
Introduction to visible actions on complex manifolds

and multiplicity-free representations ∗

京都大学・数理解析研究所　小林 俊行 (Toshiyuki Kobayashi)

Research Institute for Mathematical Sciences,
Kyoto University

Abstract

Recently, we established the theory of multiplicity-free representations
based on visible actions on complex manifolds ([Ko97, Ko05a, Ko06a, Ko06d]).

The purpose of this article is to give guidance on this subject with short
comments on the references.
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1 Multiplicity-free representations

1.1 What is a multiplicity-free representation?

Suppose π : G → GL(H) is a representation of G on a finite dimensional

vector space H. If (π,H) is completely reducible, we have an irreducible
decomposition:

(1.1) π '
⊕

µ

µ ⊕ · · · ⊕ µ︸ ︷︷ ︸
mπ(µ)

,

where µ runs over irreducible representations of G. The non-negative
integer mπ(µ) is equal to dimHomG(µ, π), and is called the multiplicity

of µ in π. We say π is multiplicity-free if mπ(µ) ≤ 1 for any irreducible
representation µ of G.

More generally, for an infinite dimensional representation π, we may
not have a discrete direct sum decomposition like (1.1) (see [Ko94,

Ko98a, Ko98b, Ko02] for the criteria for discrete decomposability of a
unitary representation π). Still, we can define the concept of multiplicity-
free representations as follows. Suppose π : G → GL(H) is a unitary

representation of a group G on the Hilbert space H over C. We denote
by EndG(H) the ring of continuous endomorphisms of H that commute

with G-actions. For example, if (π,H) has the irreducible decomposition
(1.1), then we have an isomorphism of rings:

EndG(H) '
⊕

µ

M(mπ(µ), C)

by Schur’s lemma. In particular, the ring EndG(H) is commutative if

and only if the direct summand M(mπ(µ), C) is commutative, that is,
mπ(µ) ≤ 1. This brings us to the following:
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Definition 1.1. (π,H) is multiplicity-free if the ring EndG(H) is com-
mutative.

If G is a type I group (e.g. algebraic group, reductive group, etc.),
then any unitary representation π of G can be decomposed uniquely

into the direct integral of irreducible unitary representations:

π '

∫

Ĝ

mπ(µ)µ dσ(µ),

where Ĝ denotes the unitary dual of G (the set of equivalence classes
of irreducible representations of G), dσ is a Borel measure on Ĝ, and

mπ : Ĝ → N ∪ {∞} is the multiplicity function. Then, it follows from
Schur’s lemma for unitary representations that (π,H) is multiplicity-free

in the sense of Definition 1.1 if and only if mπ(µ) ≤ 1 for almost every
µ ∈ Ĝ with respect to the measure dσ.

1.2 Why are multiplicity-free representations interesting?

A distinguished feature of a multiplicity-free representation is that it
has a canonical decomposition into irreducibles, and consequently, any

operator that respects the group action can be diagonalized according
to the irreducible decomposition.

Multiplicity-free representations appear in various contexts of math-

ematics, though we may not be aware of even the fact that the represen-
tation is there. For further perspectives, we refer the reader to [Ko05a,

Section 1.1].

1.3 Known examples of multiplicity-free representations

Over many decades, numerous examples of multiplicity-free representa-

tions have been found implicitly/explicitly in various contexts including:

• Taylor series expansion,

• Fourier expansion,

• theory of spherical harmonics,

• the Peter–Weyl theorem,
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• the Cartan–Helgason theorem on compact symmetric spaces

• branching laws for GLn ↓ GLn−1 and On ↓ On−1,

• the Clebsh–Gordan formula for SL2,

• Pieri’s law,

• GLm–GLn duality,

• Plancherel formula for Riemannian symmetric spaces,

• the Gelfand–Graev–Vershik canonical representations,

• the Hua–Kostant–Schmid K-type formula,

• Kac’s classification of linear multiplicity-free spaces,

• Krämer–Brion’s classification of spherical varieties,

• Panyushev’s classification of spherical nilpotent orbits,

• Stembridge’s classification of multiplicity-free tensor products.

Accordingly, various techniques that explain multiplicity-free prop-

erty of those representations have been developed such as computational
combinatorics, algebraic geometry (in particular, actions of Borel sub-

groups), the Iwahori–Hecke algebra (e.g. [Ge50]), the Schur–Weyl–Howe
duality (e.g. [Ho89, Ho95]), etc (see [Ko05a] and references therein).

However, no single known-method seems to cover all of the above

multiplicity-free examples.

1.4 A new approach to multiplicity-free representations

The aim of our paper [Ko06a] is to present a simple principle based on

complex geometry that yields various kinds of multiplicity-free represen-
tation such as the above examples.

Our machinery is explained in Section 3. It is based on the concept
of visible actions (see Section 2).
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2 Visible actions on complex manifolds

2.1 Visible actions on complex manifolds

Let D be a connected complex manifold with complex structure J . Sup-

pose a Lie group G acts holomorphically on D.

