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Abstract

In this paper we consider multipliers satisfying some invariance con-
ditions coming from O(p, q). We will also investigate L

p-boundedness for
some of the operators.

1 Introduction

In [S], Stein gave a characterization of the Riesz transforms(and more generally
the higher Riesz transforms) in terms of certain invariance conditions under the
group R+×O(n). In [KN] we showed that this characterization can be viewed as
a special case, see example 1 below, of the following general framework: Let H be
subgroup of GL(n,R) and (π, V ) a finite dimensional irreducible representation
of H. We will assume that there exists a finite set of open orbits, O1, . . . ,ON ,

for the contragradient action λ → (ht)−1, such that their union is conull in the

character group R̂n. Let Cbdd(Oj) denote the complex vector space consisting
of bounded continuous functions on Oj , on which the group H acts by pullback
of functions. Let BH(L2(Rn), V ⊗ L2(Rn)) be the vector space of bounded,
translation invariant operators T : L2(Rn) → V ⊗ L2(Rn) satisfying

L2(Rn) V ⊗ L2(Rn)

L2(Rn) V ⊗ L2(Rn),

-
T

?

lg

?

π(g)⊗lg

-
T

(1)

for all g ∈ H, where lg is defined by (lgf)(t) = f(g−1t) for g ∈ GL(n,R) and
f ∈ L2(Rn). Then we have

Theorem 1 ([KN] Theorem 1 and Example 1).

BH(L2(Rn), V ⊗ L2(Rn)) ∼=

N⊕

j=1

HomH(V ∗, Cbdd(Oj))
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as vector spaces. Furthermore, if an orbit, Oj is a reductive symmetric space
for H then

dim(HomH(V ∗, C(Oj)) ≤ 1.

Hence, if all the orbits are symmetric spaces we obtain

dimBH(L2(Rn), V ⊗ L2(Rn)) ≤ N.

Example 1. Stein’s characterization of the Hilbert and Riesz transforms(see
[S] sect III.1 Prop 2) can be explained in the framework of Theorem 1 where
H = R+ ×O(n), N = 1, O1 = Rn \ {0}, a reductive symmetric space, and π is
the tensor product of the trivial representation with a spherical representation.

Example 2. Consider the action on Rn by the group H = R+×O(p, q)(pq 6= 0).
Let π be the standard representation of O(p, q) on V := Cp+q extended trivially
to R+. In this case there are two open orbits, namely, O1 = R+×O(p, q)/ O(p−
1, q) and O2 = R+×O(p, q)/ O(p, q−1). Both quotients are reductive symmetric
spaces and the representation π appears in C(O1) as well as C(O2). Hence, the
Fact 1 tells us that dim HomH(V, C(O1) ⊕ C(O2)) = 2. However, in this case,
the space BH(L2(Rn), V ⊗ L2(Rn)) is in fact trivial.

This is explained by the following result

Theorem 2 ([KN] Prop 1). BH(L2(Rn), V ⊗ L2(Rn)) = {0} if (π, V ) is a
non-unitarizable representation of a reductive Lie group H.

In particular this is the case if H is a simple connected non-compact Lie
group and (π, V ) is a finite dimensional representation.

In [KN] we employed two Strategies to give examples and to characterize
multipliers

Strategy 1 (Characterization of multipliers). Given a multiplier or a fam-
ily of multipliers.

Step 1. Find a (maximal) group of relative invariance for that multiplier.

Step 2. Find the dimension of the space of solutions to the equations obtained in
Step 1.

Strategy 2 (Finding nice multipliers). Given an invariance condition by
means of a subgroup of Aff(Rn).

Step 1. Solve the equations and find explicit forms of the solutions.

Step 2. Choose the solutions that yield L2-bounded (or Lp-bounded) operators.



However, as we have seen in Fact 2 they cannot be used when the group
is non-compact. In this paper we will instead use another strategy and show
how multipliers can be given an ”infinitesimal characterization” in terms of
differential equations.

Let T : L2(Rn) → L2(Rn) be a bounded translation invariant operator.
Then there exists a distribution T ∈ S ′(Rn) such that

Tf(x) =

∫

Rn

T (x − y)f(y) dy(= 〈T (x − .), f〉.

By an infinitesimal characterization of T, we shall mean(see Strategy 3 in the
Introduction)

to find differential equations that are satisfied by T and conversely,

to prove uniqueness, in a suitable sense, of the solutions of the system of
differential equations.

