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Compact-like actions
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Compact-like linear/non-linear actions

H: Hilbert spaceLyH

� � � L B(H)

Non-compact Lie groups occasionally behave nicely when

embedded in 1-dim groups as if they were compact

groups.

MLyM
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Compact-like linear/non-linear actions

H: Hilbert spaceLyH
L: compact =) unitarizable

Unitarizability might be interpreted as one of
“compact-like properties”.

� � � L B(H)

Non-compact Lie groups occasionally behave nicely when

embedded in 1-dim groups as if they were compact

groups.

MLyM
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Compact-like linear/non-linear actions

H: Hilbert spaceLyH unitarizability� � � L behaves nicely in B(H) (bounded operators)

as if it were a compact group

Non-compact Lie groups occasionally behave nicely when

embedded in 1-dim groups as if they were compact

groups.

MLyM
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Compact-like linear/non-linear actions

H: Hilbert spaceLyH ?� � � L behaves nicely in U(H) (unitary operators)

as if it were a compact group

MLyM
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Compact-like linear/non-linear actions

H: Hilbert spaceLyH discrete decomposability� � � L behaves nicely in U(H) (unitary operators)

as if it were a compact group

MLyM
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Compact-like linear/non-linear actions

H: Hilbert spaceLyH discrete decomposability� � � L behaves nicely in U(H) (unitary operators)

as if it were a compact group

M : topological spaceLyM ?� � � L behaves nicely in Homeo(M)

as if it were a compact group
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Compact-like linear/non-linear actions

H: Hilbert spaceLyH discrete decomposability� � � L behaves nicely in U(H) (unitary operators)

as if it were a compact group

M : topological spaceLyM proper actions

i.e. L�M !M �M; (g; x) 7! (x; g � x) is proper
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Compact-like linear/non-linear actions

H: Hilbert spaceLyH discrete decomposability� � � L behaves nicely in U(H) (unitary operators)

as if it were a compact group

M : topological spaceLyM proper actions� � � L behaves nicely in Homeo(M)

as if it were a compact group
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Compact-like linear/non-linear actions

H = L2(G=H); L2(G=�) : Hilbert spaceLyH discrete decomposability� � � L behaves nicely in U(H) (unitary operators)

as if it were a compact group

M = G=H : topological spaceLyM proper actions� � � L behaves nicely in Homeo(M)

as if it were a compact group
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Decomposition into irreducible reps

Two important casesG0 �

subgroup

G

1) Induction

2) Restriction
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Decomposition into irreducible reps

Two important casesG0 �

subgroup

G

1) Induction: G0 " G
Plancherel Formula

(e.g. Analysis on homo. space G=G0)
2) Restriction: G # G0

Branching Law
(e.g. Tensor product, . . . )
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Special restrictions=) L2(G=H)

eG � G � H; � : irred rep of eG

�jGL2(G=H)G=H = GL(n; R )=O(n)( ( eG; �) = (Sp(n; R ); )G=H = GL(p+ q; R )=GL(p; R ) �GL(q; R )( ( eG; �) = (G�G; )

�jG L2(G=H)
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Special restrictions=) L2(G=H)

eG � G � H; � : irred rep of eG
Special cases of restriction �jG are
unitarily equivalent to L2(G=H) (concretely/abstractly).

G=H = GL(n; R )=O(n)( ( eG; �) = (Sp(n; R ); )G=H = GL(p+ q; R )=GL(p; R ) �GL(q; R )( ( eG; �) = (G�G; )

�jG L2(G=H)
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Special restrictions=) L2(G=H)

eG � G � H; � : irred rep of eG
Special cases of restriction �jG are
unitarily equivalent to L2(G=H) (concretely/abstractly).G=H = GL(n; R )=O(n)

( ( eG; �) = (Sp(n; R ); )
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Special restrictions=) L2(G=H)

eG � G � H; � : irred rep of eG
Special cases of restriction �jG are
unitarily equivalent to L2(G=H) (concretely/abstractly).G=H = GL(n; R )=O(n)( ( eG; �) = (Sp(n; R ); holo. disc. series)G=H = GL(p+ q; R )=GL(p; R ) �GL(q; R )( ( eG; �) = (G�G; certain degenerate principal series)

(‘canonical rep’ of Gelfand–Graev–Vershik)

�jG L2(G=H)
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Special restrictions=) L2(G=H)

eG � G � H; � : irred rep of eG
Special cases of restriction �jG are
unitarily equivalent to L2(G=H) (concretely/abstractly).G=H = GL(n; R )=O(n)( ( eG; �) = (Sp(n; R ); holo. disc. series)G=H = GL(p+ q; R )=GL(p; R ) �GL(q; R )( ( eG; �) = (G�G; certain degenerate principal series)

(‘canonical rep’ of Gelfand–Graev–Vershik)

Many other restrictions �jG cannot be reduced to L2(G=H)
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Discretely decomposable restrictions

Restrict � 2 bG to a (reductive) subgroup G0 of G.

�jG0 ' Z �G0 n�(�)| {z }3N [ f1g
� d�(�)

� �jG0�

�jG0 G0
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Discretely decomposable restrictions

Restrict � 2 bG to a (reductive) subgroup G0 of G.

Branching law�jG0 ' Z �G0 n�(�)| {z }
multiplicity3N [ f1g

� d�(�) (direct integral)

� �jG0�

�jG0 G0
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Discretely decomposable restrictions

Restrict � 2 bG to a (reductive) subgroup G0 of G.

Branching law�jG0 ' Z �G0 n�(�)| {z }
multiplicity3N [ f1g

� d�(�) (direct integral)

G0: compact =) discretely decomposable

� �jG0�
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Discretely decomposable restrictions

Restrict � 2 bG to a (reductive) subgroup G0 of G.

Branching law�jG0 ' Z �G0 n�(�)| {z }
multiplicity3N [ f1g

� d�(�) (direct integral)

G0: compact =) discretely decomposable

discrete decomposability � � � compact-like actions

� �jG0�

�jG0 G0
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Discretely decomposable restrictions

Restrict � 2 bG to a (reductive) subgroup G0 of G.

Branching law�jG0 ' Z �G0 n�(�)| {z }
multiplicity3N [ f1g

� d�(�) (direct integral)

Question (to find “nicest settings”)� When does the restriction �jG0 decompose discretely?� When are all multiplicities finite?

�jG0 G0
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Discretely decomposable restrictions

Restrict � 2 bG to a (reductive) subgroup G0 of G.

Branching law�jG0 ' Z �G0 n�(�)| {z }
multiplicity3N [ f1g

� d�(�) (direct integral)

Question (to find “nicest settings”)� When does the restriction �jG0 decompose discretely?� When are all multiplicities finite?

