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Abstract. An old problem in integral geometry called the Pompeiu problem is closely related to

the existence of a solution of the over-determined Neumann problem:

(N)λ

(
∆u+ λu = 0 in Ω,
∂u
∂ν

= 0, u ≡ constant on ∂Ω.

It is easy to see (N)λ holds if Ω is a ball. In this paper we shall give a quantitative estimate of

the following statement in terms of one parameter family of domains and some special values of

Bessel functions: If Ω is sufficiently ‘close to’ a ball and if (N)λ holds for a bounded λ, then Ω

must be a ball.

§1. Introduction and Statements

The study of the relations between the geometry of a given domain and the spectrum of the

Laplace operator is very old and has been an area of active research. One of these problems is

a free boundary problem called Schiffer’s conjecture ([20], Problem 80), related to the Pompeiu

problem which has originated in harmonic analysis ([15], [16]).

Suppose Ω is a bounded domain in Rn whose boundary ∂Ω is C1 diffeomorphic to Sn−1.

We associate the following three objects to Ω:

i) The null varietyN(Ω) := {ζ ∈ Cn : FχΩ(ζ) = 0}. Here FχΩ(ζ) =
R
Ω
e
√−1(x1ζ1+...+xnζn)

dx1 . . . dxn is the Fourier transform of the characteristic function χΩ, which is a holo-

morphic function of the variables ζ = (ζ1, . . . , ζn) ∈ Cn.
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ii) An integral transform TΩ : C(Rn) −→ C(M(n)) defined by (TΩf)(g) =
R
Ω
f(gx)dx.

Here M(n) = O(n)nRn is the Euclidean motion group.

iii) An overdetermined problem:

(N)λ

½
∆u+ λu = 0 in Ω,
∂u
∂ν = 0, u ≡ constant on ∂Ω.

Here ∂
∂ν stands for the outward normal vector field on ∂Ω.

Then it is a well known result using an argument of spectral synthesis that these three

objects are related with one another:

Fact 1.1 ([7], [18]). In the above setting, the following three conditions on Ω are equivalent:

1) There exists r > 0 such that N(Ω) ⊃ SC(0 : r).

2) Ker TΩ 6= {0}.

3) There exists λ > 0 and a nontrivial solution u of (N)λ.

Here, SC(a : r) := {ζ ∈ Cn :
n

Σ
j=1
(ζj − aj)2 = r2} for a = (a1, . . . , an) ∈ Rn and r ∈ R. (1)

and (3) are related by λ = r2.

A ball in Rn satisfies the above three conditions. In fact, if Ω is the unit ball, then

(1.2) FχΩ(ζ) = fn2
µq

ζ1
2 + . . .+ ζn

2

¶
, (ζ = (ζ1, . . . , ζn) ∈ Cn),

where fν(z) := (2π)
n
2
Jν(z)
zν is a holomorphic function of z ∈ C (Lemma (2.2)(1)). Hence,

N(Ω) ⊃ SC(0 : r),(1.3.1)

Ker TΩ 3 fn2−1
³
r
p
x12 + . . .+ xn2

´
,(1.3.2)

fn
2−1

³
r
p
x12 + . . .+ xn2

´
is a solution to (N)r2 ,(1.3.3)

whenever r is a positive zero of the Bessel function Jn
2
(z) (there exist countably many).

Conversely, it has been a long standing conjecture (the Pompeiu problem, Schiffer’s conjec-

ture) that a ball would be the only domain satisfying one of (any of) (1) - (3) in Fact (1.1).
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Berenstein [3], Aviles [2] (see also [4] Proposition 1), and Brown and Kahane [6] have made

progress regarding (N)λ which might be summarized as follows: For simplicity, suppose Ω is

convex in R2 (this assumption can be weakened in (1.4.1) and (1.4.2)).

(1.4.1) If (N)λ holds for infinitely many λj , then Ω is a ball.

(1.4.2) If (N)λ holds and λ ≤ ν7, the seventh Neumann eigenvalue, then also Ω is a ball.

(1.4.3) If (N)λ holds and n = 2, then 2 min
θ∈S1

HΩ(θ) > max
θ∈S1

HΩ(θ), whereHΩ(θ) := sup
x∈Ω

(x, θ)−

inf
x∈Ω

(x, θ).

For further progress and some survey related to this conjecture, see [5], [9], and [14] and

the references therein.

Loosely speaking, the result (1.4.3) of Brown and Kahane asserts that a long thin convex

domain in R2 (‘far from’ being a ball) never satisfies the conditions (1) - (3) in Fact (1.1).

In contrast to this, our concern in this paper will be with the case where Ω is sufficiently

‘close to’ a ball. In order to define the ‘closeness’ and to give a quantitative estimate on how

perturbations of a ball affect the properties in Fact (1.1), we need to take parallel translations

and similarity transforms into account because they do not affect the properties in Fact (1.1).

So, we first define unessential perturbations as follows.

Given a continuous function g : Sn−1 −→ R+ = {x ∈ R : x > 0}, we define a star-shaped

region Ω(g) with respect to the origin by

(1.5) Ω(g) := {ρ · η ∈ Rn : η ∈ Sn−1, 0 ≤ ρ < g(η)}.

Suppose g : [0, T ] × Sn−1 −→ R+ is a C1-map such that g(0, η) ≡ 1 (η ∈ Sn−1). Then

Ωt := Ω(g(t, ·)) forms a family of domains parametrized by t ∈ [0, T ] with Ω0 = B(0 : 1), the

unit ball.

We call {Ωt} unessential if there exist a ∈ R and b ∈ Rn such that gt(0, η) = a + (b, η)

(gt :=
∂g
∂t ) (i.e. gt ∈ E0 + E1 with the notation of Lemma (2.5) on spherical harmonics).

This means that {Ωt} is degenerate at t = 0 up to similarity transformations and parallel
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translations (see Proposition (5.7)).

Fix 0 < T, 0 < α ≤ 1 and 0 ¿ R. For a C1,α function g : [0, T ] × Sn−1 −→ R+ we shall

define (see (2.6.4), (3.3.3)):

[g]R,α :=
|gt(0, ·)|R
kgk1+α

(≥ 0),

by using spherical harmonics and Bessel functions with the following property (see (2.6.5)):

[g]R,α = 0 ⇔ {Ω(g(t, ·))} is unessential.

We put B(a : r) = {x ∈ Rn :
nP
j=1

(xj − aj)2 < r2}, S(a : r) = {x ∈ Rn :
nP
j=1

(xj − aj)2 = r2} for

a = (a1, . . . , an) ∈ Rn, r > 0. Now we are ready to state our main result:

Theorem. Let R À 0. There exists a constant C(n,R) > 0 with the following property:

Suppose 0 < T, 0 < α ≤ 1 and that Ωt ≡ Ω(g(t, ·)) (0 ≤ t ≤ T ) is a family of domains in

Rn given by a C1,α map g : [0, T ]× Sn−1 −→ R+ satisfying g(0, ·) ≡ 1 and |gt(0, η)| ≤ 1 (η ∈

Sn−1). If there exist t0 ∈ R, x ∈ Rn and r > 0 such that

0 ≤ t0 <min (T, (C(n,R)[g]R,α)
1
α ),

N(Ωt0)R ∩B(0 : R) ⊃ S(x : r),

then t0 = 0 and so Ωt0 is a ball.

