

∂

∂ζj
+

1

2
ζj�ζ

)
(1 ≤ j ≤ n),

d$̂λ,ε(E) = λ− n− Eζ .

PROOF. Lemma follows from the correspondence under the Fourier trans-
form ∂

∂zj
↔ −

√
−1ζj, zj ↔ −

√
−1 ∂

∂ζj
, and therefore from Ez ↔ −n − Eζ ,

P (z)↔ −�ζ , where P (z) := z1
2 + · · ·+ zp−1

2 − zp2 − · · · − zp+q−2
2. 2

Remark 1) We note that d$̂λ,ε is independent of the signature ε = ±1.
2) In Theorem 4.9, we shall find that L2(C), the Hilbert space of square inte-
grable functions on the cone C in Rn, is a G-invariant subspace of the Schwartz
distributions S′(Rn). Then, the action of the Lie algebra g can be written in
terms of differential operators along the cone C at most of second order.

3.3 We define a quadratic form Q on Rn (' (Rn)∗) as the dual of P (z) on
R
n by

Q(ζ) := ζ1
2 + · · ·+ζp−1

2−ζp2−· · ·−ζp+q−2
2 for ζ ∈ Rn = Rp+q−2 (3.3.1)

and define a closed cone by

C := {ζ ∈ Rn : Q(ζ) = 0}. (3.3.2)

It follows from Lemma 2.8 that the support of the distribution FΨ∗n−2
2

F is

contained in the cone C, for any F ∈ V p,q. Surprisingly, FΨ∗n−2
2

F becomes

square integrable on C (see Theorem 4.9). As a preparation for the proof,
we study a natural action on L2(C) of a parabolic subgroup Pmax in this
subsection.

We take a differential (n− 1)-form dµ on C such that

dQ ∧ dµ = dζ1 ∧ · · · ∧ dζn.

Then the restriction dµ to the cone C defines a canonical measure (we use the
same notation dµ). Using polar coordinates on C: ζ = (sω, sω′) with s > 0,
ω ∈ Sp−2, ω′ ∈ Sq−2, we write down the canonical measure dµ on C explicitly
by ∫

C
φdµ =

1

2

∫ ∞
0

∫
Sp−2

∫
Sq−2

φ(sω, sω′)sn−3 ds dω dω′ (3.3.3)

for a test function φ. If n > 2, that is if p+ q > 4, then the measure dµ defines
a Schwartz distribution on Rn, for which we shall also write δ(Q), the “delta
function” supported on the cone C (see [7]).
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For a measurable function φ on C, we define a norm of φ by

‖φ‖2 :=
∫
C
|φ|2dµ (3.3.4)

and denote by L2(C) ≡ L2(C, dµ) the Hilbert space of square integrable func-
tions.

By the Mackey theory, we can define a natural representation π of the maximal
parabolic subgroup Pmax = AmaxMmaxNmax on L2(C) if p+ q ∈ 2Z, by

(π(etE)ψ)(ζ) := e−
n−2

2
tψ(e−tζ), (t ∈ R) (3.3.5)(a)

(π(m)ψ)(ζ) := ψ(tmζ) (m ∈Mmax
+ ), (3.3.5)(b)

(π(m0)ψ)(ζ) := (−1)
p−q

2 ψ(ζ)

(π(na)ψ)(ζ) := e2
√
−1(a1ζ1+···+anζn)ψ(ζ) (a ∈ Rn). (3.3.5)(c)

Proposition 3.3 1) The representation (π, L2(C)) of Pmax is unitary.
2) The representation π is still irreducible when restricted to the motion group
Mmax

+ Nmax ' O(p−1, q−1)nRp+q−2. In particular, it is irreducible as a Pmax-
module.

PROOF. (1) is straightforward from the definitions (3.3.4) and (3.3.5).
Let us prove (2). It follows from (3.3.5)(c) that any Nmax-invariant closed
subspace of L2(C) is of the form L2(C ′) where C ′ is a measurable subset of C.
AsMmax

+ acts transitively on C, L2(C ′) isMmax
+ -invariant only if the measure of

C ′ is either null or conull. Thus, L2(C ′) equals either {0} or L2(C). Therefore,
the unitary representation L2(C) is irreducible as an Mmax

+ Nmax-module. 2

3.4 It is not clear a priori if (π, L2(C)) extends from Pmax to G. We shall
prove in Theorem 4.9 that if p, q ≥ 2 and n(= p + q − 2) > 2 then π extends
to G as an irreducible unitary representation through an injective map T :
L2(C) ↪→ S′(Rn), defined as follows:

By using the Cauchy-Schwarz inequality, we see the following map

T (ψ) : S(Rn)→ C, ϕ 7→
∫
C
ϕψ dµ

is well-defined and continuous if n > 2, for each ψ ∈ L2(C). Thus we have a
natural map

T : L2(C) −→ S′(Rn), ψ 7→ ψdµ. (3.4.1)

Clearly, T is injective. We shall regard T (L2(C)) as a Hilbert space such that
T is a unitary operator.
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Lemma 3.4 1) T is a Pmax-intertwining operator from (π, L2(C)) to
($̂n−2

2
,ε|Pmax , S′(Rn)).

2) ($̂n−2
2
,ε|Pmax , T (L2(C))) is an irreducible unitary representation of Pmax.

It is still irreducible as an MmaxNmax-module.

PROOF. (1) follows directly from the definitions (3.2.1) and (3.3.5). (2) fol-
lows from (1) and Proposition 3.3 (2). 2

4 Green function and inner product

4.1 In this section, we shall construct solutions of the ultrahyperbolic equa-
tion �Rp−1,q−1f = 0 by the integral transform given by convolution with the
Green kernel. Then, we shall show that the Green kernel coincides with a spe-
cial value of the Knapp-Stein intertwining operator for a degenerate principal
series. This observations gives another expression of the inner product of the
minimal representation of O(p, q) by using the Green kernel (see Theorem 4.7),
and also leads to a realization of the minimal representation on L2(C), the
Hilbert space of square integrable functions on a cone C as will be discussed
in § 6.

We put

P (x) = x1
2 + · · ·+ xp−1

2 − xp2 − · · · − xn2

for x ∈ Rn = Rp+q−2.

4.2 A distribution E satisfying �Rp−1,q−1E = δ (Dirac’s delta function) is
called a fundamental solution of the ultra-hyperbolic Laplace operator�Rp−1,q−1 .
Recall from [7], page 354, if n is even and n > 2 then

E =
−Γ(n

2
− 1)e

√
−1π(q−1)

2

4π
n
2

(P (x) +
√
−10)1−n

2

is a fundamental solution of �Rp−1,q−1 , where (P (x) +
√
−10)λ stands for the

limit of the distribution (P (x) +
√
−1R(x))λ as a positive definite quadratic

form R(x) tends to 0. In view of the integral formula in [7], Chapter III, § 2.6

F(P +
√
−10)1−n

2 =
4π

n
2 e−

√
−1π(q−1)

2

Γ(n
2
− 1)

(Q−
√
−10)−1,

we have readily the following formula for the Green function E0 of �Rp−1,q−1 :
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Proposition 4.2 We define a distribution E0 on Rn by

E0 =
1

2π
√
−1

(−E + E). (4.2.1)

Then �Rp−1,q−1E0 = 0 and its Fourier transform is given by

FE0 =
1

2π
√
−1

((Q−
√
−10)−1 − (Q+

√
−10)−1) = δ(Q). (4.2.2)

In the Minkowski case, i.e. q = 2, such a formula has been known ([14]), since
the so-called two-point functions in the quantum field theory for a zero mass
field exactly corresponds to (Q+

√
−10)−1 for negative frequency. In this case

C naturally splits in two components, a forward and a backward light cone, and
functions supported on the forward cone have Fourier transforms that extend
to holomorphic functions on the corresponding tube domain, thus yielding a
unitary highest weight representation of the connected group. The reproducing
kernel of this representation is the Fourier transform of the measure on the
forward cone, in analogy with what happens in Proposition 4.2.