Strategy 3. Starting from a system of differential or functional equations or a

multiplier operator, we apply Strategy 1 or Strategy 2 respectively.

2 O(p,q)-action and multipliers

In this section, following Strategy 3 in the Introduction, we describe another
approach to find ”nice multiplier operators” by using differential equations that
arise from infinite dimensional representations of non-compact Lie groups. We
shall illustrate this approach by the example of infinite dimensional representa-
tions of O(p, q) which are realized on the pseudo-Riemannian symmetric space
O(p, q)/ O(p, q − 1). We begin with an alternate characterization of the Riesz
transforms on Rn by means of differential equations. Note that this is not the
infinitesimal version of Example 1 but a new type of characterization in fact the
differential operators in Theorem 4 commute with the vector fields generated by
the natural action of R+ ×O(p, q). Since there are plenty of irreducible infinite
dimensional representations of O(p, q) where matrix coefficients are bounded
functions, we shall see that there are bounded translation invariant operators
that satisfy some nice invariance conditions coming from O(p, q).

2.1 Infinitesimal characterization of the Riesz transforms
for Rn

From this viewpoint, let us examine the (higher) Riesz transforms, i.e. elements
in the algebra generated by the Riesz transforms, see [S] sections III.3 and
III.4.8. Let us denote the homogenized Laplacian by Dx := |x|2∆Rn and the
Euler operator x · ∇ by Ex.

Theorem 3. The system of differential equations
{

ExT = −nT

DxT = νT ,
(2)



considered in the sense of distributions, with T ∈ S ′(Rn) has non-trivial solu-
tions if and only if ν is of the form

ν = −(k − 2)(k + n), (3)

for some k ∈ N. Then the dimension of the solution space is

a(n, k) :=

(

n + k − 1

k

)

−

(

n + k − 3

k − 2

)

(4)

If T is a solution to (2) and T is the operator defined by convolution with T
then T is bounded on L(Rn). Furthermore, if ν satisfies (3) then T is a higher
Riesz transform of degree k, see [S] section 4.8. In particular, when k = 1 we
have the equation

|x|2∆RnT = (n + 1)T .

The solution space is n-dimensional, and the Riesz transforms Rj (1 ≤ j ≤ n)
forms its linear basis.

Sketch of proof. Let

Cx := E2

x + (n − 2)Ex − Dx = −
∑

1≤i<j≤n

(

xi

∂

∂xj

− xj

∂

∂xi

)2

.

Then the second equation in (2) is equivalent to

CxT = −µT

where µ = (ν−2n). Hence, µ = k(2−k−n) if ν = −(k−2)(k+n). The operator
Cx is induced by the Casimir operator for the group O(n). Taking the Fourier
transform of the system (2) gives the following system of differential equations
in the tempered distribution sense for the corresponding multiplier m

{

Eλm = 0

Cλm = −µm
, (5)

where Eλ are the corresponding operators in the λ-variables. Since Cλ = E2

λ +
(n−2)Eλ−|λ|2∆Rn . and |λ|2∆Rn is elliptic on R

n\{0}, we find that the solution,
m, must be analytic on the set R

n\{0}. Hence, as the differential operator in the
second condition acts tangentially, we may restrict to spheres. The differential
operator Cλ is induced from the Casimir operator, and therefore it is generated
by the vector fields of the natural action of O(n). Since the Casimir operator
induces the Laplacian ∆Sn−1 on Sn−1, and since O(n) leaves Sn−1 stable,we
have that

Cλm|Sn−1 = ∆Sn−1(m|Sn−1).

The second equation then says that m is an eigenfunction for the Laplace oper-
ator on the sphere, namely spherical harmonics of degree k, which shows that



it is non-zero if and only if ν satisfies the condition (3). It is also well-known
that the dimension of the solution space has the indicated form, see [SW] Sec-
tion IV.2. So far we have only considered solutions in the set R

n \ {0} now we
want to show that they extend to solutions in the set R

n and that there are no
new solutions appearing. Any homogeneous distribution of degree zero can be
extended from R

n \ {0} to R
n. Furthermore, since Cλ − µ is a homogeneous

differential operator of degree zero, we see that the extension will satisfy the
system (5) in all of R

n. Finally, any solution of (5) can differ from the extended
solutions we found only at the origin. But there is no distribution supported
at the origin which is homogeneous of degree zero. Hence, we have found all
solutions.