Remark. Actually it suffices to assume R ≥ j(n2 , 1) the first positive zero of Jn
2
(z), when the

constant C(n,R) is given in (4.5.2). In Proposition (4.4) we drop the technical assumption

|gt(0, η)| ≤ 1 (η ∈ Sn−1). A small price to pay is the condition (4.4.1)(b) on t0 is somewhat

complicated (see also Lemma (4.5)).

Corollary 1. Let R À 0 and retain the setting as in the theorem above. Assume that there

exist λ0, t0 ∈ R and u ∈ C2(Ωt0) ∩ C1(Ωt0) such that

0 < λ0 < R
2,

0 ≤ t0 < min (T, (C(n,R)[g]R,α)
1
α ),

u 6= 0 is a solution of (N)λ0 .
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Then t0 = 0 and Ωt0 is the unit ball.

In a slightly different formulation we may define a perturbation of domains {Ωt} by giving the

boundaries by means of a continuous map G : [0, T ]×Sn−1 −→ Rn withG(0, η) = η (η ∈ Sn−1)

such that

∂Ωt = G(t, S
n−1) := Image (G(t, ·) : Sn−1 −→ Rn).

If G is of the C1 class, then we find a uniquely defined function g : [0, T 0]× Sn−1 −→ R+(0 <

T 0 ≤ T ) such that Ωt = Ω(g(t, ·)) (see Lemma (5.4)). In §5 we discuss a geometric aspect of

unessential perturbations. In particular, {Ωt} is unessential if and only if there exist 0 < T 0 ≤ T

and C1-maps

a : [0, T 0]→ R, a(0) = 1,

b : [0, T 0]→ Rn, b(0) = t(0, . . . , 0),

ϕ : [0, T 0]× Sn−1 → Sn−1, ϕ(0,ω) ≡ ω, ϕ(t, ·) is a C1-diffeomorphism of Sn−1,

such that eG(t,ω) := a(t)G(t,ϕ(t,ω))+b(t) is degenerate at t = 0 in the sense that ∂
∂t

¯̄
t=0

eG(t,ω) ≡
0. Because of the ambiguity of the map G up to Map([0, T ],Homeo(Sn−1)), we present only a

weaker version of Corollary 1 by means of a sequence tj in this formulation, instead of giving

an explicit estimate of a single t0 as in Corollary 1.

Corollary 2. Let 0 < T and 0 < α ≤ 1. Suppose {Ωt} (0 ≤ t ≤ T ) is not an unessential family

of domains in Rn given by a C1,α map G : [0, T ]×Sn−1 −→ Rn with G(0, η) ≡ η (η ∈ Sn−1).

Assume that there exists a sequence tj ∈ [0, T ],λj ∈ R (j ∈ N) and uj ∈ C2(Ωtj ) ∩ C1(Ωtj )

such that ⎧⎪⎨⎪⎩
limj→∞ tj = 0,

supj∈N |λj | <∞,
uj is a solution of (N)λj in Ωtj .

Then there exists n0 ∈ N such that Ωtj is a ball for any j ≥ n0.
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We finally mention that the results here were announced in [11] Theorem 3 in 1986 (see also

[12] Chapter 3 and [14] Theorem 5.12) with the C2 assumption on the parameter. Recently C.

Berenstein brought to our attention a preprint of Agranovsky [1]. There Agranovsky gives a

similar result to Corollary 2 assuming that the dimension n = 2 and assuming the existence of

a solution to (N)λt for all t with the condition that both the boundary ∂Ωt and the eigenvalues

λt depend analytically on the parameter t. His approach using Riemann’s mapping theorem

for C ' R2 is quite different from ours.

§2 Preliminary results on Bessel functions and spherical harmonics

In this section we give a short survey on Bessel functions and spherical harmonics on Sn−1

that will be used in later sections.

For ν ∈ C and z ∈ C \ (−∞, 0], the ν-th Bessel function is defined by

Jν(z) : =
³z
2

´ν ∞X
n=0

(−1)n( z2 )2n
n!Γ(ν + n+ 1)

=
( z2 )

ν

√
π Γ(ν + 1

2 )

Z 1

−1
e
√−1zt(1− t2)ν− 1

2 dt.(2.1)

If we put θ = z ddz , then both Jν(z) and J−ν(z) are the solutions of the ordinary differential

equation (θ2 + (z2 − ν2))f(z) = 0.

Here is a collection of some basic properties of the Bessel function:

Lemma 2.2.

1) Jν(z)
zν is an entire function of z ∈ C with Jν(z)

zν |z=0 = 1
2νΓ(ν+1) .

2) (see [8], (7.5.38), (7.15.42)) Let z ∈ C. We have

∞X
n=−∞

Jn(z)
2 = 1.(2.2.2)(a)

∞X
n=0

(2n+ 1)Jn+ 1
2
(z)2 =

2z

π
.(2.2.2)(b)
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3) For real ν > −1, Jν(z) has only real zeros (Lommel, see [17], pp.482-483). Let denote by

j(ν, 1) the first positive zero of Jν(z)(ν > 0). Then j(ν, 1) > ν ([17], p.485).

4) (Siegel, see [17], p.484) Jν(z) and Jν+m(z)(m ∈ N+) have no common zeros other than

zero (Bourget’s conjecture).

The first and the last statements in Lemma (2.2) imply the following lemma, in which the

constants ε(n,R) and δ(n,R) will be used in a quantitative estimate of our Theorem.

Lemma 2.3. Let j(n2 , k) (k ∈ N+) be the k-th positive zero of the Bessel function Jn
2
(x).

We fix R ≥ j(n2 , 1) and define k ∈ N+ by

0 = j(
n

2
, 0) < j(

n

2
, 1) < . . . < j(

n

2
, kR) ≤ R < j(

n

2
, kR + 1).

We define an entire function of z ∈ C by

(2.3.1) f(z) := (2π)
n
2
Jn
2
(z)

z
n
2
.

Put

W (R) := {z ∈ C : 0 ≤ Re z ≤ R, | Im z| ≤ 1}.

Then there exist ε ≡ ε(n,R) > 0 and δ ≡ δ(n,R) > 0 such that the following three conditions

hold.

(2.3.2) δ(n,R) <
1

2
min
1≤k≤n

³
j(
n

2
, k)− j(n

2
, k − 1)

´
.

(2.3.3) ζ ∈W (R) ∩B(j(n2 , k) : δ) for some k ∈ {1, . . . , kR}, then

|f(z)| ≥ ε(n,R)
¯̄̄
z − j(n

2
, k)
¯̄̄
.

(2.3.4) If z ∈W (R) \ kR∪
k=1

B(j(n2 , k) : δ), then

|f(z)| ≥ ε(n,R)δ(n,R).