Say the restriction �jG0 is G0-admissible if both are fulfilled.
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Two closed cones

G � K � T

max compact max torus

p�1t�

bG 3 �  \p�1t�[G � G0  �(T �(K=K 0))[ [ � : T �(K=K 0)! p�1k�K � K 0
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Two closed cones

G � K � T

max compact max torus

Define two closed cones in

p�1t�:

bG 3 �  \p�1t�[G � G0  �(T �(K=K 0))[ [ � : T �(K=K 0)! p�1k�K � K 0
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Two closed cones

G � K � T

max compact max torus

Define two closed cones in

p�1t�:

bG 3 �

 \

p�1t�

[

G � G0

 �(T �(K=K 0))[ [ � : T �(K=K 0)! p�1k�K � K 0
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Two closed cones

G � K � T

max compact max torus

Define two closed cones in

p�1t�:

bG 3 �  ASK(�) asymptotic K-support\ (Kashiwara–Vergne)p�1t�

[

G � G0

 �(T �(K=K 0))[ [ � : T �(K=K 0)! p�1k�K � K 0
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Two closed cones

G � K � T

max compact max torus

Define two closed cones in

p�1t�:

bG 3 �  ASK(�) asymptotic K-support\ (Kashiwara–Vergne)p�1t�[G � G0  �(T �(K=K 0)) momentum image[ [ � : T �(K=K 0)! p�1k�K � K 0
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Criterion of admissible restriction

Theorem A (Criterion) (K– Ann Math ’98, Progr Math ’05)

Let G0 �

reductive=RG and � 2 bG. If

? �(T �(K=K 0)) \ ASK(�) = f0g R nR
n=p�1t�() �jK0 K 0 �jG0

� � �
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Criterion of admissible restriction

Theorem A (Criterion) (K– Ann Math ’98, Progr Math ’05)

Let G0 �

reductive=RG and � 2 bG. If

(?) �(T �(K=K 0)) \ ASK(�) = f0g in R n,

R n=p�1t�() �jK0 K 0 �jG0

� � �
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Criterion of admissible restriction

Theorem A (Criterion) (K– Ann Math ’98, Progr Math ’05)

Let G0 �

reductive=RG and � 2 bG. If

(?) �(T �(K=K 0)) \ ASK(�) = f0g in

R n

R n=p�1t�,() �jK0 is K 0-admissible.

�jG0

� � �
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Criterion of admissible restriction

Theorem A (Criterion) (K– Ann Math ’98, Progr Math ’05)

Let G0 �

reductive=RG and � 2 bG. If

(?) �(T �(K=K 0)) \ ASK(�) = f0g in

R n

R n=p�1t�,() �jK0 is K 0-admissible.
In particular, the restriction �jG0 is
discretely decomposable & of finite multiplicities

� � �
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Criterion of admissible restriction

Theorem A (Criterion) (K– Ann Math ’98, Progr Math ’05)

Let G0 �

reductive=RG and � 2 bG. If

(?) �(T �(K=K 0)) \ ASK(�) = f0g in

R n

R n=p�1t�,() �jK0 is K 0-admissible.
In particular, the restriction �jG0 is
discretely decomposable & of finite multiplicities

� � � compact-like linear actions
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Special cases of Thm A

Ex.1 �(T �(K=K 0)) = f0g () K = K 0 () G0 � K=) Harish-Chandra’s admissibility thm

Ex.2 ASK(�) = f0g () dim� <1

(G;G0)=) �(T �(K=K 0)) =
�=) ASK(�) = R+9v� = Aq(�)=) ASK(�) � R+ �(u \ p; t)(q = l+ u; g = k+ p)
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Special cases of Thm A

Ex.1 �(T �(K=K 0)) = f0g () K = K 0 () G0 � K=) Harish-Chandra’s admissibility thm

Ex.2 ASK(�) = f0g () dim� <1
Ex.3 (G;G0): reductive symmetric pair=) �(T �(K=K 0)) = positive Weyl chamber

Ex.4 (Vogan ’80) �: minimal rep=) ASK(�) = R+9v

� = Aq(�)=) ASK(�) � R+ �(u \ p; t)(q = l+ u; g = k+ p)
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Special cases of Thm A

Ex.1 �(T �(K=K 0)) = f0g () K = K 0 () G0 � K=) Harish-Chandra’s admissibility thm

Ex.2 ASK(�) = f0g () dim� <1
Ex.3 (G;G0): reductive symmetric pair=) �(T �(K=K 0)) = positive Weyl chamber

Ex.4 (Vogan ’80) �: minimal rep=) ASK(�) = R+9v
Ex.5 � = Aq(�) (e.g. discrete series)=) ASK(�) � R+-span of �(u \ p; t)(q = l+ u; g = k+ p)
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Criterion for compact-like actions

Some further developments in this framework
(compact-like branching laws)

by D. Gross–N. Wallach, S.-T. Lee–H. Loke,
M. Duflo–J. Vargas, B. Ørsted–B. Speh,
J. S. Huang–D. Vogan, K–T. Oda, . . .
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Compact-like linear/non-linear actions

H: Hilbert spaceLyH discrete decomposability� � � L behaves nicely in U(H) (unitary operators)

as if it were a compact group

M : topological spaceLyM proper actions� � � L behaves nicely in Homeo(M)

as if it were a compact group
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Criterion for compact-like actionsG : reductive Lie group � K[ [G0 � K 0� : T �(K=K 0)! p�1k� momentum map

Thm A � 2 bG�(T �(K=K 0)) \ ASK(�) = f0g=) �jG0 is discrete decomposable.

L � G � H� : G! a (Cartan projection)

Thm B (proper action)L t H in G() �(L) t �(H) in a
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Proper action

L actiony X

top. gp top. sp (locally compact)

X L
subset [  [S LS := f 2 L : S \ S 6= �gS = fpg =) LS = stabilizer of p

LyX () LS8SLyX () #Lfpg = 1 (8p 2 X)
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Proper action

L actiony X
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Proper action

L actiony X

top. gp top. sp (locally compact)

X L

subset [  [S LS := f 2 L : S \ S 6= ?g

γ1

γ1

γ
γ

2

2 S

S

S

=) 12 622 LS

LyX () LS8SLyX () #Lfpg = 1 (8p 2 X)
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Proper action

L actiony X

top. gp top. sp (locally compact)

X L

subset [  [S LS := f 2 L : S \ S 6= ?g

Def. LyX is proper () LS is compact
(8S: compact)LyX is free () #Lfpg = 1 (8p 2 X)
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Delicate examples

