Geometric Analysis on Minimal Representations

Representation Theory of Real Reductive Groups University of Utah, Salt Lake City, USA, 27–31 July 2009

> Toshiyuki Kobayashi (the University of Tokyo)

http://www.ms.u-tokyo.ac.jp/~toshi/

Oscillator rep. (= Segal–Shale–Weil rep.) Minimal rep. of $Mp(n, \mathbb{R})$ (= double cover of $Sp(n, \mathbb{R})$) \cdots split simple group of type C

Oscillator rep. (= Segal–Shale–Weil rep.) Minimal rep. of $Mp(n, \mathbb{R})$ (= double cover of $Sp(n, \mathbb{R})$) \cdots split simple group of type C

Today:

Minimal rep. of O(p,q), p + q: even

··· simple group of type D

Oscillator rep. (= Segal–Shale–Weil rep.) Minimal rep. of $Mp(n, \mathbb{R})$ (= double cover of $Sp(n, \mathbb{R})$) \cdots split simple group of type C

Today: Geometric and analytic aspects of Minimal rep. of O(p,q), p + q: even \cdots simple group of type D

Oscillator rep. (= Segal–Shale–Weil rep.) Minimal rep. of $Mp(n, \mathbb{R})$ (= double cover of $Sp(n, \mathbb{R})$) \cdots split simple group of type C

Today: Geometric and analytic aspects of Minimal rep. of O(p,q), p + q: even \cdots simple group of type D

(Ambitious) Project:

Use minimal reps as a guiding principle to find new interactions with other fields of mathematics.

If possible, try to formulate a theory in a wide setting without group, and prove it without representation theory.

Minimal rep of reductive groups

Minimal representations of a reductive group G (their annihilators are the Joseph ideal in $U(\mathfrak{g})$)

Loosely, minimal representations are

- one of 'building blocks' of unitary reps.
- 'smallest' infinite dimensional unitary rep.
- 'isolated' among the unitary dual (finitely many) (continuously many)
- 'attached to' the minimal nilpotent orbit
- matrix coefficients are of bad decay

$\mathbf{Minimal} \Leftrightarrow \mathbf{Maximal}$

(Ambitious) Project:

Use minimal reps as a guiding principle to find new interactions with other fields of mathematics.

$\mathbf{Minimal} \Leftrightarrow \mathbf{Maximal}$

(Ambitious) Project:

Use minimal reps as a guiding principle to find new interactions with other fields of mathematics.

Viewpoint: Minimal representation (\Leftarrow group) \approx Maximal symmetries (\Leftarrow rep. space)

Geometric analysis on minimal reps of ${\cal O}(p,q)$

- [1] Laguerre semigroup and Dunkl operators · · · preprint, 74 pp. <u>arXiv:0907.3749</u>
- [2] Special functions associated to a fourth order differential equation · · · preprint, 45 pp. <u>arXiv:0907.2608</u>, <u>arXiv:0907.2612</u>
- [3] Generalized Fourier transforms $\mathcal{F}_{k,a} \cdots \underline{\mathsf{C.R.A.S. Paris}}$ (to appear)
- [4] Schrödinger model of minimal rep. ...
 Memoirs of Amer. Math. Soc. (in press), 171 pp. <u>arXiv:0712.1769</u>
- [5] Inversion and holomorphic extension ...
 <u>R. Howe 60th birthday volume (2007)</u>, 65 pp.
- [6] Analysis on minimal representations ···· Adv. Math. (2003) I, II, III, 110 pp.
 - Collaborated with
 - S. Ben Saïd, J. Hilgert, G. Mano, J. Möllers and B. Ørsted

Indefinite orthogonal group O(p + 1, q + 1)

Throughout this talk, $p, q \ge 1$, p + q: even > 2

$$G = O(p+1, q+1)$$

= { $g \in GL(p+q+2, \mathbb{R}) : {}^{t}g \begin{pmatrix} I_{p+1} & O \\ O & -I_{q+1} \end{pmatrix} g = \begin{pmatrix} I_{p+1} & O \\ O & -I_{q+1} \end{pmatrix}$

··· real simple Lie group of type D

Minimal representation of G = O(p + 1, q + 1)

highest weight module \oplus lowest weight module

the bound states of the Hydrogen atom

Minimal representation of G = O(p + 1, q + 1)

- q = 1highest weight module \oplus lowest weight module
 - the bound states of the Hydrogen atom
- p = q

 spherical case
 (⇐⇒ realized in scalar valued functions on the

 Riemannian symmetric space G/K)

• p = q = 3 case: Kostant (1990)

Minimal representation of G = O(p + 1, q + 1)

- q = 1highest weight module \oplus lowest weight module
 - the bound states of the Hydrogen atom
- p = q

 spherical case

 (⇐⇒ realized in scalar valued functions on the

 Riemannian symmetric space G/K)
 - p = q = 3 case: Kostant (1990)
- *p*, *q*: general non-highest, non-spherical
 - subrepresentation of most degenerate principal series (Howe–Tan, Binegar–Zierau)
 - dual pair correspondence $(Sp(1,\mathbb{R}) \times O(p+1,q+1) \text{ in } Sp(p+q+2,\mathbb{R}))$ (Huang-Zhu)-

1. Conformal model Theorem B

2. L² model (Schrödinger model) Theorem D

1. Conformal model Clear

V.S.

2. L² model (Schrödinger model) Theorem D

Clear

?

Clear · · · advantage of the model

Group action Hilbert structure

1. Conformal model Theorem B Clear Theorem C

V.S.

2. L² model
 (Schrödinger model) Theorem E Clear
 Theorem D

Clear · · · advantage of the model

Group action Hilbert structure

1. Conformal model Theorem B Clear Theorem C

V.S.

2. L² model
 (Schrödinger model) Theorem E Clear
 Theorem D

Clear · · · advantage of the model

3. Deformation of Fourier transforms (Theorems F, G, H) (interpolation, Dunkl operators, special functions)

Geometric analysis on minimal reps of ${\cal O}(p,q)$

- [1] Laguerre semigroup and Dunkl operators · · · preprint, 74 pp. <u>arXiv:0907.3749</u>
- [2] Special functions associated to a fourth order differential equation · · · preprint, 45 pp. <u>arXiv:0907.2608</u>, <u>arXiv:0907.2612</u>
- [3] Generalized Fourier transforms $\mathcal{F}_{k,a} \cdots \underline{\mathsf{C.R.A.S. Paris}}$ (to appear)
- [4] Schrödinger model of minimal rep. ...
 Memoirs of Amer. Math. Soc. (in press), 171 pp. <u>arXiv:0712.1769</u>
- [5] Inversion and holomorphic extension ...
 <u>R. Howe 60th birthday volume (2007)</u>, 65 pp.
- [6] Analysis on minimal representations ···· Adv. Math. (2003) I, II, III, 110 pp.
 - Collaborated with
 - S. Ben Saïd, J. Hilgert, G. Mano, J. Möllers and B. Ørsted

Idea: Composition of holomorphic functions holomorphic • holomorphic = holomorphic

Idea: Composition of holomorphic functions holomorphic • holomorphic = holomorphic

taking real parts

harmonic \circ conformal = harmonic

on $\mathbb{C}\simeq\mathbb{R}^2$

taking real parts

harmonic \circ conformal = harmonic

on $\mathbb{C}\simeq\mathbb{R}^2$

make sense for general Riemannian manifolds.

$\operatorname{Conf}(X,g) \supset \operatorname{Isom}(X,g)$

(X,g) Riemannian manifold $\varphi \in \text{Diffeo}(X)$

$\operatorname{Conf}(X,g) \supset \operatorname{Isom}(X,g)$

(X,g) Riemannian manifold $\varphi \in \text{Diffeo}(X)$

Def.

