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1 Introduction

1.0 This is the first in a series of papers devoted to a study of the so-called
minimal representation of the semisimple Lie group G = O(p, q). We have
taken the point of view that a rather complete treatment of this representa-
tion and its various realizations can be done in a self-contained way; also, such
a study involves many different tools from other parts of mathematics, such as
differential geometry (conformal geometry and pseudo-Riemannian geometry),
analysis of solution spaces of ultrahyperbolic differential equations, Sobolev
spaces, special functions such as hypergeometric functions of two variables,
Bessel functions, analysis on semisimple symmetric spaces, and Dolbeault co-
homology groups. Furthermore, the representation theory yields new results
back to these areas, so we feel it is worthwhile to illustrate such an interaction
in as elementary a way as possible. The sequel (Part II) to the present paper
contains sections 4-9, and we shall also refer to these here. Part III is of more
independent nature.

Working on a single unitary representation we essentially want to analyze
it by understanding its restrictions to natural subgroups, and to calculate
intertwining operators between the various models - all done very explicitly.
We are in a sense studying the symmetries of the representation space by
breaking the large symmetry present originally with the group G by passing to
a subgroup. Geometrically the restriction is from the conformal group G to the
subgroup of isometries H, where different geometries (all locally conformally
equivalent) correspond to different choices of H. Changing H will give rise to
radically different models of the representation, and at the same time allow
calculating the spectrum of H.

Thus the overall aim is to elucidate as many aspects as possible of a dis-
tinguished unitary irreducible representation of O(p, q), including its explicit
branching laws to natural subgroups and its explicit inner product on each
geometric model. Our approach is also useful in understanding the relation
between the representation and a certain coadjoint orbit, namely the minimal
one, in the dual of the Lie algebra. In order to give a good view of the per-
spective in our papers, we are giving below a rather careful introduction to all
these aspects.

For a semisimple Lie group G a particularly interesting unitary irreducible
representation, sometimes called the minimal representation, is the one cor-
responding via “geometric quantization” to the minimal nilpotent coadjoint
orbit. It is still a little mysterious in the present status of the classification
problem of the unitary dual of semisimple Lie groups. In recent years several
authors have considered the minimal representation, and provided many new
results, in particular, Kostant, Torasso, Brylinski, Li, Binegar, Zierau, and
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Sahi, mostly by algebraic methods. For the double cover of the symplectic
group, this is the metaplectic representation, introduced many years ago by
Segal, Shale, and Weil. The explicit treatment of the metaplectic representa-
tion requires various methods from analysis and geometry, in addition to the
algebraic methods; and it is our aim in a series of papers to present for the case
of G = O(p, q) the aspects pertaining to branching laws. From an algebraic
view point of representation theory, our representations $p,q are:
i) minimal representations if p+q ≥ 8 (i.e. the annihilator is the Joseph ideal).
ii) not spherical if p 6= q (i.e. no non-zero K-fixed vector).
iii) not highest weight modules of SO0(p, q) if p, q ≥ 3.

Apparently our case provides examples of new phenomena in representation
theory, and we think that several aspects of our study can be applied to other
cases as well. The metaplectic representation has had many applications in
representation theory and in number theory. A particularly useful concept has
been Howe’s idea of dual pairs, where one considers a mutually centralizing
pair of subgroups in the metaplectic group and the corresponding restriction
of the metaplectic representation. In Part II of our papers, we shall initiate a
similar study of explicit branching laws for other groups and representations
analogous to the classical case of Howe. Several such new examples of dual
pairs have been studied in recent years, mainly by algebraic techniques. Our
case of the real orthogonal group presents a combination of abstract represen-
tation theory and concrete analysis using methods from conformal differential
geometry. Thus we can relate the branching law to a study of the Yamabe
operator and its spectrum in locally conformally equivalent manifolds; fur-
thermore, we can prove the existence of and construct explicitly an infinite
discrete spectrum in the case where both factors in the dual pair are non-
compact.

The methods we use are further motivated by the theory of spherical harmon-
ics, extending analysis on the sphere to analysis on hyperboloids, and at the
same time using elliptic methods in the sense of analysis on complex quadrics
and the theory of Zuckerman-Vogan’s derived functor modules and their Dol-
beault cohomological realizations. Also important are general results on dis-
crete decomposability of representations and explicit knowledge of branching
laws.

It is noteworthy, that as we have indicated, this representation and its the-
ory of generalized Howe correspondence, illustrates several interesting aspects
of modern representation theory. Thus we have tried to be rather complete
in our treatment of the various models of the representations occurring in
the branching law. See for example Fact 5.4, where we give three realiza-
tions: derived functor modules or Dolbeault cohomology groups, eigenspaces
on semisimple symmetric spaces, and quotients of generalized principal series,
of the representations attached to minimal elliptic orbits.
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Most of the results of Part I and Part II were announced in [22], and the
branching law in the discretely decomposable case (Theorem 7.1) was obtained
in 1991, from which our study grew out. We have here given the proofs of the
branching laws for the minimal unipotent representation and postpone the
detailed treatment of the corresponding classical orbit picture as announced
in [22] to another paper. Also, the branching laws for the representations
associated to minimal elliptic orbits will appear in another paper by one of
the authors.

It is possible that a part of our results could be obtained by using sophisticated
results from the theory of dual pairs in the metaplectic group, for example
the see-saw rule (for which one may let our representation correspond to the
trivial representation of one SL(2,R) member of the dual pair ([11], [12]). We
emphasize however, that our approach is quite explicit and has the following
advantages:

(a) It is not only an abstract representation theory but also attempts new
interaction of the minimal representation with analysis on manifolds. For ex-
ample, in Part II we use in an elementary way conformal differential geometry
and the functorial properties of the Yamabe operator to construct the min-
imal representation and the branching law in a way which seems promising
for other cases as well; each irreducible constituent is explicitly constructed
by using explicit intertwining operators via local conformal diffeomorphisms
between spheres and hyperboloids.

(b) For the explicit intertwining operators we obtain Parseval-Plancherel type
theorems, i.e. explicit L2 versions of the branching law and the generalized
Howe correspondence. This also gives a good perspective on the continu-
ous spectrum, in particular yielding a natural conjecture for the complete
Plancherel formula.

A special case of our branching law illustrates the physical situation of the
conformal group of space-time O(2, q); here the minimal representation may
be interpreted either as the mass-zero spin-zero wave equation, or as the bound
states of the Hydrogen atom (in q−1 space dimensions). Studying the branch-
ing law means breaking the symmetry by for example restricting to the isom-
etry group of De Sitter space O(2, q − 1) or anti De Sitter space O(1, q). In
this way the original system (particle) breaks up into constituents with less
symmetry.

In Part III, we shall realize the same representation on a space of solutions of
the ultrahyperbolic equation �Rp−1,q−1f = 0 on Rp−1,q−1, and give an intrinsic
inner product as an integration over a non-characteristic hypersurface.

Completing our discussion of different models of the minimal representation,
we find yet another explicit intertwining operator, this time to an L2 - space of
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functions on a hypersurface (a cone) in the nilradical of a maximal parabolic
P in G. We find the K-finite functions in the case of p + q even in terms
of modified Bessel functions. We remark that Vogan pointed out a long time
ago that there is no minimal representation of O(p, q) if p + q > 8 is odd
[36]. On the other hand, we have found a new interesting phenomenon that
in the case p + q is odd there still exists a geometric model of a “minimal
representation” of o(p, q) with a natural inner product (see Part III). Of course,
such a representation does not have non-zero K-finite vectors for p + q odd,
but have K ′-finite vectors for smaller K ′. What we construct in this case is
an element of the category of (g, P ) modules in the sense that it globalizes to
P (but not K); we feel this concept perhaps plays a role for other cases of the
orbit method as well.