Definition 2.1 ([Ko04, Definition 2.3]). The action is previsible if

there exists a totally real submanifold S such that D′ := H · S is open
in D.

We say that a previsible action is visible if

Jx(Tx · S) ⊂ Tx(H · x) for any x ∈ S.

2.2 Strongly visible actions

Definition 2.2 ([Ko05a, Definition 3.3.1]). A previsible action is
strongly visible if there exists an anti-holomorphic diffeomorphism σ of

D′ such that σ|S = id and that σ preserves every H-orbit in D′.

It is proved in [Ko05a, Theorem 4] that a strongly visible action is

visible.

2.3 Examples of visible actions

In the papers [Ko06b, Ko06c, Ko06e] and [Ko05a, Section 5], we con-

sidered the question about which actions on complex flag varieties are
strongly visible, and tried to understand relevant geometric properties.
The classification results on visible actions produce various multiplicity-

free theorems as applications of the machinery, which we shall explain
in Theorem 3.1.

We begin with the simplest example of visible actions. Let us consider
the natural action of the one-dimensional toral subgroup T = {t ∈ C :

|t| = 1} on C given by

T × C → C, (t, z) 7→ tz.

Then, this action is visible as one can see from the following figure where
we set S := R\{0}:

5



T-orbits on C

S

This action is also strongly visible. In fact, we can take the complex

conjugation σ to be σ(z) := z̄.

Next, the following SL2-example is taken from [Ko05a, Example 5.4.1]:

Example 2.3. Let G = SL(2, R) and we define the following one-

dimensional subgroups of G:

K :=

{(
cos θ − sin θ
sin θ cos θ

)
: θ ∈ R/2πZ

}
,

H :=

{(
a 0
0 a−1

)
: a > 0

}
,

N :=

{(
1 x
0 1

)
: x ∈ R

}
.

Then, both (G, K) and (G, H) are symmetric pairs, while N is a maximal
unipotent subgroup of G.

Let us consider the actions of subgroups of G on the Hermitian sym-
metric space G/K. Then, all of the actions of the subgroups K, H and N

on G/K become strongly visible, as one can easily see from the following
figures where G/K is realized as the Poincaré disk:

K-orbits H-orbits N -orbits

2.4 Visible actions on symmetric spaces

In the papers [Ko06b, Ko06e], we studied visible actions, particularly

in the case where D is a symmetric space. One of the main results of
[Ko06b] is:
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Theorem 2.4 ([Ko06b]). Let G/K be a Hermitian symmetric space,
and (G, H) an arbitrary semisimple symmetric pair. Then the H-action

on G/K is strongly visible.

Theorem 2.4 is a generalization of the first two cases (i.e. the K-action

and the H-action) of Example 2.3.
Applications to representation theory are discussed in [Ko06d, Theo-

rems A–F] for both finite and infinite dimensional representations.

2.5 Coisotropic actions on symplectic manifolds

In contrast to visible actions on complex manifolds, let us consider a
symplectic manifold (D, ω). A submanifold S is called coisotropic if

(TxS)⊥ω ⊂ TxS

for every x ∈ S. Here, (TxS)⊥ω := {u ∈ TxD : ω(u, v) = 0 for any v ∈

TxS}. For a submanifold S satisfying 2 dimS = dimD, S is coisotropic
if and only if S is Lagrangean.

Definition 2.5 (Guillemin–Sternberg). Suppose a compact Lie group
G acts on D by symplectic automorphisms. The action is called coisotropic

(or multiplicity-free) if all principal orbits G · x are coisotropic with re-
spect to the symplectic form ω.

2.6 Polar actions on Riemannian manifolds

Relevant concept is also known for Riemannian manifolds. Let (D, g)

be a Riemannian manifold, and G a compact Lie group acting on D by
isometries.

Definition 2.6 (e.g. [PT02]). The action is called polar if there exists
a properly embedded submanifold S with the following two properties:

S meets every G-orbits.

TxS ⊥ Tx(G · x) for any x ∈ S.
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2.7 Coisotropic, polar, and visible actions

Kähler manifolds enjoy all three geometric structures: symplectic, Rie-

mannian, and complex structures. The concepts of coisotropic, polar,
and visible actions can be compared on Kähler manifolds.

Suppose G is a compact Lie group acting on compact Kähler mani-
folds by holomorphic isometries. Then, the following implications hold:

Riemannian
Polar

Visible & 2 dim S = dim D
Coisotropic
(multiplicity-free)

Complex Symplectic

Strongly
Visible
Complex

See [PT02] and [Ko05a, Theorems 7, 8, 9] for precise statements and
their proofs.

3 Multiplicity-free theorems

Finally, we explain how the concept of strongly visible actions on complex
manifolds is used in the formalisation of our multiplicity-free theorem.