4.3 In order to give the integral expression of solutions �Rp−1,q−1f = 0, we
define a convolution map by the Green kernel:

S : C∞0 (Rn)→ C∞(Rn), ϕ 7→ E0 ∗ ϕ. (4.3.1)

Fix ν ∈ C. We consider the representation $ν,ε ≡ $ν,ε,Rn of G on a subspace
of C∞(Rn) (see § 2). The restriction to Pmax stabilizes C∞0 (Rn), as follows
from (2.7.2).

Lemma 4.3 1) ImageS ⊂ Ker�Rp−1,q−1.
2) S is an intertwining operator of Pmax-modules between on one side $ν+2,ε|Pmax

and on the other side $ν,ε|Pmax for any ν ∈ C and ε = ±1.

PROOF. (1) As �Rp−1,q−1E0 = 0, we have ImageS ⊂ Ker�Rp−1,q−1 .
The proof of (2) is direct from (2.7.2). We illustrate it by the action of etE ∈
Amax:

S($ν+2,ε(e
tE)ϕ)(y) =

∫
Rn
E0(y − z)e(ν+2)tϕ(etz) dz

=
∫
Rn
E0(ety − etz)e(ν+2)t+(n−2)tϕ(etz) dz

= eνt(Sϕ)(ety)

= $ν,ε(e
tE)(Sϕ)(y).

This shows that S intertwines the action of Amax. The case for the action of
MmaxNmax is similar and easier. 2
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We shall see that S extends to a G-intertwining operator for ν = n
2
− 1 in

Proposition 4.6.

4.4 Recall the notation in § 2.9. Let

[u, v] := u0v0 + · · ·+ up−1vp−1 − upvp − · · · − un+1vn+1

for u, v ∈ Rn+2 = Rp+q. The Knapp-Stein intertwining operator

Aλ,ε : S−λ−
n
2
,ε(Ξ)→ Sλ−

n
2
,ε(Ξ)

is given by the integral operator with kernel function

ψλ−n
2
,ε(u0 − un+1) = ψλ−n

2
,ε([u, ξ0]) (4.4.1)

on Ξ. Here, we put ξ0 := t(1, 0, . . . , 0, 1) ∈ Ξ and ψν,ε is a distribution (or a
hyperfunction) of one variable is defined by

ψν,ε(y) :=
1

Γ(2ν+3−ε
4

)
|y|νχε(sgn y).

Via the bijection r1 in the commutative diagram (2.9.4),

Aλ,ε : C∞(M)ε → C∞(M)ε

is written as

(AMλ,εf)(u) ≡ (Aλ,εf)(u) :=
∫
M
ψλ−n

2
,ε([u, v]) f(v) dv (u ∈M)

in the compact picture M ' Sp−1 × Sq−1.

The Gamma factor in the definition of ψν,ε(y) exactly cancels the poles of
the distribution |y|νχε(sgn y) of one variable y with meromorphic parameter
ν. This means that the distribution ψν,ε([u, v]) of multi-variables makes sense
for any ν ∈ C when restricted to the open set {(u, v) ∈M ×M : u 6= ±v},
where [u, dv] + [v, du] 6= 0. Then ψν,ε([u, v]) continues meromorphically as a
distribution on M × M with possible poles only at λ = 0,−1, . . . , whose
residues are distributions supported on {(u, v) ∈M ×M : u = ±v}.

In view of the normalization of our parameter (see Lemma 2.9), Aλ,ε is a G-
intertwining operator from $λ+n

2
,ε to $−λ+n

2
,ε for λ 6= 0,−1,−2, . . . . What

we need is the case λ = 1 and we recall from [11], § 3.9 (basically since we
know the composition series of the induced representations and the eigenvalue
of Aλ,ε on each K-type):
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Lemma 4.4 Let p ≡ q mod 2, p, q ≥ 2 and (p, q) 6= (2, 2). We put

ε := (−1)
p−q

2 =

1 p− q ≡ 0, 4 mod 8,

−1 p− q ≡ 2, 6 mod 8.
(4.4.2)(a)

δ := (−1)[ q−p
4

] =

1 p− q ≡ 0, 2 mod 8,

−1 p− q ≡ 4, 6 mod 8.
(4.4.2)(b)

1) The image ($n
2
−1,ε, A1,ε(C

∞(M)ε)) is a dense subrepresentation of ($p,q, V p,q),

where we recall V p,q = Ker ∆̃M .

Let us define a Hermitian form ( , )A on the same image A1,ε(C
∞(M)ε) by

(F1, F2)A := δ〈A1,εϕ1, ϕ2〉 = δ〈ϕ1, A1,εϕ2〉, (4.4.3)

for Fi = A1,εϕi, ϕi ∈ C∞(M)ε (i = 1, 2), where 〈 , 〉 is the bilinear form given
as the integral over M (see (2.10.1)).
2) The Hermitian form ( , )A is well-defined (namely, independent of the
choice of ϕi) and G-invariant under the action of $n

2
−1.

3) In comparison with the inner product ( , )M given in Lemma 2.6, we have

(F1, F2)A = c1(F1, f2)M for any F1, F2 ∈ A1,ε(C
∞(M)ε), (4.4.4)

where we put (see [11], (3.9.6))

c1 :=
Γ(n−1−ε

4
)

2π
n+1

2

.

In particular, the Hermitian form ( , )A is positive definite and the completion
of a pre-Hilbert space (A1,ε(C

∞(M)ε), ( , )A) coincides with the Hilbert space
V p,q given in § 2.6.

4.5 In the flat picture Rp−1,q−1, we have

−ξ0 + ξn+1 = |z′|2 − |z′′|2 = P (z)

for ξ = ι(z) by (2.3.4). Then, via the injection r2 in the commutative diagram
(2.9.4), the Knapp-Stein intertwining operator

AR
n

λ,ε : Ψ∗λ+n
2
(C∞(M)ε)→ Φ∗−λ+n

2
(C∞(M)ε)

is given by the convolution:

AR
n

λ,εϕ ≡ Aλ,εϕ := 2ψλ−n
2
,ε(P (z)) ∗ ϕ (4.5.1)

when restricted to C∞0 (Rn) ⊂ Ψ∗λ+n
2
(C∞(M)ε). We are interested in the case

λ = 1. Then we have
AR

n

1,ε ◦Ψ∗n+2
2

= Ψ∗n−2
2
◦ AM1,ε. (4.5.2)
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Lemma 4.5 Retain the setting of Lemma 4.4. We put

h(y) := e
√
−1π(q−1)

2 (y +
√
−10)1−n

2 . (4.5.3)

Then we have

ψ1−n
2
,ε(y) = δ

Γ(−1+n+ε
4

)

2π
√
−1

(h(y)− h(y)). (4.5.4)

PROOF. Solving (y ±
√
−10)ν = yν+ + e±

√
−1πνyν−, we have

ψν,ε(y) =
(e−
√
−1νπ − ε)(y +

√
−10)ν − (e

√
−1νπ − ε)(y −

√
−10)ν

−2
√
−1 sin πνΓ(2ν+3−ε

4
)

.