7



Remark 2.4. We might take δ(n,R) = 1, however, we do not pursue this kind of numerical

estimates of the Bessel function in this paper. On the other hand, we can and do assume

ε(n,R) ≤ δ(n,R) ≤ 1,(2.4.1)

ε(n,R) ≤ ωn−1.(2.4.2)

Here we define

(2.4.3) ωn−1 := Vol(Sn−1) =
2π

n
2

Γ(n2 )

Next, we review spherical harmonics. We induce a Riemannian metric g on Sn−1 from the

standard metric on Rn. Denote by ∆Sn−1 the Laplace-Beltrami operator on S
n−1 with respect

to g. Then the Laplace operator ∆ ≡ ∆Rn on Rn is represented as ∆ = ∂2

∂r2 +
n−1
r

∂
∂r +

1
r2∆Sn−1

in the spherical coordinate x = rω (r > 0,ω ∈ Sn−1). We write L2(Sn−1) for the Hilbert space

of square integrable functions with respect to the measure given by the metric g. For each

non-negative integer k ∈ N we define an eigenspace

Ek := {f ∈ C∞(Sn−1) : ∆Sn−1f = −k(k + n− 2)f} ⊂ L2(Sn−1).

The orthogonal group O(n) naturally acts on the unit sphere Sn−1. This action is transitive

and we have O(n)/O(n − 1) ' Sn−1. Since this action is isometric, ∆Sn−1 belongs to the

algebra of O(n)-invariant differential operators and so Ek is an O(n)-submodule of L
2(Sn−1),

on which O(n) acts unitarily by f(x) 7→ f(g−1x) for f ∈ L2(Sn−1), x ∈ Sn−1 and g ∈ O(n).

In fact, it turns out that each Ek is an irreducible O(n)-module and the eigenvalue of

∆Sn−1 is given as an evaluation of the Casimir operator. Here are classical results on spherical

harmonics:

Lemma 2.5 (see [10], Introduction, Theorem 3.1 and Lemma 3.6).

1) L2(Sn−1) =
∞P
k=0

⊕Ek, (orthogonal Hilbert space decomposition).
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2) Ek is irreducible as an O(n)-module.

3) Ek is the C-span of

(
(a1x1 + · · ·+ anxn)k : aj ∈ C,

nP
j=1

aj
2 = 0, (x1, . . . , xn) ∈ Sn−1

)
. In

particular,

E0 = C · 1,(2.5.1)

E1 = Cx1 ⊕ . . .⊕ Cxn.(2.5.2)

4) (see also [8], p. 247,(11.4.22)) For h ∈ L2(Sn−1), r ∈ R and ω ∈ Sn−1 we put

(2.5.3) ĥ(r,ω) :=

Z
Sn−1

e
√−1r(η,ω)h(η)dη.

If h ∈ Ek(k ∈ N), then we have for ω ∈ Sn−1 and r ∈ C

(2.5.4) ĥ(r,ω) = (2π)
n
2

√
−1kh(ω)

Jk+n
2−1(r)

r
n
2−1

.

We introduce a family of seminorms | · |0r on L2(Sn−1) parametrized by r > 0 by

(2.6.1) |h|0r :=
½ ∞X
k=1

khkk2L2(Sn−1)Jk+n
2−1(r)

2

¾ 1
2

for h =
∞P
k=0

hk ∈ L2(Sn−1) =
∞P
k=0

⊕Ek. If h ∈
∞P
k=1

⊕Ek (i.e. h0 = 0), then it follows from

(2.5.4) that

(2.6.2) kĥ(r,ω)kL2(Sn−1) = (2π)
n
2 r1−

n
2 |h|0r

Since
∞P
k=0

Jk+n
2−1(r)

2 < max(1, r) (see Lemma (2.2)(2)) if N 3 n ≥ 2, we have

(2.6.3) |h|0r ≤ khkL2(Sn−1)max(1, r
1
2 ).

Let j(ν, k)(k ∈ N+) be the positive zeros of Jν(z) arranged in ascending order. For R ≥ j(n2 , 1)

let kR ∈ N+ be the integer such that

0 < j
³n
2
, 1
´
< j

³n
2
, 2
´
< . . . < j

³n
2
, kR

´
≤ R < j

³n
2
, kR + 1

´
.
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For h ∈ L2(Sn−1), we define

(2.6.4) |h|R := min
1≤k≤kR

|h|0j(n2 ,k).

It follows from Lemma (2.2)(4) that

(2.6.5) |h|R = 0 ⇔ h ∈ E0 + E1.

§3. Some estimates of error terms.

In this section we give the first and second terms of FχΩt(ζ · ω), the Fourier transform of a

family of domains {Ωt} in Rn, and also give an estimate of the error term.

We define a function F : C× C→ C by

(3.1.1) F (s, u) :=
(−1)n(n− 1)!
(
√
−1u)n−1

(
1− e

√−1su
n−1X
k=0

(−
√
−1su)k
k!

)
.

By a simple calculation we have

(3.1.2)
∂F

∂s
(s, u) = sn−1e

√−1su,

and thus

(3.1.3)

Z s

0

e
√−1ρuρn−1dρ = F (s, u).

By means of this function F we have a formula of FχΩ(g)(ζ):

Lemma 3.2. Suppose g : Sn−1 → R+ is a continuous function and that Ω(g) is a star-shaped

region with respect to the origin as in (1.5). Then we have a formula

FχΩ(g)(ζ) =
Z
Sn−1

F (g(η), (η, ζ))dη, ζ ∈ Cn.
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Proof. From definition we have

FχΩ(g)(ζ) =
Z
Ω(g)

e
√−1(x,ζ)dx

=

Z
Sn−1

Z g(η)

0

e
√−1r(η,ζ)rn−1drdη

=

Z
Sn−1

F (g(η), (η, ζ))dη.

¤

We fix 0 < T and 0 < α ≤ 1. For a C0,α-map f : [0, T ]→ R, we put

kfkC0,α([0,T ]) := sup
0≤t≤T

|f(t)|+ sup
0≤s<t≤T

|f(t)− f(s)|
|t− s|α (<∞).

Next, suppose g : [0, T ]× Sn−1 → R is a C1,α-map. We put

kgk∞ : = sup
0≤t≤T
η∈Sn−1

|g(t, η)|,(3.3.1)

kgk0+α : = sup
η∈Sn−1

kg(·, η)kC0,α([0,T ]),(3.3.2)

kgk1+α : = kgk∞ + kgtk0+α,(3.3.3)

where gt(t, η) :=
∂
∂tg(t, η).

Lemma 3.4. Let 0 < T and 0 < α ≤ 1. Suppose g : [0, T ]× Sn−1 → R+ is a C1,α map such

that

(3.4.1) g(0, η) ≡ 1 for η ∈ Sn−1.