LyX

(A) free action ?=) proper action

(B) all orbits are closed ?=) LnX Hausdorff

L ' R k ; X = G=H L � G � H

G = SL(2; R )L = R yX = R 2 n f0g

G = L = R 2yX = R 5
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Delicate examples

LyX

(A) free action 6=) proper action
(B) all orbits are closed 6=) LnX Hausdorff

Counterexamples to (A) & (B) even forL ' R k ; X = G=H where L � G
Lie groups

� H

G = SL(2; R )L = R yX = R 2 n f0g

G = L = R 2yX = R 5
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Delicate examples

LyX

(A) free action 6=) proper action
(B) all orbits are closed 6=) LnX Hausdorff

Counterexamples to (A) & (B) even forL ' R k ; X = G=H where L � G
Lie groups

� H

Ex. (G = SL(2; R ))L = R yX = R 2 n f0g (Lorentz isometry)

G = L = R 2yX = R 5
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Delicate examples

LyX

(A) free action 6=) proper action
(B) all orbits are closed 6=) LnX Hausdorff

Counterexamples to (A) & (B) even forL ' R k ; X = G=H where L � G
Lie groups

� H

Ex. (G = SL(2; R ))L = R yX = R 2 n f0g (Lorentz isometry)

Ex. (G = 1-conn. nilpotent Lie gp)L = R 2yX = R 5 (nilmanifolds)

(Yoshino 2004, counterexample to Lipsman’s conjecture)
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proper + discrete= properly discont.

properly discont. actionk

proper action+
group is discrete
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proper + discrete= properly discont.

action properly discont. actionk

action proper action+
group is discrete

Global Geometry and Analysis on Locally Symmetric Spaces – p.15/52



Criterion for discontinuous groups

Setting L � G � H
discrete subgp closed subgp

General Problem
Find effective methods to determine whetherLyG=H is properly discont.
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Criterion for discontinuous groups

Setting L � G � H
discrete subgp closed subgp

General Problem
Find effective methods to determine whetherLyG=H is properly discont.

proper
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t and� (definition)L � G � H
Idea: forget even that L and H are group

HHSSHS
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t and� (definition)L � G � H
Idea: forget even that L and H are group

Def. (K– )
1) L t H () L \ SHS is compact

for 8compact S � G
2) L � H () 9 compact S � G

s.t. L � SHS and H � SLS.

H

HSSHS
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t and� (definition)L � G � H
Idea: forget even that L and H are group

Def. (K– )
1) L t H () L \ SHS is compact

for 8compact S � G
2) L � H () 9 compact S � G

s.t. L � SHS and H � SLS.

HHS

SHS
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t and� (definition)L � G � H
Idea: forget even that L and H are group

Def. (K– )
1) L t H () L \ SHS is compact

for 8 compact S � G
2) L � H () 9 compact S � G

s.t. L � SHS and H � SLS.

HHSSHS
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t and� (definition)L � G � H
Idea: forget even that L and H are group

Def. (K– )
1) L t H () L \ SHS is compact

for 8 compact S � G
2) L � H () 9 compact S � G

s.t. L � SHS and H � SLS.

HHSSHS
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t and� (definition)L � G � H
Idea: forget even that L and H are group

Def. (K– )
1) L t H () L \ SHS is compact

for 8 compact S � G
2) L � H () 9 compact S � G

s.t. L � SHS and H � SLS.

E.g. G = R n; L, H subspacesL t H () L \H = f0g.L � H () L = H.
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t and�L � G � H
Forget even that L and H are group

1) L t H () generalization of proper actions
2) L � H () economy in considering

Meaning of t:L t H () LyG=H proper action

for closed subgroups L and H� provides economies in considering tH � H 0 =) H t L() H 0 t L
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t and�L � G � H
Forget even that L and H are group

1) L t H () generalization of proper actions
2) L � H () economy in considering

Meaning of t:L t H () LyG=H proper action

for closed subgroups L and H� provides economies in considering tH � H 0 =) H t L() H 0 t L
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Criterion for t and�

G: real reductive Lie groupG = K exp(a)K: Cartan decomposition�: G! a: Cartan projection (up to Weyl gp.)

L � H G () �(L) � �(H) aL t H G () �(L) t �(H) a

)
,
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Criterion for t and�

G: real reductive Lie groupG = K exp(a)K: Cartan decomposition�: G! a: Cartan projection (up to Weyl gp.)

E.g. � : GL(n; R )! R ng 7! 12(log �1; � � � ; log �n)
Here, �1 � � � � � �n (> 0) are the eigenvalues of tgg.

L � H G () �(L) � �(H) aL t H G () �(L) t �(H) a

)
,
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Criterion for t and�

G: real reductive Lie groupG = K exp(a)K: Cartan decomposition�: G! a: Cartan projection (up to Weyl gp.)

Thm B (K– , Benoist)
1) L � H in G () �(L) � �(H) in a.
2) L t H in G () �(L) t �(H) in a.

)
,
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Criterion for t and�

G: real reductive Lie groupG = K exp(a)K: Cartan decomposition�: G! a: Cartan projection (up to Weyl gp.)

Thm B (K– , Benoist)
1) L � H in G () �(L) � �(H) in a.
2) L t H in G () �(L) t �(H) in a.

Special cases include

(1)’s ) : Uniform bounds on errors in eigenvalues when a
matrix is perturbed.

(2)’s , : Criterion for properly discont. actions.
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Criterion for compact-like actionsG : reductive Lie group � K[ [G0 � K 0� : T �(K=K 0)! p�1k� momentum map

Thm A � 2 bG, G0 � G�(T �(K=K 0)) \ ASK(�) = f0g=) �jG0 is discrete decomposable.

L � G � H� : G! a
L t H G() �(L) t �(H) a
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Criterion for compact-like actionsG : reductive Lie group � K[ [G0 � K 0� : T �(K=K 0)! p�1k� momentum map

Thm A � 2 bG, G0 � G�(T �(K=K 0)) \ ASK(�) = f0g=) �jG0 is discrete decomposable.