Then, Lemma 4.5 follows from a residue calculation:

lim
ν→1−n

2

e−
√
−1νπ − ε

sin πν Γ(2ν+3−ε
4

)
= lim

a→0

e−
√
−1aπ − (−1)q

sin πa Γ(5−n−ε
4

+ a
2
)

=
−δe

√
−1π(q−1)

2 Γ(−1+n+ε
4

)

π
.

4.6 Our key observation is that the special value of the Knapp-Stein op-
erator is given by the Green function up to a scalar constant. In particular,
the image of C∞0 (Rn) under the integral transform S satisfies not only the
ultra-hyperbolic equation �Rp−1,q−1f = 0 but also a certain decay condition at
infinity that matches a conformal compactification of Rp−1,q−1 (see § 2.8).

Proposition 4.6 Retain the notation as in Proposition 4.2 and Lemma 4.4.
We recall that δ, ε = ±1 are determined by p − q mod 8 as in (4.4.2) and
define the constant c2 by

c2 :=
4δπ

n
2 Γ(−1+n+ε

4
)

Γ(n
2
− 1)

.

Then we have:

ψ1−n
2
,ε(P (z)) = c2E0, (4.6.1)

AR
n

1,ε |C∞0 (Rn) = 2c2S. (4.6.2)

In particular, S(C∞0 (Rn)) ⊂ Ψ∗n−2
2

(V p,q).

PROOF. The first formula follows from Lemma 4.5 and from the definition
of E0 (see (4.2.1)). The second formula then follows from the definition (4.5.1).
Then, in view of (4.5.2) and (4.6.2), S extends to a G-intertwining operator
between ($n+2

2
,Ψ∗n+2

2

(C∞(M)ε)) and ($n−2
2
,Ψ∗n−2

2

(C∞(M)ε)). Then we have

S(C∞0 (Rn)) ⊂ AR
n

1,ε(Ψ
∗
n+2

2
(C∞(M)ε)) = Ψ∗n−2

2
(AM1,ε(C

∞(M)ε)) ⊂ Ψ∗n−2
2

(V p,q).
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because C∞0 (Rn) ⊂ Ψ∗n+2
2

(C∞(M)ε). 2

4.7 We are ready to introduce an inner product on Ker�Rp−1,q−1 by using
the Green function E0 (see (4.2.1)), so that our minimal representation is
realized here as a unitary representation.

We define a Hermitian form on S(C∞0 (Rn)) ⊂ Ker�Rp−1,q−1 by

(f1, f2)N :=
∫
Rn

∫
Rn
E0(y − x)ϕ1(x)ϕ2(y) dx dy (4.7.1)

for fi = Sϕi = E0 ∗ ϕi (1 ≤ i ≤ 2). The right-hand side of (4.7.1) does not
depend on the choice of ϕi because of the formula

(f1, f2)N = (f1, ϕ2)L2(Rn) = (ϕ1, f2)L2(Rn).

We recall from Proposition 4.6 and Lemma 2.8 the inclusive relations:

S(C∞0 (Rn)) ⊂ AR
n

1,ε(Ψ
∗
n+2

2
(C∞(M)ε)) ⊂ Ψ∗n−2

2
(V p,q) ⊂ Ker�Rp−1,q−1 ⊂ C∞(Rn).

(4.7.2)

Theorem 4.7 Let p ≡ q mod 2, p, q ≥ 2 and (p, q) 6= (2, 2). Recall n =

p+ q − 2 and ε = (−1)
p−q

2 .
1) The Hermitian form ( , )N is positive definite on S(C∞0 (Rn)).
2) The Hermitian form ( , )N is invariant under ωn−2

2
,ε,Rn(G).

Let H be the completion of the pre-Hilbert space (S(C∞0 (Rn)), ( , )N).
3) The Fréchet representation ωn−2

2
,ε,Rn of G on Ψ∗n−2

2

(C∞(M)ε) induces a rep-

resentation of G on the Hilbert space H, which we shall denote by ($min
Rp−1,q−1 ,H).

4) The unitary representation ($min
Rp−1,q−1 ,H) is irreducible.

5) The map (see (2.8.7) for the definition)

(Ψ∗n−2
2
,ε)
−1 :S(C∞0 (Rn))→V p,q

∩ ∩
C∞(Rn) C∞(M)

extends uniquely to a unitary isomorphism between ($min
Rp−1,q−1 ,H) and the min-

imal representation ($p,q, V p,q) up to a scalar constant. More precisely, for any
f1, f2 ∈ H, we have

(f1, f2)N = 2(F1, F2)M , (4.7.3)

where we put
Fi := (Ψ∗n−2

2
,ε)
−1fi, (i = 1, 2).

Remark 1) We shall give a different proof of the first statement of Theo-
rem 4.7 in Theorem 4.9 by using the Fourier transform of the Green kernel.
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2) As we shall see in the proof of Theorem 4.7, S(C∞0 (Rn)) is dense in Ψ∗n−2
2

(V p,q)

with respect to the above inner product.
3) We can realize naturally the Hilbert space H as a subspace of the Schwartz
distributions S′(Rn), namely, F−1T (L2(C)), as we shall prove in Theorem 4.9.

4.8 In order to prove Theorem 4.7, we need:

Lemma 4.8 Retain the notation of Theorem 4.7.
1) For any f1, f2 ∈ S(C∞0 (Rn)), we have

(f1, f2)N = c3(F1, F2)A, (4.8.1)

where

c3 :=
π
n
2 Γ(−1+n+ε

4
)

Γ(n
2
− 1)

.

We extend the Hermitian form ( , )N from S(C∞0 (Rn)) to AR
n

1,ε(Ψ
∗
n+2

2

(C∞(M)ε))

by using the right side of (4.8.1) (recall the inclusive relation (4.7.2)).
2) The Hermitian form ( , )N is positive definite on AR

n

1,ε(Ψ
∗
n+2

2

(C∞(M)ε)),

in which S(C∞0 (Rn)) is dense. In particular, the Hilbert space H (see Theo-
rem 4.7) coincides with the completion of the pre-Hilbert space A1,ε(Ψ

∗
n+2

2

(C∞(M)ε)).

We first finish the proof of Theorem 4.7, and then give a proof of Lemma 4.8.

Proof of Theorem 4.7 (1) is clear from Lemma 4.8 (1) and Lemma 4.4.
Next, let us prove (4.7.3). We consider the G-intertwining operator

(Ψ∗n−2
2
,ε)
−1 : Ψ∗n−2

2

(
AM1,ε(C

∞(M)ε)
)
→ AM1,ε(C

∞(M)ε) ⊂ V p,q,

or equivalently by (4.5.2),

(Ψ∗n−2
2
,ε)
−1 : AR

n

1,ε

(
Ψ∗n+2

2
(C∞(M)ε)

)
→ V p,q.