 $\begin{array}{ll} \varphi \text{ is isometry } & \Longleftrightarrow \varphi^*g = g \\ \varphi \text{ is conformal } & \Leftrightarrow {}^\exists \text{positive function } C_\varphi \in C^\infty(X) \text{ s.t.} \\ \varphi^*g = C_\varphi^2 \, g \end{array}$

 C_{φ} : conformal factor

$\operatorname{Conf}(X,g) \supset \operatorname{Isom}(X,g)$

(X,g) Riemannian manifold $\varphi \in \text{Diffeo}(X)$

Def.

 $\begin{array}{l} \varphi \text{ is isometry } \iff \varphi^*g = g \\ \varphi \text{ is conformal } \iff {}^\exists \text{positive function } C_\varphi \in C^\infty(X) \text{ s.t.} \\ \varphi^*g = C_\varphi^2 \, g \end{array}$

 C_{φ} : conformal factor

 $\operatorname{Conf}(X, g) \supset \operatorname{Isom}(X, g)$

(X,g) pseudo-Riemannian manifold $\varphi \in \text{Diffeo}(X)$

Def.

 $\begin{array}{l} \varphi \text{ is isometry } \iff \varphi^*g = g \\ \varphi \text{ is conformal} \iff {}^\exists \text{positive function } C_\varphi \in C^\infty(X) \text{ s.t.} \\ \varphi^*g = C_\varphi^2 g \end{array}$

 C_{φ} : conformal factor

Harmonic \circ **conformal** \neq **harmonic**

Modification $\varphi \in \operatorname{Conf}(X^n, g), \ \varphi^*g = C_{\varphi}^2g$

Harmonic \circ **conformal** \neq **harmonic**

Modification $\varphi \in \operatorname{Conf}(X^n, g), \ \varphi^*g = C_{\varphi}^2g$

Harmonic \circ **conformal** \neq **harmonic**

Modification $\varphi \in \operatorname{Conf}(X^n, g), \ \varphi^*g = C_{\varphi}^2g$

• pull-back \rightsquigarrow twisted pull-back $f \circ \varphi \quad \rightsquigarrow \quad C_{\varphi}^{-\frac{n-2}{2}} f \circ \varphi$ conformal factor

$$Sol(\Delta_X) = \{ f \in C^{\infty}(X) : \Delta_X f = 0 \} \text{ (harmonic functions)} \\ \sim Sol(\widetilde{\Delta_X}) = \{ f \in C^{\infty}(X) : \widetilde{\Delta_X} f = 0 \} \\ \widetilde{\Delta_X} := \Delta_X + \frac{n-2}{4(n-1)} \kappa \\ \text{Yamabe operator} \quad \text{Laplacian} \quad \text{scalar curvature}$$

harmonic \circ conformal \doteqdot harmonic

 \Downarrow Modification

harmonic \circ conformal \doteqdot harmonic

 \parallel Modification

<u>Theorem A</u> ([6, Part I]) (X^n, g) Riemannian mfd $\implies \operatorname{Conf}(X, g)$ acts on $\mathcal{Sol}(\widetilde{\Delta_X})$ by $f \mapsto C_{\varphi}^{-\frac{n-2}{2}} f \circ \varphi$

harmonic \circ conformal \doteqdot harmonic

 \parallel Modification

<u>Theorem A ([6, Part I]</u>) (X^n, g) Riemannian mfd $\Rightarrow \operatorname{Conf}(X, g)$ acts on $\mathcal{Sol}(\widetilde{\Delta_X})$ by $f \mapsto C_{\varphi}^{-\frac{n-2}{2}} f \circ \varphi$

$$\underbrace{\operatorname{Point}}_{\widetilde{\Delta_X}} \quad \widetilde{\Delta_X} = \Delta_X + \frac{n-2}{4(n-2)}\kappa$$
$$\widetilde{\Delta_X} \text{ is not invariant by } \operatorname{Conf}(X,g).$$
But $\mathcal{Sol}(\widetilde{\Delta_X})$ is invariant by $\operatorname{Conf}(X,g).$

harmonic \circ conformal \doteqdot harmonic

 \parallel Modification

<u>Theorem A ([6, Part I]</u>) (X^n, g) Riemannian mfd $\implies \operatorname{Conf}(X, g)$ acts on $\mathcal{Sol}(\widetilde{\Delta_X})$ by $f \mapsto C_{\varphi}^{-\frac{n-2}{2}} f \circ \varphi$

$$\underbrace{\operatorname{Point}}_{\widetilde{\Delta_X}} \quad \widetilde{\Delta_X} = \Delta_X + \frac{n-2}{4(n-2)}\kappa$$
$$\widetilde{\Delta_X} \text{ is not invariant by } \operatorname{Conf}(X,g).$$
But $\mathcal{Sol}(\widetilde{\Delta_X})$ is invariant by $\operatorname{Conf}(X,g).$

harmonic \circ conformal \doteqdot harmonic

 \parallel Modification

<u>Theorem A ([6, Part I]</u>) (X^n, g) pseudo-Riemannian mfd $\Rightarrow \operatorname{Conf}(X, g)$ acts on $Sol(\widetilde{\Delta_X})$ by $f \mapsto C_{\varphi}^{-\frac{n-2}{2}} f \circ \varphi$

$$\underbrace{\operatorname{Point}}_{\widetilde{\Delta_X}} \quad \widetilde{\Delta_X} = \Delta_X + \frac{n-2}{4(n-2)}\kappa$$
$$\widetilde{\Delta_X} \text{ is not invariant by } \operatorname{Conf}(X,g).$$
But $\mathcal{Sol}(\widetilde{\Delta_X})$ is invariant by $\operatorname{Conf}(X,g).$

Application of Theorem A

 $(X,g) := (S^p \times S^q, \underbrace{+\cdots +}_{-\cdots -})$ p \boldsymbol{q}
Application of Theorem A

$$(X,g) := (S^p \times S^q, \underbrace{+\cdots+}_p \underbrace{-\cdots-}_q)$$

Theorem B ([6, Part II])

0)
$$\operatorname{Conf}(X,g) \simeq O(p+1,q+1)$$

1)
$$Sol(\Delta_X) \neq \{0\} \iff p + q \text{ even}$$

2) If
$$p + q$$
 is even and > 2 , then
 $\operatorname{Conf}(X, g) \xrightarrow{\frown} Sol(\widetilde{\Delta_X})$ is irreducible,
and for $p + q > 6$ it is a minimal rep of $O(p + 1, q + 1)$.

Application of Theorem A

$$(X,g) := (S^p \times S^q, \underbrace{+ \cdots +}_p \underbrace{- \cdots -}_q)$$

Theorem B ([6, Part II])

0)
$$\operatorname{Conf}(X,g) \simeq O(p+1,q+1)$$

1)
$$Sol(\Delta_X) \neq \{0\} \iff p + q \text{ even}$$

2) If
$$p + q$$
 is even and > 2 , then
 $\operatorname{Conf}(X, g) \xrightarrow{\frown} Sol(\widetilde{\Delta_X})$ is irreducible,
and for $p + q > 6$ it is a minimal rep of $O(p + 1, q + 1)$

1) (conformal geometry) \iff (representation theory) characterizing subrep in $\operatorname{Ind}_{P_{\max}}^G(\mathbb{C}_{\lambda})$ (*K*-picture) by means of differential equations

Application of Theorem A

$$(X,g) := (S^p \times S^q, \underbrace{+\cdots+}_p \underbrace{-\cdots-}_q)$$

Theorem B ([6, Part II])

0)
$$\operatorname{Conf}(X,g) \simeq O(p+1,q+1)$$

1)
$$Sol(\Delta_X) \neq \{0\} \iff p + q \text{ even}$$

2) If
$$p + q$$
 is even and > 2 , then
 $\operatorname{Conf}(X, g) \xrightarrow{\frown} Sol(\widetilde{\Delta_X})$ is irreducible,
and for $p + q > 6$ it is a minimal rep of $O(p + 1, q + 1)$

