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Chapter 1

Introduction

We study visible actions on complex algebraic varieties, and the main result is a classifica-
tion of visible actions on generalized flag varieties.

Definition 1.0.1 (Kobayashi [Ko2]). We say a holomorphic action of a Lie group G on a
complex manifold X is strongly visible if the following two conditions are satisfied:

1. There exists a real submanifold S (called a “slice”) such that

X ′ := G · S is an open subset of X.

2. There exists an anti-holomorphic diffeomorphism σ of X ′ such that

σ|S = idS,

σ(G · x) = G · x for any x ∈ X ′.

In the above setting, we say the action of G on X is S-visible. This terminology will
be used also if S is just a subset of X.

Definition 1.0.2 (Kobayashi [Ko2]). We say a holomorphic action of a Lie group G on a
complex manifold X is previsible if the condition (1) of Definition 1.0.1 is satisfied for a
totally real submanifold S of X.

The notion of visible actions on complex manifolds was introduced by T. Kobayashi
[Ko2] with the aim of uniform treatment of multiplicity-free representations of Lie groups.

Definition 1.0.3. We say a unitary representation V of a locally compact group G is
multiplicity-free if the ring EndG(V ) of intertwining operators on V is commutative.

There are various kinds of multiplicity-free representations (c.f. [BR, HU, Ka, VK]), and
for the proof of the multiplicity-freeness property of representations, typical approaches are
the following: verifying the existence of an open orbit of a Borel subgroup; using a combi-
natorial method (computing or estimating coefficients of the character of a representation).
These two approaches work very well for (the direct sum of) finite dimensional represen-
tations, but it would be hard to apply them to the infinite dimensional representations
with continuous spectra. A new approach has been introduced by Kobayashi, namely, the
propagation theorem of the multiplicity-freeness property under visible actions:
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Fact 1.0.4 (Kobayashi [Ko3]). Let G be a Lie group and W a G-equivariant Hermi-
tian holomorphic vector bundle on a connected complex manifold X. Let V be a unitary
representation of G. If the following conditions from (0) to (3) are satisfied, then V is
multiplicity-free as a representation of G.

(0) There exists a continuous and injective G-intertwining operator from V to the space
O(X,W) of holomorphic sections of W.

(1) The action of G on X is S-visible. That is, there exist a subset S ⊂ X and an anti-
holomorphic diffeomorphism σ of X ′ satisfying the conditions given in Definition
1.0.1. Further, there exists an automorphism σ̂ of G such that σ(g · x) = σ̂(g) · σ(x)
for any g ∈ G and x ∈ X ′.

(2) For any x ∈ S, the fiber Wx at x decomposes as the multiplicity-free sum of irreducible

unitary representations of the isotropy subgroup Gx. Let Wx =
⊕

1≤i≤n(x)

W(i)
x denote

the irreducible decomposition of Wx.

(3) σ lifts to an anti-holomorphic automorphism σ̃ of W and satisfies σ̃(W(i)
x ) = W (i)

x

for each x ∈ S (1 ≤ i ≤ n(x)).

The advantage of this new approach is that not only finite dimensional cases but also
infinite dimensional (both discrete and continuous spectra) cases can be applied by this
method. Indeed, we can see in the statement of the above theorem that we do not need to
assume

G is compact, reductive,

V is of finite-dimensional, discretely decomposable, or

X is compact.

In the following, we quote a few examples of applications of Fact 1.0.4 from [Ko2]. The first
example is an infinite dimensional unitary representation with only continuous spectrum.

Example 1.0.5. Let G be a semisimple Lie group and K a maximal compact subgroup
of G. Then it is well-known that the space L2(G/K) of square integrable functions on the
Riemannian symmetric space G/K is multiplicity-free (see [Wo] for example). We can also
prove the multiplicity-freeness property by combining Fact 1.0.4 with the following facts.

• The G-action on the complexification GC/KC is strongly visible by Kobayashi [Ko2].