We write Ωt = Ω(g(t, ·)) (see (1.5)). In particular, Ω0 is the unit ball. We put

(3.4.2) Y (g : r, T,α) :=
1

1 + α
sup

η∈Sn−1
ω∈Sn−1

kg(t, η)n−1e
√−1rg(t,η)(η,ω)gt(t, η)kC0,α([0,T ]).
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If ζ ∈ C, r ≥ 0 and ω ∈ Sn−1, then we have (see (2.4.3) for the definition of ωn−1)

|FχΩt(ζ · ω)− FχΩ0(ζ · ω)| ≤ tkgkn−1∞ kgtk∞ωn−1e| Im ζ|kgk∞(3.4.3) ¯̄̄̄
FχΩt(r · ω)− FχΩ0(r · ω)− t

∂

∂t

¯̄̄̄
t=0

FχΩt(r · ω)
¯̄̄̄

(3.4.4)

≤ t1+αωn−1Y (g : r, T,α).

Proof. Let ζ ∈ C and ω ∈ Sn−1. By Lemma (3.2) we have

FχΩt(ζ · ω) =
Z
Sn−1

F (g(t, η), ζ(η,ω))dη.

Then, from (3.1.2) we have

(3.4.5)
∂

∂t
FχΩt(ζ · ω) =

Z
Sn−1

g(t, η)n−1gt(t, η)e
√−1g(t,η)ζ(η,ω)dη.

Thus,

|FχΩt(ζ · ω)− FχΩ0(ζ · ω)| ≤ t sup
0≤s≤t

¯̄̄̄
∂

∂s
FχΩs(ζ · ω)

¯̄̄̄
≤ tωn−1kgkn−1∞ kgtk∞e| Im ζ|kgk∞ ,

which shows the first inequality (3.4.4).

It follows from the definition of Y (g : r, T,α) and (3.4.5) that¯̄̄̄
∂

∂t
FχΩt(r · ω)−

∂

∂t

¯̄̄̄
t=0

FχΩt(r · ω)
¯̄̄̄
≤ (1 + α)Y (g : r, T,α)ωn−1t

α,

for 0 ≤ t ≤ T,ω ∈ Sn−1 and r > 0. Therefore, we have¯̄̄̄
FχΩt(r · ω)− FχΩ0(r · ω)− t

∂

∂s

¯̄̄̄
s=0

FχΩs(r · ω)
¯̄̄̄

=

¯̄̄̄Z t

0

{ ∂
∂s
FχΩs(r · ω)−

∂

∂s

¯̄̄̄
s=0

FχΩs(r · ω)}ds
¯̄̄̄

≤ t1+αY (g : r, T,α)ωn−1.

¤

We shall need the following estimate of Y in §4.
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Lemma 3.5. Retain the setting of Lemma (3.4). We define g̃ : [0, T ]× Sn−1 × R→ R by

(3.5.1) g̃(t, η, a) := (1 + at)g(t, η).

Assume

(3.5.2) 0 < T ≤ 1 and |a|T ≤ 1.

Then

(3.5.3) Y (g̃(·, ·, a) : r, T,α) ≤ 2n+1(n+ r)kgkn−1∞ kgk0+αkgk1+α(1 + |a|)2.

Proof. First we treat the case a = 0. Fix r > 0 and η,ω ∈ Sn−1. We put h(x) :=

xn−1e
√−1xr(η,ω). Then

kh(g(·, η))kC0,α([0,T ])

≤ sup
0≤t≤T

|h(g(t, η))|+ sup
0≤t≤T

|ht(g(t, η))| sup
0≤s<t≤T

|g(t, η)− g(s, η)|
|t− s|α

≤ kgkn−1∞ + {(n− 1)kgkn−2∞ + kgkn−1∞ r}kgk0+α

≤ (n+ r)kgkn−1∞ kgk0+α.

Here we have used kgk∞ ≥ 1 in the last inequality. Hence

Y (g : r, T,α) =
1

1 + α
sup

η,ω∈Sn−1
kh(g(·, η))gt(·, η)kC0,α([0,T ])

≤ kgtk0+α sup
η,ω∈Sn−1

kh(g(·, η))kC0,α([0,T ])

≤ (n+ r)kgkn−1∞ kgk0+αkgtk0+α(3.5.4)

Next, let us estimate Y for g̃(t, η, a) = (1 + at)g(t, η) in terms of g. We assume T ≤ 1 and

|a|T ≤ 1. Since

g̃t(t, η, a) = ag(t, η) + (1 + at)gt(t, η),

k1 + atk0+α ≤ k1 + atk0+1 ≤ 2 + |a|,
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we have

kg̃k∞ ≤ 2kgk∞,

kg̃(·, ·, a)k0+α ≤ k1 + atk0+αkgk0+α

≤ (2 + |a|)kgk0+α,

kg̃t(·, ·, a)k0+α ≤ |a|kgk0+α + k1 + atk0+αkgtk0+α

≤ 2(1 + |a|)kgk1+α.

Applying (3.5.4) to g̃, we have

Y (g̃(·, ·, a) : r, T,α) ≤ (n+ r)2n−1kgkn−1∞ (2 + |a|)kgk0+α2(1 + |a|)kgk1+α

≤ 2n+1(n+ r)(1 + |a|)2kgkn−1∞ kgk0+αkgk1+α.

¤

§4. Proof of Theorem

Now we are ready to prove our main Theorem. We start with the following:

Lemma 4.1. In the setting of Lemma (3.4), let ρ be a positive zero of Jn
2
(x). Assume

(4.1.1) 0 ≤ t < min

⎛⎝T,Ã (2π)
n
2 |gt(0, ·)|0ρ

ρ
n
2−1ωn−1

3
2Y (g : ρ, T,α)

! 1
α

⎞⎠ ,
(see (2.6.1) and (3.4.2) for notation). Then N(Ωt) ⊃ S(0 : ρ) if and only if t = 0. Here we

write Ωt = Ω(g(t, ·)).

Proof. If t = 0, then FχΩ0(r · ω) = (2π)
n
2
Jn
2
(r)

r
n
2

and so we have FχΩ0(ρ · ω) = 0 for any

ω ∈ Sn−1, that is, N(Ω0) ⊃ S(0 : ρ).

Conversely, if t ≥ 0 satisfies N(Ωt) ⊃ S(0 : ρ). Then we have FχΩt(ρ ·ω) = FχΩ0(ρ ·ω) = 0

for ω ∈ Sn−1. Using the inequality (3.4.4), we have

t

¯̄̄̄
∂

∂t

¯̄̄̄
t=0

FχΩt(ρ · ω)
¯̄̄̄
≤ t1+αωn−1Y (g : ρ, T,α).
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Taking the L2-norm on Sn−1, we have from (2.6.2) the following inequality:

t
(2π)

n
2

ρ
n
2−1

|gt(0, ·)|0ρ ≤ t1+αωn−1
3
2Y (g : ρ, T,α).

This implies t = 0 or
(2π)

n
2 |gt(0,·)|0ρ

ρ
n
2
−1ωn−1

3
2 Y (g:ρ,T,α)

≤ tα. Thus we have completed the proof. ¤

Lemma 4.2. Let 0 < T, 0 < α ≤ 1 and g : [0, T ] × Sn−1 → R+ be a C1,α map such that

g(0, η) ≡ 1 for η ∈ Sn−1. We put

(4.2.1) B ≡ B(g) := kgkn−1∞ kgk0+1ωn−1.

We recall notations of Lemma (2.3) such as ε(n,R), δ(n,R), kR and j(
n
2 , k). Let R > j(

n
2 , 1).

