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Non-compact Lie groups
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compact groups
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Compact-like linear/non-linear actions

- N

H: Hilbert space
LN

Non-compact Lie groups occasionally behave nicely when
embedded in co-dim groups as if they were compact
groups.
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Compact-like linear/non-linear actions

- N

H: Hilbert space
LN

L: compact = unitarizable

Unitarizability might be interpreted as one of
“compact-like properties”.

Non-compact Lie groups occasionally behave nicely when
embedded in co-dim groups as if they were compact
groups.
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Compact-like linear/non-linear actions

- N

H: Hilbert space

L™YH unitarizability

--- L behaves nicely in B(#) (bounded operators)
as if it were a compact group

Non-compact Lie groups occasionally behave nicely when
embedded in co-dim groups as if they were compact
groups.

o |

Global Geometry and Analysis on Locally Symmetric Spaces — p.3/52



Compact-like linear/non-linear actions

- N

H: Hilbert space
LN ?

--- L behaves nicely in U(#) (unitary operators)
as if it were a compact group
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Compact-like linear/non-linear actions

- N

H: Hilbert space
L H discrete decomposability

--- L behaves nicely in U(#) (unitary operators)
as if it were a compact group
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Compact-like linear/non-linear actions

- N

H: Hilbert space
L H discrete decomposability

--- L behaves nicely in U(#) (unitary operators)
as if it were a compact group

M topological space
LM ?

--- L behaves nicely in Homeo(M)
as if it were a compact group
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Compact-like linear/non-linear actions

- N

H: Hilbert space
L H discrete decomposability

--- L behaves nicely in U(#) (unitary operators)
as if it were a compact group

M topological space
LM proper actions

le. LxM—MxM, (g,z)— (z,g-x)Iis proper

o |

Global Geometry and Analysis on Locally Symmetric Spaces — p.3/52



Compact-like linear/non-linear actions

- N

H: Hilbert space
L H discrete decomposability

--- L behaves nicely in U(#) (unitary operators)
as if it were a compact group

M topological space
LM proper actions

--- L behaves nicely in Homeo(M)
as if it were a compact group
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Compact-like linear/non-linear actions

- N

H = L*(G/H), L*(G/I') . Hilbert space

L H discrete decomposability

--- L behaves nicely in U(#) (unitary operators)
as if it were a compact group

M = G /H : topological space
LM proper actions

--- L behaves nicely in Homeo(M)
as if it were a compact group
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Two important cases
G < G
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1) Induction
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Decomposition into irreducible reps

- N

Two important cases
G < G

subgroup

1) Induction: G'1G
Plancherel Formula
(e.g. Analysis on homo. space G/G’)

2) Restriction: G | &
Branching Law
(e.g. Tensor product, ...)
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Special restrictions— L*(G/H)
- -

éDGDH, T irredrepofé



Special restrictions— L*(G/H)
- -

éDGDH, T irredrepofé

Special cases of restriction «|s are
unitarily equivalent to L?(G/H) (concretely/abstractly).
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Special restrictions— L*(G/H)
- -

éDGDH, T irredrepofé

Special cases of restriction «|s are
unitarily equivalent to L?(G/H) (concretely/abstractly).

® G/H = GL(n,R)/O(n)

® G/H=GL(p+q,R)/GL(p,R) x GL(¢q,R)
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Special restrictions— L*(G/H)
- -

éDGDH, T irredrepofé

Special cases of restriction «|s are
unitarily equivalent to L?(G/H) (concretely/abstractly).

® G/H=GL(n,R)/O(n)
< (G, 1) = (Sp(n,R), holo. disc. series)
o G/P{v: GL(p+q,R)/GL(p,R) x GL(q,R)

< (G, m) = (G x G, certain degenerate principal series)
(‘canonical rep’ of Gelfand—Graev—-Vershik)
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Special restrictions— L*(G/H)
- -

éDGDH, T irredrepofé

Special cases of restriction «|s are
unitarily equivalent to L?(G/H) (concretely/abstractly).