• Let U be the complex crown of G/K, which was introduced by Akhiezer and Gindikin
[AG]. Then there exists a G-embedding L2(G/K) ↪→ O(U) by Krötz and Stanton
[KS].

Next, we give an example of a multiplicity-free representation arising from a visible
action of a semisimple Lie group on a Hermitian symmetric space.

Example 1.0.6. Let G be a simple Lie group of Hermitian type, K a maximal compact
subgroup and H a symmetric subgroup of G, i.e., H is an open subgroup of the τ -fixed
points subgroup Gτ for an involution τ of G. Let π be a unitary highest weight represen-
tation of the scalar type of G. Then the restriction of π to H is multiplicity-free [Ko5] by
Fact 1.0.4 combined with the following facts.
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• π can be realized in the space O(G/K,L) of holomorphic sections of a G-equivariant
holomorphic line bundle L on the Hermitian symmetric space G/K.

• The H-action on G/K is strongly visible by Kobayashi [Ko5] by the Cartan decompo-
sition G = HAK in the symmetric setting (see Flensted-Jensen [Fl1], Hoogenboom
[Ho] and Matsuki [Ma1, Ma2]).

As the last example, we show a multiplicity-free representation of a non-reductive Lie
group.

Example 1.0.7. Let G, K and π as in Example 1.0.6. Let N be a maximal unipotent
subgroup of G. Then the restriction of π to N is multiplicity-free by Fact 1.0.4 combined
with the facts that π can be realized in O(G/K,L) for a G-equivariant holomorphic line
bundle L on G/K, and that the action of N on G/K is strongly visible by Kobayashi [Ko2]
by the Iwasawa decomposition G = NAK.

As these examples show, we can obtain multiplicity-free representations from a visible
action of a Lie group. Therefore it would be natural to try to find, or even classify, visible
actions. In the following, we exhibit preceding results on a classification problem of visible
actions. We firstly state a result on visible actions on symmetric spaces.

Fact 1.0.8 (Kobayashi [Ko5]). Let (G,K) be a Hermitian symmetric pair and (G,H) a
symmetric pair. Then H acts on the Hermitian symmetric space G/K strongly visibly.

The next result concerns the visibility of linear actions. Let GC be a connected complex
reductive algebraic group and V a finite-dimensional representation of GC.

Definition 1.0.9. We say V is a linear multiplicity-free space of GC if the space C[V ] of
polynomials on V is multiplicity-free as a representation of GC.

Fact 1.0.10 (Sasaki [Sa1, Sa4]). Let V be a linear multiplicity-free space of GC. Then a
compact real form U of GC acts on V strongly visibly.

Remark 1.0.11. We note that if U acts on a representation V of GC strongly visibly, then
V is a linear multiplicity-free space of GC by Fact 1.0.4.

A linear multiplicity-free space is a special case of smooth affine spherical varieties.
Let GC be a connected complex reductive algebraic group and X a connected complex
algebraic GC-variety.

Definition 1.0.12. We say X is a spherical variety of GC if a Borel subgroup B of GC has
an open orbit on X.

A typical example of spherical varieties is a complex symmetric space (e.g. GC =
GL(n,C) and X = GL(n,C)/(GL(m,C) × GL(n − m,C))). The third result deals with
visible actions on affine homogeneous spherical varieties.

Fact 1.0.13 (Sasaki [Sa2, Sa3, Sa5]). Let GC/HC be one of the following affine homoge-
neous spherical varieties:

SL(m+ n,C)/(SL(m,C)× SL(n,C)) (m ̸= n),

Spin(4n+ 2,C)/SL(2n+ 1,C),
SL(2n+ 1,C)/Sp(n,C),
E6(C)/Spin(10,C),
SO(8,C)/G2(C).
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Then the action of a compact real form U of GC on GC/HC is strongly visible.