L � G � H� : G! a (Cartan projection)

Thm B (proper action)L t H in G() �(L) t �(H) in a
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Compact-like linear/non-linear actions

H: Hilbert spaceLyH discrete decomposability� � � L behaves nicely in U(H) (unitary operators)

as if it were a compact group

M : topological spaceLyM proper actions� � � L behaves nicely in Homeo(M)

as if it were a compact group
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Compact-like linear/non-linear actions

H = L2(G=H); L2(G=�) : Hilbert spaceLyH discrete decomposability� � � L behaves nicely in U(H) (unitary operators)

as if it were a compact group

M = G=H : topological spaceLyM proper actions� � � L behaves nicely in Homeo(M)

as if it were a compact group
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Compact-like non-linear/linear actions

L � G � H

LyG=H
=)( HyL2(G=L)LyL2(G=H)
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Compact-like non-linear/linear actions

L � G � HLyG=H

‘nice behavior’ (topological action)

=)( HyL2(G=L)LyL2(G=H)
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Compact-like non-linear/linear actions

L � G � HLyG=H

‘nice behavior’ (topological action)=) ?( HyL2(G=L) (Margulis, Oh)LyL2(G=H) (K– )

‘nice behavior’ (representation theory)
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Interacting example

Ex. (K– 1988) (G;L) = (SO(4; 2); SO(4; 1))�: discrete series of G with GK-dim 5
(quarternionic discrete series)=) �jL is L-admissible

Idea: Tessellation of pseudo-Riemannian mfd XX = SO(4; 2)=U(2; 1) ( �
open

P3C )

� X� y\ G� yL
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Interacting example

Ex. (K– 1988) (G;L) = (SO(4; 2); SO(4; 1))�: discrete series of G with GK-dim 5
(quarternionic discrete series)=) �jL is L-admissible

Idea: Tessellation of pseudo-Riemannian mfd XX = SO(4; 2)=U(2; 1) ( �
open

P3C )

�

X

�

y

\

G

� yL
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Interacting example

Ex. (K– 1988) (G;L) = (SO(4; 2); SO(4; 1))�: discrete series of G with GK-dim 5
(quarternionic discrete series)=) �jL is L-admissible

Idea: Tessellation of pseudo-Riemannian mfd XX = SO(4; 2)=U(2; 1) ( �
open

P3C )

�

X

�

y

\

G�

y

L
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Interacting example

Ex. (K– 1988) (G;L) = (SO(4; 2); SO(4; 1))�: discrete series of G with GK-dim 5
(quarternionic discrete series)=) �jL is L-admissible

Idea: Tessellation of pseudo-Riemannian mfd XX = SO(4; 2)=U(2; 1) ( �
open

P3C )

� X� y
lattice \ G�

y

L
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Interacting example

Ex. (K– 1988) (G;L) = (SO(4; 2); SO(4; 1))�: discrete series of G with GK-dim 5
(quarternionic discrete series)=) �jL is L-admissible

Idea: Tessellation of pseudo-Riemannian mfd XX = SO(4; 2)=U(2; 1) ( �
open

P3C )

� Xdiscont. gp� y
lattice \ G�

y

L
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Interacting example

Ex. (K– 1988) (G;L) = (SO(4; 2); SO(4; 1))�: discrete series of G with GK-dim 5
(quarternionic discrete series)=) �jL is L-admissible

Idea: Tessellation of pseudo-Riemannian mfd XX = SO(4; 2)=U(2; 1) ( �
open

P3C )

� Xdiscont. gp� y
lattice \ G� yL

� �

L2(X)
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Interacting example

Ex. (K– 1988) (G;L) = (SO(4; 2); SO(4; 1))�: discrete series of G with GK-dim 5
(quarternionic discrete series)=) �jL is L-admissible

Idea: Tessellation of pseudo-Riemannian mfd XX = SO(4; 2)=U(2; 1) ( �
open

P3C )

� Xdiscont. gp� y
lattice \ G� yL � � L2(X)

discrete series
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Interacting example

Ex. (K– 1988) (G;L) = (SO(4; 2); SO(4; 1))�: discrete series of G with GK-dim 5
(quarternionic discrete series)=) �jL is L-admissible

Idea: Tessellation of pseudo-Riemannian mfd XX = SO(4; 2)=U(2; 1) ( �
open

P3C )

� Xdiscont. gp� y
lattice \ G� yL

admissible
restriction

� � L2(X)

discrete series
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Interacting examples

Pseudo-Riemannian manifold XX = G=H = SO(4; 2)=U(2; 1) ( �
open

P3C )

X = G=H

G=H �� � L = SO(4; 1)

X = G=H
� 2 bG L2(G=H)�jL

Global Geometry and Analysis on Locally Symmetric Spaces – p.24/52



Interacting examples

Pseudo-Riemannian manifold XX = G=H = SO(4; 2)=U(2; 1) ( �
open

P3C )
Cocompact discontinuous group for X = G=H
Thm G=H admits a cocompact, discontinuous gp �.

Proof. Take � �
cocompact

L = SO(4; 1).

X = G=H
� 2 bG L2(G=H)�jL
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Interacting examples

Pseudo-Riemannian manifold XX = G=H = SO(4; 2)=U(2; 1) ( �
open

P3C )
Cocompact discontinuous group for X = G=H
Thm G=H admits a cocompact, discontinuous gp �.

Proof. Take � �
cocompact

L = SO(4; 1).
Function space on X = G=H

Thm If � 2 bG is realized in L2(G=H),
then �jL decomposes discretely.
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Compact-like linear/non-linear actions

H= L2(G=H); L2(G=�): Hilbert spaceLyH discrete decomposability� � � L behaves nicely in U(H) (unitary operators)

as if it were a compact group

M= G=H: topological spaceLyM proper actions� � � L behaves nicely in Homeo(M)

as if it were a compact group

Global Geometry and Analysis on Locally Symmetric Spaces – p.25/52



proper + discrete= properly discont.

action properly discont. actionk

action proper action+
group is discrete
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Local to global

� � G � H
Knowledge of discrete subgp �=) ( criterion of t (Thm B)

Knowledge of �-actions on G=H
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Local to global

� � G � H
Knowledge of discrete subgp �=) ( criterion of t (Thm B)

Knowledge of �-actions on G=H
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Local to global

� � G � H
Knowledge of discrete subgp �=) ( criterion of t (Thm B)

Knowledge of �-actions on G=H
E.g. existence problem of cocompact discont. gp

rigidity / deformation
. . .
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Local to global

� � G � H
Knowledge of discrete subgp �=) ( criterion of t (Thm B)

Knowledge of �-actions on G=H

G=H| {z }
local geometric structure

! �|{z}

global

nG=H
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Rigidity/deformation

Positivity of ‘metric’ is crucial?

� � L
- \G y X
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Rigidity/deformation

Positivity of ‘metric’ is crucial?

� �

lattice

L

- \G y X
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Rigidity/deformation

Positivity of ‘metric’ is crucial?

� �

lattice

L

-

\G

y X
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Rigidity/deformation

Positivity of ‘metric’ is crucial?

� �

lattice

L

-

\G isometryy pseudo-RiemannianX
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Rigidity/deformation

Positivity of ‘metric’ is crucial?

� rigid�

lattice

L
deform - \G isometryy pseudo-RiemannianX
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Rigidity/deformation

Positivity of ‘metric’ is crucial?

