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This year I mainly worked on the classifica-
tion of the homomorphisms between general-
ized Verma modules, that arise from the con-
formally invariant systems, which are called {29
systems, constructed in [4]. Conformally in-
variant systems are systems of differential op-
erators that are equivariant under an action of
a Lie algebra. It is known that such systems of
operators induce homomorphisms between cer-
tain generalized Verma modules. A homomor-
phism between generalized Verma modules is
called standard if it comes from a homomor-
phism between the corresponding (ordinary)
Verma modules, and called non-standard other-
wise. Here it means by the classification of ho-
momorphisms that we classify homomorphisms
in the sense of standard or non-standard. The
classification result shows that conformally in-
variant )y systems yield non-standard homo-
morphisms in quite many cases. It was also
obtained as a consequence that there is an in-

teresting relationship between the standardness

of the homomorphisms and the “special values”
of the Q3 systems. These results are in [1].
While the standard maps are well-understood,
the classification of non-standard maps is still
an open problem. I would like to understand
the interesting relationship so that one may
give a systematic construction of non-standard

maps in the future.
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