2.2 Infinitesimal characterization of certain multipliers for

Rp,q

We shall generalize the infinitesimal characterization of the Riesz transforms for
R

n(see Theorem 3) by taking an ultrahyperbolic differential operator

∆Rp − ∆Rq =
∂2

∂x2
1

+ . . . +
∂2

∂x2
p

− . . . −
∂2

∂x2
p+1

− . . . −
∂2

∂x2
q

,

where n = p + q, p, q ≥ 1, instead of ∆Rn . Then we shall see that there will ap-
pear naturally matrix coefficients of certain infinite dimensional representations
of O(p, q), which can be regarded as a generalization of spherical harmonics of
O(n). Let

Dx := (|x′|2 − |x′′|2)(∆Rp − ∆Rq ).

Moreover we denote by

C(1)
x := −

∑

1≤i<j≤p

(

xi

∂

∂xj

− xj

∂

∂xi

)2

and

C(2)
x := −

∑

1≤i<j≤q

(

xi+p

∂

∂xj+p

− xj+p

∂

∂xi+p

)2

.

The operators C
(1)
x and C

(2)
x are the Casimir operators, up to a scalar multiple,

for the compact subgroups O(p) × {1} and {1} × O(q) respectively.

Theorem 4. Let n = p+q and ν1, ν2, µ ∈ C. Consider the system of differential

equations

Nν1,ν2,µ :



















ExT = −nT

C
(1)
x T = −ν1T

C
(2)
x T = −ν2T

DxT = (2n + µ)T

(6)

for elements T ∈ S ′(Rn).



1. There exist non-trivial solutions T if and only if ν1 is of the form ν1 =
k(2−k−p) for some k ∈ N and ν2 is of the form ν2 = l(2− l−q) for some
l ∈ N. The dimension of the corresponding space of bounded translation
invariant operators, given by convolution with T , does not exceed

2a(p, k)a(q, l)

where a(p, k) is defined in (4).

2. Furthermore, if µ satisfies the inequality −4ρ2 Re µ ≥ (Im µ)2, where
ρ = n−2

2 then the dimension of the space of bounded translation invariant
operators satisfying N (ν1, ν2, µ) is precisely 2a(p, k)a(q, l). We also have
some exceptional cases when µ = d(2ρ+ d), where d ∈ Z with d > 0. They
occur if either p > 1, k − l = q + d + 2j for some non-negative integer j,
or if q > 1 and l − k = p + d + 2j, where j is a non-negative integer. The
dimension is then a(p, k)a(q, l)

2.3 Proof of Theorem 4

Let Xp,q = {|x′|2 − |x′′|2 = 1} ⊂ R
n ∼= O(p, q)/ O(p − 1, q) with the induced

pseudo-Riemannian structure and ∆Xp,q the corresponding Laplace-Beltrami
operator. We also observe that Xq,p

∼= O(q, p)/ O(q−1, p) ∼= O(p, q)/ O(p, q−1).
Let us introduce the notation

B(Nν1,ν2,µ,L2(Rn)) = {T : L2(Rn) → L
2(Rn) is a bounded translation

invariant operator ; The distribution kernel T satisfies Nν1,ν2,µ}.

The system of equations (6) gives the following system of differential equations
in the distribution sense, on the Fourier transform side

Mν1,ν2,µ :



















Eλm(λ) = 0

C
(1)
λ m(λ) = −ν1m(λ)

C
(2)
λ m(λ) = −ν2m(λ)

Cλm(λ) = −µm(λ)

, (7)

where the operators Eλ, C
(1)
λ and C

(2)
λ have the same form as Ex, C

(1)
x , and

C
(2)
x , respectively, but in the λ-variables and Cλ is given by

Cλ = E2
λ + (n − 2)Eλ − Dλ,

where Dλ is the same as Dx but in the λ-variables. From the general theory of
multipliers it is clear that

B(Nν1,ν2,µ,L2(Rn)) ∼= {m ∈ L
∞(Rn);m satisfies Mν1,ν2,µ as a distribution }.

We begin by solving the system M(ν1, ν2, µ) and then check which solutions
that are bounded. The first observation is that the solutions have to be real
analytic in a large open set



Lemma 1. The operator −2C
(1)
λ − 2C

(2)
λ + Cλ + E2

λ is elliptic outside the set
|λ′|2 = |λ′′|2, so any solution to the system has to be real analytic outside that
set.