Assume

0 ≤ r0 ≤ R,(4.2.2)(a)

0 ≤ t0 < min
µ
ε(n,R)δ(n,R)

B(g)
, T

¶
,(4.2.2)(b)

ω0 ∈ Sn−1,(4.2.2)(c)

FχΩt0 (r0 · ω0) = 0.(4.2.2)(d)

Then there exist k ∈ {1, 2, . . . , kR} and a ∈ R such that

r0 = (1 + at0)j(
n

2
, k),(4.2.3)(a)

|a| ≤ B(g)

ε(n,R)
,(4.2.3)(b)

|r0 − j(
n

2
, k)| < δ(n,R).(4.2.3)(c)

Proof. If t0 = 0 then we can take a = 0. Hence we assume t0 > 0. It follows from Lemma

(3.4) that

|FχΩt0 (r0 · ω0)− FχΩ0(r0 · ω0)| ≤ B(g)t0.

15



Since FχΩt0 (r0 ·ω0) = 0 and FχΩ0(r0 ·ω0) = f(r0) (see (2.3.1) for the definition of f), we have

(4.2.4) |f(r0)| ≤ B(g)t0 < ε(n,R)δ(n,R).

Therefore, from Lemma (2.3), we find k ∈ {1, . . . , kR} such that

(4.2.5) ε(n,R)
¯̄̄
r0 − j(

n

2
, k)
¯̄̄
≤ |f(r0)|.

Now, we put a :=
r0−j(n2 ,k)
t0j(

n
2 ,k)

. Then we have

|a| ≤ |r0 − j(
n
2 , k)|

t0
≤ B(g)

ε(n,R)
.

Here, the second inequality follows from (4.2.4) and (4.2.5), which proves (4.2.3)(b). The

inequality (4.2.3)(c) is direct from (4.2.4) and (4.2.5). ¤

Lemma 4.3. Retain the setting of Lemma (4.2). Assume

0 ≤ r0 ≤ R, 1 ≤ R,(4.3.1)(a)

0 ≤ t0 < min
Ã
ε(n,R)δ(n,R)

B(g)
,

µ
(2π)

n
2 ε(n,R)2[g]R,α

2n+4nωn−1
1
2R

n
2B(g)3

¶ 1
α

, T, 1

!
,(4.3.1)(b)

N(Ωt0) ⊃ S(0 : r0).(4.3.1)(c)

Then t0 = 0.

Proof. It follows from Lemma (4.2) that we find a ∈ R and k ∈ {1, . . . , kR} such that

r0 = (1 + at0)j(
n

2
, k),(4.3.2)(a)

|a| ≤ B(g)

ε(n,R)
.(4.3.2)(b)

We put g̃(t, η, a) := (1 + at0)g(t, η). Then we have

(4.3.3) N(Ω(g̃(t0, ·, a))) ⊃ S(0 : j(
n

2
, k)),
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because

FχΩ((1+at0)g(t0,·))(j(
n

2
, k) · ω) = (1 + at0)nFχΩ(g(t0,·))((1 + at0)j(

n

2
, k) · ω)

= (1 + at0)
nFχΩ(g(t0,·))(r0 · ω).

We want to apply Lemma (4.1) to g̃(·, ·, a) in order to show (4.3.3) implies t0 = 0. To do this,

it suffices to show (4.3.1)(b) implies (4.1.1) with g replaced by g̃, that is,

(4.3.4)
(2π)

n
2 ε(n,R)2[g]R,α

2n+4nωn−1
1
2R

n
2B(g)3

≤ (2π)
n
2 |g̃t(0, ·, a)|0ρ

ρ
n
2−1ωn−1

3
2Y (g̃, ·ρ, T,α)

,

where ρ = j(n2 , k)(≤ R). Since |a| ≤
B(g)
ε(n,R) , t0 ≤ 1 and t0 ≤

ε(n,R)δ(n,R)
B(g) ≤ ε(n,R)

B(g) (see (2.4.1)),

we can apply Lemma (3.5) and thus we have for 0 < ρ ≤ R,

Y (g̃(·, ·, a) : ρ, T,α) ≤ 2n+1(n+R)kgkn−1∞ kgk0+αkgk1+α
µ
1 +

B(g)

ε(n,R)

¶2
≤ 2n+2nRB(g)

ωn−1
kgk1+α22

B(g)2

ε(n,R)2

=
2n+4nRB(g)3kgk1+α

ωn−1ε(n,R)2

Here we have used R ≥ 1 and ε(n,R) ≤ ωn−1 ≤ B(g) (see (2.4.2)). Therefore,

(2π)
n
2 ε(n,R)2[g]R,α

2n+4nωn−1
1
2R

n
2B(g)3

≤ (2π)
n
2 |gt(0, ·)|R

R
n
2−1ωn−1

3
2Y (g̃(·, ·, a) : ρ, T,α)

=
(2π)

n
2 |g̃t(0, ·, a)|R

R
n
2−1ωn−1

3
2Y (g̃(·, ·, a) : ρ, T,α)

.

Hence we have shown (4.3.4) and thus Lemma (4.3). ¤

Proposition 4.4. Let 0 < α ≤ 1, 0 < T and 0 < R. Suppose g : [0, T ] × Sn−1 −→ R+ is a

C1,α map such that g(0, ·) ≡ 1. Retain the notation as in Lemma (4.3). Assume

0 < r, x ∈ Rn,(4.4.1)(a)

0 ≤ t0 < min
Ã
ε(n,R)δ(n,R)

B(g)ekgk∞
,

µ
(2π)

n
2 ε(n,R)2[g]R,α

2n+4nωn−1
1
2R

n
2B(g)3

¶ 1
α

, T, 1

!
,(4.4.1)(b)

N(Ωt0)R ∩B(0 : R) ⊃ S(x : r).(4.4.1)(c)

17



Then x = 0 and t0 = 0.

Proof. It suffices to show x = 0 by virtue of Lemma (4.3). Because t0 satisfies (4.4.1)(b), the

inequality (3.4.3) gives

(4.4.2) |FχΩt0 (ζ · ω)− FχΩ0(ζ · ω)| ≤ t0B(g)e
| Im ζ|kgk∞ < ε(n,R)δ(n,R),

for ζ ∈ C with | Im ζ| ≤ 1 and ω ∈ Sn−1. On the other hand, if ζ ∈ C satisfies |ζ − j(n2 , k)| =

δ(n,R) for some k ∈ {1, . . . , kR}, then

|FχΩ0(ζ · ω)| ≥ ε(n,R)δ(n,R)

from Lemma (2.3). Therefore by using Rouche’s theorem FχΩt0 (ζ · ω) has a unique zero in

{ζ ∈ C : |ζ − j(n2 , k)| < δ(n,R)} for each ω ∈ Sn−1.

Next, the condition (4.4.1)(c) means FχΩt0 (x + r · ω) = 0 for any ω ∈ Sn−1. Applying

Lemma (4.2) with r0 = kx+ r ·ωk(≤ R) (with the notation there), we find k ∈ {1, . . . , kR} for

each ω ∈ Sn−1 such that ¯̄̄
kx+ r · ωk− j(n

2
, k)
¯̄̄
< δ(n,R).