↑ $\exists a \operatorname{Conf}(X,g)$ -invariant inner product, and take the Hilbert completion

Flat model

Stereographic projection

$$S^n \to \mathbb{R}^n \cup \{\infty\}$$
 conformal map

Flat model

Stereographic projection

 $S^n \to \mathbb{R}^n \cup \{\infty\}$ conformal map

More generally

 $S^{p}_{+\cdots+} \times S^{q}_{-\cdots-} \hookrightarrow \mathbb{R}^{p+q}_{ds^{2}=dx_{1}^{2}+\cdots+dx_{p}^{2}-dx_{p+1}^{2}-\cdots-dx_{p+q}^{2}} \text{ conformal embedding}$

Flat model

Stereographic projection

 $S^n \to \mathbb{R}^n \cup \{\infty\}$ conformal map

More generally

 $S^{p}_{+\cdots+} \times S^{q}_{-\cdots-} \hookrightarrow \mathbb{R}^{p+q}_{ds^{2}=dx_{1}^{2}+\cdots+dx_{p}^{2}-dx_{p+1}^{2}-\cdots-dx_{p+q}^{2}} \text{ conformal embedding}$

Functoriality of Theorem A

$$\begin{array}{rcl} \mathcal{S}ol(\widetilde{\Delta}_{S^{p}\times S^{q}}) & \subset & \mathcal{S}ol(\widetilde{\Delta}_{\mathbb{R}^{p,q}}) \\ & & & & & \\ \mathcal{C} & & & & & \\ \operatorname{Conf}(S^{p}\times S^{q}) & \hookleftarrow & \operatorname{Conf}(\mathbb{R}^{p,q}) \end{array}$$

Two constructions of minimal reps.

Group action Hilbert structure

Clear · · · advantage of the model

$$\mathbb{R}^{p,q} = \mathbb{R}^{p+q}, \ ds^2 = dx_1^2 + \dots + dx_p^2 - dx_{p+1}^2 - \dots - dx_{p+q}^2$$
$$\widetilde{\Delta}_{\mathbb{R}^{p,q}} = \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \dots - \frac{\partial^2}{\partial x_{p+q}^2} \equiv \Box_{p,q}$$

$$\mathbb{R}^{p,q} = \mathbb{R}^{p+q}, \ ds^2 = dx_1^2 + \dots + dx_p^2 - dx_{p+1}^2 - \dots - dx_{p+q}^2$$
$$\widetilde{\Delta}_{\mathbb{R}^{p,q}} = \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \dots - \frac{\partial^2}{\partial x_{p+q}^2} \equiv \Box_{p,q}$$

Unitarization of subrep (representation theory)

Conservative quantity (differential eqn)

$$\mathbb{R}^{p,q} = \mathbb{R}^{p+q}, \ ds^2 = dx_1^2 + \dots + dx_p^2 - dx_{p+1}^2 - \dots - dx_{p+q}^2$$
$$\widetilde{\Delta}_{\mathbb{R}^{p,q}} = \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \dots - \frac{\partial^2}{\partial x_{p+q}^2} \equiv \Box_{p,q}$$

Unitarization of subrep (representation theory)

Unitarizability v.s. Unitarization

$$\mathbb{R}^{p,q} = \mathbb{R}^{p+q}, \ ds^2 = dx_1^2 + \dots + dx_p^2 - dx_{p+1}^2 - \dots - dx_{p+q}^2$$
$$\widetilde{\Delta}_{\mathbb{R}^{p,q}} = \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \dots - \frac{\partial^2}{\partial x_{p+q}^2} \equiv \Box_{p,q}$$

Unitarization of subrep (representation theory)

Conservative quantity (differential eqn)

Unitarizability v.s. Unitarization

- Easy formulation
- Challenging formulation

$$\mathbb{R}^{p,q} = \mathbb{R}^{p+q}, \ ds^2 = dx_1^2 + \dots + dx_p^2 - dx_{p+1}^2 - \dots - dx_{p+q}^2$$
$$\widetilde{\Delta}_{\mathbb{R}^{p,q}} = \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \dots - \frac{\partial^2}{\partial x_{p+q}^2} \equiv \Box_{p,q}$$

<u>Problem</u> Find an 'intrinsic' inner product on (a 'large' subspace of) $Sol(\Box_{p,q})$ if exists.

$$\mathbb{R}^{p,q} = \mathbb{R}^{p+q}, \ ds^2 = dx_1^2 + \dots + dx_p^2 - dx_{p+1}^2 - \dots - dx_{p+q}^2$$
$$\widetilde{\Delta}_{\mathbb{R}^{p,q}} = \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \dots - \frac{\partial^2}{\partial x_{p+q}^2} \equiv \Box_{p,q}$$

<u>Problem</u> Find an 'intrinsic' inner product on (a 'large' subspace of) $Sol(\Box_{p,q})$ if exists.

Easy: if allowed to use the integral representation of solutions

Cf. (representation theory) by using the Knapp–Stein intertwining formula

Challenging: to find the intrinsic formula

$$\mathbb{R}^{p,q} = \mathbb{R}^{p+q}, \ ds^2 = dx_1^2 + \dots + dx_p^2 - dx_{p+1}^2 - \dots - dx_{p+q}^2$$
$$\widetilde{\Delta}_{\mathbb{R}^{p,q}} = \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \dots - \frac{\partial^2}{\partial x_{p+q}^2} \equiv \Box_{p,q}$$

q = 1 wave operator

$$\mathbb{R}^{p,q} = \mathbb{R}^{p+q}, \ ds^2 = dx_1^2 + \dots + dx_p^2 - dx_{p+1}^2 - \dots - dx_{p+q}^2$$
$$\widetilde{\Delta}_{\mathbb{R}^{p,q}} = \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \dots - \frac{\partial^2}{\partial x_{p+q}^2} \equiv \Box_{p,q}$$

q = 1 wave operator

energy \cdots conservative quantity for wave equations w.r.t. time translation \mathbb{R}

$$\mathbb{R}^{p,q} = \mathbb{R}^{p+q}, \ ds^2 = dx_1^2 + \dots + dx_p^2 - dx_{p+1}^2 - \dots - dx_{p+q}^2$$
$$\widetilde{\Delta}_{\mathbb{R}^{p,q}} = \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \dots - \frac{\partial^2}{\partial x_{p+q}^2} \equiv \Box_{p,q}$$

Fix $\alpha \subset \mathbb{R}^{p+q}$ non-degenerate hyperplane

Fix $\alpha \subset \mathbb{R}^{p+q}$ non-degenerate hyperplane For $f \in Sol(\Box_{p,q})$

$$(f,f) := \int_{\alpha} Q_{\alpha} f$$

 \cdots (1)

Fix $\alpha \subset \mathbb{R}^{p+q}$ non-degenerate hyperplane For $f \in Sol(\Box_{p,q})$

$$(f,f) := \int_{\alpha} Q_{\alpha} f$$

<u>Theorem C ([6, Part III]</u>+ ε)

1) (1) is independent of hyperplane α .

Fix $\alpha \subset \mathbb{R}^{p+q}$ non-degenerate hyperplane For $f \in Sol(\Box_{p,q})$

$$(f,f) := \int_{\alpha} Q_{\alpha} f$$

$$\cdots$$

<u>Theorem C ([6, Part III]</u>+ ε)

1) (1) is independent of hyperplane α .

2) ① gives the unique inner product (up to scalar) which is invariant under O(p+1, q+1).

Fix $\alpha \subset \mathbb{R}^{p+q}$ non-degenerate hyperplane For $f \in Sol(\Box_{p,q})$

$$(f,f) := \int_{\alpha} Q_{\alpha} f$$

$$\cdots$$
 (1)

<u>Theorem C ([6, Part III]</u>+ ε)

1) (1) is independent of hyperplane α .

2) ① gives the unique inner product (up to scalar) which is invariant under O(p+1, q+1).