3.1 Multiplicity-free theorems

Suppose we are given a strongly visible action of a Lie group G on a
complex manifold D. A group automorphism σ̃ of G is compatible if

σ̃(g) · σ(x) = σ(g · x) (g ∈ G, x ∈ D′).

Then, the following result is a most general form of our multiplicity-free

theorem (cf. [FT99, Ko97, Ko00]):
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Theorem 3.1 ([Ko06a, Theorem 4.3]). Let V → D be a G-equivariant
Hermitian holomorphic vector bundle. Assume the following three con-

ditions are satisfied:

1) (Base space) The G-action on the base space is strongly-visible with

a compatible automorphism.

2) (Fiber) The isotropy representation of Gx on Vx is multiplicity-free

for any x ∈ S.

We write its irreducible decomposition as

Vx =

n(x)⊕

i=1

V (i)
x .

3) (Compatibility) σ lifts to an anti-holomorphic endomorphism (we
use the same letter σ) of the G-equivariant Hermitian holomorphic

vector bundle V such that

σ(V (i)
x ) = V (i)

x for 1 ≤ i ≤ n(x), x ∈ S.

Then, any unitary representation which can be realized in the space
O(D,V) of global holomorphic sections is multiplicity-free.

This theorem can be regarded as a propagation theorem of multiplicity-
free property from fibers to the space of global sections. It is noteworthy
that propagation theory of unitarity is one of the most fundamental re-

sults in representation theory. It was established by Mackey for induced
representations in 1950s and by Vogan and Wallach for cohomologically

induced representations in 1980s. From the viewpoint of ‘propagation’
of multiplicity-free property, strongly visible actions (i.e. the condition

1) in Theorem 3.1) has a key role in the geometry.
Another important aspect of Theorem 3.1 is that we are dealing with

global analysis on manifolds having infinitely many orbits (in con-
trast to the usual sense of non-commutative harmonic analysis, where
we basically deal with manifolds having only one orbit, namely, homoge-

neous spaces). The anti-holomorphic automorphism σ in the definition
of strong visibility takes control of infinitely many orbits.
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3.2 Representation theoretic meaning of S

Suppose S is taken as small as possible in the setting of Theorem 3.1.

Then, we raise a conjecture on the relation between the multiplicity-free
decomposition of a unitary representation in O(D,V) and the slice S for

strongly visible actions as follows:

Conjecture 3.2. 1) The dimension S should not exceed the number of

essentially independent parameter of irreducible representations that oc-
cur in the irreducible decomposition of a unitary representation π realized

in the section space O(D,V).
2) For ‘non-degenerate’ representation π, these two numbers should

coincide.

Here are some evidence:
1) S = {one point}.

In this case, any unitary representation realized in O(D,V) is irre-
ducible if it is non-zero. Hence, Conjecture holds.

2) Suppose G/K is a Hermitian symmetric space and (G, H) is a
semisimple symmetric pair. Then, the H-action on G/K is strongly vis-

ible with the slice S of dimension k := R-rank G/H ([Ko06b]). On the
other hand, the branching formula of the restriction of holomorphic dis-
crete series representations of G to H contains k independent parameter

(see [Ko97, Ko06d]).

3.3 Applications to concrete multiplicity-free theorems

Applications to various multiplicity-free theorems (e.g. those listed in

Section 1) are studied in the papers [Ko04, Ko05a, Ko06d].
For example, the paper [Ko04] gives a new geometric explanation of

the list of all pairs (π1, π2) of irreducible finite dimensional representa-
tions of GL(n) such that π1⊗π2 is multiplicity-free by geometric consid-
eration (see also [Ko03]). (Such pairs were first classified by Stembridge

[St01] by a combinatorial argument.)
The paper [Ko05a] collects a number of applications of Theorem 3.1 to

multiplicity-free theorems, including Panyushev’s list of spherical nilpo-
tent orbits of GL(n). Various aspects of multiplicity-free theorems for
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the restriction with respect to semisimple symmetric pairs are discussed
in [Ko06d] as its main theme.

3.4 Explicit decomposition formulae

If a representation is known a priori multiplicity-free, one may be tempted
to find its irreducible decomposition explicitly. As a matter of fact, such

formulae often have a beautiful nature because of multiplicity-free prop-
erty. Various new explicit multiplicity-free irreducible decompositions
and their further analysis were found in the last decade. Here is a sam-

ple of the references: [A06, Bn02, BH98, DP01, Ko97, Ko06d, KoØ03,
Kr98, Nr02, O98, ØZ97, Pz96, Pz05, Z01, Z02].

3.5 Classical limits — Orbit method

By the spirit of the Kirillov–Kostant orbit method, Theorem 3.1 predicts
that ‘geometric multiplicity-free theorems’ should hold for the coadjoint

orbits. The paper [KoN03] addresses this problem for semisimple sym-
metric pairs (G, H).
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