In summary, we give a geometric and intrinsic model of the minimal represen-
tation $p,q (not coming from the construction of $p,q by the θ-correspondence)
on Sp−1 × Sq−1 and on various pseudo-Riemannian manifolds which are con-
formally equivalent, using the functorial properties of the Yamabe operator,
a key element in conformal differential geometry. The branching law for $p,q

gives at the same time new perspectives on conformal geometry, and relates
analysis on hyperboloids to that of minimal representations, with new phe-
nomena in both areas. The main interest in this special case of a small unitary
representation is not only to obtain the formulae, but also to investigate the
geometric and analytic methods, which provide new ideas in representation
theory.

Leaving the general remarks, let us now for the rest of this introduction be a
little more specific about the contents of the present paper.

1.1 Let G be a reductive Lie group, and G′ a reductive subgroup of G.
We denote by Ĝ the unitary dual of G, the equivalence classes of irreducible
unitary representations of G. Likewise Ĝ′ for G′. If π ∈ Ĝ, then the restriction
π|G′ is not necessarily irreducible. By a branching law, we mean an explicit
irreducible decomposition formula:

π|G′ '
∫ ⊕
Ĝ′
mπ(τ)τdµ(τ) (direct integral), (1.1.1)

where mπ(τ) ∈ N ∪ {∞} and dµ is a Borel measure on Ĝ′.

1.2 We denote by g0 the Lie algebra of G. The orbit method due to
Kirillov-Kostant in the unitary representation theory of Lie groups indicates
that the coadjoint representation Ad∗ : G → GL(g∗0) often has a surprising
intimate relation with the unitary dual Ĝ. It works perfectly for simply con-
nected nilpotent Lie groups. For real reductive Lie groups G, known examples
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suggest that the set of coadjoint orbits
√
−1g∗0/G (with certain integral con-

ditions) still gives a fairly good approximation of the unitary dual Ĝ.

1.3 Here is a rough sketch of a unitary representation πλ of G, attached
to an elliptic element λ ∈

√
−1g∗0: The elliptic coadjoint orbit Oλ = Ad∗(G)λ

carries a G-invariant complex structure, and one can define a G-equivariant
holomorphic line bundle L̃λ := Lλ ⊗ (∧topT ∗Oλ)

1
2 over Oλ, if λ satisfies some

integral condition. Then, we have a Fréchet representation of G on the Dol-
beault cohomology group HS

∂̄ (Oλ, L̃λ), where S := dimC Ad∗(K)λ (see [38]
for details), and of which a unique dense subspace we can define a unitary
representation πλ of G ([34]) if λ satisfies certain positivity. The unitary rep-
resentation πλ is irreducible and non-zero if λ is sufficiently regular. The un-
derlying (g, K)-module is so called “Aq(λ)” in the sense of Zuckerman-Vogan
after certain ρ-shift.

In general, the decomposition (1.1.1) contains both discrete and continuous
spectrum. The condition for the discrete decomposition (without continuous
spectrum) has been studied in [15], [16], [17], and [20], especially for πλ at-
tached to elliptic orbits Oλ. It is likely that if π ∈ Ĝ is “attached to” a
nilpotent orbit, which is contained in the limit set of Oλ, then the discrete de-
composability of π|G′ should be inherited from that of the elliptic case πλ|G′ .
We shall see in Theorem 4.2 that this is the case in our situation.

1.4 There have been a number of attempts to construct representations
attached to nilpotent orbits. Among all, the Segal-Shale-Weil representation
(or the oscillator representation) of S̃p(n,R), for which we write $̃, has been
best studied, which is supposed to be attached to the minimal nilpotent orbit
of sp(n,R). The restriction of $̃ to a reductive dual pair G′ = G′1G

′
2 gives

Howe’s correspondence ([10]).

The group S̃p(n,R) is a split group of type Cn, and analogously to $̃, Kostant
constructed a minimal representation of SO(n, n), a split group of type Dn.
Then Binegar-Zierau generalized it for SO(p, q) with p + q ∈ 2N. This repre-
sentation (precisely, of O(p, q), see Section 3) will be denoted by $p,q.

1.5 Let G′ := G′1G
′
2 = O(p′, q′)×O(p′′, q′′), (p′ + p′′ = p, q′ + q′′ = q), be a

subgroup of G = O(p, q). Our object of study in Part II will be the branching
law $p,q

|G′ . We note that G′1 and G′2 form a mutually centralizing pair of
subgroups in G.

It is interesting to compare the feature of the following two cases:
(i) the restriction $̃|G′1G′2 (the Segal-Shale-Weil representation for type Cn),
(ii) the restriction $p,q|G′1G′2 (the Kostant-Binegar-Zierau representation for
type Dn).
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The reductive dual pair (G,G′) = (G,G′1G
′
2) is of the ⊗-type in (i), that is,

induced from GL(V )×GL(W ) → GL(V ⊗W ); is of the ⊕-type in (ii), that
is, induced from GL(V ) × GL(W ) → GL(V ⊕W ). On the other hand, both
of the restrictions in (i) and (ii) are discretely decomposable if one factor G′2
is compact. On the other hand, $̃ is (essentially) a highest weight module in
(i), while $p,q is not if p, q > 2 in (ii).

1.6 Let p+ q ∈ 2N, p, q ≥ 2, and (p, q) 6= (2, 2). In this section we state the
main results of the present paper and the sequels (mainly Part II; an introduc-
tion of Part III will be given separately in [24]). The first Theorem A below
(Theorem 2.5) says that there is a general way of constructing representations
of a conformal group by twisted pull-backs (see Section 2 for notation). It is
the main tool to give different models of our representation.

Theorem A Suppose that a group G acts conformally on a pseudo-Riemannian
manifold M of dimension n.
1) Then, the Yamabe operator (see (2.2.1) for the definition)

∆̃M : C∞(M)→ C∞(M)

is an intertwining operator from $n−2
2

to $n+2
2

(see (2.5.1) for the definition

of $λ).
2) The kernel Ker ∆̃M is a subrepresentation of G through $n−2

2
.

Theorem B 1) The minimal representation $p,q of O(p, q) is realized as the
kernel of the Yamabe operator on Sp−1 × Sq−1.
2) $p,q is also realized as a subspace (roughly, half) of the kernel of the Yamabe
operator on the hyperboloid {(x, y) ∈ Rp,q : |x|2 − |y|2 = 1}.
3) $p,q is also realized in a space of solutions to the Yamabe equation on
R
p−1,q−1 which is a standard ultrahyperbolic constant coefficient differential

equation.
4) $p,q is also realized as the unique non-trivial subspace of the Dolbeault
cohomology group Hp−2

∂̄
(G/L,L p+q−4

2
).

In Theorem B (1) is contained in Part I, Theorem 3.6.1; (2) in Part II, Corol-
lary 7.2.1; and (3) in Part III, Theorem 4.7. In each of these models, an explicit
model is given explicitly. In the models (2) and (3), the situation is subtle be-
cause the “action” of O(p, q) is no more smooth but only meromorphic. Then
Theorem A does not hold in its original form, and we need to carry out a
careful analysis for it (see Part II and Part III). The proof of the statement
(4) will appear in another paper. Here G/L is an elliptic coadjoint orbit as in
§1.3, and L = SO(2)×O(p− 2, q).