Combining (4.4.4) and (4.8.1), we have

(f1, f2)N = c3(F1, F2)A = c1c3(F1, F2)M = 2(F1, F2)M ,

where the second equality follows from a classical formula of the Gamma
function:

22z−1Γ(z) Γ(z +
1

2
) =
√
π Γ(2z).

Thus, we have proved (4.7.3), especially, (Ψ∗n−2
2
,ε
)−1 is an isometry up to scalar.

Then (Ψ∗n−2
2
,ε
)−1 extends to an isometric (up to scalar) G-intertwining operator
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H→ V p,q. This map is surjective because ($p,q, V p,q) is an irreducible unitary
representation of G (see Lemma 2.6). All other statements are now clear. 2

Proof of Lemma 4.8 1) Suppose fi = Sϕi, ϕi ∈ C∞0 (Rn) (i = 1, 2). Recall
the constant c2 in Proposition 4.6, we have

(f1, f2)N =
∫
Rn

(Sϕ1)(x)ϕ2(x)dx

=
1

2c2

∫
Rn

(AR
n

1,εϕ1)(x) ϕ2(x) dx

=
1

4c2

∫
M
AM1,ε((Ψ

∗
n+2

2
,ε)
−1ϕ1)(b) (Ψ∗n+2

2
,ε
)−1ϕ2(b) db. (4.8.2)

We put

ψi :=
1

c2

(Ψ∗n+2
2
,ε)
−1ϕi ∈ C∞(M)ε, (i = 1, 2).

Then Fi = AM1,εψi by (4.5.2). Therefore,

(4.8.2) =
1

4c2

c2
2

∫
M

(AM1,εψ1)(b) ψ2(b) db =
δc2

4
(F1, F2)A

which equals the right side of (4.8.1).
2) It is enough to show that S(C∞0 (Rn)) is dense in a pre-Hilbert space
A1,ε(Ψ

∗
n+2

2

(C∞(M)ε)) because the inner product ( , )A is positive definite from

Lemma 4.4.

Suppose f = A1,εϕ (ϕ ∈ Ψ∗n+2
2

(C∞(M)ε)) is orthogonal to S(C∞0 (Rn)) with

respect to the inner product ( , )A. This means that (f, A1,εφ)A = 0 for any
φ ∈ C∞0 (Rn). Then we have∫

M
(Ψ∗n−2

2
,ε)
−1f(b) (Ψ∗n−2

2
,ε
)−1φ(b) db = 0 for any φ ∈ C∞0 (Rn).

Since (Ψ∗n−2
2
,ε
)−1(C∞0 (Rn)) is dense in

L2(M)ε := {f ∈ L2(M) : f(−u) = εf(u)},

we have (Ψ∗n−2
2
,ε
)−1f = 0, and thus f = 0. 2

4.9 We recall Ψ∗n−2
2

(V p,q) ⊂ Ψ∗n−2
2

(C∞(M)ε) ⊂ S′(Rn), on which we can

define the Fourier transform F. We consider the following maps (see § 4.3,
§ 3.2, § 3.4):

C∞0 (Rn)
S→ Ψ∗n−2

2
(V p,q)

F→ S′(Rn)
T←↩ L2(C)
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Here is a description of the Fourier transform of the minimal unitary repre-
sentation ($min

Rp−1,q−1 ,H) of G = O(p, q) which is obtained as the completion of
a pre-Hilbert space (S(C∞0 (Rn)), ( , )N) (see Theorem 4.7).

Theorem 4.9 1) FS(C∞0 (Rn)) is contained in T (L2(C)). Furthermore, it is
dense in the Hilbert space T (L2(C)).
2) T−1 ◦ F : S(C∞0 (Rn)) → L2(C) extends uniquely to a unitary map H →
L2(C) up to a scalar constant. This constant is given explicitly by

(2π)n(f, f)N = ‖T−1 ◦ Ff‖2
L2(C). (4.9.1)

3) The Pmax-module (π, L2(C)) extends to an irreducible unitary representa-
tion of G, denoted by the same letter π, so that (2π)−

n
2 T−1 ◦F gives a unitary

equivalence between ($min
Rp−1,q−1 ,H) and (π, L2(C)).

4) T−1 ◦ F ◦ Ψ∗n−2
2

: V p,q → L2(C) induces a unitary equivalence between ir-

reducible unitary representations ($p,q, V p,q) and (π, L2(C)), up to a scalar
constant given by:

(φ, φ)M = 2(2π)n‖T−1 ◦ F ◦Ψ∗n−2
2
φ‖2

L2(C). (4.9.2)

PROOF. If f = E0 ∗ ϕ (ϕ ∈ C∞0 (Rn)), then it follows from the integration
formula of the Green function (see Proposition 4.2) that its Fourier transform
is given by

Ff = F(E0 ∗ ϕ) = (FE0)(Fϕ) = (Fϕ)δ(Q) = T ((Fϕ)|C).

Since ϕ ∈ C∞0 (Rn), we have (Fϕ)|C ∈ L2(C). Hence, FS(C∞0 (Rn)) is contained
in T (L2(C)). Then we have (4.9.1), as follows from

‖(Fϕ)|C‖2
L2(C) = ((FE0)(Fϕ),Fϕ) = (F(E0 ∗ ϕ),Fϕ) = (2π)n(f, f)N . (4.9.3)

We note that (4.9.3) gives a different proof that ( , )N is a positive definite
Hermitian form on S(C∞0 (Rn)) (see Remark after Theorem 4.7).

It follows from Lemma 3.4 that T−1 ◦ F is an Pmax-intertwining operator
from ($n−2

2
,ε,Rn|Pmax , S(C∞0 (Rn))) to (π, L2(C)). This map is isometric up to a

scalar by (4.9.1). Then, it extends naturally to an Pmax-intertwining operator
from ($min

Rp−1,q−1|Pmax ,H) to (π, L2(C)), which is surjective because (π, L2(C))
is irreducible (see Proposition 3.3). Hence we have proved (1), (2) and (3).
The statement (4) follows from (2) and Theorem 4.7. Thus, we have proved
Theorem 4.9. 2
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4.10 By semisimple theory, it is known that a minimal representation is
still irreducible when restricted to any maximal parabolic subgroup. In par-
ticular, $p,q is irreducible as an Pmax-module. In our case, this fact can be
strengthened as follows:

Corollary 4.10 The restriction of the minimal representation $p,q (equiva-
lently, $min

Rp−1,q−1) to Mmax
+ Nmax ' O(p− 1, q − 1)nRp+q−2 is still irreducible.

PROOF. Theorem 4.7 and Theorem 4.9 show that $p,q, $min
Rp−1,q−1 and π

are unitary equivalent to one another. Now, Corollary follows from Proposi-
tion 3.3. 2

4.11 For the convenience of the reader, we summarize the maps used in
the proofs.

C∞(M)
Ψ∗n−2

2−→ C∞(Rn) ∩ S′(Rn)
F−→ S′(Rn) (4.11.1)

∪ ∪ ∪
V p,q ∼→ Ψ∗n−2

2
(V p,q) ∼→ FΨ∗n−2

2
(V p,q)

∩ dense ∩ dense ∩ dense

($p,q, V p,q) ∼→ ($min
Rp−1,q−1 ,H) ∼→ T (L2(C)) ∼←

T
(π, L2(C)).

In the last line, we have written also the notation for unitary representations.