 $O(p,q) \stackrel{\curvearrowleft}{\longrightarrow} \mathbb{R}^{p,q}$ (linear)

Fix $\alpha \subset \mathbb{R}^{p+q}$ non-degenerate hyperplane For $f \in Sol(\Box_{p,q})$

$$(f,f) := \int_{\alpha} Q_{\alpha} f$$

$$\cdots$$
 (1)

<u>Theorem C ([6, Part III]</u>+ ε)

1) (1) is independent of hyperplane α .

2) ① gives the unique inner product (up to scalar) which is invariant under O(p+1, q+1).

$$O(p+1,q+1)$$

$$\mathbb{R}^{p,q}$$
 ~~(linear)~~
(Möbius transform)

Parametrization of non-characteristic hyperplane

Fix
$$v \in \mathbb{R}^{p,q}$$
 s.t. $(v,v)_{\mathbb{R}^{p,q}} = \pm 1$
 $c \in \mathbb{R}$
 \downarrow
 $\mathbb{R}^{p,q} \supset \alpha \equiv \alpha_{v,c} := \{x \in \mathbb{R}^{p+q} : (x,v)_{\mathbb{R}^{p,q}} =$
non-characteristic hyperplane

c

Point: $f = f_+ + f_-$ (idea: Sato's hyperfunction)

For $\alpha = \alpha_{v,c}$, $f \in C^{\infty}(\mathbb{R}^{p,q})$ with some decay at ∞ Point: $f = f_+ + f_-$ (idea: Sato's hyperfunction)

For $\alpha = \alpha_{v,c}$, $f \in C^{\infty}(\mathbb{R}^{p,q})$ with some decay at ∞ Point: $f = f_+ + f_-$ (idea: Sato's hyperfunction) $f'_{\pm} \cdots$ normal derivative of f_{\pm} w.r.t. v

For $\alpha = \alpha_{v,c}$, $f \in C^{\infty}(\mathbb{R}^{p,q})$ with some decay at ∞ Point: $f = f_+ + f_-$ (idea: Sato's hyperfunction) $f'_{\pm} \cdots$ normal derivative of f_{\pm} w.r.t. v

$$Q_{\alpha}f := \frac{1}{i} \left(f_{+}\overline{f_{+}'} - f_{-}\overline{f_{-}'} \right)$$

<u>Theorem C ([6, Part III]</u>+ ε)

1) (1) is independent of hyperplane α .

2) ① gives the unique inner product (up to scalar)

which is invariant under O(p+1, q+1).

Fix $\alpha = \alpha_{v,c} \subset \mathbb{R}^{p+q}$ non-degenerate hyperplane For $f \in Sol(\Box_{p,q})$ $(f,f) := \int_{\alpha} Q_{\alpha} f$

<u>Theorem C ([6, Part III]</u>+ ε)

1) (1) is independent of hyperplane α .

2) ① gives the unique inner product (up to scalar)

which is invariant under O(p+1, q+1).

non-trivial even for q = 1 (wave equation) In space-time,

average in space (i.e. time t = constant)

= average in (any hyperplane in space) $\times \mathbb{R}_t$ (time)

Two constructions of minimal reps.

Clear · · · advantage of the model

Two constructions of minimal reps.

Clear · · · advantage of the model

$$(\text{figure for } (p,q)=(2,1))$$

$$\Box_{p,q} f = 0 \implies \operatorname{Supp} \mathcal{F} f \subset \Xi$$
Fourier trans.

$$\Box_{p,q} f = 0 \implies \operatorname{Supp} \mathcal{F} f \subset \Xi$$

Fourier trans.
$$\mathcal{F}: \quad \mathcal{S}'(\mathbb{R}^{p,q}) \stackrel{\sim}{\longrightarrow} \quad \mathcal{S}'(\mathbb{R}^{p,q})$$

$$\Box_{p,q} f = 0 \implies_{\text{Fourier trans.}} \operatorname{Supp} \mathcal{F} f \subset \Xi$$

$$\mathcal{F} : \quad \mathcal{S}'(\mathbb{R}^{p,q}) \xrightarrow{\sim} \quad \mathcal{S}'(\mathbb{R}^{p,q})$$

$$\cup \qquad \qquad \cup$$

$$\mathcal{Sol}(\Box_{p,q})$$
Conformal model \Longrightarrow L^2 -model

 $\overline{}$ denotes the closure with respect to the inner product.

Conformal model \Longrightarrow L^2 -model

Conformal model \Longrightarrow L^2 -model

Two constructions of minimal reps.

Clear · · · advantage of the model

 $\Xi \subset \mathbb{R}^{p,q} \subset \mathbb{R}^{p+1,q+1}$

$$G = PGL(2, \mathbb{C}) \xrightarrow{\frown} \mathbb{P}^1 \mathbb{C} \simeq \mathbb{C} \cup \{\infty\}$$
 Möbius transform

$$P = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a \in \mathbb{C}^{\times}, \ b \in \mathbb{C} \right\} \qquad z \mapsto az + b$$
$$w = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \qquad z \mapsto -\frac{1}{z} \qquad \text{(inversion)}$$

$$G = PGL(2, \mathbb{C}) \xrightarrow{\frown} \mathbb{P}^1 \mathbb{C} \simeq \mathbb{C} \cup \{\infty\}$$
 Möbius transform

$$P = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a \in \mathbb{C}^{\times}, \ b \in \mathbb{C} \right\} \qquad z \mapsto az + b$$
$$w = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \qquad z \mapsto -\frac{1}{z} \qquad \text{(inversion)}$$

$$G = PGL(2, \mathbb{C}) \xrightarrow{\frown} \mathbb{P}^{1}\mathbb{C} \simeq \mathbb{C} \cup \{\infty\}$$

$$\Rightarrow O(3, 1) \qquad \Rightarrow \mathbb{R}^{2,0}$$

$$P = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a \in \mathbb{C}^{\times}, \ b \in \mathbb{C} \right\} \qquad z \mapsto az + b$$

$$w = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \qquad z \mapsto -\frac{1}{z} \qquad \text{(inversion)}$$

$$G = PGL(2, \mathbb{C}) \xrightarrow{\frown} \mathbb{P}^{1}\mathbb{C} \simeq \mathbb{C} \cup \{\infty\}$$

$$\Rightarrow O(3, 1) \qquad \Rightarrow \mathbb{R}^{2, 0}$$

$$P = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a \in \mathbb{C}^{\times}, \ b \in \mathbb{C} \right\} \qquad z \mapsto az + b$$
$$w = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \qquad z \mapsto -\frac{1}{z} \qquad \text{(inversion)}$$

$$G = PGL(2, \mathbb{C}) \xrightarrow{\frown} \mathbb{P}^{1}\mathbb{C} \simeq \mathbb{C} \cup \{\infty\}$$

$$\Rightarrow O(3, 1) \qquad \Rightarrow \mathbb{R}^{2, 0}$$

$$P = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a \in \mathbb{C}^{\times}, \ b \in \mathbb{C} \right\} \qquad z \mapsto az + b$$
$$w = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \qquad z \mapsto -\frac{1}{z} \qquad \text{(inversion)}$$

$$G = O(p+1, q+1) \longrightarrow \mathbb{R}^{p,q}$$

$$M \\ \text{öbius transform}$$

$$P = \{(A, b) : A \in O(p, q) \cdot \mathbb{R}^{\times}, \ b \in \mathbb{R}^{p+q}\} \quad x \mapsto Ax + b$$

$$w = \begin{pmatrix} I_p \\ -I_q \end{pmatrix} : (x', x'') \mapsto \frac{4}{|x'|^2 - |x''|^2}(-x', x'') \quad \text{(inversion)}$$

$$p+q$$
: even > 2
 $G = O(p+1,q+1) \frown L^2(\Xi)$ minimal rep.

$$p+q$$
: even > 2
 $G = O(p+1, q+1) \frown L^2(\Xi)$ minimal rep.