The branching laws in Theorem C and Theorem D are the main themes in
Part II; for notation see section 7 and section 9.
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Theorem C If q′′ ≥ 1 and q′ + q′′ = q, then the twisted pull-back Φ̃∗1 of
the local conformal map Φ1 between spheres and hyperboloids gives an explicit
irreducible decomposition of the unitary representation $p,q when restricted to
O(p, q′)×O(q′′):

$p,q|O(p,q′)×O(q′′) '
∞∑
l=0

πp,q
′

+,l+ q′′
2
−1
�Hl(Rq

′′
).

In addition, we give in §8, Theorem 8.6 the Parseval-Plancherel theorem for
the situation in Theorem C on the “hyperbolic space model”. This may be
also regarded as the unitarization of the minimal representation $p,q.

The twisted pull-back for a locally conformal diffeomorphism is defined for an
arbitrary pseudo-Riemannian manifold (see Definition 2.3).

Theorem D The twisted pull-back of the locally conformal diffeomorphism
also constructs∑⊕

λ∈A′(p′,q′)∩A′(q′′,p′′)
πp
′,q′

+,λ � π
p′′,q′′

−,λ ⊕
∑⊕

λ∈A′(q′,p′)∩A′(p′′,q′′)
πp
′,q′

−,λ � π
p′′,q′′

+,λ

as a discrete spectra in the branching law.

1.7 The papers (Part I and Part II) are organized as follows: Section 2 pro-
vides a conformal construction of a representation on the kernel of a shifted
Laplace-Beltrami operator. In section 3, we construct an irreducible unitary
representation, $p,q of O(p, q) (p + q ∈ 2N, p, q ≥ 2) “attached to” the mini-
mal nilpotent orbit applying Theorem 2.5. This representation coincides with
the minimal representation studied by Kostant, Binegar-Zierau ([2], [25]). In
section 3 we give a new intrinsic characterization of the Hilbert space for the
minimal representation in this model, namely as a certain Sobolev space of
solutions, see Theorem 3.9.3 and Lemma 3.10. Such Sobolev estimate will be
used in the construction of discrete spectrum of the branching law in section 9.
Section 4 contains some general results on discrete decomposable restrictions
([16], [17]), specialized in detail to the present case. Theorem 4.2 characterizes
which dual pairs in our situation provide discrete decomposable branching
laws of the restriction of the minimal representation $p,q. In section 5, we
introduce unitary representations, πp,q±,λ of O(p, q) “attached to” minimal el-
liptic coadjoint orbits. In sections 7 and 9, we give a discrete spectrum of the

branching law $p,q|G′ in terms of πp
′,q′

±,λ ∈ ̂O(p′, q′) and πp
′′,q′′

±,λ ∈ ̂O(p′′, q′′). In
particular, if one factor G′2 = O(p′′, q′′) is compact (i.e. p′′ = 0 or q′′ = 0), the
branching law is completely determined together with a Parseval-Plancherel
theorem in section 8.

Following the suggestion of the referee, we have included a full account of our
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proof of the unitarity of the minimal representation. This proof is independent
of earlier proofs by Kostant, Binegar-Zierau, Howe-Tan, and others, and we
feel it in itself deserves attention. Our argument is purely analytical, based on
analysis on hyperboloids, and avoids combinatorial calculations of the actions
of Lie algebras. The key statement is in Theorem 3.9.1 with the immediate
application to the unitarity in Corollary 3.9.2. The proof of Theorem 3.9.1 will
be given in section 8.3, and it uses a factorization (see (8.3.8)) of the Knapp-
Stein intertwining operator as the product of a Poisson transform into an affine
symmetric space (a hyperboloid), and a boundary value map. This gives the
explicit eigenvalues of the Knapp-Stein intertwining operators on generalized
principal series representations, and not only on some subrepresentations. We
think this method is promising with regard to some higher-rank situations. In
particular, one is free to choose “intermediate” affine symmetric spaces.

Finally, we have included the proofs of the explicit formulas for the Jacobi
functions used in section 8, mainly Lemma 8.1 and Lemma 8.2. These formulas
lead to the Parseval-Plancherel formulas (see Theorem 8.6) for the branching
laws of the minimal representation realized on hyperboloids. (Incidentally, this
can be applied to give a proof of the unitarity of a certain Zuckerman-Vogan’s
derived functor module even outside the weakly fair range.)

Notation: N = {0, 1, 2, . . . }.

The first author expresses his sincere gratitude to SDU - Odense University
for the warm hospitality.

2 Conformal geometry

2.1 The aim of this section is to associate a distinguished representation
$M of the conformal group Conf(M) to a general pseudo-Riemannian mani-
fold M (see Theorem 2.5).

2.2 Let M be an n dimensional manifold with pseudo-Riemannian metric
gM (n ≥ 2). Let ∇ be the Levi-Civita connection for the pseudo-Riemannian
metric gM . The curvature tensor field R is defined by

R(X, Y )Z := ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z, X, Y, Z ∈ X(M).

We take an orthonormal basis {X1, · · · , Xn} of TxM for a fixed x ∈M . Then
the scalar curvature KM is defined by

KM(x) :=
n∑
i=1

n∑
j=1

gM (R(Xi, Xj)Xi, Xj) .
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The right side is independent of the choice of the basis {Xi} and so KM is a
well-defined function on M . We denote by ∆M the Laplace-Beltrami operator
on M . The Yamabe operator is defined to be

∆̃M := ∆M −
n− 2

4(n− 1)
KM . (2.2.1)

See for example [26] for a good discussion of the geometric meaning and ap-
plications of this operator. Our choice of the signature of KM and ∆M is
illustrated as follows:

Example 2.2 We equip Rn and Sn with standard Riemannian metric. Then

For Rn; KRn ≡ 0, ∆̃Rn = ∆Rn =
n∑
i=1

∂2

∂x2
i

.

For Sn; KSn ≡ (n− 1)n, ∆̃Sn = ∆Sn −
1

4
n(n− 2).

2.3 Suppose (M, gM) and (N, gN) are pseudo-Riemannian manifolds of di-
mension n. A local diffeomorphism Φ : M → N is called a conformal map if
there exists a positive valued function Ω on M such that

Φ∗gN = Ω2gM .

Φ is isometry if and only if Ω ≡ 1 by definition.

We denote the group of conformal transformations (respectively, isometries)
of a pseudo-Riemannian manifold (M, gM) by

Conf(M) := {Φ ∈ Diffeo(M) : ΦM →M is conformal},
Isom(M) := {Φ ∈ Diffeo(M) : ΦM →M is isometry}.

Clearly, Isom(M) ⊂ Conf(M).

If Φ is conformal, then we have (e.g. [27]; [9], Chapter II, Excer. A.5)

Ω
n+2

2 (Φ∗∆̃Nf) = ∆̃M(Ω
n−2

2 Φ∗f) (2.3.1)

for any f ∈ C∞(N). We define a twisted pull-back

Φ∗λ : C∞(N)→ C∞(M), f 7→ Ωλ(Φ∗f), (2.3.2)

for each fixed λ ∈ C. Then the formula (2.3.1) is rewritten as

Φ∗n+2
2

∆̃Nf = ∆̃MΦ∗n−2
2
f. (2.3.1)′

The case when λ = n−2
2

is particularly important. Thus, we write the twisted
pull-back for λ = n−2

2
as follows:
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Definition 2.3 Φ̃∗ = Φ∗n−2
2

: C∞(N)→ C∞(M), f 7→ Ω
n−2

2 (Φ∗f).