We will now study the system (7) by reducing to an ordinary differential
equation. We begin by introducing some new coordinates: Let

U = {x ∈ R
n;

p
∑

i=1

x2
i 6= 0,

q
∑

j=1

x2
j+p 6= 0},

V = (−1, 1) × R>0 × Sp−1 × Sq−1

Let T be the transformation

(x1, . . . , xn) → (s, t, ω1, . . . , ωp, η1, . . . , ηq)

U → V

where

s =

∑p
i=1 x2

i −
∑q

j=1 x2
j+p

∑p
i=1 x2

i +
∑q

j=1 x2
j

, t =

p
∑

i=1

x2
i +

q
∑

j=1

x2
j+p,

ωi =
xi

√

∑p
i=1 x2

i

, 1 ≤ i ≤ p, ηj =
xj+p

√

∑q
j=1 x2

j+p

, 1 ≤ j ≤ q.

Then T is a diffeomorphism from U onto V. In these coordinates the system
M(ν1, ν2, µ) becomes the system V (ν1, ν2, µ) below































4(s2 − 1)s2 ∂2F
∂s2 + (8s2 − 2(p − q)s + (2n − 8))s∂F

∂s

+( 2s
s+1ν1 −

2s
1−s

ν2 − µ)F = 0

t∂F
∂t

= 0

∆Sp−1F = ν1

∆Sq−1F = ν2

Lemma 2. The solutions of W (p, q;µ) in D′(U) are in 1 − 1 correspondence
with the solutions to V (p, q;µ) in D′(V).

Lemma 3. The system V (p, q, µ) is equivalent to the ordinary differential equa-
tion

4(s2 − 1)s2u′′(s) + (8s2 − 2(p − q)s + (2n − 8))su′(s)+

2s

1 + s
ν1u(s) −

2s

1 − s
ν2u(s)− µu(s) = 0

(8)

in the sense that any solution u ∈ D′((−1, 1)) to (8) can be extended to a solution
F ∈ D′(V) of V (p, q;µ), and any solution to V (p, q;µ) in D′(V) can be restricted
to a solution of (8) in D′((−1, 1)).



Lemma 4. There is a bijection between the solutions of M(ν1, ν2, µ) in D′(U)
and the solutions in D′((−1, 1)) of (8).

The solutions of (8) in D′((−1, 1)) are the following

µ = −ρ2, : s
ρ
2

±f(s),

λ = 0 c(s
ρ
2 ln s)±f(s) + s

ρ
2

±g(s)

µ = j2 − ρ2, : s
ρ
2
+ j

2

± f(s),

λ = ±j c(s
ρ
2
+ j

2 ln s)±f(s) + s
ρ
2
−

j
2

± g(s)

µ = 2k(2k + 2ρ), : s
k+ρ
± f(s),

λ = ±(ρ + 2k) (s−k
+ − s−k

− )g(s),

k−1
∑

j=0

bjδ
(j)
0

µ = λ2 − ρ2, : s
ρ
2
+ λ

2

± f(s),

λ not as above s
ρ
2
−

λ
2

± g(s),

where f and g are real analytic in the interval (−1, 1) and uniquely determined
up to a constant multiple and the constants bj are determined by bk−1. Thus
we observe that the space of solutions is 2 dimensional at every point. Next we
have to consider which of these solutions that correspond to solutions in U that
extend to solutions in the set R

n \ {0}. We know that such solution must be
real analytic outside the set {|x′| = |x′′|}. The equation (8) has three regular
singular points. Except zero we also have −1 and 1. Close to s = 1 the solutions
have the form, if q is odd

u1(1 − s) = (1 − s)
l
2 v(1 − s), u2(1 − s) = (1 − s)

2−q−l
2 w(1 − s)

and if q is even

u1(1 − s) = (1 − s)
l
2 v(1 − s),

u2(1 − s) = c(1 − s)
l
2 ln(1 − s) v(1 − s) + (1 − s)

2−q−l
2 w(1 − s),

where the functions v and w are real analytic in the interval (−1, 1). By the
correspondence these solutions extend to solutions on U by taking

f(x) = Ak(x′)Al(x
′′)|x′|−k|x′′|−lu

(

2|x′′|2

|x|2

)

,

where Ak(x′) and Al(x
′′) are homogeneous extensions to R

k respectively R
l of

degree k resp. l of spherical harmonics of degree k and l respectively. Thus they
become analytic close to points in U ∩ {|x′′| = 0} if and only if u has the form

(1 − s)
l
2 v(1 − s), where v is real analytic close to s = 1.