� rigid�

lattice

L
deform - \G isometryy pseudo-RiemannianX

proper discontinuity
may break down
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Rigidity, stability, and deformation

��

G yX

��0�0 � �0 = g�g�1 (9g 2 G)�0yX

)
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Rigidity, stability, and deformation

� properly discont.� G yX

��0�0 � �0 = g�g�1 (9g 2 G)�0yX

)
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Rigidity, stability, and deformation

� properly discont.� G yX��0
Suppose �0 is ‘close to’ �

�0 = g�g�1 (9g 2 G)�0yX

)
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Rigidity, stability, and deformation

� properly discont.� G yX��0
Suppose �0 is ‘close to’ �

�0 = g�g�1 (9g 2 G)�0yX

)
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Rigidity, stability, and deformation

� properly discont.� G yX��0
Suppose �0 is ‘close to’ �

(R) (local rigidity) �0 = g�g�1 (9g 2 G)

�0yX

)
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Rigidity, stability, and deformation

� properly discont.� G yX��0
Suppose �0 is ‘close to’ �

(R) (local rigidity) �0 = g�g�1 (9g 2 G)

(S) (stability) �0yX properly discont.

)
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Rigidity, stability, and deformation

� properly discont.� G yX��0
Suppose �0 is ‘close to’ �

(R) (local rigidity) �0 = g�g�1 (9g 2 G)

(S) (stability) �0yX properly discont.

In general,

)

Global Geometry and Analysis on Locally Symmetric Spaces – p.29/52



Rigidity, stability, and deformation

� properly discont.� G yX��0
Suppose �0 is ‘close to’ �

(R) (local rigidity) �0 = g�g�1 (9g 2 G)

(S) (stability) �0yX properly discont.

In general,

(R) ) (S).
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Rigidity, stability, and deformation

� properly discont.� G yX��0
Suppose �0 is ‘close to’ �

(R) (local rigidity) �0 = g�g�1 (9g 2 G)

(S) (stability) �0yX properly discont.

In general,

(R) ) (S).

(S) may fail (so does (R)).
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Local rigidity and deformation

� � GyX = G=H cocompact, discontinuous gp

General Problem
1. When does local rigidity (R) fail?
2. Does stability (S) still hold?

H
� G
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Local rigidity and deformation

� � GyX = G=H cocompact, discontinuous gp

General Problem
1. When does local rigidity (R) fail?
2. Does stability (S) still hold?

Point: for non-compact H
1. (good aspect) There may be large room for

deformation of � in G.
2. (bad aspect) Properly discontinuity may fail

under deformation.
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Rigidity Theorem

1 G=feg ' (G�G)=�G 2� � G simple Lie gp

9 � () G � SL(2; R )

9 � () G � SO(n+ 1; 1) SU(n; 1) (n = 1; 2; 3; :::)
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Rigidity Theorem

1 �yG=feg () (�� 1)y (G�G)=�G 2� � G simple Lie gp

9 � () G � SL(2; R )

9 � () G � SO(n+ 1; 1) SU(n; 1) (n = 1; 2; 3; :::)
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Rigidity Theorem

1 �yG=feg () (�� 1)y (G�G)=�G 2� � G simple Lie gp

Fact (Selberg–Weil’s local rigidigy, 1964)9uniform lattice � admitting continuous deformations for 1() G � SL(2; R ) (loc. isom).

9 � () G � SO(n+ 1; 1) SU(n; 1) (n = 1; 2; 3; :::)
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Rigidity Theorem

1 �yG=feg () (�� 1)y (G�G)=�G 2� � G simple Lie gp

Fact (Selberg–Weil’s local rigidigy, 1964)9uniform lattice � admitting continuous deformations for 1() G � SL(2; R ) (loc. isom).

Thm (K– )9uniform lattice � admitting continuous deformations for 2() G � SO(n+ 1; 1) or SU(n; 1) (n = 1; 2; 3; :::).
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Rigidity Theorem

1 �yG=feg () (�� 1)y (G�G)=�G 2� � G simple Lie gp

Fact (Selberg–Weil’s local rigidigy, 1964)9uniform lattice � admitting continuous deformations for 1() G � SL(2; R ) (loc. isom).

Thm (K– )9uniform lattice � admitting continuous deformations for 2() G � SO(n+ 1; 1) or SU(n; 1) (n = 1; 2; 3; :::).() trivial representation is not isolated in the unitary dual
(not having Kazhdan’s property (T))
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Rigidity Theorem

1 �yG=feg () (�� 1)y (G�G)=�G 2� � G simple Lie gp

Fact (Selberg–Weil’s local rigidigy, 1964)9uniform lattice � admitting continuous deformations for 1() G � SL(2; R ) (loc. isom).

Thm (K– )9uniform lattice � admitting continuous deformations for 2() G � SO(n+ 1; 1) or SU(n; 1) (n = 1; 2; 3; :::).
Local rigidity (R) may fail for pseudo-Riemannian symm. sp.
even for high and irreducible case!
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Rigidity Theorem

1 �yG=feg () (�� 1)y (G�G)=�G 2� � G simple Lie gp

Fact (Selberg–Weil’s local rigidigy, 1964)9uniform lattice � admitting continuous deformations for 1() G � SL(2; R ) (loc. isom).

Thm (K– )9uniform lattice � admitting continuous deformations for 2() G � SO(n+ 1; 1) or SU(n; 1) (n = 1; 2; 3; :::).
Method: use the criterion of t

() criterion for properly discontinuous actions)
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Rigidity Theorem

1 �yG=feg () (�� 1)y (G�G)=�G 2� � G simple Lie gp

Fact (Selberg–Weil’s local rigidigy, 1964)9uniform lattice � admitting continuous deformations for 1() G � SL(2; R ) (loc. isom).

Thm (K– )9uniform lattice � admitting continuous deformations for 2() G � SO(n+ 1; 1) or SU(n; 1) (n = 1; 2; 3; :::).
Local rigidity (R) may fail.

Global Geometry and Analysis on Locally Symmetric Spaces – p.31/52



Rigidity Theorem

1 �yG=feg () (�� 1)y (G�G)=�G 2� � G simple Lie gp

Fact (Selberg–Weil’s local rigidigy, 1964)9uniform lattice � admitting continuous deformations for 1() G � SL(2; R ) (loc. isom).

Thm (K– )9uniform lattice � admitting continuous deformations for 2() G � SO(n+ 1; 1) or SU(n; 1) (n = 1; 2; 3; :::).
Local rigidity (R) may fail. Stability (S) still holds.
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Rigidity Theorem

1 �yG=feg () (�� 1)y (G�G)=�G 2� � G simple Lie gp

Fact (Selberg–Weil’s local rigidigy, 1964)9uniform lattice � admitting continuous deformations for 1() G � SL(2; R ) (loc. isom).