Then the formula (2.3.1) implies that

∆̃Nf = 0 on Φ(M) if and only if ∆̃M(Φ̃∗f) = 0 on M (2.3.3)

because Ω is nowhere vanishing.

If n = 2, then ∆̃M = ∆M , ∆̃N = ∆N , and Φ̃∗ = Φ∗. Hence, (2.3.3) implies a
well-known fact in the two dimensional case that a conformal map Φ preserves
harmonic functions, namely,

f is harmonic⇔ Φ∗f is harmonic.

2.4 Let G be a Lie group acting conformally on a pseudo-Riemannian man-
ifold (M, gM). We write the action of h ∈ G on M as Lh : M →M,x 7→ Lhx.
By the definition of conformal transformations, there exists a positive valued
function Ω(h, x) (h ∈ G, x ∈M) such that

L∗hgM = Ω(h, ·)2gM (h ∈ G).

Then we have

Lemma 2.4 For h1, h2 ∈ G and x ∈M , we have

Ω(h1h2, x) = Ω(h1, Lh2x) Ω(h2, x).

PROOF. It follow from Lh1h2 = Lh1Lh2 that

L∗h1h2
gM = L∗h2

L∗h1
gM .

Therefore we have Ω(h1h2, ·)2 gM = L∗h1h2
gM = L∗h2

(
L∗h1

gM
)

= L∗h2
(Ω(h1, ·)2 gM)

= Ω(h1, Lh2 ·)2 Ω(h2, ·)2 gM . Since Ω is a positive valued function, we conclude
that Ω(h1h2, x) = Ω(h1, Lh2x) Ω(h2, x). 2

2.5 For each λ ∈ C, we form a representation $λ ≡ $M,λ of the conformal
group G on C∞(M) as follows:(

$λ(h
−1)f

)
(x) := Ω(h, x)λf(Lhx), (h ∈ G, f ∈ C∞(M), x ∈M). (2.5.1)

Then Lemma 2.4 assures that $λ(h1) $λ(h2) = $λ(h1h2), namely, $λ is a
representation of G.
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Denote by dx the volume element on M defined by the pseudo-Riemannian
structure gM . Then we have

L∗h(dx) = Ω(h, x)ndx for h ∈ G.

Therefore, the map f 7→ f dx gives aG-intertwining operator from ($n, C
∞(M))

into the space of distributions D′(M) on M .

Here is a construction of a representation of the group of conformal diffeomor-
phisms of M .

Theorem 2.5 Suppose that a group G acts conformally on a pseudo-Riemannian
manifold M of dimension n. Retain the notation before.
1) Then, the Yamabe operator

∆̃M : C∞(M)→ C∞(M)

is an intertwining operator from $n−2
2

to $n+2
2

.

2) The kernel Ker ∆̃M is a subrepresentation of G through $n−2
2

.

PROOF. (1) is a restatement of the formula (2.3.1). (2) follows immediately
from (1). 2

The representation of G on Ker ∆̃M given in Theorem 2.5 (2) will be denoted
by $ ≡ $M .

2.6 Here is a naturality of the representation of the conformal group Conf(M)
in Theorem 2.5:

Proposition 2.6 Let M and N be pseudo-Riemannian manifolds of dimen-
sion n, and a local diffeomorphism Φ : M → N be a conformal map. Suppose
that Lie groups G′ and G act conformally on M and N , respectively. The ac-
tions will be denoted by LM and LN , respectively. We assume that there is a
homomorphism i : G′ → G such that

LN,i(h) ◦ Φ = Φ ◦ LM,h ( for any h ∈ G′).

We write conformal factors ΩM , ΩN and Ω as follows:

L∗M,hgM = ΩM(h, ·)2gM (h ∈ G′),
L∗N,hgN = ΩN(h, ·)2gN (h ∈ G),

Φ∗gN = Ω2gM .
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1) For x ∈M and h ∈ G′, we have

Ω(LM,hx) ΩM(h, x) = Ω(x) ΩN(i(h),Φ(x)). (2.6.1)

2) Let λ ∈ C and Φ∗λ : C∞(N) → C∞(M) be the twisted pull-back defined
in (2.3.2). Then Φ∗λ respects the G-representation ($N,λ, C

∞(N)) and the
G′-representation ($M,λ, C

∞(M)) through i : G′ → G.

3) Φ̃∗ = Φ∗n−2
2

: C∞(N)→ C∞(M) sends Ker ∆̃N into Ker ∆̃M . In particular,

we have a commutative diagram:

Ker ∆̃N
Φ̃∗−−−→ Ker ∆̃M

$N (i(h))

y y$M (h)

Ker ∆̃N −−−→
Φ̃∗

Ker ∆̃M

(2.6.2)

for each h ∈ G′.
4) If Φ is a diffeomorphism onto N , then (Φ−1)∗λ is the inverse of Φ∗λ for each

λ ∈ C. In particular, Φ̃∗ is a bijection between Ker ∆̃N and Ker ∆̃M with

inverse ˜(Φ−1)∗.

PROOF. 1) Because LN,i(h) ◦ Φ = Φ ◦ LM,h for h ∈ G′, we have

(Φ∗L∗N,i(h)gN)(x) = (L∗M,hΦ
∗gN)(x), for x ∈M.

Hence,

ΩN(i(h),Φ(x))2 Ω(x)2gM(x) = Ω(LM,hx)2 ΩM(h, x)2gM(x).

Because all conformal factors are positive-valued functions, we have proved
(2.6.1).
2) We want to prove

($M,λ(h
−1)Φ∗λf)(x) = (Φ∗λ$N,λ(i(h

−1))f)(x) (2.6.3)

for any x ∈M , h ∈ G′ and λ ∈ C. In view of the definition, we have

the left side of (2.6.3) = ($M,λ(h
−1)(Ωλ Φ∗f))(x)

= ΩM(h, x)λ Ω(LM,hx)λ(Φ∗f)(LM,hx)

= Ω(x)λΩN(i(h),Φ(x))λf(Φ ◦ LM,hx).

Here the last equality follows from (2.6.1).

The right side of (2.6.3) = (Φ∗λΩN(i(h), ·)λ f(LN,h·))(x)

= Ω(x)λ ΩN(i(h),Φ(x))λ f(LN,i(h) ◦ Φ(x)).
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Therefore, we have (2.6.3), because LN,i(h) ◦ Φ = Φ ◦ LM,h.

3) If f ∈ C∞(N) satisfies ∆̃Nf = 0, then ∆̃M(Φ̃∗f) = Ω
n+2

2 (Φ∗∆̃Nf) = 0
by (2.3.1). Hence Φ̃∗(Ker ∆̃N) ⊂ Ker ∆̃M . The commutativity of the diagram
(2.6.2) follows from (2) and Theorem 2.5 (2), if we put λ = n−2

2
.

4) Because (Φ−1)∗gM = (Ω◦Φ−1)−2gN , the twisted pull-back (Φ−1)∗λF is given
by the following formula from definition (2.3.2):

(Φ−1)∗λ : C∞(M)→ C∞(N), F 7→ (Φ−1)∗λF = (Ω ◦ Φ−1)−λ(F ◦ Φ−1).