Close to s = −1) the solutions have the following form

u1(1 + s) = (1 + s)
k
2 v(1 + s), u2(1 + s) = (1 + s)

2−p−k

2 w(1 + s)

if p is odd, and

u1(1 + s) = (1 + s)
k
2 v(1 + s),

u2(1 + s) = c(1 + s)
k
2 ln(1 + s) v(1 + s) + (1 + s)

2−p−k

2 w(1 + s)

if p is even, where v and w are real analytic in the interval (−1, 1). These
solutions correspond to solutions of W (p, q;µ) in U by taking

f(x) = Ak(x′)Al(x
′′)|x′|−k|x′′|−lu

(

2|x′|2

|x|2

)

,

where Ak(x′) and Al(x
′′) are homogeneous extensions to Rk respectively Rl of

degree k resp l of spherical harmonics of degree k resp l. Thus we see that they
extend to solutions of W (p, q;µ), real analytic in a neighbourhood of points in

U ∩ {|x′| = 0}, if and only if u has the form (1 + s)
k
2 v(1 + s), where v is real

analytic close to the point s = −1.

To conclude, we have proved

Lemma 5. The space of solutions of M(ν1, ν2, µ) in D′(Rn\{0}) has dimension

2a(p, k)a(q, l).

We now recall two facts from distribution theory

Fact 1. Any homogeneous distribution of degree zero in Rn \ {0} has a unique

extension to Rn which is homogeneous of degree zero.

Fact 2. Any homogeneous distribution of degree zero is in fact a tempered dis-

tribution.

Proposition 1. The space of solutions to M(ν1, ν2, µ) in S ′(Rn) has dimension

2a(p, k)a(p, l).

Proof of proposition. Since the equations in M(ν1, ν2, µ) are homogenous the
homogeneous extension also satisfies the same system. Any new solution would
give a solution supported at the origin. But distributions supported at the origin
cannot be homogeneous of degree zero.

Thus, the first statement of Theorem 4 is proved. To prove the second
part, let m be a solution to the system of equations Mν1,ν2,µ, with µ satisfying
the condition −4ρ2 Re µ ≥ (Im µ)2. Note that if µ is real then the condition
says that µ ≤ 0. In particular this means that the solutions supported on
the cone are not in M(ν1, ν2, µ). Since m is homogeneous of degree zero, it is
determined by its restrictions f1 = m|Xp,q

and f2 = m|Xq,p
(as we have seen

in lemma 1 any solution is real analytic on the set {(λ′, λ′′) ∈ Rn; |λ′|2 6=
|λ′′|2}, so taking the restriction to Xp,q or Xq,p makes sense) Since Cλ is induced



from the Casimir operator for the group O(p, q) its restriction to Xp,q must
be the Laplacian ∆Xp,q

. Now, let η be such that η2 = ρ2 + µ. Since m is
an eigenfunction of the Laplace operator with eigenvalue µ = η2 − ρ2. The
condition −4ρ2 Re µ ≥ (Im µ)2 implies that |Re η| ≤ ρ. By [O] Corollary 4.3,
these functions are bounded when |Re η| ≤ ρ and so, under that assumption,
they are multipliers for L

2. We can also see this directly from our list of solutions.
In some exceptional cases the solution can be bounded even though η > ρ

this happens when f1 respectively f2 comes from the discrete series for Xp,q

resp. Xq,p, which is characterized by the conditions on the parameters as in the
statement of the Theorem 4, (except that d can be negative as long as it > −ρ

but when −ρ < d ≤ 0 we have η ≤ ρ, which we have already covered), see [Sch]
Theorem 6.4 or [St] Theorem 2.

2.4 L
p

results

In this section we want to consider L
p(Rn)-boundedness for some of the op-

erators considered in the previous section. The operators we will consider are
the ones coming from the discrete series for Xp,q and Xq,p respectively. These
appear when µ = d(n− 2 + d), η = d + ρ, for some d ∈ Z with d > −ρ, if p > 1
k − l = q + d + 2j,(if q = 1 then l = 0 or l = 1), j a non-negative integer or
if q > 1 and l − k = p + d + 2j,(if p = 1 then l = 0 or l = 1), where j is a
non-negative integer(recall that ν1 = k(2 − k − p) and ν2 = l(2 − l − q)), see
[Sch] Theorem 6.4 and [St] Theorem 2. The point is that these solutions are
supported inside, respectively outside the cone, and satisfies the inequality

m(λ′, λ′′) ≤ C

(

|λ′|2 − |λ′′|2

|λ′|2 + |λ′′|2

)ρ+ d
2

Theorem 5. Let m be a solution to M(ν1, ν2, µ) coming from the discrete

series. If n is even and d ≥ 4 or n is odd and d ≥ 3 then the corresponding

translation invariant operator T is bounded on L
p(Rn).