5 Bessel function and an integral formula of spherical functions

5.1 In this section, we shall compute explicitly the lowest K-type of our
minimal representation in theN -picture, i.e. find it as a solution to�Rp−1,q−1f =
0, and also its Fourier transform as a function on C; this turns out to be writ-
ten in terms of a Bessel function (see Theorem 5.5). Note that except when
p = q we are not dealing with a spherical representation of G (namely, there
is no non-zero K-fixed vector in our representation). At the end of this sec-
tion, we reformulate the equivalent realizations of the minimal representation
found in the previous section, using now the minimal K-type to understand
the different pictures.

5.2 Without loss of generality, we may and do assume p ≥ q in this section.
Instead of K-fixed vectors, our idea here is to focus on an O(p)×O(q−1)-fixed
vector. Then, it follows from Lemma 2.6 that such a vector, which we shall
denote by F0, is unique in our minimal representation ($p,q, V p,q) up to a scalar
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multiple, and is contained in the minimal K-type of the form 1 �H
p−q

2 (Rq).
(We note that this K-type is not one dimensional if p 6= q).

We shall find an explicit formula of the Fourier transform of this vector F0

after a conformal change of coordinates. We start with the following classical
lemma, for which we give a proof for the sake of the completeness. We take
a coordinate (up+1, . . . , up+q) in Rq and realize O(q − 1) in O(q) such that it
stabilizes the last coordinate up+q.

Lemma 5.2 For any l ∈ N, O(q− 1)-invariant spherical harmonics of degree
l form a one dimensional vector space. More precisely, we have

Hl(Rq)
O(q−1) ' C 2F1(

−l
2
,
q − 2 + l

2
;
q − 1

2
;up+1

2 + · · ·+ up+q−1
2).

PROOF. In terms of the polar coordinate of Sq−1:

Φ++ : Sq−2 × (0,
π

2
)→ Sq−1, (y, θ) 7→ ((sin θ)y, cos θ), (5.2.1)

the Laplace-Beltrami operator on Sq−1 takes the form:

∆Sq−1 =
∂2

∂θ2
+ (q − 2) cot θ

∂

∂θ
+

1

sin2 θ
∆Sq−2 . (5.2.2)

If F ∈ Hl(Rq) is O(q− 1)-invariant, then F ◦Φ++(θ, y) depends only on θ, for
which we write h(θ). Then h(θ) is an even function satisfying:

(
d2

dθ2
+ (q − 2) cot θ

d

dθ
+ l(l + q − 2))h(θ) = 0.

Since h(θ) is regular at θ = 0, it is a scalar multiple of the Jacobi function:

ϕ
q−3

2
,− 1

2√
−1(l+ q−2

2
)
(
√
−1θ) = 2F1(

−l
2
,
q − 2 + l

2
;
q − 1

2
; sin2 θ)

= 2F1(−l, q − 2 + l;
q − 1

2
;
1− cos θ

2
).

Thus, we have proved the lemma. 2

5.3 In view of Lemma 2.6, the special case of Lemma 5.2 with l = p−q
2

yields:

Proposition 5.3 Suppose p ≥ q ≥ 2, p + q ∈ 2N and (p, q) 6= (2, 2). Let
(u1, . . . , up+q) be the coordinate of M = Sp−1 × Sq−1 in Rp+q. We define a
function F0 : M → C by

F0(u1, . . . , up+q) := 2F1(
q − p

4
,
p+ q − 4

4
;
q − 1

2
;up+1

2 +· · ·+up+q−1
2). (5.3.1)
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Then F0 is an O(p) × O(q − 1)-invariant analytic function on M satisfying
the Yamabe equation ∆̃MF0 = 0. Conversely, any such function is a scalar
multiple of F0.

Remark If p+q is odd, then F0 in the right side of (5.3.1) still gives a solution
∆̃MF = 0 on an open dense set of M such that up+q 6= 0. Furthermore, F0 is
a continuous function on M . However, it does not solve the Yamabe equation
as a distribution on M .

5.4 We recall τ(z′, z′′) is a conformal factor defined in (2.8.1). Let us define
f0 := Ψ∗n−2

2

F0, namely,

f0(z′, z′′) := τ(z′, z′′)−
p+q−4

2 2F1(
q − p

4
,
p+ q − 4

4
;
q − 1

2
;
|z′′|2

τ(z′, z′′)2
). (5.4.1)

We note that |τ(z′, z′′)| ≥ |z′′| for any (z′, z′′) ∈ Rp−1,q−1. The equality holds
if and only if |z′|2 − |z′′|2 = −4.

The following Proposition is immediate from Lemma 2.8 and Proposition 5.3:

Proposition 5.4 With the same assumption on p, q in Proposition 5.3, we
have:
1) f0 is a real analytic function on Rn that solves �Rp−1,q−1f0 = 0.
2) f0 is O(p)×O(q − 1)-invariant.

We say F0 is the generating function of V p,q = Ker ∆̃M , and f0 is that of
($min

Rp−1,q−1 ,H).

Remark More strongly than Proposition 5.4, one can prove that f0 is a real
analytic solution of �Rp−1,q−1f0 = 0 if p+q > 4 by using Proposition 5.6, where
we do not assume that p+q is even. The real analyticity is not obvious from the
expression (5.4.1) in the neighborhood of the hypersurface of |z′|2−|z′′|2 = −4.

5.5 We recall the definitions of Bessel functions:

Jν(z) =
∞∑
m=0

(−1)m(1
2
z)ν+2m

m! Γ(ν +m+ 1)
(Bessel function),

Iν(z) =
∞∑
m=0

(1
2
z)ν+2m

m! Γ(ν +m+ 1)
(modified Bessel function of the first kind),

Kν(z) =
π

2

I−ν(z)− Iν(z)

sin νπ
(modified Bessel function of the second kind).

Then Kν satisfies (
z2 d

2

dz2
+ z

d

dz
− (z2 + ν2)

)
Kν(z) = 0.
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The asymptotic of the functions Kν is well-known, for example z−νKν(z) de-
cays exponentially as z → +∞.

Theorem 5.5 We put |ζ| := (ζ1
2 + · · · + ζn

2)
1
2 for ζ = (ζ1, . . . , ζn) ∈ Rn.

Let F0 ∈ C∞(M) be the generating function of V p,q = Ker ∆̃M (see Proposi-
tion 5.3). Then

(FΨ∗n−2
2
F0)(ζ) = (2π)

p+q−2
2 2−

p−5
2

Γ( q−1
2

)

Γ(p+q−4
2

)
|ζ|

3−q
2 K q−3

2
(2|ζ|)δ(Q).

Note that the |ζ| 3−q2 K q−3
2

(2|ζ|) belongs to the Hilbert space L2(C) if p+ q > 4

by the asymptotic behaviour of the Bessel function Kν and by the explicit
form of δ(Q) in (3.3.3).

5.6 Theorem 5.5 follows from the following Proposition:

Proposition 5.6 We write F−1 for the inverse Fourier transform. With no-
tation in (5.4.1), we have

F−1
(
|ζ|

3−q
2 K q−3

2
(2|ζ|)δ(Q)

)
(z) =

Γ(p+q−4
2

)

2
q+3

2 π
p+q−2

2 Γ( q−1
2

)
f0(z). (5.6.1)

PROOF. Let φ(r) be a function of one variable, which will be taken later to

be r
3−q

2 K q−3
2

(2r). Then, it follows from (3.3.3) that for z = (z′, z′′) ∈ Rp−1,q−1,

2F−1 (φ(|ζ|)δ(Q)) (z)

= (2π)−(p+q−2)
∫ ∞

0

∫
Sp−2

∫
Sq−2

φ(r)e−
√
−1((z′,rω)+(z′′,rη)) rp+q−5dr dω dη.