Now the statement (4) follows immediately. 2

3 Minimal unipotent representations of O(p, q)

3.1 In this section, we apply Theorem 2.5 to the specific setting where M =
Sp−1×Sq−1 is equipped with an indefinite Riemannian metric, and where the
indefinite orthogonal group G = O(p, q) acts conformally on M . The resulting
representation, denoted by $p,q, is non-zero, irreducible and unitary if p+ q ∈
2N, p, q ≥ 2 and if (p, q) 6= (2, 2). This representation coincides with the one
constructed by Kostant, Binegar-Zierau ([2], [25]), which has the Gelfand-
Kirillov dimension p + q − 3 (see Part II, Lemma 4.4). This representation
is supposed to be attached to the unique minimal nilpotent coadjoint orbit,
in the sense that its annihilator in the enveloping algebra U(g) is the Joseph
ideal if p + q ≥ 8, which is the unique completely prime primitive ideal of
minimum nonzero Gelfand-Kirillov dimension.

Our approach based on conformal geometry gives a geometric realization of the
minimal representation$p,q for O(p, q). One of the advantages using conformal
geometry is the naturality of the construction (see Proposition 2.6), which
allows us naturally different realizations of $p,q, not only on the K-picture (a
compact picture in §3), but also on the N -picture (a flat picture) (see Part
III), and on the hyperboloid picture (see Part II, §7, Corollary 7.2.1), together
with the Yamabe operator in each realization. In later sections, we shall reduce
the branching problems of $p,q to the analysis on different models on which
the minimal representation $p,q is realized.

The case of SO(3, 4) was treated by [29]; his method was generalized in [32]
to cover all simple groups with admissible minimal orbit, as well as the case
of a local field of characteristic zero.

3.2 We write a standard coordinate of Rp+q as (x, y) = (x1, . . . , xp, y1, . . . , yq).
Let Rp,q be the pseudo-Riemannian manifold Rp+q equipped with the pseudo-
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Riemannian metric:

ds2 = dx1
2 + · · ·+ dxp

2 − dy1
2 − · · · − dyq2. (3.2.1)

We assume p, q ≥ 1 and define submanifolds of Rp,q by

Ξ := {(x, y) ∈ Rp,q : |x| = |y|} \ {0}, (3.2.2)

M := {(x, y) ∈ Rp,q : |x| = |y| = 1} ' Sp−1 × Sq−1. (3.2.3)

We define a diagonal matrix by Ip,q := diag(1, . . . , 1,−1, . . . ,−1). The indefi-
nite orthogonal group

G = O(p, q) := {g ∈ GL(p+ q,R) : tgIp,qg = Ip,q}

acts isometrically on Rp,q by the natural representation, denoted by z 7→ g · z
(g ∈ G, z ∈ Rp,q). This action stabilizes the light cone Ξ. The multiplicative
group R×+ := {r ∈ R : r > 0} acts on Ξ as a dilation and the quotient space
Ξ/R×+ is identified with M . Because the action of G commutes with that of
R
×
+, we can define the action of G on the quotient space Ξ/R×+, and also on

M through the diffeomorphism M ' Ξ/R×+. This action will be denoted by

Lh : M →M,x 7→ Lhx (x ∈M,h ∈ G).

In summary, we have a G-equivariant principal R×+-bundle:

Φ : Ξ→M, (x, y) 7→ (
x

|x|
,
y

|y|
) =

1

ν(x, y)
(x, y), (3.2.4)

where ν : Ξ→ R+ is defined by

ν(x, y) = |x| = |y|. (3.2.5)

3.3 Suppose N is a (p+ q− 2)-dimensional submanifold of Ξ. We say N is
transversal to rays if Φ|N : N → M is locally diffeomorphic. Then, the stan-
dard pseudo-Riemannian metric on Rp,q induces a pseudo-Riemannian metric
on N which has the codimension 2 in Rp,q. The resulting pseudo-Riemannian
metric is denoted by gN , which has the signature (p − 1, q − 1). In partic-
ular, M ' Sp−1 × Sq−1 itself is transversal to rays, and the induced metric
gSp−1×Sq−1 = gSp−1 ⊕ (−gSq−1), where gSn−1 denotes the standard Riemannian
metric on the unit sphere Sn−1.

Lemma 3.3 Assume that N is transversal to rays. Then Φ|N : N → M is a
conformal map. Precisely, we have

(Φ∗gM)z = ν(z)−2(gN)z, for z = (x, y) ∈ N . (3.3.1)
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PROOF. Write the coordinates as (u1, · · · , up, v1, · · · , vq) = Φ(x, y) ∈ Sp−1×
Sq−1. Then

Φ∗ (duj) =
dxj
|x|
− xj
|x|3

p∑
i=1

xidxi.

Therefore, we have

Φ∗

 p∑
j=1

(duj)
2

 = |x|−2
p∑
j=1

(dxj)
2 − 2|x|−4(

p∑
j=1

xjdxj)
2 + |x|−6(

p∑
j=1

x2
j)(

p∑
i=1

xidxi)
2

= |x|−2
p∑
j=1

(dxj)
2 − |x|−4(

p∑
j=1

xjdxj)
2.

Similarly, we have

Φ∗

 q∑
j=1

(dvj)
2

 = |y|−2
q∑
j=1

(dyj)
2 − |y|−4(

q∑
j=1

yjdyj)
2.

Because |x|2 = |y|2 and
∑p
j=1 xjdxj =

∑q
k=1 ykdyk, we have

Φ∗(
p∑
j=1

(duj)
2 −

q∑
j=1

(dvj)
2) =

1

|x|2
(
p∑
j=1

(dxj)
2 −

q∑
k=1

(dyk)
2).

Hence, we have proved (3.3.1) from our definition of gM and gN . 2

3.4 If we apply Lemma 3.3 to the transformation on the pseudo-Riemannian
manifold M = Sp−1 × Sq−1, we have:

Lemma 3.4.1 G acts conformally on M . That is, for h ∈ G, z ∈M , we have

L∗hgM =
1

ν(h · z)2
gM at TzM.

PROOF. The transformation Lh : M →M is the composition of the isome-
try M → h ·M, z 7→ h ·z, and the conformal map Φ|h·M : h ·M →M, ξ 7→ ξ

ν(ξ)
.

Hence Lemma 3.4.1 follows. 2

Several works in differential geometry treat the connection between the geom-
etry of a manifold and the structure of its conformal group. For the identity

Conf(Sp−1 × Sq−1) = O(p, q), (p > 2, q > 2),

see for example [13], Chapter IV.
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As in Example 2.2, the Yamabe operator on M = Sp−1×Sq−1 is given by the
formula:

∆̃M = ∆Sp−1 −∆Sq−1 − p+ q − 4

4(p+ q − 3)
((p− 1)(p− 2)− (q − 1)(q − 2))

=
(

∆Sp−1 − 1

4
(p− 2)2

)
−
(

∆Sq−1 − 1

4
(q − 2)2

)
(3.4.1)

=
(

∆̃Sp−1 − 1

4

)
−
(

∆̃Sq−1 − 1

4

)
.

We define a subspace of C∞(Sp−1 × Sq−1) by

V p,q := {f ∈ C∞(Sp−1 × Sq−1) : ∆̃Mf = 0}. (3.4.2)

By applying Theorem 2.5, we have

Theorem 3.4.2 Let p, q ≥ 1. For h ∈ O(p, q), z ∈ M = Sp−1 × Sq−1, and
f ∈ V p,q, we define

($p,q(h−1)f)(z) := ν(h · z)−
p+q−4

2 f(Lhz). (3.4.3)

Then ($p,q, V p,q) is a representation of O(p, q).