Proof. A sufficient condition for a function m to be a L
p-multiplier, 1 < p < ∞

is given by the Hörmander-Michlin condition:

Fact 3. Let m ∈ C[ n
2
]+1(Rn \ {0}) and assume that it satisfies

∣

∣

∣

∣

∂αm(x)

∂xα
i

∣

∣

∣

∣

≤
C

|x||α|
, (9)

for all multi-indices α with |α| ≤ [n
2 ]+1. Then m is a L

p-multiplier for 1 < p <

∞.

We may assume that |λ′| ≥ |λ′′|. Let us introduce the coordinates

Sp−1 × R × R
q → R

p+q

(ω, r, λ′′) 7→ (rω, λ′′)



where r = |λ′| and ωi =
λ′

i

|λ′| . We denote

R
p,q
+,− = {(λ′, λ′′) ∈ Rp+q : |λ′| > |λ′′|}.

Fix κ ∈ R+ and let

Vκ :=











f ∈ C∞(Rp,q
+−);

1) f is homogeneous of degree 0

2) |f(λ′, λ′′)| ≤ C

(

|λ′|2 − |λ′′|2

|λ′|2 + |λ′′|2

)m











The natural action of O(p, q) on Rp,q preserves R
p,q
+,−, and hence acts also on

C∞(Rp,q
+,−). We will denote this action with π and its differential dπ.

V∞
κ := {f ∈ Vκ; dπ(X1) · . . . · dπ(Xk)f ∈ Vκ,

for any k = 0, 1, . . . and X1, . . . , Xk ∈ o(p, q)}

We observe that our function m belongs to V∞
ρ+ d

2

. To take care of factors ap-

pearing from differentiation we introduce the spaces

Ha,b,c :=

{

g ∈ C∞(Rp,q
+,−); g is a linear combination

of terms of the form
A(ω)Pa(λ′′)

|λ′|b(|λ′|2 − |λ′′|2)c

}

,

where A ∈ C∞(Sp−1) and Pa is a homogeneous polynomial on Rq of degree a.

We will also use the space

HN :=
⊕

c ≤ a ≤ 3N, c ≤ N,

b − a + 2c = N

Ha,b,c

For simplicity, we denote by HNV∞
κ the subspace of C∞(Rp,q

+,−) consisting of
finite linear combinations of products of elements from HN and V∞

κ . We want
to show that

Proposition 2. If f ∈ V∞
κ then, for α with |α| ≤ κ, we have | ∂α

∂λα f | ≤
C

(|λ′|2+|λ′′|2)
|α|
2

on R
p,q
+,−.

The first observation is that

Lemma 6. Let f ∈ Vκ and g ∈ Ha,b,c, where c ≤ κ. Then

|fg| ≤
C

(|λ′|2 + |λ′′|2)
b−a+2c

2

in R
p,q
+,−.



Hence Proposition 2 follows from this lemma and

Proposition 3. ∂α

∂λα

i

V∞
κ ⊂ H|α| · V

∞
κ .

To prove Proposition 3 we need a lemma

Lemma 7.

HN

(

∂

∂λi

V∞
κ

)

⊂ HN+1V
∞
κ .

and
∂

∂λi

HN ⊂ HN+1.

Proposition 3 then follows from lemma 7 by induction. Proposition 2 shows
that the conditions (3) are satisfied on R

p,q
+,− but we need this to be true also for

the extension by zero to all of Rn. The functions in Vκ are of polynomial degree
κ − c when we approach the boundary |λ′| = |λ′′|. Hence, as long as κ − c ≥ 0
the extension will ha continuous derivatives. Thus, if we take κ = ρ + d

2
then

κ ≥ [n
2
] + 1 if d satisfies the conditions in the statement of Theorem 5. Hence,

all the assumptions in Fact 3 are satisfied so the operator will be bounded on
Lp(Rn).
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