® G/H=GL(n,R)/O(n)
< (G, 1) = (Sp(n,R), holo. disc. series)
o G/P{v: GL(p+q,R)/GL(p,R) x GL(q,R)

< (G, m) = (G x G, certain degenerate principal series)
(‘canonical rep’ of Gelfand—Graev—-Vershik)

L Many other restrictions 7 |s cannot be reduced to L2(G/H)J
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Discretely decomposable restrictions

fRestrict 7 € G to a (reductive) subgroup G’ of G. T



Discretely decomposable restrictions

fRestrict 7 € G to a (reductive) subgroup G’ of G. T

Branching law
J

| ~ ng(7) Tdu(r) (direct integral)
——

multiplicity
M

N U {oo}
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Discretely decomposable restrictions

fRestrict 7 € G to a (reductive) subgroup G’ of G. T

Branching law
J

W‘Glﬁ

' ng(7) 7dup(r) (directintegral)
G/ N "
multiplicity

m
N U {oo}

G'. compact = discretely decomposable
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Discretely decomposable restrictions

fRestrict 7 € G to a (reductive) subgroup G’ of G. T

Branching law
J

W‘GIZ

' ng(7) 7dup(r) (directintegral)
G/ N "
multiplicity

M

N U {oo}

G'. compact = discretely decomposable

discrete decomposability - - - compact-like actions
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Discretely decomposable restrictions

fRestrict 7 € G to a (reductive) subgroup G’ of G. T

Branching law
—
W\G'ﬁ/A n.(7) Tdu(rT) (direct integral)
G S~
multiplicity
M

N U {oo}

Question (to find “nicest settings™)
e When does the restriction 7| decompose discretely?

e When are all multiplicities finite?
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Discretely decomposable restrictions

fRestrict 7 € G to a (reductive) subgroup G’ of G. T

Branching law
ﬂ
/ ng(7) Tdu(r) (direct integral)

v

7T‘G/ ~ -
G’ "
multiplicity

M

N U {oo}

Question (to find “nicest settings”)
e When does the restriction 7| decompose discretely?
e When are all multiplicities finite?
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Two closed cones

| .

GG O K DO T

max compact max torus

Define two closed cones in /—1t*:

G DG

L |
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Two closed cones

| .

GG O K DO T

max compact max torus

Define two closed cones in /—1t*:

asymptotic K-support
(Kashiwara—\Vergne)
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Two closed cones

| N

GG O K DO T

max compact max torus

Define two closed cones in /—1t*:

asymptotic K-support
(Kashiwara—Vergne)

GDG ~ pu(T*(K/K")) momentum image
u U p:T*(K/K') — /—1¢*
K> K’
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Criterion of admissible restriction

f Theorem A (Criterion) (K- Ann Math '98, Progr Math '05) T
letG’ ¢ Gandreg. If

reductive /R
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Criterion of admissible restriction

f Theorem A (Criterion) (K- Ann Math '98, Progr Math '05)
letG’ ¢ Gandreg. If

reductive /R

() pT(K/K') N ASg(m) ={0} in R",


http://dx.doi.org/10.2307/120963
http://dx.doi.org/10.1007/b139076

Criterion of admissible restriction

f Theorem A (Criterion) (K- Ann Math '98, Progr Math '05)
letG’ ¢ Gandreg. If

reductive /R 7_

pl

|
K  w(TK/K') N ASk(r) = {0} in 1t
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Criterion of admissible restriction

f Theorem A (Criterion) (K- Ann Math '98, Progr Math '05)
letG’ ¢ Gandreg. If

reductive /R 7_

pl

|
() pT(K/K') N ASg(mr) = {0} in /-1t
< 7|k IS K'-admissible.



http://dx.doi.org/10.2307/120963
http://dx.doi.org/10.1007/b139076

Criterion of admissible restriction

f Theorem A (Criterion) (K- Ann Math '98, Progr Math '05) T
letG’ ¢ Gandreg. If

reductive /R 7_

pl

|
() p(T(K/K)) N ASk(r) = {0} in /-1t
< 7|k IS K'-admissible.
In particular, the restriction n|q IS
discretely decomposable & of finite multiplicities
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http://dx.doi.org/10.2307/120963
http://dx.doi.org/10.1007/b139076

Criterion of admissible restriction

f Theorem A (Criterion) (K- Ann Math '98, Progr Math '05) T
letG’ ¢ Gandreg. If

reductive /R 7_

pl

|
() p(T(K/K)) N ASk(r) = {0} in /-1t
< 7|k IS K'-admissible.
In particular, the restriction n|q IS
discretely decomposable & of finite multiplicities