P-action \cdots translation and multiplication *w*-action \cdots \mathcal{F}_{Ξ} (unitary inversion operator)

$$p+q$$
: even > 2
 $G = O(p+1,q+1) \frown L^2(\Xi)$ minimal rep.

P-action \cdots translation and multiplication *w*-action \cdots \mathcal{F}_{Ξ} (unitary inversion operator)

<u>Problem</u> Find the unitary operaotr \mathcal{F}_{Ξ} explicitly.

p+q : even > 2 $G = O(p+1,q+1) \frown L^2(\Xi) \qquad \text{minimal rep.}$

P-action \cdots translation and multiplication *w*-action \cdots \mathcal{F}_{Ξ} (unitary inversion operator)

<u>Problem</u> Find the unitary operaotr \mathcal{F}_{Ξ} explicitly.

Easy: express it as a composition of integral transforms and a known formula for other models (e.g. conformal model) Challenging: to find a single and explicit formula in L^2 model

$$p+q$$
: even > 2
 $G = O(p+1,q+1) \frown L^2(\Xi)$ minimal rep.

P-action \cdots translation and multiplication *w*-action \cdots \mathcal{F}_{Ξ} (unitary inversion operator)

<u>Problem</u> Find the unitary operaotr \mathcal{F}_{Ξ} explicitly.

<u>Cf.</u> Analogous operator for the oscillator rep. $Mp(n, \mathbb{R}) \cap L^2(\mathbb{R}^n)$ unitary inversion operator coincides with Euclidean Fourier transform $\mathcal{F}_{\mathbb{R}^n}$ (up to scalar)!

$$\Xi := \{\xi \in \mathbb{R}^{p+q} : \xi_1^2 + \dots + \xi_p^2 - \xi_{p+1}^2 - \dots - \xi_{p+q}^2 = 0\}$$

(figure for
$$(p,q) = (2,1)$$
)

$$\Xi := \{ \xi \in \mathbb{R}^{p+q} : \xi_1^2 + \dots + \xi_p^2 - \xi_{p+1}^2 - \dots - \xi_{p+q}^2 = 0 \}$$

(figure for
$$(p,q) = (2,1)$$
)

Fourier trans. $\mathcal{F}_{\mathbb{R}^n}$ on \mathbb{R}^n

$$\mathcal{F}_{\Xi}$$
 on $\Xi = \sum$

$$\Xi := \{ \xi \in \mathbb{R}^{p+q} : \xi_1^2 + \dots + \xi_p^2 - \xi_{p+1}^2 - \dots - \xi_{p+q}^2 = 0 \}$$

(figure for
$$(p,q) = (2,1)$$
)

Fourier trans. $\mathcal{F}_{\mathbb{R}^n}$ on \mathbb{R}^n

$$\mathcal{F}_{\Xi}$$
 on $\Xi = \sum$

<u>Problem</u> Define \mathcal{F}_{Ξ} and find its formula.

Fourier trans. $\mathcal{F}_{\mathbb{R}^n}$ on \mathbb{R}^n

$$\mathcal{F}_{\Xi}$$
 on $\Xi = \sum_{\ldots}$

Fourier trans.
$$\mathcal{F}_{\mathbb{R}^n}$$
 on \mathbb{R}^n

$$\mathcal{F}^4 = \mathrm{id}$$

$$\mathcal{F}_{\Xi}$$
 on $\Xi = \sum$

Fourier trans.
$$\mathcal{F}_{\mathbb{R}^n}$$
 on \mathbb{R}^n
 $\mathcal{F}^4 = \mathrm{id}$

$$\mathcal{F}_{\Xi}$$
 on $\Xi = \sum_{i=1}^{\infty}$
 $\mathcal{F}_{\Xi}^2 = \mathrm{id}$

Fourier trans. $\mathcal{F}_{\mathbb{R}^n}$ on \mathbb{R}^n $Q_j \mapsto -P_j$ $P_j \mapsto Q_j$

$$\mathcal{F}_{\Xi}$$
 on $\Xi = \sum_{i=1}^{\infty}$

 $Q_j = x_j$ (multiplication by coordinate function)

$$P_j = \frac{1}{\sqrt{-1}} \frac{\partial}{\partial x_j}$$

Fourier trans. $\mathcal{F}_{\mathbb{R}^n}$ on \mathbb{R}^n $Q_j \mapsto -P_j$ $P_j \mapsto Q_j$

$$\begin{array}{ccc} \mathcal{F}_{\Xi} & \text{on} & \Xi = & \\ & Q_j & \mapsto & R_j \\ & R_j & \mapsto & Q_j \end{array}$$

 $Q_j = x_j$ (multiplication by coordinate function)

$$P_j = \frac{1}{\sqrt{-1}} \frac{\partial}{\partial x_j}$$

 $R_j = {}^{\exists}$ second order differential op. on Ξ

Fourier trans. $\mathcal{F}_{\mathbb{R}^n}$ on \mathbb{R}^n $Q_j \mapsto -P_j$ $P_j \mapsto Q_j$

$$\begin{array}{ccc} \mathcal{F}_{\Xi} & \text{on} & \Xi = & \\ & Q_j & \mapsto & R_j \\ & R_j & \mapsto & Q_j \end{array}$$

 $Q_j = x_j$ (multiplication by coordinate function)

$$P_j = \frac{1}{\sqrt{-1}} \frac{\partial}{\partial x_j}$$

 $R_j = {}^{\exists}$ second order differential op. on Ξ

Bargmann–Todorov's operators

Fourier trans. $\mathcal{F}_{\mathbb{R}^n}$ on \mathbb{R}^n $Q_j \mapsto -P_j$ $P_j \mapsto Q_j$

$$\begin{array}{ccc} \mathcal{F}_{\Xi} & \text{on} & \Xi = & \\ & Q_j & \mapsto & R_j \\ & R_j & \mapsto & Q_j \end{array}$$

 $Q_j = x_j$ (multiplication by coordinate function)

$$P_{j} = \frac{1}{\sqrt{-1}} \frac{\partial}{\partial x_{j}}$$
$$R_{j} = {}^{\exists} \text{second order differential op. on } \Xi$$

Notice
$$\begin{cases} Q_1^2 + \dots + Q_p^2 - Q_{p+1}^2 - \dots - Q_{p+q}^2 = 0\\ R_1^2 + \dots + R_p^2 - R_{p+1}^2 - \dots - R_{p+q}^2 = 0 \end{cases}$$
 on Ξ

$$p+q$$
: even > 2
 $G = O(p+1,q+1) \frown L^2(\Xi)$ minimal rep.

P-action \cdots translation and multiplication on $L^2(\Xi)$ *w*-action \cdots \mathcal{F}_{Ξ} (unitary inversion operator)

<u>Problem</u> Find the unitary operaotr \mathcal{F}_{Ξ} explicitly.

$$p+q$$
: even > 2
 $G = O(p+1,q+1) \frown L^2(\Xi)$ minimal rep.

P-action \cdots translation and multiplication on $L^2(\Xi)$ *w*-action \cdots \mathcal{F}_{Ξ} (unitary inversion operator)

<u>Problem</u> Find the unitary operaotr \mathcal{F}_{Ξ} explicitly.

Cf. Euclidean case $\varphi(t) = e^{-it}$ (one variable) $\mathcal{F}_{\mathbb{R}^N} f(x) = c \int_{\mathbb{R}^N} \varphi(\langle x, y \rangle) f(y) dy$

$$p+q$$
: even > 2
 $G = O(p+1,q+1) \frown L^2(\Xi)$ minimal rep.

P-action \cdots translation and multiplication on $L^2(\Xi)$ *w*-action \cdots \mathcal{F}_{Ξ} (unitary inversion operator)

<u>Problem</u> Find the unitary operaotr \mathcal{F}_{Ξ} explicitly.