Lastly we state a classification result on visible actions on generalized flag varieties of
type A, which is the prototype of the main result of this paper. Let G = U(n) and L,H
Levi subgroups of G. Kobayashi [Ko4] classified the triple (G,H,L) such that the following
actions are strongly visible (we denote by ∆(G) the diagonal subgroup of G×G).

L ↷ G/H, H ↷ G/L, ∆(G) ↷ (G×G)/(H × L).

In fact, all the above three actions are strongly visible if and only if at least one of those is
strongly visible [Ko2]. The visibility of the three actions on generalized flag varieties was
proved by giving a generalized Cartan decomposition:

Definition 1.0.14. Let G be a connected compact Lie group, T a maximal torus and H,L
Levi subgroups of G, which contain T . We take a Chevalley–Weyl involution σ of G with
respect to T . If the multiplication mapping

L×B ×H → G

is surjective for a subsetB of the σ-fixed points subgroupGσ, then we say the decomposition
G = LBH is a generalized Cartan decomposition.

Definition 1.0.15. An involution σ of a compact Lie group G is said to be a Chevalley–
Weyl involution if there exists a maximal torus T of G such that σ(t) = t−1 for any t ∈ T .

The definition of a generalized Cartan decomposition comes from that of a visible action.
Let us explain. We retain the setting of Definition 1.0.14. Suppose that G = LBH holds
for some B ⊂ Gσ. Since σ acts on generalized flag varieties

G/H, G/L, (G×G)/(H × L)

as anti-holomorphic diffeomorphisms, we can obtain three strongly visible actions.

L ↷ G/H, H ↷ G/L, ∆(G) ↷ (G×G)/(H × L).

Furthermore, we can obtain three multiplicity-free theorems by using Fact 1.0.4.

indG
H χH |L, indG

L χL|H , indG
H χH ⊗ indG

L χL.

Here indG
H χH and indG

L χL denote the holomorphically induced representations from uni-
tary characters χH and χL of H and L, respectively. As we saw, one generalized Cartan
decomposition leads us to three strongly visible actions, and three multiplicity-free theo-
rems (Kobayashi’s triunity principle [Ko1]).

As the name indicates, the decompositionG = LBH can be regarded as a generalization
of the Cartan decomposition. Under the assumption that both (G,H) and (G,L) are
symmetric pairs, the decomposition theorem of the form G = LBH or its variants has
been well-established: G = KAK with K compact by É. Cartan, G = KAH with G, H
non-compact and K compact by Flensted-Jensen [Fl1], G = KAH with G compact by
Hoogenboom [Ho], and the double coset decomposition L\G/H by Matsuki [Ma1, Ma2].
We note that in our setting the subgroups L and H of G are not necessarily symmetric.
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1.1 Main result 1: Classification of visible triples

The theorem below gives a classification of generalized Cartan decompositions (Definition
1.0.14).

Theorem 1.1.1 ([Ta2, Ta3, Ta4, Ta5]). Let G be a connected compact simple Lie group, T
a maximal torus, Π a simple system and L1, L2 Levi subgroups of G, whose simple systems
are given by proper subsets Π1,Π2 of Π. Let σ be a Chevalley–Weyl involution of G with
respect to T . Then the triples (G,L1, L2) listed below exhaust all the triples such that the
multiplication mapping

L1 ×B × L2 → G

is surjective for a subset B of Gσ.

Remark 1.1.2. For the type A simple Lie groups (or G = U(n)), this theorem was proved
by Kobayashi [Ko4].

In the following, we specify only the types of simple Lie groups G since our classification
is independent of coverings, and list pairs (Π1,Π2) of proper subsets of Π instead of pairs
(L1, L2) of Levi subgroups of G. Also, we put (Πj)

c := Π \ Πj (j = 1, 2).

Classification for type An [Ko4]

α1 α2 α3 αn−2αn−1 αn

◦ ◦◦ ◦ ◦ ◦

Hermitian type:

I. (Π1)
c = {αi}, (Π2)

c = {αj}.