. compact-like linear actions
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Special cases of Thm A

Ex1l w(T"(K/K))={0}<—= K=K <—< G DK

— Harish-Chandra’s admissibility thm

EX.2 ASkg(m) = {0} <= dim 7 < ¢
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Special cases of Thm A

Ex1l w(T"(K/K))={0}<—= K=K <—< G DK

— Harish-Chandra’s admissibility thm

EX.2 ASkg(m) = {0} <= dim 7 < ¢

Ex.3 (G,G"): reductive symmetric pair

— u(T*(K/K")) = positive Weyl chamber
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Special cases of Thm A

Ex1l w(T"(K/K))={0}<—= K=K <—< G DK

— Harish-Chandra’s admissibility thm
EX.2 ASkg(m) = {0} <= dim 7 < ¢

Ex.3 (G,G): reductive symmetric pair
— u(T*(K/K")) = positive Weyl chamber

Ex.4 (Vogan '80) «: minimal rep
— ASk(m) = R,
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Special cases of Thm A

Ex1l w(T"(K/K))={0}<—= K=K <—< G DK

— Harish-Chandra’s admissibility thm
EX.2 ASkg(m) = {0} <= dim 7 < ¢

Ex.3 (G,G): reductive symmetric pair
— u(T*(K/K")) = positive Weyl chamber

Ex.4 (Vogan '80) «: minimal rep
— ASk(m) = R,

Ex.5 m=A44(\) (e.g. discrete series)
—> ASg(7m) C Ry-spanof A(unp,t)

(q=1+u, g=t+p) J
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Criterion for compact-like actions

- N

Some further developments in this framework
(compact-like branching laws)

by D. Gross—N. Wallach, S.-T. Lee—H. Loke,
M. Duflo—J. Vargas, B. @drsted—B. Speh,
J. S. Huang-D. Vogan, K-T. Oda, ...
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Compact-like linear/non-linear actions

| N

H: Hilbert space
LVH discrete decomposability

- L behaves nicely in U(#) (unitary operators)
as if it were a compact group

M topological space
L' M proper actions

- L behaves nicely in Homeo(M)
as If it were a compact group

| |
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Criterion for compact-like actions

f G :  reductive Lie group DK T
U U

G’ O K’

p: TH(K/K') — +/—1¢" momentum map

ThmA neG
p(T*(K/K')) N ASg () = {0}
— 7| IS discrete decomposable.
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Proper action

action
L v X
top. gp top. sp (locally compact)



Proper action

action
L v X
top. gp top. sp (locally compact)
X L

subsetu ~ U
S Lsg:={v€L:~v5NS # o}
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Proper action

action
L v X
top. gp top. sp (locally compact)
X L

subsetu ~ U
S Lsg:={v€L:~v5NS # o}

S={p} = Lg = stabilizer of p

|
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Proper action

action
L v X
top. gp top. sp (locally compact)
X L

subsetu ~ U
S Lsg:={v€L:~v5NS # o}

71 gLS

—
726

|
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Proper action

action
L v X
top. gp top. sp (locally compact)
X L

subsetu ~ U
S Lsg:={v€L:~v5NS # o}

Def. L'V X isproper <= Lgis compact
(VS: compact)

L'*Xisfree <= #Ly =1 (Y€ X)

|
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Delicate examples
B L7X -

(A) free action N proper action
(B) all orbits are closed - L\ X Hausdorff
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Delicate examples
B L7X -

(A) free action # proper action
(B) all orbits are closed %= L\ X Hausdorff

Counterexamples to (A) & (B) even for

L~RF X=G/H where LC G DH

Lie groups
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Delicate examples
B L7X -

(A) free action # proper action
(B) all orbits are closed %= L\ X Hausdorff

Counterexamples to (A) & (B) even for

L~RF X=G/H where LC G DH

Lie groups

Ex. (G = SL(QvR))

L=R"X =R2\ {0} (Lorentz isometry)
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Delicate examples
L7 X ]

(A) free action # proper action
(B) all orbits are closed %= L\ X Hausdorff

Counterexamples to (A) & (B) even for

L~RF X=G/H where LC G DH

Lie groups

Ex. (G = 1-conn. nilpotent Lie gp)
L=R2"Y X = R5 (nilmanifolds)
(Yoshino 2004, counterexample to Lipsman’s conjecture) J
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proper + discrete= properly discont.