By (2.3.2) and because Sn−1 is connected, the above integer k does not depend on ω ∈ Sn−1.

This means that there exists k ∈ {1, . . . , kR} such that

(4.4.4)
¯̄̄
kx+ r · ωk− j(n

2
, k)
¯̄̄
< δ(n,R)

for any ω ∈ Sn−1.

Now, let us show x = 0. Suppose x 6= 0. We put

z+ :=

µ
1 +

r

kxk

¶
x, z− :=

¯̄̄̄
1− r

kxk

¯̄̄̄
x.

Then, from (4.4.4) we have

(4.4.5)
¯̄̄
kz±k− j(

n

2
, k)
¯̄̄
< δ(n,R).
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On the other hand, since FχΩt0 (ζ · ω) = FχΩt0 (−ζ · ω) for ζ ∈ R,N(Ωt0) ⊃ S(x : r) if and

only if N(Ωt0) ⊃ S(−x : r). Therefore FχΩt0 (±x± r · ω) = 0 for any ω ∈ Sn−1. In particular,

we have

(4.4.6) FχΩt0 (z±) = 0.

Because FχΩt0 (ζ ·
x
kxk ) has a unique zero in {ζ ∈ C : |ζ − j(n2 , k)| < δ(n,R)}, we conclude

kz+k = kz−k. This implies r = 0, which contradicts to (4.4.1)(a). Therefore x must be the

origin. Now Lemma (4.4) is reduced to Lemma (4.3). ¤

In the normalized case where kgt(0, ·)kL∞(Sn−1) ≤ 1, we can replace the assumption (4.4.1)(b)

by a simpler one:

Lemma 4.5. We put

(4.5.1) Cn :=
1

ωn−1
1
2

min(1,
1

2n+3ωn−1
,

(2π)
n
2

24n+7nωn−13
).

For (1 <)j(n2 , 1) ≤ R, we put

(4.5.2) C(n,R) :=
Cnε(n,R)

2

R
n
2

,

where ε(n,R) is the constant in Lemma (2.3). Let 0 < T and 0 < α ≤ 1. Suppose g :

[0, T ]× Sn−1 −→ R+ is a C1,α map such that

(4.5.3)(a) g(0, η) ≡ 1, for any η ∈ Sn−1,

(4.5.3)(b) sup
η∈Sn−1

|gt(0, η)| 5 1.

If t satisfies

(4.5.4) 0 ≤ t < min(T, (C(n,R)[g]R,α)
1
α ),
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then t satisfies (4.4.1)(b).

Proof. If r ≥ 1, then it follows from (2.6.3) that

|gt(0, ·)|0r ≤ kgt(0, ·)kL2(Sn−1)r
1
2 ≤ kgt(0, ·)kL∞(Sn−1)ωn−1

1
2 r

1
2 .

Therefore, from the definition (2.6.4), we have

(4.5.5) [g]R,α =
|gt(0, ·)|R
kgk1+α

≤ ωn−1
1
2R

1
2

kgk1+α
.

Suppose t satisfies (4.5.4). Then

tα <
Cnε(n,R)

2

R
n
2

[g]R,α ≤
ωn−1−

1
2 · 1

R
n
2

ωn−1
1
2R

1
2

kgk1+α
≤ 1

kgk1+α
≤ 1
2
.

Therefore we have

t ≤ 1
2
,

|gt(t, η)| ≤ |gt(0, η)|+ tαkgk1+α ≤ 1 +
1

2
· 2 = 2,

|g(t, η)| ≤ |g(0, η)|+ tkgtk∞ ≤ 1 + 1
2
· 2 = 2,

B(g) = kgkn−1∞ kgk0+1ωn−1 ≤ 2n+1ωn−1,

B(g)ekgk∞ ≤ 2n+1ωn−1 · e2 < 2n+4ωn−1.

Thus from (4.5.2), (4.5.5) and (2.4.1) we have

t ≤ tα < Cn
ε(n,R)2

R
n
2

[g]R,α

≤ 1

2n+3ωn−1
3
2

ε(n,R)δ(n,R)

R
n
2

ωn−1
1
2R

1
2

kgk1+α

≤ ε(n,R)δ(n,R)

2n+4ωn−1

≤ ε(n,R)δ(n,R)

B(g)ekgk∞
.
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On the other hand, since Cn ≤ (2π)
n
2

24n+7nωn−1
7
2
≤ (2π)

n
2

B(g)32n+4nωn−1
1
2
, we have

tα < Cn
ε(n,R)2[g]R,α

R
n
2

≤ (2π)
n
2 ε(n,R)2[g]R,α

2n+4nωn−1
1
2B(g)3R

n
2

.

Hence t satisfies (4.4.1)(b). ¤

Now, Theorem follows from Proposition (4.4) and Lemma (4.5). Corollary 1 is an immediate

consequence of Theorem (with x = 0) and Fact (1.1). Corollary 2 is a direct consequence of

Corollary 1.

§5. Appendix (geometric aspect of unessential perturbation)

In Definition (1.5), we have defined a star-shaped region (with respect to the origin) by using

the polar coordinate, that is, Ω(g) ⊂ Rn for g ∈ C(Sn−1,R+). In this section, we also consider

a star-shaped region Ω by defining the boundary G : Sn−1 → ∂Ω, and discuss a geometric

aspect of “unessential perturbation” that we have treated. This is done in Proposition (5.7).

Throughout this section we use the notation Ck where k stands for l (l ∈ N = {0, 1, . . . }),

(l,α) (l ∈ N, 0 < α ≤ 1), ∞ or ω (real analytic). The condition k ≥ 1 means that we exclude

the cases k = 0 and k = (0,α) from the above possibilities. We define a standard norm in Rn

by kxk :=
³Pn

j=1 xj
2
´ 1
2

for x = t(x1, . . . , xn) ∈ Rn.

Definition 5.1. A Ck-map G : Sn−1 → Rn is called to bound a Ckstar-shaped region (with

respect to the origin) if the following two conditions are satisfied:

Image(G) 63 0(5.1.1)

G

kGk : S
n−1 → Sn−1, ω 7→ G(ω)

kG(ω)k defines a C
k-diffeomorphism of Sn−1.(5.1.2)

Then Image(G) is the boundary of a star-shaped region (see Lemma (5.2.1)). We write

Ck? (S
n−1,Rn) for the totality of such maps.
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Clearly, if h ∈ Ck-Diffeo(Sn−1) and G ∈ Ck? (Sn−1,Rn), then both G and G ◦ h define the

same boundary Image(G) = Image(G ◦ h). The following lemma relates Definition (1.5) with

Definition (5.1).

Lemma 5.2. We have a bijection:

(5.2.1) Ck? (S
n−1,Rn) ' Ck(Sn−1,R+)× Ck-Diffeo(Sn−1), G 7→ (gG, hG),

characterized by the following property:

(5.2.2) G ◦ hG(η) = gG(η)η (η ∈ Sn−1).