Non-Hermitian type:

I. (Π1)
c = {αi, αj}, (Π2)

c = {αk}, min
p=i,j

{p, n+ 1− p} = 1 or i = j ± 1.

II. (Π1)
c = {αi, αj}, (Π2)

c = {αk}, min{k, n+ 1− k} = 2.

III. (Π1)
c = {αl}, Π2: arbitrary, l = 1 or n.

Here i, j, k satisfy 1 ≤ i, j, k ≤ n.

Classification for type Bn

α1 α2 α3 αn−2αn−1 αn

◦ ◦◦ ◦ ◦ ◦ +3

Hermitian type:

I. (Π1)
c = {α1}, (Π2)

c = {α1}.

Non-Hermitian type:

I. (Π1)
c = {αn}, (Π2)

c = {αn}.

II. (Π1)
c = {α1}, (Π2)

c = {αi}, 2 ≤ i ≤ n.
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Classification for type Cn

α1 α2 α3 αn−2αn−1 αn

◦ ◦◦ ◦ ◦ ◦ks

Hermitian type:

I. (Π1)
c = {αn}, (Π2)

c = {αn}.

Non-Hermitian type:

I. (Π1)
c = {α1}, (Π2)

c = {αi}, 1 ≤ i ≤ n.

Classification for type Dn

α1 α2 αn−3αn−2

αn

αn−1

◦ ◦ ◦ ◦
◦

@@@
@
◦~~~~

Hermitian type:

I. (Π1)
c = {αi}, (Π2)

c = {αj}, i, j ∈ {1, n− 1, n}.

Non-Hermitian type:

I. (Π1)
c = {α1}, (Π2)

c = {αj}, j ̸= 1, n− 1, n.

II. (Π1)
c = {αi}, (Π2)

c = {αj}, i ∈ {n− 1, n}, j ∈ {2, 3}.

III. (Π1)
c = {αi}, (Π2)

c = {αj, αk}, i ∈ {n− 1, n}, j, k ∈ {1, n− 1, n}.

IV. (Π1)
c = {αi}, (Π2)

c = {α1, α2}, i ∈ {n− 1, n}.

V. (Π1)
c = {α1}, (Π2)

c = {αj, αk}, j or k ∈ {n− 1, n}.

VI. (Π1)
c = {αi}, (Π2)

c = {α2, αj}, n = 4, (i, j) = (3, 4) or (4, 3).

Classification for type E6

α1 α3 α4 α5 α6

α2

◦ ◦ ◦ ◦ ◦

◦

Hermitian type:

I. (Π1)
c = {αi}, (Π2)

c = {αj}, i, j ∈ {1, 6}.

Non-Hermitian type:

I. (Π1)
c = {αi}, (Π2)

c = {α1, α6}, i = 1 or 6.

II. (Π1)
c = {αi}, (Π2)

c = {αj}, i = 1 or 6, j ̸= 1, 4, 6.
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Classification for type E7

α1 α3 α4 α5 α6 α7

α2

◦ ◦ ◦ ◦ ◦ ◦

◦

Hermitian type:

I. (Π1)
c = {α7}, (Π2)

c = {α7}.

Non-Hermitian type:

I. (Π1)
c = {α7}, (Π2)

c = {αi}, i = 1 or 2.

Classification for type E8, F4, G2

There is no pair (Π1,Π2) of proper subsets of Π such that G = L1G
σL2 holds.

For the proof of sufficiency of Theorem 1.1.1, we use the herringbone stitch method
introduced by Kobayashi [Ko4], which reduces unknown decompositions to the known
decomposition in the symmetric case. This method enables us to obtain a generalized
Cartan decomposition G = L1BL2 with B ⊂ Gσ (Definition 1.0.14). For the proof of
necessity in the classical case, we prove that G ̸= L1G

σL2 for any pair (Π1,Π2) which is
not in the list in Theorem 1.1.1 by using invariant theory for quivers associated to Levi
subgroups. For the proof in the exceptional case, we use Fact 1.0.4 and Stembridge’s
classification of multiplicity-free tensor product representations ([St2]).