- N

properly discont. action

proper action

_|_
group Is discrete




proper + discrete= properly discont.

-

action

action

properly discont. action

proper action

_|_
group Is discrete

-



Criterion for discontinuous groups

- N

Setting

L Cc G D H
discrete subgp closed subgp

General Problem

Find effective methods to determine whether
L"YG/H is properly discont.

o |
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Criterion for discontinuous groups

- N

Setting

H
closed subgp

General Problem
Find effective methods to determine whether

LY/ is propery-ciseont

proper
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h and ~ (definition)
f L ¢ G D H T

ldea: forget even that L and H are group
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h and ~ (definition)
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ldea: forget even that L and H are group
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h and ~ (definition)
f L ¢ G > H T

ldea: forget even that L and H are group

Det. (K-)
1) Lh H<«~—= LN SHS Is compact
for ¥ compact S c G
2) L ~ H <= 2 compactS C G
st. LC SHSand H C SLS.
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h and ~ (definition)
f L ¢ G D H T

ldea: forget even that L and H are group

Def. (K-)
1) Lh H<«~—= LN SHS Is compact

for ¥ compact S c G
2) L ~ H +<= 7 compact S c G
st. LCSHSand H C SLS.

E.g. G =R" L, H subspaces
LhH << LnNH-=/{0}.
L~H — L=H.
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M and ~

L ¢ G D H T
Forget even that L and H are group

1) L ih H <= generalization of proper actions
2) L ~ H <= economy In considering

|
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h and ~
f L ¢ G D> H T

Forget even that L and H are group

1) L ih H <= generalization of proper actions
2) L ~ H <= economy In considering

Meaning of m:
L H«< L""G/H proper action

for closed subgroups L and H
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M and ~

L ¢ G D H T
Forget even that L and H are group

1) L ih H <= generalization of proper actions
2) L ~ H <= economy In considering
Meaning of m:

L H«< L""G/H proper action

for closed subgroups L and H

~ provides economies in considering m
H~H — | HhL<+= H Mh L

|
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Criterion for m and ~

-

G;: real reductive Lie group
G = K exp(a)K: Cartan decomposition
v. G — a. Cartan projection (up to Weyl gp.)
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Criterion for m and ~

-

G;: real reductive Lie group
G = K exp(a)K: Cartan decomposition
v. G — a. Cartan projection (up to Weyl gp.)

Eg. v: GL(n,R)—R"

g > 3(log AL, log Ap)
Here, A\ > --- > )\, (> 0) are the eigenvalues of {gg.
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Criterion for m and ~

-

G;: real reductive Lie group
G = K exp(a)K: Cartan decomposition
v. G — a. Cartan projection (up to Weyl gp.)

Thm B (K-, Benoist)
1) L~HING <~ v(L)~v(H)Ina.

2) LhHING <= uv(L)hv(H)ina.
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Criterion for m and ~

- N

G;: real reductive Lie group
G = K exp(a)K: Cartan decomposition

v. G — a. Cartan projection (up to Weyl gp.)

Thm B (K-, Benoist)
1) L~HING <~ v(L)~v(H)Ina.

2) LhHING <= uv(L)hv(H)ina.

Special cases include

(1)'s = . Uniform bounds on errors in eigenvalues when a
matrix is perturbed.
(2)'s & . Criterion for properly discont. actions. J

o
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Criterion for compact-like actions

f G :  reductive Lie group DK T
U U

G’ O K’
p: TH(K/K') — +/—1¢" momentum map

ThmA 7eG, G CG
p(T*(K/K')) N ASg () = {0}
— 7| IS discrete decomposable.

o |
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Criterion for compact-like actions

f G :  reductive Lie group DK T
U U

G’ O K’

p: TH(K/K') — +/—1¢" momentum map
ThmA 7eG, G CG
p(T*(K/K')) N ASg () = {0}
— 7| IS discrete decomposable.