Thm (K– )9uniform lattice � admitting continuous deformations for 2() G � SO(n+ 1; 1) or SU(n; 1) (n = 1; 2; 3; :::).
Local rigidity (R) may fail. Stability (S) still holds.� � � Solution to Goldman’s stability conjecture (1985), 3-dim case
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Existence problem of compact quotients

(� �)

G � H

(G;H)�� �yG=H� �nG=H
G=H = SL(2; R )=SO(2)�nG=H ' � � � (g � 2)

H
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Existence problem of compact quotients

(� �) G � H
General Problem For which pair (G;H)

does there exist a discrete subgroup � s.t.� �yG=H properly discont, freely,� �nG=H is compact (or of finite volume) ?

G=H = SL(2; R )=SO(2)�nG=H ' � � � (g � 2)
H
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Existence problem of compact quotients

(� �) G � H
General Problem For which pair (G;H)

does there exist a discrete subgroup � s.t.� �yG=H properly discont, freely,� �nG=H is compact (or of finite volume) ?

G=H = SL(2; R )=SO(2) (Riemannian symm. sp.)�nG=H ' � � � (g � 2)

H
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Existence problem of compact quotients

(� �) G � H
General Problem For which pair (G;H)

does there exist a discrete subgroup � s.t.� �yG=H properly discont, freely,� �nG=H is compact (or of finite volume) ?

G=H = SL(2; R )=SO(2) (Riemannian symm. sp.)�nG=H ' � � � (g � 2)
Consider the case when H is non-compact.
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Space forms (definition)

(M; g) : pseudo-Riemannian mfd,
geodesically complete

Def. (M; g) is a space form() sectional curvature � is constant
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Space forms (examples)

Space form � � � (Signature (p; q) of pseudo-Riemannian metric g
Curvature � 2 f+; 0;�g

E.g. q = 0 (Riemannian mfd)
sphere Sn R n hyperbolic sp� > 0 � = 0 � < 0

q = 1
� > 0 � = 0 � < 0
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Space forms (examples)

Space form � � � (Signature (p; q) of pseudo-Riemannian metric g
Curvature � 2 f+; 0;�g

E.g. q = 0 (Riemannian mfd)
sphere Sn R n hyperbolic sp� > 0 � = 0 � < 0

E.g. q = 1 (Lorentz mfd)
de Sitter sp Minkowski sp anti-de Sitter sp� > 0 � = 0 � < 0
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Space form problem

Space form problem for pseudo-Riemannian mfds

Local Assumption
signature (p; q), curvature � 2 f+; 0;�g+

Global Results� Do compact quotients exist?

� What groups can arise as their fundamental groups?
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Space form problem

Space form problem for pseudo-Riemannian mfds

Local Assumption
signature (p; q), curvature � 2 f+; 0;�g+

Global Results� Do compact quotients exist?
Is the universe closed?� What groups can arise as their fundamental groups?
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2-dim’l compact space forms

Riemannian case (() signature (2; 0))Mg (g � 2)� � �
curvature � > 0 � = 0 � < 0

() (1; 1)

� > 0 � < 0
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2-dim’l compact space forms

Riemannian case (() signature (2; 0))Mg (g � 2)� � �
curvature � > 0 � = 0 � < 0

Lorentz case (() signature (1; 1))
compact forms do NOT exist

for � > 0 and � < 0
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Compact space forms (� < 0)
Geometry () Group theoretic formulation

Compact space forms exist
for � < 0 and signature (p; q)() Cocompact discont. gps exist
for symmetric sp O(p; q + 1)=O(p; q)
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Compact space forms (� < 0)
Riemannian case � � � hyperbolic space

Compact quotients() Cocompact discont. gp for O(n; 1)=O(n)�O(1)

() O(n; 1)

| {z } | {z } � � �
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Compact space forms (� < 0)
Riemannian case � � � hyperbolic space

Compact quotients() Cocompact discont. gp for O(n; 1)=O(n)�O(1)() Cocompact discrete subgp of O(n; 1)
(uniform lattice)

| {z } | {z } � � �
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Compact space forms (� < 0)
Riemannian case � � � hyperbolic space

Compact quotients() Cocompact discont. gp for O(n; 1)=O(n)�O(1)() Cocompact discrete subgp of O(n; 1)
(uniform lattice)

Exist by Siegel, Borel| {z }
arithmetic

, Vinberg, Gromov–Piateski-Shapiro| {z }

non-arithmetic

� � �

Global Geometry and Analysis on Locally Symmetric Spaces – p.38/52



Space form conjecture� < 0
For pseudo-Riemannian mfd of signature (p; q)

Thm Compact space forms of � < 0 exist(=

 q p = 0 $ � > 0 q = 0 p q = 1 p � 0 mod 2 q = 3 p � 0 mod 4 z}|{ q = 7 p = 8(=  

=)q = 1 p � q pq
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Space form conjecture� < 0
For pseudo-Riemannian mfd of signature (p; q)

Thm Compact space forms of � < 0 exist(= 1 q any, p = 0 ($ � > 0)

2 q = 0, p any (hyperbolic sp)

 q = 1 p � 0 mod 2 q = 3 p � 0 mod 4 z}|{ q = 7 p = 8

(= True (Proved (1950–2005))
1 2 (Riemmanian)



=)q = 1 p � q pq
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Space form conjecture� < 0
For pseudo-Riemannian mfd of signature (p; q)

Thm Compact space forms of � < 0 exist(= 1 q any, p = 0 ($ � > 0)

2 q = 0, p any (hyperbolic sp)

3 q = 1, p � 0 mod 2

 q = 3 p � 0 mod 4 z}|{ q = 7 p = 8

(= True (Proved (1950–2005))
1 2 (Riemmanian)
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Space form conjecture� < 0
For pseudo-Riemannian mfd of signature (p; q)

Thm Compact space forms of � < 0 exist(= 1 q any, p = 0 ($ � > 0)

2 q = 0, p any (hyperbolic sp)

3 q = 1, p � 0 mod 2
4 q = 3, p � 0 mod 4

z}|{ q = 7 p = 8

(= True (Proved (1950–2005))
1 2 (Riemmanian)
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Space form conjecture� < 0
For pseudo-Riemannian mfd of signature (p; q)
Thm Compact space forms of � < 0 exist(= 1 q any, p = 0 ($ � > 0)

2 q = 0, p any (hyperbolic sp)

3 q = 1, p � 0 mod 2
4 q = 3, p � 0 mod 4 z}|{ (pseudo-Riemannian)