Using the formula
∫
Sm−1 e

√
−1t(η,ω)dω = (2π)

m
2 t1−

m
2 Jm

2
−1(t), we have

=(2π)−
p+q−2

2

∫ ∞
0

φ(r) (r|z′|)
3−p

2 J p−3
2

(r|z′|)(r|z′′|)
3−q

2 J q−3
2

(r|z′′|)rp+q−5 dr

=(2π)−
p+q−2

2 |z′|
3−p

2 |z′′|
3−q

2

∫ ∞
0

φ(r)J p−3
2

(r|z′|)J q−3
2

(r|z′′|)r
p+q−4

2 dr.
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Now, put φ(r) := r
3−q

2 K q−3
2

(2r). We use the following formula of the Hankel

transform due to Bailey [2] (see also [6], § 19.6 (8))∫ ∞
0

tλ−1Jµ(at)Jν(bt)Kρ(ct)dt

=
2λ−2aµbνΓ(1

2
(λ+ µ+ ν − ρ))Γ(1

2
(λ+ µ+ ν + ρ))

cλ+µ+νΓ(µ+ 1)Γ(ν + 1)

× F4(
1

2
(λ+ µ+ ν − ρ),

1

2
(λ+ µ+ ν + ρ);µ+ 1, ν + 1;−a

2

c2
,−b

2

c2
).

Here, F4 is the Appell hypergeometric function of two variables, defined by

F4(a, b; c, d;x, y) =
∞∑
i=0

∞∑
j=0

(a)i+j(b)i+j
i!j!(c)i(d)j

xiyj.

Then we have:

F−1 (φ(|ζ|)δ(Q)) (z)

=(2π)−
p+q−2

2 |z′|
3−p

2 |z′′|
3−q

2

∫ ∞
0

K q−3
2

(2r)J p−3
2

(r|z′|)J q−3
2

(r|z′′|)r
p−1

2 dr

=(2π)−
p+q−2

2 2
p−3

2
Γ(p+q−4

2
)

Γ( q−1
2

)
F4(

p− 1

2
,
p+ q − 4

2
;
p− 1

2
,
q − 1

2
;
−|z′|2

4
,
−|z′′|2

4
).

5.7 Then, the proof of Proposition 5.6 will be finished by showing the
following reduction formula:

Lemma 5.7 Let τ(z′, z′′) be the conformal factor defined in (2.8.1). We have

F4(
p− 1

2
,
p+ q − 4

2
;
p− 1

2
,
q − 1

2
;
−|z′|2

4
,
−|z′′|2

4
)

=τ(z′, z′′)−
p+q−4

2 2F1(
q − p

4
,
p+ q − 4

4
;
q − 1

2
;
|z′′|2

τ(z′, z′′)2
). (5.7.1)

Proof of Lemma 5.7 We recall a reduction formula of Appell’s hypergeo-
metric functions (see [5], § 5.10, (8)):

F4(α, β; 1 + α− β, β;
−x

(1− x)(1− y)
,

−y
(1− x)(1− y)

) (5.7.2)

=(1− y)α2F1(α, β; 1 + α− β;
−x(1− y)

1− x
)
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and a quadratic transformation for hypergeometric functions (see [5], § 2.11
(32)):

2F1(α, β; 1 + α− β; z) = (1− z)−α2F1(
α

2
,
α + 1− 2β

2
; 1 + α− β;

−4z

(1− z)2
).

(5.7.3)
Combining (5.7.2) with (5.7.3) for α = p+q−4

2
and β = p−1

2
, and using the

symmetry of a and b; (c, x) and (d, y) in F4(a, b; c, d;x, y), we have

F4(
p− 1

2
,
p+ q − 4

2
;
p− 1

2
,
q − 1

2
;

−x
(1− x)(1− y)

,
−y

(1− x)(1− y)
)

=

(
(1− x)(1− y)

1− xy

) p+q−4
2

2F1(
p+ q − 4

4
,
q − p

4
;
q − 1

2
;
4y(1− x)(1− y)

(1− xy)2
).

If we put
|z′|2

4
=

x

(1− x)(1− y)
,
|z′′|2

4
=

y

(1− x)(1− y)

then a simple computation shows

τ(z′, z′′)2 =

(
1− xy

(1− x)(1− y)

)2

,
|z′′|2

τ(z′, z′′)2
=

4y(1− x)(1− y)

(1− xy)2
.

Thus, Lemma 5.7 is proved. 2

5.8 Using the generating function F0 we may recover the whole represen-
tation by letting the Lie algebra of G act. Let us see how our previous results
may be reformulated: It follows from the definition of $̂n−2

2
,ε (see § 3.2) that

the linear map
F ◦Ψ∗n−2

2
: C∞(M)→ S′(Rn)

induces a natural intertwining map from ($p,q, V p,q) to ($̂n−2
2
,ε,FΨ∗n−2

2

(V p,q))

asG-modules and also as g-modules. Here again ε = (−1)
p−q

2 , V p,q = Ker ∆̃M (⊂
C∞(M)) and Ψ∗n−2

2

(V p,q) ⊂ Ker�Rp−1,q−1 .

For b ∈ Rn,m ∈ O(p− 1, q − 1), we define a function on the cone C by

ψb,m(ζ) := e
√
−1〈b,ζ〉|mζ|

3−q
2 K q−3

2
(2|mζ|). (5.8.1)

In particular, we have

ψ0,e(ζ) = |ζ|
3−q

2 K q−3
2

(2|ζ|).

Here we give explicit functions which are dense in the minimal representations.
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Theorem 5.8 Suppose p ≥ q ≥ 2, p+ q ∈ 2N, and (p, q) 6= (2, 2).
1) ψ0,e(ζ) is a K-finite vector of (π, L2(C)). It belongs to the minimal K-type
of π.
2) ψb,m is a K-finite vector and C−span{ψb,m : b ∈ Rn,m ∈ O(p− 1, q − 1)}
is a dense subspace of the minimal representation (π, L2(C)).
2′) C−span{ψb,mδ(Q) : b ∈ Rn,m ∈ O(p− 1, q − 1)} is a dense subspace of
the minimal representation ($̂n−2

2
,ε,FΨ∗n−2

2

(V p,q)).

PROOF. This follows by combining Theorem 4.9 and Lemma 5.5, and by
using the Mackey theory we have an irreducible representation of the parabolic
group. 2

5.9 The advantage in the realization on L2(C) is that the action for Pmax

and the inner product are easily described. On the other hand, the action of
K is not easy to describe, and especially, the K-finiteness in the statement (2)
is non-trivial.

Let U(g) be the enveloping algebra of the complexified Lie algebra g. We define
a subspace of S′(Rn) by

U := d$̂n−2
2
,ε(U(g))(ψ0,eδ(Q)). (5.9.1)

That is, U is the linear span of a Bessel function |ζ| 3−q2 K q−3
2

(2|ζ|)dµ on the

cone C and its iterative differentials corresponding to the action of the Lie
algebra g.

