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A manifold M is said to be locally modelled on
a homogeneous space G/H if it is covered by
open sets that are diffeomorphic to open sets
of G/H and their transition functions are lo-
cally in G. For instance, if a discrete subgroup
I' of G acts properly and freely on G/H (or
equivalently, if the projection G/H — I'\G/H

is a principal I'-bundle), then I'\G/H becomes
a manifold locally modelled on G/H. In this
case, '\G/H is called a Clifford-Klein form
and I' a discontinuous group for G/H. If M is
a manifold locally modelled on a homogeneous
space G/H, we can define a differential graded
algebra homomorphism 7 : Q(G/H)¢ — Q(M)
by patching G-invariant differential forms on
open sets of G/H by left translations by el-
ements of G. This induces a homomorphism
n: H*(g,H;R) - H*(M;R). The homomor-
phism 7 gives some obstructions to the exis-
tence of a compact manifold locally modelled
on a given homogeneous space G/H.

I have previously proved that there exists a
compact manifold locally modelled on a homo-
geneous space G/ H of reductive type only when
the homomorphism of relative Lie algebra co-
H*(g,H;R) — H*(g, Km; R) is

injective ([1]). In this academic year, I gave a

homologies i :

necessary and sufficient condition for the injec-
tivity of this homomorphism i. The condition
is written in terms of invariant theory and is
easy to verify. The proof is based on a result of
H. Cartan, C. Chevalley, J.-L. Koszul and A.
Weil that gives an isomorphism between rela-
tive Lie algebra cohomology H*(g, H;R) and
the cohomology H®(AP;- ® (Sh*)H, —07—) of
a pure Sullivan algebra defined from a trans-
gression in the Weil algebra. As an applica-
tion, the following result is obtained: a ho-
mogeneous space G/H of reductive type does
not admit a compact Clifford—Klein form if
rank G — rank K < rank H — rank Kg. This

is conjectured by Toshiyuki Kobayashi in 1989.
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