LCGDOH
v : G — a (Cartan projection)

Thm B (proper action)
LhHinG<«<=v(L)mv(H)ina

|
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Compact-like linear/non-linear actions

- N

H: Hilbert space
LVH discrete decomposability

- L behaves nicely in U(#) (unitary operators)
as if it were a compact group

M topological space
L' M proper actions

- L behaves nicely in Homeo(M)
as If it were a compact group

o |
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Compact-like linear/non-linear actions

- N

H = L*(G/H), L*(G/I') . Hilbert space
L "H discrete decomposability

- L behaves nicely in U(#) (unitary operators)
as if it were a compact group

M = (G /H : topological space
L' M proper actions

- L behaves nicely in Homeo(M)
as If it were a compact group

o |
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Compact-like non-linear/linear actions

- N

LCcGDOH



Compact-like non-linear/linear actions

- N

LCcGDOH

L YG/H
‘nice behavior’ (topological action)



Compact-like non-linear/linear actions

- N

LCcGDOH

L YG/H
‘nice behavior’ (topological action)

ﬂ?

{ HNLQ(G/L) (Margulis, Oh)

L"VLA(G/H) (K-)
‘nice behavior (representation theory)




Interacting example

Ex. (K-1988) (G,L)=(SO(4,2), SO(4,1))
w. discrete series of G with GK-dim 5
(quarternionic discrete series)

— w|r, IS L-admissible

ldea: Tessellation of pseudo-Riemannian mfd X
X =850(4,2)/U(2,1) (c PC)
open

o |
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Interacting example

Ex. (K-1988) (G,L)=(SO(4,2), SO(4,1))
w. discrete series of G with GK-dim 5
(quarternionic discrete series)

— w|r, IS L-admissible

ldea: Tessellation of pseudo-Riemannian mfd X
X =850(4,2)/U(2,1) (c PC)
open

I' X

lattice M G
L

o |
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Interacting example

Ex. (K-1988) (G,L)=(SO(4,2), SO(4,1))
w. discrete series of G with GK-dim 5
(quarternionic discrete series)

— w|r, IS L-admissible

ldea: Tessellation of pseudo-Riemannian mfd X
X =850(4,2)/U(2,1) (c PC)
open

discont. gp

c

lattice M G
C
L

o |
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Interacting example

Ex. (K-1988) (G,L)=(SO(4,2), SO(4,1))
w. discrete series of G with GK-dim 5
(quarternionic discrete series)

— w|r, IS L-admissible

ldea: Tessellation of pseudo-Riemannian mfd X
X =850(4,2)/U(2,1) (c PC)
open

discont. gp

C (™
lattice M G
C /1

L L*(X)

o |
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Interacting example

Ex. (K-1988) (G,L)=(SO(4,2), SO(4,1))
w. discrete series of G with GK-dim 5
(quarternionic discrete series)

— w|r, IS L-admissible

ldea: Tessellation of pseudo-Riemannian mfd X
X =850(4,2)/U(2,1) (c PC)
open

discont. gp

C (™
lattice M 5 G )
L m™ C L2 (X)

discrete series

o |
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Interacting example

Ex. (K-1988) (G,L)=(SO(4,2), SO(4,1))
w. discrete series of G with GK-dim 5
(quarternionic discrete series)

— w|r, IS L-admissible

ldea: Tessellation of pseudo-Riemannian mfd X
X =850(4,2)/U(2,1) (c PC)
open

discont. gp

C (™
lattice M 5 G )
L m™ C L2 (X)

~___7discrete series

admissible
restriction

Global Geometry and Analysis on Locally Symmetric Spaces — p.23/52




Interacting examples




Interacting examples

Pseudo-Riemannian manifold X T

X =G/H=S50(4,2)/U(2,1) (o%n P4C)

o Cocompact discontinuous group for X = G/H

Thm G/H admits a cocompact, discontinuous gp I'.

Proof. TakeI' < L =50(4,1). 1

cocompact

|
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Interacting examples

Pseudo-Riemannian manifold X T

X =G/H=S50(4,2)/U(2,1) (o%n P4C)

o Cocompact discontinuous group for X = G/H

Thm G/H admits a cocompact, discontinuous gp I'.