Cf. Euclidean case $\varphi(t) = e^{-it}$ (one variable) $\mathcal{F}_{\mathbb{R}^N} f(x) = c \int_{\mathbb{R}^N} \varphi(\langle x, y \rangle) f(y) dy$

Theorem E ([4]) Suppose p + q: even > 2 $(\mathcal{F}_{\Xi}f)(x) = c \int_{\Xi} \Phi_{\frac{1}{2}(p+q-4)}^{\varepsilon(p,q)}(\langle x, y \rangle)f(y)dy$

Mellin–Barnes type integral

Idea: Apply Mellin–Barnes type integral to distributions.

Fix $m \in \mathbb{N}$. Take a contour L_m s.t. L_m S-m-m()

Mellin–Barnes type integral

Idea: Apply Mellin–Barnes type integral to distributions.

Fix $m \in \mathbb{N}$. Take a contour L_m s.t.

- 1) L_m starts at $\gamma i\infty$
- 2) passes the real axis at s
- 3) ends at $\gamma + i\infty$

where

Explicit formula of \mathcal{F}_{Ξ} on Ξ

Theorem E ([4]) Suppose
$$p + q$$
: even > 2
 $(\mathcal{F}_{\Xi}f)(x) = c \int_{\Xi} \Phi_{\frac{1}{2}(p+q-4)}^{\varepsilon(p,q)}(\langle x, y \rangle) f(y) dy$

Explicit formula of \mathcal{F}_{Ξ} on Ξ

Theorem E ([4]) Suppose
$$p + q$$
: even > 2
 $(\mathcal{F}_{\Xi}f)(x) = c \int_{\Xi} \Phi_{\frac{1}{2}(p+q-4)}^{\varepsilon(p,q)}(\langle x, y \rangle) f(y) dy$

Here,
$$\varepsilon(p,q) = \begin{cases} 0 & \text{if } \min(p,q) = 1, \\ 1 & \text{if } p, q > 1 \text{ are both odd,} \\ 2 & \text{if } p, q > 1 \text{ are both even.} \end{cases}$$

Explicit formula of \mathcal{F}_{Ξ} on Ξ

Theorem E ([4]) Suppose
$$p + q$$
: even > 2
 $(\mathcal{F}_{\Xi}f)(x) = c \int_{\Xi} \Phi_{\frac{1}{2}(p+q-4)}^{\varepsilon(p,q)}(\langle x, y \rangle) f(y) dy$

Here,
$$\varepsilon(p,q) = \begin{cases} 0 & ext{if } \min(p,q) = 1, \\ 1 & ext{if } p, q > 1 ext{ are both odd,} \\ 2 & ext{if } p, q > 1 ext{ are both even.} \end{cases}$$

$$\Phi_{m}^{\varepsilon}(t) = \begin{cases} \int_{L_{0}} \frac{\Gamma(-\lambda)}{\Gamma(\lambda+1+m)} (2t)_{+}^{\lambda} d\lambda & (\varepsilon = 0) \\ \int_{L_{m}} \frac{\Gamma(-\lambda)}{\Gamma(\lambda+1+m)} (2t)_{+}^{\lambda} d\lambda & (\varepsilon = 1) \\ \int_{L_{m}} \frac{\Gamma(-\lambda)}{\Gamma(\lambda+1+m)} \left(\frac{(2t)_{+}^{\lambda}}{\tan(\pi\lambda)} + \frac{(2t)_{-}^{\lambda}}{\sin(\pi\lambda)} \right) d\lambda & (\varepsilon = 2) \end{cases}$$

Cf. Euclidean Fourier transform $e^{-it} \in \mathcal{A}(\mathbb{R}) \cap L^1_{loc}(\mathbb{R}) \cap \cdots$

Cf. Euclidean Fourier transform $e^{-it} \in \mathcal{A}(\mathbb{R}) \cap L^1_{loc}(\mathbb{R}) \cap \cdots$

Recall two distributions on \mathbb{R} $\delta(t)$: Dirac's delta function t^{-1} : Cauchy's principal value $= \lim_{s \to 0} (\int_{-\infty}^{-s} + \int_{s}^{\infty}) \langle \frac{1}{t}, \cdot \rangle dt$

these are not in $L^1_{loc}(\mathbb{R})$

Cf. Euclidean Fourier transform $e^{-it} \in \mathcal{A}(\mathbb{R}) \cap L^1_{loc}(\mathbb{R}) \cap \cdots$

Cf. Euclidean Fourier transform $e^{-it} \in \mathcal{A}(\mathbb{R}) \cap L^1_{loc}(\mathbb{R}) \cap \cdots$

<u>Cor.</u> \mathcal{F}_{Ξ} has a locally integrable kernel if and only if *G* is O(p+1,2), O(2,q+1), or O(3,3) ($\doteq SL(4,\mathbb{R})$).

Bessel distribution

Prop. ([4])
$$\Phi_m^{\varepsilon}(t)$$
 solves the differential equation
 $(\theta^2 + m\theta + 2t)u = 0$
where $\theta = t \frac{d}{dt}$.

Bessel distribution

<u>Prop. ([4]</u>) $\Phi_m^{\varepsilon}(t)$ solves the differential equation $(\theta^2 + m\theta + 2t)u = 0$ where $\theta = t \frac{d}{dt}$.

Explicit forms

$$\Phi_m^0(t) = 2\pi i (2t)_+^{-\frac{m}{2}} J_m(2\sqrt{2t_+})$$

$$\Phi_m^1(t) = \Phi_m^0(t) - \pi i \sum_{l=0}^{m-1} \frac{(-1)^l}{2^l (m-l-1)!} \delta^{(l)}(t)$$

Bessel distribution

<u>Prop. ([4]</u>) $\Phi_m^{\varepsilon}(t)$ solves the differential equation $(\theta^2 + m\theta + 2t)u = 0$ where $\theta = t \frac{d}{dt}$.

Explicit forms

$$\Phi_m^0(t) = 2\pi i (2t)_+^{-\frac{m}{2}} J_m(2\sqrt{2t_+})$$

$$\Phi_m^1(t) = \Phi_m^0(t) - \pi i \sum_{l=0}^{m-1} \frac{(-1)^l}{2^l (m-l-1)!} \delta^{(l)}(t)$$

$$\Phi_m^2(t) = 2\pi i (2t)_+^{-\frac{m}{2}} Y_m(2\sqrt{2t_+})$$

$$+ 4(-1)^{m+1} i (2t)_-^{-\frac{m}{2}} K_m(2\sqrt{2t_-})$$

Two constructions of minimal reps.

Clear ··· advantage of the model

3. Deformation of Fourier transforms (Theorems F, G, H)

Two constructions of minimal reps.

Group action Hilbert structure

1. Conformal construction Clear Theorem C Theorems A, B V.S. 2. L^2 construction (Schrödinger model) Theorem E Clear Theorem D Clear ··· advantage of the model 3. Deformation of Fourier transforms (Theorems F, G, H)

 \mathcal{F}_{Ξ} \cdots 'Fourier transform' on Ξ $\subset \mathbb{R}^{p,q}$ $\mathcal{F}_{\mathbb{R}^N}$ \cdots Fourier transform on \mathbb{R}^N

Assume q = 1. Set p = N.

 \mathcal{F}_{Ξ} \cdots 'Fourier transform' on Ξ $\subset \mathbb{R}^{p,q}$ $\mathcal{F}_{\mathbb{R}^N}$ \cdots Fourier transform on \mathbb{R}^N

Assume q = 1. Set p = N.

 $\mathbb{R}^{N,1} \supset \Xi = \bigvee \xrightarrow{\text{projection}} \swarrow = \mathbb{R}^N$ $\mathcal{F}_{\mathbb{R}^N}$ O(N+1,2) $Mp(N,\mathbb{R})$

 $\begin{array}{lll} \mathcal{F}_{\Xi} & \cdots & \text{`Fourier transform' on } \Xi & \subset \mathbb{R}^{p,q} \\ \mathcal{F}_{\mathbb{R}^N} & \cdots & \text{Fourier transform on } \mathbb{R}^N \end{array}$

Assume q = 1. Set p = N.