In particular,

1) Image(G) = ∂Ω(gG), the boundary of the star-shaped region Ω(gG) (see (1.5)).

2) If G1, G2 ∈ Ck? (Sn−1,Rn) define the same boundary Image(G1) = Image(G2), then there

exists an h ∈ Ck-Diffeo(Sn−1) such that G1 ◦ h = G2.

Proof. Given G ∈ Ck? (Sn−1,Rn), we put hG :=
³

G
kGk

´−1
∈ Ck-Diffeo(Sn−1) and gG(η) :=

kG ◦ hG(η)k (η ∈ Sn−1). It follows from definition of hG that G(hG(η))
kG(hG(η))k = η and so G ◦

hG(η) = gG(η)η. Conversely, given (g, h) ∈ Ck(Sn−1,R+)×Ck-Diffeo(Sn−1), we defineG(ω) :=

g(h−1(ω))h−1(ω). Then it follows from definition that G ∈ Ck? (Sn−1,Rn) and that (gG, hG) =

(g, h). This establishes the bijection (5.2.1). The remaining part (1) is followed from (5.2.2),

and (2) holds if we put hG := hG1 ◦ h−1G2
. ¤

Next, we consider a deformation of domains by Map([0, T ], Ck? (S
n−1,Rn)). We prepare the

following lemma asserting that it is an open condition for a domain to be star-shaped under a

C1-deformation of domains.

Lemma 5.3. Let k ≥ 1. Suppose G : [0, T ] × Sn−1 → Rn is a Ck-map such that G(0, ·) ∈

Ck? (S
n−1,Rn) (see Definition (5.1)). Then there exists a positive number 0 < T 0 ≤ T such
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that G(t, ·) ∈ Ck? (Sn−1,Rn) for any t ∈ [0, T 0]. Moreover, if we define gG(t, η) = gG(t,·)(η) and

hG(t, η) = hG(t,·)(η) with the notation in Lemma (5.2), then gG : [0, T 0] × Sn−1 → R+ and

hG : [0, T
0]× Sn−1 → Sn−1 are Ck-maps satisfying

hG(t, ·) is a Ck-diffeomorphism of Sn−1 for t ∈ [0, T 0].(5.3.1)

G(t, hG(t, η)) = gG(t, η)η for t ∈ [0, T 0], η ∈ Sn−1.(5.3.2)

Proof. We fix T 00 > 0 such that G([0, T 00]×Sn−1) ⊂ Rn\{0}. We define a Ck-map H : [0, T 00]×

Sn−1 → Sn−1 by H(t,ω) := G(t,ω)
kG(t,ω)k for (t,ω) ∈ [0, T 00] × Sn−1. Let us show that the map

H(t, ·) : Sn−1 → Sn−1 is a Ck-diffeomorphism for any small t.

Since G(0, ·) bounds a star-shaped region, we find Ck-maps h : Sn−1 → Sn−1 and g : Sn−1 →

R+ such that G(0, h(η)) = g(η)η by Lemma (5.2). Then the Jacobian JH(0, ·) of the map

H(0, ·) = h−1 : Sn−1 → Sn−1 is nowhere vanishing. Because H(t,ω) is in the Ck class and

because Sn−1 is compact, there exists (T 00 ≥)T 0 > 0 such that the Jacobian JH(t, ·) of the

map H(t, ·) : Sn−1 → Sn−1 is nowhere vanishing for all t ∈ [0, T 0]. This means that the map

H(t, ·) : Sn−1 → Sn−1 is locally Ck-diffeomorphic. Because a local homeomorphism from a

compact manifold to a connected one is automatically a covering map, the mapH(t, ·) : Sn−1 →

Sn−1 is a covering map. On the other hand, consider the following commutative diagram of

homology groups:

H(t, ·)∗ : Hn−1(Sn−1,Z)→Hn−1(Sn−1,Z)

k ↓

G(t, ·)∗ : Hn−1(Sn−1,Z)→Hn−1(Rn \ {0},Z).

Since G(t, w) is continuous, the mapping degree of H(t, ·) equals to that of H(0, ·), that is,

±1. Therefore H(t, ·) is a Ck-diffeomorphism from Sn−1 to Sn−1 for any t ∈ [0, T 0]. Hence

G(t, ·) ∈ Ck? (Sn−1,Rn) for any t ∈ [0, T 0] by definition. Now the last statement is proved in

the same way as Lemma (5.2). ¤
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A deformation of domains starting from a unit ball is a special case of the previous lemma

and so we have:

Lemma 5.4. Let k ≥ 1. Suppose G : [0, T ]× Sn−1 → Rn is a Ck-map such that G(0,ω) ≡ ω

(ω ∈ Sn−1). Then there exist a positive number 0 < T 0 ≤ T , and Ck-maps gG : [0, T 0]×Sn−1 →

R+ and hG : [0, T 0]× Sn−1 → Sn−1 satisfying (5.3.1), (5.3.2) and

(5.4.1) gG(0, η) ≡ 1, hG(0, η) ≡ η for η ∈ Sn−1.

Thus the map G defines a family of star-shaped regions

(5.4.2) Ωt := Ω(gG(t, ·)) (see (1.5))

parametrized by t ∈ [0, T 0] with Ω0 = B(0 : 1), the unit ball.

Let TRn → Rn be the tangent bundle, and TRn|Sn−1 → Sn−1 its restriction to Sn−1. We

write Γk(TRn|Sn−1) for the space of sections in the Ck class.

Definition 5.5. Suppose G : [0, T ] × Sn−1 → Rn is a C1-map such that G(0,ω) ≡ ω (ω ∈

Sn−1). We define the velocity XG ∈ Γ1(TRn|Sn−1) of a deformation Ωt = Ω(gG(t, ·)) (see

(5.4.2)) by

XG(ω) :=
∂

∂t

¯̄̄̄
t=0

G(t,ω).

The map G(t,ω) is called degenerate at t = 0 if XG(ω) ≡ 0 (ω ∈ Sn−1).

The groups Ck-Diffeo(Sn−1) and AF (Rn) := GL(n,R)nRn act naturally on Ck(Sn−1,Rn)

by G 7→ π ◦G ◦ϕ, where ϕ ∈ Ck-Diffeo(Sn−1), π ∈ AF (Rn) and G ∈ Ck(Sn−1,Rn). In partic-

ular, if we define π(a, b) ∈ AF (Rn) (a > 0, b ∈ Rn) by π(a, b)x := ax+ b (x ∈ Rn) describing a

parallel translation and similarity transform, then (π(a, b) ◦G ◦ ϕ) (ω) = aG(ϕ(ω)) + b.