5 q = 7, p = 8(= True (Proved (1950–2005))
( 1 2 (Riemmanian) ; 3 4 5 (pseudo-Riemannian) Kulkarni, K– )

=)q = 1 p � q pq
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Space form conjecture� < 0
For pseudo-Riemannian mfd of signature (p; q)
Thm Conjecture Compact space forms of � < 0 exist(==) 1 q any, p = 0 ($ � > 0)

2 q = 0, p any (hyperbolic sp)

3 q = 1, p � 0 mod 2
4 q = 3, p � 0 mod 4 z}|{ (pseudo-Riemannian)

5 q = 7, p = 8(= True (Proved (1950–2005))
( 1 2 (Riemmanian) ; 3 4 5 (pseudo-Riemannian) Kulkarni, K– )

=)q = 1 p � q pq
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Space form conjecture� < 0
For pseudo-Riemannian mfd of signature (p; q)
Thm Conjecture Compact space forms of � < 0 exist(==) 1 q any, p = 0 ($ � > 0)

2 q = 0, p any (hyperbolic sp)

3 q = 1, p � 0 mod 2
4 q = 3, p � 0 mod 4 z}|{ (pseudo-Riemannian)

5 q = 7, p = 8(= True (Proved (1950–2005))
( 1 2 (Riemmanian) ; 3 4 5 (pseudo-Riemannian) Kulkarni, K– )=) Partial answers:q = 1, p � q, or pq is odd

Hirzebruch’s proportionality principle (K–Ono)
Global Geometry and Analysis on Locally Symmetric Spaces – p.39/52



Methods

Understanding proper actions (t;�),
cohomology of discrete groups+

L G=H

� L) � G=H

�yG=H () �yG=H 0
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Methods

Understanding proper actions (t;�),
cohomology of discrete groups+

Construction of lattice

Find a connected subgp L that acts on G=H properly

and cocompactly.

Take a uniform lattice � in L) � is a uniform lattice for G=H.

�yG=H () �yG=H 0
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Methods

Understanding proper actions (t;�),
cohomology of discrete groups+

Construction of lattice

Find a connected subgp L that acts on G=H properly

and cocompactly.

Take a uniform lattice � in L) � is a uniform lattice for G=H.

Obstruction of lattice

Characteristic classes

Comparison theorem: �yG=H () �yG=H 0
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Compact quotients forSL(n)=SL(m)
Problem: Does there exist compact Hausdorff quotients ofSL(n; F )=SL(m; F ) (n > m; F = R ; C ; H )
by discrete subgps of SL(n; F )?

n
n m

m
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SL(n)=SL(m) case

Conjecture SL(n)=SL(m) (n > m > 1)
has no uniform lattice.

n3 > [m+12 ℄n > 2m
n � 2mn = m+ 1; m even(n � 5;m = 2)n � 4;m = 2
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SL(n)=SL(m) case

Conjecture SL(n)=SL(m) (n > m > 1)
has no uniform lattice.

K– criterion of proper actions n3 > [m+12 ℄
Zimmer orbit closure thm (Ratner) n > 2m
Labourier–Mozes–Zimmer

ergodic action n � 2m

Benoist criterion of proper actions n = m+ 1; m even

Margulis unitary representation (n � 5;m = 2)

Shalom unitary representation n � 4;m = 2
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Compact quotients forSL(n)=SL(m)
Do not exist if n > m satisfies:

-

6
1 2 3 4 5 6 7 8 9 10 11 12 13 n1

2

3

4

5

6

7

8

m
� � � � � � � � � � �� � � � � � � � � �� � � � � � � � �� � � � � � � �� � � � � � �� � � � � �� � � � �

h��� h h h h h h h h h h hh h h h h h h hh h h h h h h hh h h h hh h h h hh hh h

h � � � � � � � � �� � � � � � �� � � � �� � ��
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4

4
4

4
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e
e

ee
4AAU 6
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Compact quotients forSL(n)=SL(m)
Do not exist if n > m satisfies:
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Compact quotients forSL(n)=SL(m)
Do not exist if n > m satisfies:
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6
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h K– (Duke Math ’92)
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Compact quotients forSL(n)=SL(m)
Do not exist if n > m satisfies:

-

6
1 2 3 4 5 6 7 8 9 10 11 12 13 n1

2

3

4

5

6

7

8

m
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h K– (Duke Math ’92)
� � � � � � � � �� � � � � � �� � � � �� � ��

� Zimmer (Jour. AMS ’94)
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Compact quotients forSL(n)=SL(m)
Do not exist if n > m satisfies:

-

6
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Compact quotients forSL(n)=SL(m)
Do not exist if n > m satisfies:

-

6
1 2 3 4 5 6 7 8 9 10 11 12 13 n1

2
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5

6
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Compact quotients forSL(n)=SL(m)
Do not exist if n > m satisfies:

-

6
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Compact quotients forSL(n)=SL(m)
Do not exist if n > m satisfies:

-

6
1 2 3 4 5 6 7 8 9 10 11 12 13 n1
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m
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Compact quotients forSL(n)=SL(m)
Do not exist if n > m satisfies:

-
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4MargulisAAU
Shalom (Ann Math 2000)6
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SL(n)=SL(m) case

Conjecture SL(n)=SL(m) (n > m > 1)
has no uniform lattice.

K– criterion of proper actions n3 > [m+12 ℄
Zimmer orbit closure thm (Ratner) n > 2m
Labourier–Mozes–Zimmer

ergodic action n � 2m

Benoist criterion of proper actions n = m+ 1; m even

Margulis unitary representation (n � 5;m = 2)

Shalom unitary representation n � 4;m = 2
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Existence of compact quotients

G=K: Riemannian symmetric space=) complexificationGC =KC : complex symmetric space

8 G=K
GC =KC() GC =KC � S7C() S4k�1C k � 3

Global Geometry and Analysis on Locally Symmetric Spaces – p.45/52



Existence of compact quotients

G=K: Riemannian symmetric space=) complexificationGC =KC : complex symmetric space

Ex. G=K = SL(n; R )=SO(n)=) complexificationGC =KC = SL(n; C )=SO(n; C )

8 G=K
GC =KC() GC =KC � S7C() S4k�1C k � 3
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Existence of compact quotients

G=K: Riemannian symmetric space=) complexificationGC =KC : complex symmetric space

Fact (Borel 1963) Compact quotients
exist for 8Riemannian symm sp. G=K.

GC =KC() GC =KC � S7C() S4k�1C k � 3
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Existence of compact quotients

G=K: Riemannian symmetric space=) complexificationGC =KC : complex symmetric space

Fact (Borel 1963) Compact quotients
exist for 8Riemannian symm sp. G=K.