1.2 Main result 2: Classification of visible actions on

generalized flag varieties

As we explained before, one generalized Cartan decomposition (Definition 1.0.14) leads us
to three strongly visible actions. The following corollary shows that the converse is also
true in our setting. Therefore we can obtain a classification of visible actions on generalized
flag varieties from Theorem 1.1.1.

Corollary 1.2.1 ([Ta1]). We retain the setting of Theorem 1.1.1. We denote by GC and
(Lj)C the complexifications of G and Lj, respectively (j = 1, 2). We let Pj be a parabolic
subgroup of GC with Levi subgroup (Lj)C, and put Pj = GC/Pj (j = 1, 2). Then the
following eleven conditions are equivalent.

(i) The multiplication mapping L1 ×Gσ × L2 → G is surjective.

(ii) The natural action L1 ↷ P2 is strongly visible.

(iii) The natural action L2 ↷ P1 is strongly visible.

(iv) The diagonal action ∆(G) ↷ P1 × P2 is strongly visible.

(v) Any irreducible representation of G, which belongs to P2-series is multiplicity-free
when restricted to L1.
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(vi) Any irreducible representation of G, which belongs to P1-series is multiplicity-free
when restricted to L2.

(vii) The tensor product of arbitrary two irreducible representations π1 and π2 of G, which
belong to P1 and P2-series, respectively, is multiplicity-free.

(viii) P2 is a spherical variety of (L1)C.

(ix) P1 is a spherical variety of (L2)C.

(x) P1 × P2 is a spherical variety of ∆(GC).

(xi) The pair (Π1,Π2) is one of the entries listed in Theorem 1.1.1 up to switch of the
factors.

Here an irreducible representation of G is in Pj-series if it is a holomorphically induced
representation from a unitary character of the Levi subgroup Lj (j = 1, 2).

Proof. ∗ We prove that Theorem 1.1.1 implies this corollary. The strategy of the proof is
summarized in the below diagram.

(vii) · · · · · ·multiplicity-free

⇔

(xi) · · · · · · classification of (L1, L2)

⇔

(i) · · · · · ·Cartan decomposition

⇐ ⇐ ⇒
(ii) (iv) (iii) · · · · · · visible action

⇐ ⇐ ⇐

(v) ⇔ (vii) ⇔ (vi)· · · · · ·multiplicity-free

⇔ ⇔ ⇔

(viii) (x) (ix)· · · · · · spherical action.

The implication (vii) ⇒ (xi) can be verified by comparing Stembridge’s classification
[St2] with Theorem 1.1.1. The converse implication (xi) ⇒ (vii) follows from Fact 1.0.4.
The equivalence (xi) ⇔ (i) is Theorem 1.1.1. The implications (i) ⇒ (ii), (i) ⇒ (iii) and
(i) ⇒ (iv) are the triunity of visibility ([Ko1]). Each of the three implications (ii) ⇒ (v),
(iii) ⇒ (vi) and (iv) ⇒ (vii) is followed by Fact 1.0.4. As in the proof of [Ko2, Corollary
15], we see that a result of Vinberg and Kimel’fel’d [VK, Corollary 1] implies the three
equivalences (v) ⇔ (viii), (vi) ⇔ (ix) and (vii) ⇔ (x). The equivalence (v) ⇔ (vii) ⇔ (vi)
on the multiplicity-freeness property of representations follows from a result of Stembridge
[St2, Corollary 2.5]. This completes the proof of the corollary.

Remark 1.2.2. For the type A simple Lie groups (or G = U(n)), this corollary was proved
by Kobayashi [Ko2].