 $\mathbb{R}^{N,1} \supset \Xi = \underbrace{\bigvee}_{} \xrightarrow{\text{projection}} \underbrace{\swarrow} = \mathbb{R}^{N}$ deform $\mathcal{F}_{\mathbb{R}^N}$ \mathcal{F}_{Ξ} a = 1a=2

(k, a)-deformation of $\exp \frac{t}{2}(\Delta - |x|^2)$

Fourier transform

$$\mathcal{F}_{\mathbb{R}^N} = c \exp\left(\frac{\pi i}{4}(\Delta - |x|^2)\right)$$

$$(k, a)$$
-deformation of $\exp \frac{t}{2} (\Delta - |x|^2)$
Hankel-type transform on Ξ
self-adjoint op. on $L^2(\mathbb{R}^N, \frac{dx}{|x|})$
 $\mathcal{F}_{\Xi} = c \exp \left(\frac{\pi i}{2}(|x|\Delta - |x|)\right)$
phase factor Laplacian
 $= e^{\frac{\pi i (N-1)}{2}}$ Laplacian

"Laguerre semigroup" ([5], 2007 Howe 60th birthday volume)

$$\mathcal{I}(t) := \exp t(|x|\Delta - |x|)$$

(k, a)-deformation of $\exp \frac{t}{2}(\Delta - |x|^2)$ (k, a)-generalized Fourier transform self-adjoint op. on $L^2(\mathbb{R}^N, \vartheta_{k,a}(x)dx)$ $\exp\left(\frac{\pi i}{2a}(|x|^{2-a}\Delta_k - |x|^a)\right)$ $\mathcal{F}_{k,a} =$ \mathcal{C} phase factor **Dunkl** Laplacian $= e^{i \frac{\pi (N+2\langle k \rangle + a-2)}{2a}}$

(k, a)-deformation of Hermite semigroup ([1], 2009)

$$\mathcal{I}_{k,a}(t) := \exp \frac{t}{a} (|x|^{2-a} \Delta_k - |x|^a)$$

k: multiplicity on root system \mathcal{R} , a > 0

Special values of holomorphic semigroup $\mathcal{I}_{k,a}(t)$

Special values of holomorphic semigroup $\mathcal{I}_{k,a}(t)$

Special values of holomorphic semigroup $\mathcal{I}_{k,a}(t)$

 $k = (k_{\alpha})$: multiplicity of root system \mathcal{R} in \mathbb{R}^{N} $\mathcal{H}_{k,a} := L^{2}(\mathbb{R}^{N}, |x|^{a-2} \prod_{\alpha \in \mathcal{R}} |\langle x, \alpha \rangle|^{k_{\alpha}} dx)$

$$k = (k_{\alpha})$$
: multiplicity of root system \mathcal{R} in \mathbb{R}^{N}
 $\mathcal{H}_{k,a} := L^{2}(\mathbb{R}^{N}, |x|^{a-2} \prod_{\alpha \in \mathcal{R}} |\langle x, \alpha \rangle|^{k_{\alpha}} dx)$

<u>Thm F</u> ([1]) Assume a > 0 and $a + \sum k_{\alpha} + N - 2 > 0$. $\mathcal{I}_{k,a}(t) := \exp \frac{t}{a}(|x|^{2-a}\Delta_k - |x|^a)$ is a holomorphic semigp on $\mathcal{H}_{k,a}$ for $\operatorname{Re} t > 0$.

$$k = (k_{\alpha})$$
: multiplicity of root system \mathcal{R} in \mathbb{R}^{N}
 $\mathcal{H}_{k,a} := L^{2}(\mathbb{R}^{N}, |x|^{a-2} \prod_{\alpha \in \mathcal{R}} |\langle x, \alpha \rangle|^{k_{\alpha}} dx)$

<u>Thm F</u> ([1]) Assume a > 0 and $a + \sum k_{\alpha} + N - 2 > 0$. $\mathcal{I}_{k,a}(t) := \exp \frac{t}{a}(|x|^{2-a}\Delta_k - |x|^a)$ is a holomorphic semigp on $\mathcal{H}_{k,a}$ for $\operatorname{Re} t > 0$.

 $\mathcal{I}_{k,a}(t_1) \circ \mathcal{I}_{k,a}(t_2) = \mathcal{I}_{k,a}(t_1 + t_2) \quad \text{for } \operatorname{Re} t_1, t_2 \ge 0$ $(\mathcal{I}_{k,a}(t)f, g) \text{ is holomorphic for } \operatorname{Re} t > 0, \text{ for } \forall f, \forall g$

$$k = (k_{\alpha})$$
: multiplicity of root system \mathcal{R} in \mathbb{R}^{N}
 $\mathcal{H}_{k,a} := L^{2}(\mathbb{R}^{N}, |x|^{a-2} \prod_{\alpha \in \mathcal{R}} |\langle x, \alpha \rangle|^{k_{\alpha}} dx)$

<u>Thm F</u> ([1]) Assume a > 0 and $a + \sum k_{\alpha} + N - 2 > 0$. $\mathcal{I}_{k,a}(t) := \exp \frac{t}{a}(|x|^{2-a}\Delta_k - |x|^a)$ is a holomorphic semigp on $\mathcal{H}_{k,a}$ for $\operatorname{Re} t > 0$.

Point: The unitary rep on $\mathcal{H}_{k,a}$ is $SL(2,\mathbb{R})$ -admissible (i.e. discretely decomposable and finite multiplicities)

$$k = (k_{\alpha})$$
: multiplicity of root system \mathcal{R} in \mathbb{R}^{N}
 $\mathcal{H}_{k,a} := L^{2}(\mathbb{R}^{N}, |x|^{a-2} \prod_{\alpha \in \mathcal{R}} |\langle x, \alpha \rangle|^{k_{\alpha}} dx)$

<u>Thm F</u> ([1]) Assume a > 0 and $a + \sum k_{\alpha} + N - 2 > 0$. $\mathcal{I}_{k,a}(t) := \exp \frac{t}{a}(|x|^{2-a}\Delta_k - |x|^a)$ is a holomorphic semigp on $\mathcal{H}_{k,a}$ for $\operatorname{Re} t > 0$.

Point: The unitary rep on $\mathcal{H}_{k,a}$ is $SL(2,\mathbb{R})$ -admissible (i.e. discretely decomposable and finite multiplicities)

 \implies \forall Spectrum of $|x|^{2-a}\Delta_k - |x|^a$ is discrete and negative

$$k = (k_{\alpha})$$
: multiplicity of root system \mathcal{R} in \mathbb{R}^{N}
 $\mathcal{H}_{k,a} := L^{2}(\mathbb{R}^{N}, |x|^{a-2} \prod_{\alpha \in \mathcal{R}} |\langle x, \alpha \rangle|^{k_{\alpha}} dx)$

<u>Thm F</u> ([1]) Assume a > 0 and $a + \sum k_{\alpha} + N - 2 > 0$. $\mathcal{I}_{k,a}(t) := \exp \frac{t}{a}(|x|^{2-a}\Delta_k - |x|^a)$ is a holomorphic semigp on $\mathcal{H}_{k,a}$ for $\operatorname{Re} t > 0$.