Proof. TakeI' < L =50(4,1). 1

cocompact

# Function spaceon X = G/H

Thm If 7 € G is realized in L%(G/H),

then 7|; decomposes discretely. J
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Compact-like linear/non-linear actions

- N

H—= L*(G/H), L*(G/T'): Hilbert space
L "H discrete decomposability

- L behaves nicely in U(#) (unitary operators)
as if it were a compact group

M= G/ H: topological space
L' M proper actions

- L behaves nicely in Homeo(M)
as If it were a compact group

o |
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proper + discrete= properly discont.
- -

action J properly discont. action

action proper action

_|_
group Is discrete




Local to global

I'cGDOH

Knowledge of discrete subgp I




Local to global

I'cGDOH

Knowledge of discrete subgp I

ﬂ@ criterion of h (Thm B)

Knowledge of I'-actions on G/H




Local to global

I'cGDOH

Knowledge of discrete subgp I

ﬂ@ criterion of h (Thm B)

Knowledge of I'-actions on G/H

E.g. existence problem of cocompact discont. gp
rigidity / deformation

|
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Local to global

I'cGDOH

Knowledge of discrete subgp I

ﬂ@ criterion of h (Thm B)

Knowledge of I'-actions on G/H

G/H = I'\G/H
v v
local geometric structure global

|
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Rigidity/deformation
=

o Positivity of ‘metric’ Is crucial?



Rigidity/deformation
=

o Positivity of ‘metric’ Is crucial?

) C L
lattice



Rigidity/deformation
=

o Positivity of ‘metric’ Is crucial?

[ C L
lattice

M

G



Rigidity/deformation
=

o Positivity of ‘metric’ Is crucial?

) C L
lattice
N
|sor/n§try pseudo-Riemannian
Q X



Rigidity/deformation
=

o Positivity of ‘metric’ Is crucial?

rigid
' C L
lattice
deform . N

\ .
ISOmetry  pseudo-Riemannian

G X



Rigidity/deformation
=

o Positivity of ‘metric’ Is crucial?

rigid
I' C L
lattice
deform ">, N

|sor/n§try pseudo-Riemannian
e X

proper discontinuity

may break down

o |
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Rigidity, stablility, and deformation
- -



Rigidity, stablility, and deformation
- -

T properly discont.
C X

GVX



Rigidity, stablility, and deformation
- -

T properly discont.
C A
G X
C
F/

Suppose IV is ‘close to’' I'



Rigidity, stablility, and deformation
- -

properly discont.

FC\A

Suppose IV is ‘close to’' I'



Rigidity, stability, and deformation
- -

T properly discont.

SN

Suppose IV is ‘close to’' I'

(R) (local rigidity) I' = ¢T'g~! (g € G)



Rigidity, stability, and deformation

- N

properly discont.

FC\




Rigidity, stability, and deformation
- -

properly discont.

FC\A

In general,

o |
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Rigidity, stability, and deformation
- -

T properly discont.

S

In general,
® (R) = (9).

o |
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Rigidity, stability, and deformation
- -

T properly discont.

S

In general,
® (R) = (9).
o (S) may fail (so does (R)).

Global Geometry and Analysis on Locally Symmetric Spaces — p.29/52



Local rigidity and deformation

FrcG' VX = G /H cocompact, discontinuous gp

General Problem
1. When does local rigidity (R) fail?

2. Does stability (S) still hold?

|

Global Geometry and Analysis on Locally Symmetric Spaces — p.30/52



Local rigidity and deformation

-

FrcG' VX = G /H cocompact, discontinuous gp

General Problem
1. When does local rigidity (R) fail?
2. Does stability (S) still hold?

Point: for non-compact H

1. (good aspect) There may be large room for
deformation of I in G.

2. (bad aspect) Properly discontinuity may fail
under deformation.

|
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Rigidity Theorem

f @ G/{e} ~ (GxG)/AG @ T
[' C G simple Lie gp



Rigidity Theorem

[' C G simple Lie gp



Rigidity Theorem

[' C G simple Lie gp
Fact (Selberg—Well’s local rigidigy, 1964)

Juniform lattice I" admitting continuous deformations for @
<— G =~ SL(2,R) (loc. isom).

o |
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Rigidity Theorem

[' C G simple Lie gp

Fact (Selberg—Well’s local rigidigy, 1964)
Juniform lattice I" admitting continuous deformations for @

<— G =~ SL(2,R) (loc. isom).

Thm (K-)
Juniform lattice I" admitting continuous deformations for @
<— G~ SO(n+1,1)orSU(n,1) (n=1,2,3,...).

o |
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Rigidity Theorem

B D I""G/{ed «— (I'x1) " (GxG)/AG @ -
[' C G simple Lie gp

Fact (Selberg—Well’s local rigidigy, 1964)
Juniform lattice I" admitting continuous deformations for @

<— G =~ SL(2,R) (loc. isom).