Remark 1.2.3. Littelmann [Li] classified for any simple algebraic group G over any al-
gebraically closed field of characteristic zero, all the pairs of maximal parabolic subgroups
Pω and Pω′ corresponding to fundamental weights ω and ω′, respectively, such that the

∗This proof for Corollary 1.2.1 is quoted from [Ta1].
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tensor product representation Vnω ⊗Vmω′ decomposes multiplicity-freely for arbitrary non-
negative integers n and m. Moreover, he found the branching rules of Vnω ⊗ Vmω′ and the
restriction of Vnω to the maximal Levi subgroup Lω′ of Pω′ for any pair (ω, ω′) that admits
a ∆(G)-spherical action on G/Pω ×G/Pω′ .

Remark 1.2.4. Stembridge [St2] gave a complete list of a pair (µ, ν) of highest weights
such that the corresponding tensor product representation Vµ ⊗ Vν is multiplicity-free for
any complex simple Lie algebra g. His method was combinatorial and not based on the
Borel–Weil realization of irreducible representations. He also classified all the pairs (µ, l)
of highest weights µ and Levi subalgebras l of g with the restrictions Vµ|l multiplicity-free.

1.3 Main result 3: Seeds and visible actions for the

orthogonal group

As we mentioned in Remark 1.2.4, finite dimensional multiplicity-free tensor product rep-
resentations were classified by Stembridge [St2]. By using the notion of visible actions
on complex manifolds, we would be able to, and indeed can in the types A, B and D
cases, understand his classification more deeply. By Fact 1.0.4, we can reduce complicated
multiplicity-free theorems to a pair of data:

visible actions on complex manifolds, and

much simpler multiplicity-free representations (seeds of multiplicity-free representa-
tions).

For the type A simple Lie groups, Kobayashi found the following seeds of multiplicity-free
representations that combined with visible actions can produce all the cases of the pair of
two representations (V1, V2) of U(n) such that V1 ⊗ V2 is multiplicity-free [Ko1].

• One-dimensional representations.

• (U(n) ↓ Tn) The restriction of an alternating tensor product representation Λk(Cn).

• (U(n) ↓ Tn) The restriction of a symmetric tensor product representation Sk(Cn).

• (U(n) ↓ U(n1)×U(n2)×U(n3)) The restriction of an irreducible representation V2ωk

(n = n1 + n2 + n3).

Here Vλ denotes an irreducible representation of U(n) with highest weight λ and {ωk}1≤k≤n−1

is the set of fundamental weights of U(n). On the other hand, he classified in [Ko4] visible
actions on generalized flag varieties of type A as listed in Theorem 1.1.1. By combining
the above seeds of multiplicity-free representations with the visible actions and using his
triunity principle, Kobayashi constructed all the multiplicity-free tensor product represen-
tations of U(n) [Ko1]. In this paper we construct all the multiplicity-free tensor product
representations for SO(N) and its covering group Spin(N) by following Kobayashi’s argu-
ment for U(n). In our case, visible actions come from triples (G,L1, L2) for G = Spin(N)
listed in Theorem 1.1.1 as in the case of the type A groups. On the other hand, seeds
of multiplicity-free tensor product representations arise only from one-dimensional repre-
sentations, alternating tensor product representations and spin representations. These are
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exhibited in Proposition 1.3.1. We can see how to combine those visible actions and seeds
to obtain multiplicity-free tensor product representations in Theorem 1.3.2.

We denote by Π = {αi}1≤i≤[N/2] (see Theorem 1.1.1 for the labeling of the Dynkin
diagrams) a simple system of the root system of G = Spin(N) with respect to its maximal
torus T , and by {Hi}1≤i≤[N/2] the dual basis of Π. We define a subgroup M of Spin(2n+1)
as follows.

M :=
{
exp

(√
−1mπH1

)}
1≤m≤4

· Spin(2n− 1), (1.3.1)

where exp denotes the exponential mapping, and the simple system of Spin(2n−1) is given
by {αk ∈ Π : 2 ≤ k ≤ n}.