Point: The unitary rep on $\mathcal{H}_{k,a}$ is $SL(2,\mathbb{R})$ -admissible (i.e. discretely decomposable and finite multiplicities)

 \implies automorphisms of the ring of operators. $a = 1 \implies SL(2, \mathbb{Z})$ action on degenerate DAHA (Cherednik)

$$k = (k_{\alpha})$$
: multiplicity of root system \mathcal{R} in \mathbb{R}^{N}
 $\mathcal{H}_{k,a} := L^{2}(\mathbb{R}^{N}, |x|^{a-2} \prod_{\alpha \in \mathcal{R}} |\langle x, \alpha \rangle|^{k_{\alpha}} dx)$

<u>Thm F</u> ([1]) Assume a > 0 and $a + \sum k_{\alpha} + N - 2 > 0$. $\mathcal{I}_{k,a}(t) := \exp \frac{t}{a}(|x|^{2-a}\Delta_k - |x|^a)$ is a holomorphic semigp on $\mathcal{H}_{k,a}$ for $\operatorname{Re} t > 0$.

$$\mathcal{F}_{k,a} := \underbrace{c}_{k,a}(\frac{\pi i}{2})$$

phase factor

$$k = (k_{\alpha})$$
: multiplicity of root system \mathcal{R} in \mathbb{R}^{N}
 $\mathcal{H}_{k,a} := L^{2}(\mathbb{R}^{N}, |x|^{a-2} \prod_{\alpha \in \mathcal{R}} |\langle x, \alpha \rangle|^{k_{\alpha}} dx)$

<u>Thm F</u> ([1]) Assume a > 0 and $a + \sum k_{\alpha} + N - 2 > 0$. $\mathcal{I}_{k,a}(t) := \exp \frac{t}{a}(|x|^{2-a}\Delta_k - |x|^a)$ is a holomorphic semigp on $\mathcal{H}_{k,a}$ for $\operatorname{Re} t > 0$.

$$\mathcal{F}_{k,a} := \underbrace{c}_{k,a}(\frac{\pi i}{2})$$
 phase factor

 $e^{i\frac{\pi(N+2\langle k\rangle+a-2)}{2a}}$

$$\mathcal{F}_{k,a} = c \,\mathcal{I}_{k,a}(\frac{\pi i}{2})$$

$$\mathcal{F}_{k,a} = c \mathcal{I}_{k,a}\left(\frac{\pi i}{2}\right) = c \exp\left(\frac{\pi i}{2a}\left(|x|^{2-a}\Delta_k - |x|^a\right)\right)$$

<u>Thm G</u> 1) $\mathcal{F}_{k,a}$ is a unitary operator

Geometric Analysis on Minimal Representations - p.43/49

$$\mathcal{F}_{k,a} = c \mathcal{I}_{k,a}(\frac{\pi i}{2}) = c \exp\left(\frac{\pi i}{2a}(|x|^{2-a}\Delta_k - |x|^a)\right)$$

 $\begin{array}{lll} \underline{\text{Thm G}} & 1 \end{pmatrix} & \mathcal{F}_{k,a} \text{ is a unitary operator} \\ & 2 \end{pmatrix} & \mathcal{F}_{0,2} = \text{Fourier transform on } \mathbb{R}^{N} \\ & F_{k,a} = \text{Dunkl transform on } \mathbb{R}^{N} \\ & \mathcal{F}_{0,1} = \text{Hankel transform on } L^{2}(\overleftarrow{\Sigma}) \\ & 3 \end{pmatrix} & \mathcal{F}_{k,a} \text{ is of finite order } \Longleftrightarrow a \in \mathbb{Q} \\ & 4 \end{pmatrix} & \mathcal{F}_{k,a} \text{ intertwines } |x|^{a} \text{ and } -|x|^{2-a}\Delta_{k} \end{array}$

$$\mathcal{F}_{k,a} = c \mathcal{I}_{k,a}(\frac{\pi i}{2}) = c \exp\left(\frac{\pi i}{2a}(|x|^{2-a}\Delta_k - |x|^a)\right)$$

 $\begin{array}{lll} \underline{\text{Thm G}} & 1 \end{pmatrix} & \mathcal{F}_{k,a} \text{ is a unitary operator} \\ & 2 \end{pmatrix} & \mathcal{F}_{0,2} = \text{Fourier transform on } \mathbb{R}^{N} \\ & F_{k,a} = \text{Dunkl transform on } \mathbb{R}^{N} \\ & \mathcal{F}_{0,1} = \text{Hankel transform on } L^{2}(\overleftarrow{X}) \\ & 3 \end{pmatrix} & \mathcal{F}_{k,a} \text{ is of finite order } \Longleftrightarrow a \in \mathbb{Q} \\ & 4 \end{pmatrix} & \mathcal{F}_{k,a} \text{ intertwines } |x|^{a} \text{ and } -|x|^{2-a}\Delta_{k} \end{array}$

⇒ generalization of classical identities such as Hecke identity, Bochner identity, Parseval–Plancherel formulas, Weber's second exponential integral, etc.
Minimal reps (<= group)

Minimal reps (\Leftarrow group) \approx Maximal symmetries (\Leftarrow space)

Minimal reps (\Leftarrow group) \approx Maximal symmetries (\Leftarrow space)

'Special functions', 'orthogonal polynomials' associated to 4th order differential eqn [2a, 2b]

Minimal reps (\Leftarrow group) \approx Maximal symmetries (\Leftarrow space)

with 4 parameters

$$(\underbrace{p, q}; \underbrace{l, m})$$

dimension branching laws (multiplicity-free)

Special case q = 1: Laguerre polynomials $4 = 2 \times 2$

Heisenberg-type inequality

<u>Thm H</u> (Heisenberg inequality) $\||x|^{\frac{a}{2}}f(x)\|_{k} \||\xi|^{\frac{a}{2}} (\mathcal{F}_{k,a}f)(\xi)\|_{k} \ge \frac{2\langle k \rangle + N + a - 2}{2} \||f(x)\|_{k}^{2}$

 $k \equiv 0, a = 2$

- ··· Weyl–Pauli–Heisenberg inequality for Fourier transform $\mathcal{F}_{\mathbb{R}^N}$
- k: general, a = 2 ... Heisenberg inequality for Dunkl transform \mathcal{D}_k (Rösler, Shimeno)

$$k \equiv 0, a = 1, N = 1 \cdots$$
 Heisenberg inequality for Hankel transform

Special values of holomorphic semigroup $\mathcal{I}_{k,a}(t)$

Bessel functions

$$J_{\nu}(z) = \left(\frac{z}{2}\right)^{\nu} \sum_{j=0}^{\infty} \frac{(-1)^{j} \left(\frac{z}{2}\right)^{2j}}{j! \,\Gamma(j+\nu+1)}$$

$$I_{\nu}(z) := e^{-\frac{\sqrt{-1}\nu\pi}{2}} J_{\nu} \left(e^{\frac{\sqrt{-1}\pi}{2}} z\right)$$

$$Y_{\nu}(z) := \frac{J_{\nu}(z) \cos \nu\pi - J_{-\nu}(z)}{\sin \nu\pi} \quad \text{(second kind)}$$

$$K_{\nu}(z) := \frac{\pi}{2 \sin \nu\pi} \left(I_{-\nu}(z) - I_{\nu}(z)\right) \quad \text{(third kind)}$$

Geometric analysis on minimal reps of ${\cal O}(p,q)$

- [1] Laguerre semigroup and Dunkl operators · · · preprint, 74 pp. <u>arXiv:0907.3749</u>
- [2] Special functions associated to a fourth order differential equation ... preprint, 45 pp. <u>arXiv:0907.2608</u>, <u>arXiv:0907.2612</u>
- [3] Generalized Fourier transforms $\mathcal{F}_{k,a} \cdots \underline{\mathsf{C.R.A.S. Paris}}$ (to appear)
- [4] Schrödinger model of minimal rep. ...
 Memoirs of Amer. Math. Soc. (in press), 171 pp. <u>arXiv:0712.1769</u>
- [5] Inversion and holomorphic extension ...
 <u>R. Howe 60th birthday volume (2007)</u>, 65 pp.
- [6] Analysis on minimal representations ···· Adv. Math. (2003) I, II, III, 110 pp.
 - Collaborated with
 - S. Ben Saïd, J. Hilgert, G. Mano, J. Möllers and B. Ørsted