Thm (K-)
Juniform lattice I" admitting continuous deformations for @
<— G~ SO(n+1,1)orSU(n,1) (n=1,2,3,...).

<= trivial representation is not isolated in the unitary dual
(not having Kazhdan’s property (T))

o |
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Rigidity Theorem

[' C G simple Lie gp

Fact (Selberg—Well’s local rigidigy, 1964)
Juniform lattice I" admitting continuous deformations for @
<— G =~ SL(2,R) (loc. isom).

Thm (K-)
Juniform lattice I" admitting continuous deformations for @
<— G~ SO(n+1,1)orSU(n,1) (n=1,2,3,...).

Local rigidity (R) may fail for pseudo-Riemannian symm. sp.
even for high and irreducible case!

o |
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Rigidity Theorem

[' C G simple Lie gp

Fact (Selberg—Well’s local rigidigy, 1964)
Juniform lattice I" admitting continuous deformations for @
<— G =~ SL(2,R) (loc. isom).

Thm (K-)
Juniform lattice I" admitting continuous deformations for @
<— G~ SO(n+1,1)orSU(n,1) (n=1,2,3,...).

Method: use the criterion of m
(= criterion for properly discontinuous actions)

o |
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Rigidity Theorem

[' C G simple Lie gp

Fact (Selberg—Well’s local rigidigy, 1964)
Juniform lattice I" admitting continuous deformations for @
<— G =~ SL(2,R) (loc. isom).

Thm (K-)
Juniform lattice I" admitting continuous deformations for @
<— G~ SO(n+1,1)orSU(n,1) (n=1,2,3,...).

Local rigidity (R) may fall.

o |
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Rigidity Theorem

[' C G simple Lie gp

Fact (Selberg—Well’s local rigidigy, 1964)
Juniform lattice I" admitting continuous deformations for @
<— G =~ SL(2,R) (loc. isom).

Thm (K-)
Juniform lattice I" admitting continuous deformations for @
<— G~ SO(n+1,1)orSU(n,1) (n=1,2,3,...).

Local rigidity (R) may fail.  Stability (S) still holds.

o |

Global Geometry and Analysis on Locally Symmetric Spaces — p.31/52



Rigidity Theorem

[' C G simple Lie gp

Fact (Selberg—Well’s local rigidigy, 1964)
Juniform lattice I" admitting continuous deformations for @
<— G =~ SL(2,R) (loc. isom).

Thm (K-)
Juniform lattice I" admitting continuous deformations for @
<— G~ SO(n+1,1)orSU(n,1) (n=1,2,3,...).

Local rigidity (R) may fall. Stability (S) still holds.
... Solution to Goldman'’s stability conjecture (1985), 3-dim case
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Existence problem of compact quotients

- N

GOH



Existence problem of compact quotients

- N

"'c)GoH

General Problem For which pair (G, H)
does there exist a discrete subgroup I' s.t.

e I'" ¥ G/H properly discont, freely,
e ['\G/H is compact (or of finite volume) ?

o |
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Existence problem of compact quotients

-

-

"'c)GoH

General Problem For which pair (G, H)
does there exist a discrete subgroup I' s.t.

e I'" ¥ G/H properly discont, freely,
e ['\G/H is compact (or of finite volume) ?

G/H = SL(2,R)/SO(2) (Riemannian symm. sp.)

MN\G/H =~ (9> 2)
|
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Existence problem of compact quotients

- N

"'c)GoH

General Problem For which pair (G, H)
does there exist a discrete subgroup I' s.t.

e I'" ¥ G/H properly discont, freely,
e ['\G/H is compact (or of finite volume) ?

G/H = SL(2,R)/SO(2) (Riemannian symm. sp.)