We have seen that FΨ∗n−2
2

(V p,q) ⊂ T (L2(C)) in Theorem 4.9. We may restate

in this way:

Theorem 5.9 1) U is an infinitesimally unitary (g, K)-module via $̂n−2
2
,ε.

2) U is dense in the Hilbert space T (L2(C)).
3) The completion of (1) defines an irreducible unitary representation of G on
T (L2(C)), and then also on L2(C). This gives an extension of π from Pmax

to G.

This has already been done by Theorem 4.9 and the irreducibility of the
minimal representation.

One of non-trivial parts of the above assertion is to show

U ∩ T (L2(C)) 6= {0}

which was proved in Theorem 5.5.
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6 Explicit inner product on solutions �Rp−1,q−1f = 0

6.1 The aim of this section is to provide an explicit inner product on
a certain subspace (see (6.2.1)) of solutions of the ultrahyperbolic equation
�Rp−1,q−1f = 0, such that its Hilbert completion gives the unitarization of the
minimal representation of O(p, q).

Roughly speaking, the inner product will be given in terms of the integration
over a hyperplane after convoluting a distribution along the normal direction.

We assume n > 2. We fix i ∈ {1, 2, . . . , n} once and for all. The hyperplane
on which we integrate will be {z = (z1, . . . , zn) ∈ Rn : zi = 0}, for which we
simply write Rn−1.

6.2 Let C(i) := {ζ ∈ C : ζi 6= 0}, an open dense subset of the null cone
C (see (3.3.2)). We note that C∞0 (C \ {0}) is dense in L2(C). We define a
subspace of solutions of Ker�Rp−1,q−1 by

W := F−1 ◦ T (C∞0 (C(i))). (6.2.1)

Here, we recall T : L2(C) ↪→ S′(Rn) is the embedding via the measure dµ on
the cone C. By the Paley-Wiener theorem for compactly supported distribu-
tions, W consists of real analytic solutions of �Rp−1,q−1f = 0.

Using an interpretation of the Dirac delta function in terms of hyperfunctions:

δ(zi) =
1

2π
√
−1

(
1

zi −
√
−10

− 1

zi +
√
−10

)
,

we decompose f ∈ W as

f(z) = f
(i)
+ (z) + f

(i)
− (z), (6.2.2)

where f
(i)
± (z) is defined by the convolution in the zi-variable:

f
(i)
± (z) :=

1

2π
√
−1
· ∓1

zi ±
√
−10

∗ f(z). (6.2.3)

We shall see later that the decomposition (6.2.2) makes sense not only for
f ∈ W but also for any f ∈ F−1 ◦ T (L2(C)) (see Lemma 6.5). We set

(f, f)W :=
1√
−1

∫
Rn−1

f (i)
+

∂f
(i)
+

∂zi
− f (i)

−
∂f

(i)
−

∂zi

 |zi=0 dz1 · · · d̂zi · · · dzn. (6.2.4)

Theorem 6.2 Fix any i ∈ {1, 2, . . . , n}.
1) The formula (6.2.4) defines a positive definite Hermitian form on W , a
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subspace of solutions of the ultrahyperbolic operator �Rp−1,q−1 = ∂2

∂z1
2 + · · · +

∂2

∂zp−1
2 − ∂2

∂zp
2 − · · · − ∂2

∂zp+q−2
2 on Rp−1,q−1.

2) The inner product (6.2.4) is independent of the choice of i ∈ {1, 2, . . . , n}.
3) The action of G = O(p, q) preserves the inner product (6.2.4), so that the
Hilbert completion W of W defines a unitary representation of G = O(p, q).
4) The resulting unitary representation is unitarily equivalent to the minimal
representation ($p,q, V p,q). The G-intertwining operator Ψ∗n−2

2

: V p,q → W

gives a unitary equivalence up to a scalar constant.
5) cF−1 ◦ T : L2(C) → W is a unitary G-intertwining operator, if we put

c = 2
n+2

2 π
n+1

2 .

This Theorem gives a new formulation of the Hilbert space of the minimal
representation purely in terms of intrinsic objects in the flat space Rp−1,q−1

where the differential equation is the classical ultrahyperbolic one. It general-
izes the q = 2 case where an inner product was known in terms of integration
of Cauchy data - here one could interpret the inner product in terms of the
energy generator. The interesting property about the inner product is its large
invariance group; even translational invariance amounts to a remarkable “con-
servation law”, and we may also note that the integration over a coordinate
hyperplane can be replaced by integration over any non-characteristic hyper-
plane (since such a hyperplane is conjugate to either z1 = 0 or zn = 0 by
O(p − 1, q − 1) n Rp−1,q−1), or even the image of such a hyperplane under
conformal inversion.

The strategy of the proof of Theorem 6.2 is as follows: We recall from Theo-
rem 4.7 that the Hilbert space H is the completion of the space S(C∞0 (Rn))
with respect to another inner product ( , )N (S is an integral transform by the
Green kernel). Since C∞0 (C \ {0}) is dense in L2(C) and since T−1 ◦ F : H→
L2(C) is an isomorphism of Hilbert spaces (up to a scalar) by Theorem 4.9 (1),
W is a dense subspace of the Hilbert space (H, ( , )N). In light of this, the
key ingredient of the proof of Theorem 6.2 is to give a formula of ( , )W by
means of ( , )L2(C). We shall prove:

2(2π)n+1(f, f)W = ‖T−1 ◦ Ff‖2
L2(C) for any f ∈ W. (6.2.5)

Once we prove (6.2.5), it follows from (4.9.1) that

4π( , )W = ( , )N

on the subspace W . In particular, we have

H = W,

and all other statements of Theorem 6.2 on our inner product ( , )W are
clear from the corresponding results on the inner product ( , )N proved in
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Theorem 4.7 and Theorem 4.9 (e.g. Theorem 6.2 (4) corresponds to Theo-
rem 4.7 (5); Theorem 6.2 (5) to Theorem 4.9 (3)).

The rest of this section is devoted to the proof of the formula (6.2.5).

6.3 We define an open subset of the cone C by

C
(i)
± := {ζ ∈ C : ±ζi > 0}.

Then

C(i) := C
(i)
+ ∪ C

(i)
−

is an open dense subset of the cone C, and we have a direct sum decomposition
of the Hilbert space:

L2(C) = L2(C
(i)
+ )⊕ L2(C

(i)
− ).

We define the Heaviside function Y
(i)
± (ζ) of the variable ζi by

Y
(i)
± (ζ1, . . . , ζn) =

1 if ±ζi > 0,

0 if ±ζi ≤ 0,
for ζ = (ζ1, . . . , ζn) ∈ Rn.

For φ ∈ C∞0 (C(i)), we put

φ
(i)
± := Y

(i)
± φ.