Proposition 1.3.1. We denote by 1, CN and SpinN for the one-dimensional trivial repre-
sentation, the natural representation and the spin representation of Spin(N), respectively.
Then the following hold.

(1) One-dimensional representations are multiplicity-free.

(2) 1, CN and SpinN are multiplicity-free as representations of a maximal torus T of
Spin(N).

(3) Λi(CN) is multiplicity-free as a representation of a maximal Levi subgroup U(j) ×
SO(N − 2j) of SO(N) (when N is even and i = N/2, we replace ΛN/2(CN) by
its SO(N)-irreducible constituent whose highest weight is 2ωN/2−1 or 2ωN/2) if the
following condition (3-1) or (3-2) is satisfied (1 ≤ i, j ≤ [N/2]).

(3-1) N is odd.

(3-2) N is even, and i, j satisfy i+ j ≤ N/2, j = N/2 or i = N/2.

(4) SpinN is multiplicity-free as a representation of M , where N is odd and M as in
(1.3.1).

The theorem below gives a geometric construction of all the multiplicity-free tensor
product representations for the orthogonal group. For a realization of irreducible repre-
sentations of a compact Lie group, we use the Borel–Weil theory. Namely, we realize an
irreducible representation of a compact Lie group G as the space O(G/L,W) of holomor-
phic sections of a vector bundle W on a generalized flag variety G/L, which is associated
to an irreducible representation W of a Levi subgroup L of G.

Theorem 1.3.2. We let G = Spin(N). For any two irreducible representations Vλ1 and
Vλ2 of G such that Vλ1 ⊗ Vλ2 is multiplicity-free, there exists a pair of

• a generalized flag variety (G×G)/(L1×L2) with a strongly visible ∆(G)-action, and

• irreducible representations (a seed given in Proposition 1.3.1) W1 and W2 of L1 and
L2, respectively,

such that Vλk
≃ O(G/Lk,Wk) as G-modules (k = 1, 2).

The correspondence between the data (Lk,Wk) of visible actions and seeds, and the
highest weights λk of Vλk

(k = 1, 2) is given as in Tables 1.3.1–1.3.4 below. In the tables,
Cλ denotes a one-dimensional representation with weight λ, T a maximal torus of G and
Lλ a Levi subgroup of G, whose simple system is given by {αl ∈ Π : ⟨λ, α̌l⟩ = 0} where α̌l

is the coroot of αl (1 ≤ l ≤ [N/2]).
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Table 1.3.1: Line bundle type
L1 L2 W1 W2 N λ1 λ2

Lλ1 Lλ2 Cλ1 Cλ2 2n+ 1 sω1 tωj

sωn tωn

2n sω1 tωj + uωn−δ

sωn−δ tω3, tω1 + uω2, tω1 + uωn−δ′

or tωn−1 + uωn

8 sω5−ϵ tω2 + uω2+ϵ

1 ≤ j ≤ n, s, t, u ∈ N, δ = 0 or 1, δ′ = 0 or 1 and ϵ = 1 or 2.

Table 1.3.2: Weight multiplicity-free type
L1 L2 W1 W2 N λ1 λ2

G T Vλ1 Cλ2 2n+ 1 0, ω1 or ωn arbitrary
2n 0, ω1, ωn−1 or ωn arbitrary

Table 1.3.3: Alternating tensor product type
L1 L2 W1 W2 N λ1 λ2 Condition
G Lλ2 Vλ1 Cλ2 2n+ 1 ωi or 2ωn tωj

2n ωi tωj i+ j ≤ n
ωi tωn−δ

2ωn−δ tωj

1 ≤ i, j ≤ n, t ∈ N and δ = 0 or 1.