3.5 In order to describe the K-type formula of $p,q, we recall the basic fact
of spherical harmonics. Let p ≥ 2. The space of spherical harmonics of degree
k ∈ N is defined to be

Hk(Rp) = {f ∈ C∞(Sp−1) : ∆Sp−1f = −k(k + p− 2)f},

which is rewritten in terms of ∆̃Sp−1 = ∆Sp−1− 1
4
(p−1)(p−3) (see Example 2.2)

as

= {f ∈ C∞(Sp−1) : ∆̃Sp−1f =
(

1

4
− (k +

p− 2

2
)2
)
f}. (3.5.1)

The orthogonal group O(p) acts on Hk(Rp) irreducibly and we have the di-
mension formula:

dimCHk(Rp) =

p+ k − 2

k

+

p+ k − 3

k − 1

 . (3.5.2)

For p = 1, it is convenient to define representations of O(1) by

Hk(R1) :=


C (trivial representation) (k = 0)

C (signature representation) (k = 1)

0 (k ≥ 2).
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Then we have irreducible decompositions as O(p)-modules for p ≥ 1:

L2(Sp−1) '
∞∑⊕

k=0

Hk(Rp) (Hilbert direct sum).

3.6 Here is a basic property of the representation ($p,q, V p,q).

Theorem 3.6.1 Suppose that p, q are integers with p ≥ 2 and q ≥ 2.
1) The underlying (g, K)-module ($p,q)K of $p,q has the following K-type
formula:

($p,q)K '
⊕
a,b∈N

a+ p
2

=b+ q
2

Ha(Rp)�Hb(Rq). (3.6.1)

2) In the Harish-Chandra parametrization, the Z(g)-infinitesimal character
of $p,q is given by (1, p+q

2
− 2, p+q

2
− 3, . . . , 1, 0).

3) V p,q is non-zero if and only if p+ q ∈ 2N.
4) If p + q ∈ 2N and if (p, q) 6= (2, 2), then ($p,q, V p,q) is an irreducible
representation of G = O(p, q) and the underlying (g, K)-module ($p,q

K , V p,q
K ) is

unitarizable.

Although Theorem 3.6.1 overlaps with the results of Kostant, Binegar-Zierau,
Howe-Tan, Huang-Zhu obtained by algebraic methods ([2], [11], [12], [25]),
we shall give a self-contained and new proof from our viewpoint: conformal
geometry, discrete decomposability of the restriction with respect to non-
compact subgroups, and analysis on affine symmetric spaces (hyperboloids).
The method of finding K-types will be generalized to the branching law for
non-compact subgroups (§7, §9). The idea of proving irreducibility (see The-
orem 7.6) is new and seems interesting by its simplicity, because we do not
need rather complicated computations (cf. [2], [11]) but just use the discretely
decomposable branching law with respect to O(p, q′)×O(q′′). The point here
is that we have flexibility in choosing (q′, q′′) such that q′ + q′′ = q. We shall
give a new proof of the unitarizability of $p,q because of the importance of
“small” representations in the current status of unitary representation theory,
see Theorem 3.9.1, Corollary 3.9.2 and Part II ([23]), §8.3.

PROOF. Let F ∈ V p,q ⊂ C∞(M). Then F is developed as

F =
∑
a,b∈N

Fa,b (Fa,b ∈ Ha(Rp)�Hb(Rq)),

where the right side converges in the topology of C∞(M). Applying the Yam-
abe operator, we have

∆̃MF =
∑
a,b∈N

(
−
(
a+

p− 2

2

)2

+
(
b+

q − 2

2

)2
)
Fa,b.
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Since ∆̃MF = 0, Fa,b can be non-zero if and only if

|a+
p− 2

2
| = |b+

q − 2

2
|, (3.6.2)

whence (1) and (3). The statement (2) follows from Lemma 3.7.2 and (3.7.4).
An explicit (unitarizable) inner product for $p,q will be given in §3.9 (see also
Remark in §3.9, and §8.3).

We shall give a simple proof of the irreducibility of $p,q in Theorem 7.6 by us-
ing discretely decomposable branching laws to non-compact subgroups (The-
orem 4.2 and Theorem 7.1). 2

Remark 3.6.2 1) $2,2 contains the trivial one dimensional representation as
a subrepresentation. The quotient $2,2/C is irreducible as an O(2, 2)-module
and splits into a direct sum of four irreducible SO0(2, 2)-modules. The short
exact sequence of O(2, 2)-modules 0 → C → $2,2 → $2,2/C → 0 does not
split, and $2,2 is not unitarizable as an O(2, 2)-module.

This case is the only exception that $p,q is not unitarizable as a Conf(Sp−1×
Sq−1)-module.
2) The K-type formula for the case p = 1 or q = 1 is obtained by the same
method as in Theorem 3.6.1. Then we have that

V p,q '


C

4 if (p, q) = (1, 1),

C
2 if (p, q) = (1, 3), (3, 1),

{0} if p = 1 or q = 1 with p+ q > 4 or if p+ q /∈ 2N.

V p,q consists of locally constant functions on Sp−1×Sq−1 if (p, q) = (1, 1), (1, 3)
and (3, 1).
3) In the case of the Kepler problem, i.e. the case of G = O(4, 2), the above
K-type formula has a nice physical interpretation, namely: the connected com-
ponent of G acts irreducibly on the space with positive Fourier components
for the action of the circle SO(2), the so-called positive energy subspace; the
Fourier parameter n = 1, 2, 3, ... corresponds to the energy level in the usual
labeling of the bound states of the Hydrogen atom, and the dimension (also
called the degeneracy of the energy level) for the spherical harmonics is n2, as
it is in the labeling using angular momentum and its third component of the
wave functions ψnlm. Here n corresponds to our b.

3.7 Let us understand $p,q as a subrepresentation of a degenerate principal
series.

For ν ∈ C, we denote by the space

Sν(Ξ) := {f ∈ C∞(Ξ) : f(tξ) = tνf(ξ), ξ ∈ Ξ, t > 0} (3.7.1)
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of smooth functions on Ξ of homogeneous degree ν. Furthermore, for ε = ±1,
we put

Sν,ε(Ξ) := {f ∈ Sν(Ξ) : f(−ξ) = εf(ξ), ξ ∈ Ξ}.
Then we have a direct sum decomposition

Sν(Ξ) = Sν,1(Ξ) + Sν,−1(Ξ),

on which G acts by left translations, respectively.

Lemma 3.7.1 The restriction C∞(Ξ) → C∞(M), f 7→ f |M induces the iso-
morphism of G-modules between S−λ(Ξ) and ($λ, C

∞(M)) (given in (2.5.1))
for any λ ∈ C.

PROOF. If f ∈ S−λ(Ξ), h ∈ G and z ∈M , then

f(h · z) = f

(
ν(h · z)

h · z
ν(h · z)

)
= ν(h · z)−λf(Lhz) =

(
$λ(h

−1)f |M
)

(z),

where the last formula follows from the definition (2.5.1) and Lemma 3.4.1. 2

Let us also identify Sν,ε(Ξ) with degenerate principal series representations in
standard notation. The indefinite orthogonal group G = O(p, q) acts on the
light cone Ξ transitively. We put

ξo := t(1, 0, . . . , 0, 0, . . . , 0, 1) ∈ Ξ. (3.7.2)

Then the isotropy subgroup at ξo is of the form Mmax
+ Nmax, where Mmax

+ '
O(p− 1, q − 1) and Nmax ' Rp+q−2 (abelian Lie group). We set

E := E1,p+q + Ep+q,1 ∈ g0,

where Eij denotes the matrix unit. We define an abelian Lie group by Amax :=
expRE (⊂ G), and put

m0 := −Ip+q ∈ G. (3.7.3)

We define Mmax to be the subgroup generated by Mmax
+ and m0, then

Pmax := MmaxAmaxNmax

is a Langlands decomposition of a maximal parabolic subgroup Pmax of G. If
a = exp(tE) (t ∈ R), we put aλ := exp(tλE) for λ ∈ C. We put

ρ :=
p+ q − 2

2
.