As we are interested in the perturbation of domains up to parallel translations and similarity

transforms, we consider:
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Definition 5.6. Suppose Gi : [0, Ti] × Sn−1 → Rn is a Ck-map such that G(0,ω) ≡ ω

(i = 1, 2). We call G1 is C
k-equivalent to G2 if there exist 0 < T

00 ≤ T and Ck-maps

a : [0, T 00]→ R, a(0) = 1,

b : [0, T 00]→ Rn, b(0) = t(0, . . . , 0),

ϕ : [0, T 00]× Sn−1 → Sn−1, ϕ(0,ω) ≡ ω, ϕ(t, ·) is a Ck-diffeomorphism of Sn−1,

such that G2(t, ·) = π(a(t), b(t)) ◦ G1(t, ·) ◦ ϕ(t, ·), that is, G2(t,ω) = a(t)G1(t,ϕ(t,ω)) + b(t)

for t ∈ [0, T 0], ω ∈ Sn−1. We write [G]k for the Ck-equivalence class containing G.

Proposition 5.7. Let k ≥ 1. Suppose G : [0, T ] × Sn−1 → Rn is a Ck-map such that

G(0,ω) ≡ ω. Let gG : [0, T
0] × Sn−1 → R+ be the corresponding function in Lemma (5.3).

Then the following conditions on the map G are equivalent:

1) Ω(gG(t, ·)) is an unessential family of perturbations (see §1).

2) Among the Ck-equivalence class [G]k (Definition (5.6)), there exists eG which is degen-
erate at t = 0 (see Definition (5.5)).

The rest of this section is devoted to the proof of Proposition (5.7).

Let TSn−1Rn → Sn−1 be the normal bundle associated to the embedding of Riemannian

manifolds Sn−1 ⊂ Rn. According to a Whitney sum of vector bundles over Sn−1

TRn|Sn−1 = TSn−1 ⊕ TSn−1Rn,

we have a direct sum of vector spaces:

Γk(TRn|Sn−1) = Xk(Sn−1)⊕ Ck(Sn−1),

where we denote by Xk(Sn−1) the space of vector fields over Sn−1 in the Ck class, and identify

Ck(Sn−1) with Γk(TSn−1Rn) by the outer normal vector field. We recall E0, E1 are the
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subspace of Cω(Sn−1) which are the eigenspaces of the Laplace-Beltrami operator ∆Sn−1 with

eigenvalues 0, 1 − n, respectively (see Lemma (2.5)). Thus we regard Xk(Sn−1) ⊕ E0 ⊕ E1 ⊂

Γk(TRn|Sn−1). We write a quotient map as

(5.8) p : Γk(TRn|Sn−1)→ Γk(TRn|Sn−1)/
¡
Xk(Sn−1)⊕ E0 ⊕ E1

¢
' Ck(Sn−1)∩

Ã ∞X
k=2

⊕Ek
!
.

Formula 5.9. Suppose T > 0 and we are given C1-maps

G : [0, T ]× Sn−1 → Rn, G(0,ω) ≡ ω (ω ∈ Sn−1)

a : [0, T ]→ R, a(0) = 1,

b : [0, T ]→ Rn, b(0) = t(0, . . . , 0),

ϕ : [0, T ]× Sn−1 → Sn−1, ϕ(0,ω) ≡ ω.

If we put eG(t,ω) := a(t)G(t,ϕ(t,ω)) + b(t), then with the notation in Definition (5.5)
(5.9.1) X eG(ω) = XG(ω) +Xϕ(ω) + a

0(0)ω + b0(0).

In particular, p(XG) ∈ Ck(Sn−1) ∩
∞P
k=2

⊕Ek is determined only by the equivalent class [G]k.

Proof. The formula (5.9.1) follows by a direct calculation. ¤

Proof of Proposition (5.7). In the setting of Proposition (5.7), we consider another condition

on the map G:

(5.7.3) p(XG) = 0, that is, XG ∈ Xk(Sn−1)⊕ E0 ⊕ E1.

i) (5.7.1) ⇔ (5.7.3):

Because G(t, hG(t, η)) = gG(t, η)η, we have
∂
∂t

¯̄
t=0

G(t, hG(t, η)) =
∂
∂t

¯̄
t=0

gG(t, η)η, that is,

XG(η) + XhG(η) = gG(η)η since G(0, η) = hG(0, η) = η. Because XhG ∈ Xk(Sn−1) and
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because (η 7→ gG(η)η) ∈ Γk(TSn−1Rn) is identified with gG ∈ Ck(Sn−1) via the outer normal

vector field, we have

p(XG) = gG mod E0 ⊕ E1.

Therefore p(XG) = 0 if and only if gG ∈ E0 ⊕ E1, that is, (5.7.3) is equivalent to (5.7.1).

ii) (5.7.2) ⇔ (5.7.3):

Assume there exists eG ∈ [G]k such that X eG = 0. It follows from Formula (5.9) that p(XG) =

p(X eG) = 0. Therefore, (5.7.2) implies (5.7.3). Conversely, assume p(XG) = 0, that is, XG ∈
Xk(Sn−1) ⊕ E0 ⊕ E1. In view of (2.5.1) and (2.5.2) we find Y ∈ Xk(Sn−1) and a ∈ R, b ∈ Rn

such that

XG(ω) = Y (ω) + (a+ (b,ω))ω (ω ∈ Sn−1).

Because Sn−1 is compact, there exist 0 < T 00 ≤ T 0 and a one parameter family of diffeomor-

phisms ϕ : [0, T 00]× Sn−1 → Sn−1 such that

∂

∂t

¯̄̄̄
t=0

ϕ(t,ω) = −Y (ω) + (b− (b,ω)ω),

from fundamental existence and uniqueness theorems of a system of first order differential

equations. We put a(t) := 1 − at, b(t) := −bt and eG(t,ω) := a(t)G(t,ϕ(t,ω)) + b(t). Then,

from Formula (5.9.1), we have

X eG(ω) = XG(ω) + (−Y (ω) + b− (b,ω)ω)− aω − b = 0.
Hence we have proved (5.7.3) implies (5.7.2) ¤

Remark 5.10. Given a Ck-map G : [0, T ]× Sn−1 → Rn such that G(0, η) ≡ η for k =∞ or ω.

If Ω(gG(t, ·)) is not unessential (generic case), we can apply Corollary 2. Otherwise (degenerate

case), from the equivalent condition (5.7.2) we can find eG ∈ [G]k such that eG(t, η) − η ≡ 0

mod t, so that G1(t, η) := eG(√t, η) is in the C1, 12 class. Similarly, either we can apply Corollary
2 to G1 or we can find

eeG ∈ [G]k such that eeG(t, η)−η ≡ 0 mod t2, so that G2(t, η) :=
eeG(3√t, η)
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is in the C1,
1
3 class. By an iteration of this argument, we can show either

(5.10.1) there exists l ∈ N and eG ∈ [G]k such that eG(t, η)− η ≡ 0 mod tl and that eG(t 1
l+1 , η)

∈ C1, 1
l+1 ([0, T 0]× Sn−1,Rn) defines a family of domains which is not unessential,

or

(5.10.2) for any l ∈ N there exists eGl ∈ [G]k such that eGl(t, η)− η ≡ 0 mod tl.

In the real analytic case k = ω, it is likely that (5.10.2) can be replaced by

(5.10.2)0 there exist eG ∈ [G]ω such that eG(t, η) ≡ η.

We remark that the case (5.10.2)0 means that Ω(gG(t, ·)) is a ball for all t, while in the case

(5.10.1) we can apply Corollary 2.
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