Conj. Compact quotients exist for GC =KC

() GC =KC � S7C() S4k�1C k � 3
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Existence of compact quotients

G=K: Riemannian symmetric space=) complexificationGC =KC : complex symmetric space

Fact (Borel 1963) Compact quotients
exist for 8Riemannian symm sp. G=K.

Conj. Compact quotients exist for GC =KC() GC =KC � S7C or complex group mfd

() S4k�1C k � 3
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Existence of compact quotients

G=K: Riemannian symmetric space=) complexificationGC =KC : complex symmetric space

Fact (Borel 1963) Compact quotients
exist for 8Riemannian symm sp. G=K.

Conj. Compact quotients exist for GC =KC() GC =KC � S7C or complex group mfd( proved by K–Yoshino 05,) remaining case S4k�1C , k � 3 (Benoist, K– )
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Existence of compact locally symm. sp

Theorem Exists a uniform lattice for the following G=H:
Exists a non-uniform lattice for G=H, too.

space form indefinite-Kähler complex symmetricG=H1 SU(2; 2n)=Sp(1; n) n = 1; 2; 3; : : :2 SU(2; n)=U(1; n) n = 2; 4; 6; : : :3 SO(2; 2n)=U(1; n) n = 1; 2; 3; : : :4 SO(2; n)=SO(1; n) n = 2; 4; 6; : : :5 SO(4; n)=SO(3; n) n = 4; 8; 12; : : :6 SO(4; 4)=SO(4; 1) � SO(3)7 SO(4; 3)=SO(4; 1) � SO(2)8 SO(8; 8)=SO(7; 8)9 SO(8; C )=SO(7; C )10 SO(8; C )=SO(7; 1)11 SO�(8)=U(3; 1)12 SO�(8)=SO�(6)� SO�(2)
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Global analysis on�nG=H
What can we expect?

G=H

covering #�nG=H

G-invariant diff. op. eD
e.g. Laplacian 

differential operator D

H�� volume(�nG) =1
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Global analysis on�nG=H
What can we expect?

G=H

covering #�nG=H

G-invariant diff. op. eD
e.g. Laplacian 

differential operator D

H�� volume(�nG) =1
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Global analysis on�nG=H
What can we expect?

G=H

covering #�nG=H

G-invariant diff. op. eD
e.g. Laplacian 

differential operator D

H�� volume(�nG) =1
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Global analysis on�nG=H
What can we expect?

G=H

covering #�nG=H

G-invariant diff. op. eD
e.g. Laplacian 

differential operator D

H�� volume(�nG) =1
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Global analysis on�nG=H
General Problem: Find spectrum theory on L2(�nG=H)

G=H

covering #�nG=H

G-invariant diff. op. eD
e.g. Laplacian 

differential operator D

H�� volume(�nG) =1
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Global analysis on�nG=H
General Problem: Find spectrum theory on L2(�nG=H)

G=H

covering #�nG=H

G-invariant diff. op. eD
e.g. Laplacian 

differential operator D

Difficulties for the non-compact H case��

volume(�nG) =1
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Global analysis on�nG=H
General Problem: Find spectrum theory on L2(�nG=H)

G=H

covering #�nG=H

G-invariant diff. op. eD
e.g. Laplacian 

differential operator D

Difficulties for the non-compact H case� Laplacian is not elliptic� volume(�nG) =1
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Observation for R p;q

R p;q = (R p+q ; dx21 + � � � + dx2p � dx2p+1 � � � � � dx2p+q)� = �2�x21 + � � � + �2�x2p � �2�x2p+1 � � � � � �2�x2p+q� : lattice for R p+q (' Zp+q)X� := �nR p+q (' Tp+q)
Observation Spe(X�;�) � R

can be
(
discrete
dense (cf. Oppenheim conjecture)

depending on �.
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Spectra independent of�
Question Do there exist universal spectra of �

on �nG=H that are independent of � ?

(L1 \ C1)(G=H) R��! C1(�nG=H) 

G=H = R p+q ; G=K ( )L1
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Spectra independent of�
Question Do there exist universal spectra of �

on �nG=H that are independent of � ?

The answer may be NO.
If yes, how to find them?

Naive idea (L1 \ C1)(G=H) R��! C1(�nG=H)

eigenfunction  eigenfunction

This naive idea does not work forG=H = R p+q ; G=K (Riemannian symmetric sp.)

because L1 eigenfunction of Laplacian must be zero!
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Construction of eigenfunction on�nG=H
Idea (L1 \ C1)(G=H) R��! C1(�nG=H)

eigenfunction  eigenfunction

G=H

rankG=H = rankK=H \K
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Construction of eigenfunction on�nG=H
Idea (L1 \ C1)(G=H) R��! C1(�nG=H)

eigenfunction  eigenfunction

Idea works for semisimple symmetric sp. G=H !

under the Flensted-Jensen – Matsuki–Oshima conditionrankG=H = rankK=H \K
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Universal Spe�(�nG=H)

G=H = U(2; 2)=U(1)� U(1; 2)' f[z1 : z2 : z3 : z4℄ 2 P3C : jz1j2 + jz2j2 > jz3j2 + jz4j2g
complex 3-dim’l (real 6-dim’l preudo-Riemannian mfd)�: torsion free, cocompact lattice of Spin(4; 1)

Note Vol(�nG) =1, �: ultrahyperbolic operator

Thm C 1) M� := �nG=H is a 6-dim’l compact mfd
with indefinite metric of signature (4; 2).

2) � is essentially self-adjoint on L2(M�).
3) Spe�(M�) � f2n(n+ 3) : n 2 Z ; n� 0g.
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Idea of proof

� �

lattice

Spin(4; 1) � U(2; 2) � U(1)� U(1; 2)

�� ��G=H �� ��G # L=) =)�� ��Spe�(�nG=H)=)�� ���nG=H
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Idea of proof

� �

lattice
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Idea of proof

� �

lattice

L � G � H
Induction Restriction�� ��Analysis on G=H �� ��Branching problem G # L

Flensted-Jensen, Oshima
Matsuki, Sekiguchi, Delorme
van den Ban, Schlichtkrull

=) =) Thm A�� ��Thm C Spe�(�nG=H)=)�� ��Geometry of �nG=H Thm B
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Idea of proof

� �

lattice

L � G � H
Induction Restriction�� ��Analysis on G=H �� ��Branching problem G # L

Flensted-Jensen, Oshima
Matsuki, Sekiguchi, Delorme
van den Ban, Schlichtkrull

=) =) Thm A�� ��Thm C Spe�(�nG=H)=)�� ��Geometry of �nG=H Thm B

Happy Birthday to Professor Oshima!
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