For ε = ±1, we define a character χε of Mmax by the composition

χε : Mmax →Mmax/Mmax
+ ' {1,m0} → C

×,
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such that χε(m0) := ε. We also write sgn for χ−1 and 1 for χ1. We define F
to be the A, B, C∞ or D′ valued degenerate principal series by

F - IndGPmax(ε⊗ Cλ) := {f ∈ F(G) : f(gman) = χε(m
−1)a−(λ+ρ)f(g)},

which has Z(g)-infinitesimal character

(λ,
p+ q

2
− 2,

p+ q

2
− 3, . . . ,

p+ q

2
− [

p+ q

2
]) (3.7.4)

in the Harish-Chandra parametrization. The underlying (g, K)-module will be
denoted by IndGPmax(ε⊗ Cλ). We note that IndGPmax(ε⊗ Cλ) is unitarizable if
λ ∈
√
−1R.

In view of the commutative diagram of G-spaces:

G/Mmax
+ Nmax ∼→Ξ, gMmax

+ Nmax 7→ g · ξo

↓ ↓ Φ

G/Pmax Z2← G/Mmax
+ AmaxNmax ∼→M ' Ξ/R×+

we have an isomorphism of G-modules:

C∞- IndGPmax(ε⊗ Cλ) ' S−λ−
p+q−2

2
,ε(Ξ). (3.7.5)

It follows from Theorem 2.5 and Lemma 3.7.1 that ($p,q, V p,q) is a sub-

representation of S−
p+q−4

2 (Ξ). Furthermore, $p,q(m0) acts on each K-type
Ha(Rp)�Hb(Rq) (a+ p

2
= b+ q

2
) as a scalar

(−1)a+b = (−1)2a+ p−q
2 = (−1)

p−q
2 .

Hence, we have the following:

Lemma 3.7.2 $p,q is a subrepresentation of Sa,ε(Ξ) with a = −p+q−4
2

and

ε = (−1)
p−q

2 , or equivalently, of C∞- IndGPmax((−1)
p−q

2 ⊗ C−1).

The quotient will be described in (5.5.5).

Remark 3.7.3 1) $p,q splits into two irreducible components as SO(p, q)-
modules, say $p,q

± , if p = 2 and q ≥ 4. Then, $p,q (or $p,q
± if p = 2 and q ≥ 4)

coincides with the “minimal representations” constructed in [2], [25], [32].
2) In [2], it was claimed that the minimal representations of SO(p, q) are
realized in the subspace of {ψ ∈ C∞(Sp−1 × Sq−1) : ψ(−y) = (−1)dψ(y)} for
d = 2− p+q

2
. But this parity is not correct when both p and q are odd.

3) Our parametrization of Sa,ε(Ξ) is the same with Sa,ε(X0) in the notation
of [11].
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3.8 Let p ≥ 2. The differential operator −∆Sp−1 + (p−2)2

4
acts on the space

Ha(Rp) of spherical harmonics as a scalar a(a+p−2)+ 1
4
(p−2)2 = (a+ p−2

2
)2.

Therefore, we can define a non-negative self-adjoint operator

Dp : L2(Sp−1)→ L2(Sp−1) (3.8.1)

by

Dp :=

(
−∆Sp−1 +

(p− 2)2

4

) 1
4

with the domain of definition given by

Dom(Dp) := {F =
∞∑
a=0

Fa ∈ L2(Sp−1) :
∞∑
a=0

(a+
p− 2

2
)‖Fa‖2

L2(Sp−1) <∞}.

Here is a convenient criterion which assures a given function to be in Dom(Dp):

Lemma 3.8.1 If F ∈ L2(Sp−1) satisfies Y F ∈ L2− 2
p (Sp−1) for any smooth

vector field Y on Sp−1 then F ∈ Dom(Dp). Namely, DpF is well-defined and
DpF ∈ L2(Sp−1).

In order to prove Lemma 3.8.1, we recall an inequality due to W. Beckner:

Fact 3.8.2 ([1], Theorem 2) Let 1 ≤ δ ≤ 2 and F ∈ Lδ(Sn). Let F =
∑∞
k=0 Fk

be the expansion in terms of spherical harmonics Fk ∈ Hk(Rn+1), which con-
verges in the distribution sense. Then

∞∑
k=0

γk‖Fk‖2
L2(Sn) ≤ ‖F‖2

Lδ(Sn), γk :=
Γ(n

δ
)Γ(k + n− n

δ
)

Γ(n− n
δ
)Γ(k + n

δ
)
. (3.8.2)

For our purpose, we need to give a lower estimate of γk in Fact 3.8.2. By
Stirling’s formula for the Gamma function, we have

kb−a
Γ(k + a)

Γ(k + b)
∼ 1 +

(a− b)(a+ b− 1)

2k
+ . . .

as k →∞. Hence, there exists a positive constant C depending only on n and
δ so that

Ckn(1− 2
δ

) ≤ γk (3.8.3)

for any k ≥ 1. Combining (3.8.2) and (3.8.3), we have:

C
∞∑
k=1

kn(1− 2
δ

)‖Fk‖2
L2(Sn) ≤ ‖F‖2

Lδ(Sn). (3.8.4)

Now we are ready to prove Lemma 3.8.1.
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Proof of Lemma 3.8.1 Let {Xi} be an orthonormal basis of o(p) with re-
spect to (−1)× the Killing form. The action of O(p) on Sp−1 induces a Lie al-
gebra homomorphism L : o(p)→ X(Sp−1). Then we have ∆Sp−1 =

∑
i L(Xi)

2.
We write F =

∑∞
k=0 Fk where Fk ∈ Hk(Rp). We note that L(X)Fk ∈ Hk(Rp)

for any k and for any X ∈ o(p), because ∆Sp−1 commutes with L(X). If we
apply (3.8.4) with δ = 2− 2

p
and n = p− 1, then we have

C
∞∑
k=1

k−1‖L(Xi)Fk‖2
L2(Sp−1) ≤ ‖L(Xi)F‖2

L
2− 2

p (Sp−1)
.

Because L(Xi) is a skew-symmetric operator, we have∑
i

‖L(Xi)Fk‖2
L2(Sp−1) = −

∑
i

(∆Sp−1Fk, Fk)L2(Sp−1) = k(k+ p− 2)‖Fk‖2
L2(Sp−1),

and therefore

C
∞∑
k=1

(k + p− 2)‖Fk‖2
L2(Sp−1) ≤

∑
i

‖L(Xi)F‖2

L
2− 2

p (Sp−1)
<∞.

Hence we have proved that DpF is well-defined and

‖DpF‖2
L2(Sp−1) =

∞∑
k=0

(k +
p− 2

2
)‖Fk‖2

L2(Sp−1) <∞.

This completes the proof of Lemma 3.8.1. 2

3.9 Let p ≥ 2 and q ≥ 2. We extend Dp to a self-adjoint operator (with the
same notation) on L2(M). Then Dp is a pseudo-differential operator acting

on Ha(Rp)� L2(Sq−1) as a scalar
√
a+ p−2

2
. Likewise, we define Dq as a self-

adjoint operator on L2(Sq−1) and extend it to that on L2(M). It follows from
(3.6.2) that

Dp = Dq on V p,q
K . (3.9.1)

Let us unitarize ($p,q, V p,q) by finding an explicit inner product by means of
the operator Dp (or Dq).

