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In my recent study I treated some topics on
analysis of holomorphic discrete series repre-
sentations. Let G be a real reductive Lie group.
Then if its Riemannian symmetric space G/K
has the natural complex structure, then the
universal covering group G of G admits a holo-
morphic discrete series representation, and it
is realized on the Hilbert space of holomorphic
sections of a C;’—equivariant holomorphic vector
bundle on G/K, which is determined from an
inner product defined by a converging integral
on G/K. Moreover if G is of tube type, namely,
it G/K is also diffeomorphic to a tube domain
V ++/—1Q C VC, then the holomorphic dis-
crete series representation is also realized on
the square-integrable space on the symmetric
cone {2 via the Laplace transform.

My first study is about the multivariate
Bessel functions on Euclidean Jordan algebras
V. In general, when G is of tube type, the
real part V' of the corresponding tube domain
has an Euclidean Jordan algebra structure, and
Dib (1990) defined the multivariate Bessel func-
tion on V by using series expansion. I found
new integral expression of this Bessel function,
and by using this I gave a sharp upper esti-
mate of this function. Moreover as an appli-
cation, I showed that the kernel functions of a
1-dimensional holomorphic semigroup consist-
ing of integral operators have exponential de-
cay, where this semigroup is related to the holo-

morphic discrete series representation.



My second study is about the analytic con-
tinuation of holomorphic discrete series repre-
sentations. In general, G-equivariant vector
bundles on G/K have a 1-dimensional degree
of freedom (denote by A), when we fix the typ-
ical fiber. Then if X\ is sufficiently large, the
integral defining the G-invariant inner prod-
uct on the space of holomorphic sections con-
verges, and this gives the holomorphic discrete
series representation. On the other hand, if A
is small, then this integral does not converge,
but sometimes there exists a unitary subrepre-
sentation in the space of holomorphic sections.
Following the result of Faraut-Kordnyi (1990)
on computation of reproducing kernels of holo-
morphic discrete series representations of scalar
type, I explicitly computed the expansion of
reproducing kernels of vector-valued holomor-
phic discrete series representations in the case
G is classical and its K-type is multiplicity-free,
and using this I determined for which A there
exists a unitary subrepresentation. Namely, I
gave an analytical proof for a part of the result
of Enright-Howe-Wallach (1983) and Jakobsen
(1983) on the classification of unitary highest
weight modules.

My third study is about the branching laws
of the restriction of the holomorphic discrete
series representations to subgroups. In gen-
eral, let (G,G1) be a symmetric pair of holo-
morphic type, namely, a symmetric pair such
that the embedding map G1/K; — G/K of
Riemannian symmetric spaces is a holomorphic
map. Then it is known that the restriction
of arbitrary holomorphic discrete series repre-
sentation to GGy decomposes discretely, and its
multiplicity is uniformly bounded (Kobayashi,
2007).

bedding map from a holomorphic discrete series

I constructed the Gi-equivariant em-

representation H, of Gy into a holomorphic dis-
crete series representation H of G in the form of
infinite-order differential operators, under the
assumption that H is of scalar type and H;
is multiplicity-free under the maximal compact
subgroup of Gi. Also, when the parameter is
a pole, T observed that its residue induces the

map from some subquotient module.
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