Table 1.3.4: Spin type
L1 L2 W1 W2 N λ1 λ2

Lλ1 Lωj
Cλ1 C(1/2+t)ωj

⊠ SpinN−2j 2n+ 1 sω1 ωn + tωj

1 ≤ j ≤ n− 1 and s, t ∈ N.

By virtue of Fact 1.0.4 and the triunity principle [Ko1], we obtain the following corollary.
This corollary was proved by Stembridge [St2] by a combinatorial method.

Corollary 1.3.3. We retain the notation of Theorem 1.3.2. For the data (L1, L2, N ,
λ1, λ2) of each row in Tables 1.3.1–1.3.4, the representations Vλ1 and Vλ2 of G decompose
multiplicity-freely when restricted to the subgroups L2 and L1 of G, respectively.

So far we have considered visible actions of Levi subgroups on generalized flag varieties.
For a general spherical variety, we have the following result on the visibility of actions of
compact Lie groups. Let U be a compact real form of a connected complex reductive
algebraic group GC, and X a GC-spherical variety. We denote by θ the Cartan involution
of GC, which corresponds to U , and by ν a Chevalley–Weyl involution of GC (i.e., ν is an
involution of GC, which satisfies ν(t) = t−1 for any element t ∈ TC for some maximal torus
TC), which preserves U . We put ι = θ ◦ ν.
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Theorem 1.3.4. Assume that there exists a real structure µ on a GC-spherical variety X
compatible with ι and that the µ-fixed points subset Xµ is non-empty. Then a compact real
form U acts on X strongly visibly.

Here by a real structure on a complex manifold Z we mean an anti-holomorphic invo-
lution η : Z → Z [Ak, AC]. Also for a real structure η on a complex manifold Z with an
action of a group K, we say η is compatible with an automorphism ϕ of K if η satisfies
η(kz) = ϕ(k)η(z) for any k ∈ K and z ∈ Z. Combining Theorem 1.3.4 with Akhiezer’s
result [Ak] on the existence of compatible real structures on Stein manifolds, we obtain

Corollary 1.3.5. Let (GC, V ) be a linear multiplicity-free space. Then a compact real form
U acts on V strongly visibly.

Corollary 1.3.6. Let X be a smooth affine GC-spherical variety. Then a compact real
form U acts on X strongly visibly.

Here a typical example of smooth affine spherical varieties is a complex symmetric
space. On the other hand, we have the principal affine space GC/N (N is a maximal
unipotent subgroup) as an example of non-affine smooth spherical varieties. We remark
that Corollary 1.3.5 was earlier proved by Sasaki (Fact 1.0.10) by constructing slices ex-
plicitly. By combining Theorem 1.3.4 with Akhiezer and Cupit-Foutou’s result [AC], we
also have

Corollary 1.3.7. Let X be a GC-wonderful variety. Then a compact real form U acts on
X strongly visibly.

Definition 1.3.8. A GC-variety X is said to be wonderful if

• X is smooth and projective,

• GC has an open orbit on X, whose complement is a union of finitely many smooth
prime divisors Xi (i ∈ I) with normal crossings, and

• the closure of any GC-orbit on X is given as a partial intersection of Xi (i ∈ I).

To prove the visibility of actions of non-compact reductive groups on complex manifolds,
we use the following extension of a result of Matsuki [Ma1, Ma2]. Let L and H be reductive
subgroups of a connected real semisimple algebraic group G such that both GC/LC and
GC/HC are GC-spherical varieties.

Theorem 1.3.9. There exist finitely many abelian subspaces ji of g and elements xi of
G (i = 1, . . . ,m) such that

∪m
i=1 LCiH contains an open dense subset of G, where Ci =

exp(ji)xi.

We use this decomposition to show the previsibility of actions of non-compact reductive
groups.

Theorem 1.3.10. Let X be a GC-spherical variety and G a real form of inner type of GC.
Then G acts on X previsibly.

Here a real reductive Lie group is said to be of inner type if its Lie algebra has a compact
Cartan subalgebra.
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