First, we note that the meromorphic continuations of the distributions |x|ν and
|x|ν sgnx have simple poles at ν = −1,−3,−5, . . . , and at ν = −2,−4,−6, . . . ,
respectively. Therefore, for ε = ±1, one defines a non-zero distribution with
holomorphic parameter ν ∈ C by

ψν,ε(x) :=
1

Γ(2ν+3−ε
4

)
|x|νχε(sgnx), (3.9.2)

where the Gamma factor cancels exactly every pole. For example, a residue
computation shows that ψ−1,1(x) = δ(x), Dirac’s delta function.
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We are now ready to define the Knapp-Stein intertwining operator

Aλ,ε : IndGPmax(ε⊗ Cλ)→ IndGPmax(ε⊗ C−λ)

by

(Aλ,εf)(x) :=
∫
M
ψλ−ρ,ε([x, b]) f(b) db (x ∈M). (3.9.3)

Here, ρ = p+q−2
2

and db is the Riemannian measure on M ' Sp−1 × Sq−1, a
double cover of G/Pmax.

In view of the K-type formula of the degenerate principal series representation

IndGPmax(ε⊗ Cλ) =
⊕
a,b∈N

(−1)a−b=ε mod 2

Ha(Rp)�Hb(Rq),

we have the following spectral decomposition of Aλ,ε that intertwines G-
actions, especially, K-actions:

Theorem 3.9.1 Let a, b ∈ N and ε = ±1 such that (−1)a−b = ε. On the
subspace Ha(Rp)�Hb(Rq), the intertwining operator Aλ,ε acts as a scalar:

4π
p+q−2

2 (−1)[a−b
2

] Γ(λ) Γ(−B++
λ )

Γ(−2λ+p+q−1−ε
4

) Γ(1 +B−−λ ) Γ(1 +B+−
λ ) Γ(1 +B−+

λ )
, (3.9.4)

where for ε1, ε2 = ±, we define

Bε1,ε2
λ ≡ Bε1,ε2

λ (a, b) :=
1

2

(
λ− 1− ε1(a+

p

2
− 1)− ε2(b+

q

2
− 1)

)
. (3.9.5)

We remark that the above functions Bε1,ε2
λ (a, b) define “barriers” which de-

termine irreducible subquotients of non-unitary degenerate principal series
representations IndGPmax(ε⊗ Cλ), as in the diagrams of the paper of Howe and
Tan ([11]).

Though the statement of Theorem 3.9.1 itself concerns only with the degen-
erate principal series representations, we take a new approach for the proof,
which is based on analysis on an affine symmetric space (a hyperboloid). An
(elementary) setup for hyperboloids will be given in Part II ([23]), and so, we
shall postpone the proof of Theorem 3.9.1 until Part II, §8.3.

Since the integration onG/Pmax 'M/ ∼ Z2 gives aG-invariant non-degenerate
sesquilinear form

IndGPmax(ε⊗ C1)× IndGPmax(ε⊗ C−1)→ C,

we have the following Corollary by applying Theorem 3.9.1 to the case λ = 1.
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Corollary 3.9.2 Let p+q ∈ 2N, p ≥ 2, q ≥ 2, (p, q) 6= (2, 2) and ε = (−1)
p−q

2 .
1) The Knapp-Stein intertwining operator

A1,ε : IndGPmax(ε⊗ C1)→ IndGPmax(ε⊗ C−1)

is non-zero exactly on the submodule ($p,q
K , V p,q

K ).
2) A1,ε acts on the subspace Ha(Rp) � Hb(Rq) (a + p

2
= b + q

2
) of V p,q

K as a
scalar

(−1)[ q−p
4

]c1

a+ p
2
− 1

=
(−1)[ q−p

4
]c1

b+ q
2
− 1

where we define a constant c1 (independent of a and b) by

c1 :=
1

2π
p+q−1

2

Γ(
p+ q − 3− (−1)

p−q
2

4
). (3.9.6)

3) The (g, K)-module ($p,q
K , V p,q

K ) is unitarizable with the inner product:

(f1, f2)M :=
∫
M

(Dpf1)Dpf2 dω =
∫
M

(Dqf1)Dqf2 dω, f1, f2 ∈ V p,q
K , (3.9.7)

where dω is the standard Riemannian measure on M . Namely, if F =
∑
a Fa,b ∈

V p,q
K with Fa,b ∈ Ha(Rp)�Hb(Rq) and b = a+p−q

2
, then DpF =

∑
a

√
a+ p−2

2
Fa,b

and

‖F‖2
M =

∑
N3a≥max(0, p−q

2
)

(a+
p− 2

2
)‖Fa,b‖2

L2(M). (3.9.8)

We denote by V p,q the Hilbert completion of V p,q with respect to the above
inner product ( , ). On V p,q, we can define an (irreducible) unitary represen-
tation of G, for which we use the same notation $p,q.

In view of §3.8, we can describe the Hilbert space V p,q more explicitly as
follows: Let V be the Hilbert space of the completion of C∞(M) by the norm
defined by

‖F‖2
L2(M) + ‖(Dp +Dq)F‖2

L2(M) for F ∈ C∞(M).

Then, V is a dense subspace of L2(M) and

V = Dom(Dp) ∩Dom(Dq).

With this notation, the closure V p,q is characterized directly by the following:

Theorem 3.9.3 Let p and q as in Corollary 3.9.2. The minimal (unitary)
representation $p,q of O(p, q) is defined on the Hilbert space V p,q which is
given by

V p,q = {f ∈ V : Dpf = Dqf} = {f ∈ V : ∆̃Mf = 0},
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where ∆̃Mf = 0 is in the distribution sense.

Remark By comparing the construction of [2], (3.9.8) coincides with the for-
mula obtained by Binegar-Zierau by a different method (see Remark 3.7.3 (1)).
They defined a similar operator Dn of [2], page 249; we remark that there is a
typographical error in their definition of Dn; n−2 should read (n−2)2. Then,
the square D2

p of our operator corresponds to Dp if p 6= 2; |Dp| if p = 2, with
the notation in [2].

3.10 The following lemma is rather weak, but is clear from the Sobolev
estimate.

Lemma 3.10 Suppose W is an open set of M such that the measure of M \W
is zero. Suppose F is a C∞ function on W satisfying ∆̃MF = 0 on W . If
F ∈ L2(M) and if Y Y ′F ∈ L1(M) for any Y, Y ′ ∈ X(M) (differentiation in
the sense of the Schwartz distributions), then F ∈ V p,q.

References

[1] W. Beckner, Geometric inequalities in Fourier analysis, Essays on Fourier
analysis in honor of Elias M. Stein (C. Fefferman, R. Fefferman and S. Wainger,
ed.), Princeton Univ. Press, 1995, pp. 36–68.

[2] Binegar and R. Zierau, Unitarization of a singular representation of SO(p, q),
Comm. Math. Phys. 138 (1991), 245–258.

[3] R. Brylinski and B. Kostant, Minimal representations of E6, E7 and E8 and the
generalized Capelli identity, Proc. Nat. Acad. Sci. U.S.A. 91 (1994), 2469–2472.

[4] , Differential operators on conical Lagrangian manifolds, Lie theory and
geometry, vol. 123, Progress in Math., 1994, pp. 65–96.

[5] , Lagrangian models of minimal representations of E6, E7 and E8,
Functional analysis on the eve of the 21st century, 1, vol. 131, Progress in
Math., 1995, pp. 13–63.
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