Then Suppφ
(i)
± ⊂ C

(i)
± , and we have

φ = φ
(i)
+ + φ

(i)
− , (6.3.1)

‖φ‖2
L2(C) = ‖φ(i)

+ ‖2
L2(C) + ‖φ(i)

− ‖2
L2(C). (6.3.2)

6.4 Let us take the n−1 variables ζ1, . . . , ζ̂i, . . . , ζn as a coordinate on C
(i)
± .

Then we have

ζi = ±
√
Q(i)(ζ1, . . . , ζ̂i, . . . , ζn) (6.4.1)

on C
(i)
± , respectively, if we put

Q(i)(ζ1, . . . , ζ̂i, . . . , ζn) := −εi
(
ζ1

2 + ζ2
2 + · · · ±̂ζi2 ± · · · − ζn−1

2 − ζn2
)
,

(6.4.2)
where εi = ±1 is the signature of ζi

2 in the quadratic form Q(ζ) as in (2.5.1).
We note that Q(i)(ζ1, . . . , ζ̂i, . . . , ζn) ≥ 0 on the cone C, and the map

(ζ1, . . . , ζ̂i, . . . , ζn) 7→ (ζ1, . . . ,±
√
Q(i), . . . , ζn)
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gives a bijection from {(ζ1, . . . , ζ̂i, . . . , ζn) ∈ Rn : Q(i)(ζ1, . . . , ζ̂i, . . . , ζn) 6= 0}
onto C(i). By substituting (6.4.1) into φ

(i)
± , we put

ϕ
(i)
± (ζ1, . . . , ζ̂i, . . . , ζn) := φ

(i)
± (ζ1, . . . ,±

√
Q(i), . . . , ζn).

Since the measure dµ on the cone C is of the form 1

2
√
Q(i)

dζ1 · · · d̂ζi · · · dζn, we

have

‖φ(i)
± ‖2

L2(C) =
∫
Rn−1

|ϕ(i)
± (ζ1, . . . , ζ̂i, . . . , ζn)|2

2
√
Q(i)

dζ1 · · · d̂ζi · · · dζn (6.4.3)

F−1Tφ
(i)
± (z) =

1

(2π)n

∫
Rn−1

e−
√
−1(z1ζ1+···+ẑiζi+···+znζn) (6.4.4)

× e∓
√
−1zi
√
Q(i)ϕ

(i)
± (ζ1, . . . , ζ̂i, . . . , ζn)

2
√
Q(i)

dζ1 · · · d̂ζi · · · dζn.

From (6.4.4) we have the following:

Lemma 6.4 We write FRk for the Fourier transform in Rk (k = n − 1, n).
Then,

F−1
RnTφ

(i)
± |zi=0 =

1

4π
F−1
Rn−1

 ϕ
(i)
±√
Q(i)

 (z1, . . . , ẑi, . . . , zn),

∂

∂zi
|zi=0F

−1
RnTφ

(i)
± =

∓
√
−1

4π
F−1
Rn−1

(
ϕ

(i)
±

)
(z1, . . . , ẑi, . . . , zn).

6.5 We recall the Fourier transform of the Riesz potential∫ ∞
−∞

e
√
−1xξξλ+ dx =

√
−1e

√
−1λπ

2 Γ(λ+ 1)(ξ +
√
−10)−λ−1

for a meromorphic parameter λ. Letting λ = 0, we have

F−1(Y
(i)
± ) =

∓
√
−1

2π
(zi ∓

√
−10)−1δ(z1, . . . , ẑi, . . . , zn),

where δ(z1, . . . , ẑi, . . . , zn) is the Dirac delta function of n− 1 variables. Then
we have

F−1(Y
(i)
± · Tφ) = (F−1Y

(i)
± ) ∗ (F−1Tφ)

=
∓
√
−1

2π
(zi ∓

√
−10)−1δ(z1, . . . , ẑi, . . . , zn) ∗ f(z)

=
±1

2π
√
−1

(zi ∓
√
−10)−1 ∗ f(z).
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Here the first two convolutions are for n variables z1, . . . , zn, while the last one
for only zi ∈ R. In view of the definition of φ

(i)
± and f

(i)
± , we have proved the

following

Lemma 6.5 If f = F−1Tφ then f
(i)
± = F−1Tφ

(i)
± .

6.6 We are now ready to complete the proof of Theorem 6.2. By using
Lemma 6.4 and Lemma 6.5, the Plancherel formula for Rn−1, and the integra-
tion formula (6.4.3), respectively, we have

(f
(i)
± |zi=0,

∂f
(i)
±

∂zi
|zi=0)L2(Rn−1) =

±
√
−1

16π2
(F−1
Rn−1(

ϕ
(i)
±√
Q(i)

)),F−1
Rn−1(ϕ

(i)
± ))L2(Rn−1)

=
±
√
−1

16π2(2π)n−1
(
ϕ

(i)
±√
Q(i)

, ϕ
(i)
± )L2(Rn−1)

=
±
√
−1

2(2π)n+1
‖φ(i)
± ‖2

L2(C).

Hence,

(f, f)W =
1

2(2π)n+1

(
‖φ(i)

+ ‖2
L2(C) + ‖φ(i)

− ‖2
L2(C)

)
=

1

2(2π)n+1
‖φ‖2

L2(C).

This finishes the proof of the formula (6.2.5) and hence Theorem 6.2. 2

6.7 The main content of Theorem 6.2 is to give yet another realization of
the inner product and of the Hilbert space. This is very close to the form most
known in the case of the wave equation, where one integrates Cauchy data on
the zero time hypersurface to get the inner product. Note the connection to
the theory of conserved quantities for the wave equation - we end the paper
by making more explicit this final remark:

When p = 2 let us introduce time and space coordinates (t, x) by

(t, x) = (t, x1, . . . , xn−1) = (z1, . . . , zn)

and the dual variable k to x so that positive-energy solutions to the wave
equation are given by the Fourier transform (i =

√
−1)

u+(t, x) =
∫
Rn−1

ei(kx−t|k|)
ϕ+(k)

|k|
dk

and similarly for negative-energy solutions

u−(t, x) =
∫
Rn−1

ei(kx+t|k|)ϕ
−(k)

|k|
dk
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where kx denotes the usual scalar product, |k| the Euclidean length, and
dk = dk1 · · · dkn−1. Any solution is the sum of two such: u = u+ + u−. The
energy of the wave u is given by

E(u) =
1

2

∫
Rn−1

(|ut|2 + |∇u|2)dx

and is a conserved quantity, i.e. independent of which constant-time hyper-
plane we integrate over. It is easy to see that cross-terms drop out, so that on
the Fourier transform side we obtain

E(u) = (2π)n−1
∫
Rn−1

(|ϕ+(k)|2 + |ϕ−(k)|2)dk

for the energy. Note that this energy only differs from our inner product by
a density factor of |k|, and that it may be thought of as an integral over C.
In terms of our conformally invariant inner product (6.2.4) this is up to a
constant just

(u, |H|u) = (u+, Hu+)− (u−, Hu−),

where H = i∂t is the energy generator (infinitesimal time translations). In
the same way, we have the analogous “conserved quantities” for the ultrahy-
perbolic equation and the inner product (6.2.4), namely: Let Hj = i∂zj be
the generator of translations in the coordinate zj, then for a solution f in the
Hilbert space

Ej(f) = (f, |Hj|f)

is invariant under translations in the coordinate zj. Furthermore, the quantity
Ej(f) can be expressed in terms of an integral of local quantities. In particular
we may use this to study uniqueness and decay properties of solutions to
�Rp−1,q−1f = 0. Since this is outside the scope of the present paper, we shall
not do so here; but note that one easy consequence is the fact, that if a
solution and its normal derivative vanish on a coordinate hyperplane, then it
is identically zero - a classical fact about the energy (time zero hyperplane).
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