MN\G/H =~ (9> 2)

Consider the case when H is non-compact.
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Space forms (definition)

- N

(M, g): pseudo-Riemannian mfd,
geodesically complete

Def. (M, g) Is a space form
<= sectional curvature x IS constant

o |
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Space forms (examples)

- N

Signature (p, g) of pseudo-Riemannian metric
Space form ... {>9 (p,q) of p g
Curvature x € {+,0, —}

E.g. ¢ =0 (Riemannian mfd)

sphere S" R" hyperbolic sp
k>0 k=20 k<0

o |
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Space forms (examples)

Signature (p, g) of pseudo-Riemannian metric
Space form ... {>9 (p,q) of p g
Curvature x € {+,0, —}

E.g. ¢ =0 (Riemannian mfd)
sphere S" R" hyperbolic sp
k> 0 k=0 k<0

E.g. ¢ =1 (Lorentz mfd)

de Sitter sp Minkowski sp anti-de Sitter sp
k>0 k=0 k<0

| |
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Space form problem

- N

Space form problem for pseudo-Riemannian mfds

Local Assumption
signature (p, ¢), curvature x € {+,0, —}

4

Global Results
e Do compact quotients exist?

e What groups can arise as their fundamental groups?

o |
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Space form problem

- N

Space form problem for pseudo-Riemannian mfds

Local Assumption
signature (p, ¢), curvature x € {+,0, —}

4

Global Results
e Do compact quotients exist?

Is the universe closed?
e What groups can arise as their fundamental groups?

o |
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2-dim’l compact space forms

Riemannian case (<= signature (2,0))

‘@-

curvature k>0




2-dim’l compact space forms

Riemannian case (<= signature (2,0))

‘@-

curvature k>0

Lorentz case (<= signature (1,1))
compact forms do NOT exist
fork >0and k <0

|
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Compact space forms £ < 0)

Geometry <= Group theoretic formulation

Compact space forms exist
for k < 0 and signature (p, q)

<= (Cocompact discont. gps exist
for symmetric sp O(p,q+ 1)/O(p, q)

|
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Compact space forms £ < 0)

- N

# Riemannian case --- hyperbolic space

Compact quotients
<=  Cocompact discont. gp for O(n,1)/0O(n) x O(1)

o |

Global Geometry and Analysis on Locally Symmetric Spaces — p.38/52



Compact space forms £ < 0)

- N

# Riemannian case --- hyperbolic space

Compact quotients
<= Cocompact discont. gp for O(n,1)/O(n) x O(1)
<= Cocompact discrete subgp of O(n, 1)
(uniform lattice)

o |
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Compact space forms £ < 0)

- N

# Riemannian case --- hyperbolic space

Compact quotients
<= Cocompact discont. gp for O(n,1)/O(n) x O(1)
<= Cocompact discrete subgp of O(n, 1)
(uniform lattice)

EXxist by Siegel, Borel, Vinberg, Gromov—Piateski-Shapiro - - -
%ﬁ _J A\ -~ -y
arithmetic non-arithmetic

o |
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Space form conjecturer < 0

f ® For pseudo-Riemannian mfd of signature (p, q) T

Compact space forms of k < 0 exist

o |
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Space form conjecturex < 0

f ® For pseudo-Riemannian mfd of signature (p, q) T

Thm Compact space forms of k < 0 exist

<— @gqgany, p=0 (<> x> 0)

@ q=0, pany (hyperbolic sp)

<— True (Proved (1950-2005))
D@ (Riemmanian)

o |
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Space form conjecturex < 0

f ® For pseudo-Riemannian mfd of signature (p, q) T

Thm Compact space forms of k < 0 exist

<— @gqgany, p=0 (<> x> 0)

@ q=0, pany (hyperbolic sp)
@qg=1, p=0 mod 2

<— True (Proved (1950-2005))
D@ (Riemmanian)

o |
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Space form conjecturex < 0

f ® For pseudo-Riemannian mfd of signature (p, q) T

Compact space forms of k < 0 exist

(<> k > 0)

(hyperbolic sp)

<— True (Proved (1950-2005))
D@ (Riemmanian)

o |

Global Geometry and Analysis on Locally Symmetric Spaces — p.39/52



Space form conjecturex < 0

f ® For pseudo-Riemannian mfd of signature (p, q) T

Compact space forms of k < 0 exist

<— Ogqgany, p=0 (<> k> 0)

@ q=0, pany (hyperbolic sp)
@q¢=1,p=0 mod 2

@qg=3, p=0 mod 4 } (pseudo-Riemannian)
®qg=7 p=28

<— True (Proved (1950-2005))
(D@ (Riemmanian) ; @@® (pseudo-Riemannian) Kulkarni, K-)

o |
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Space form conjecturex < 0

f ® For pseudo-Riemannian mfd of signature (p, q) T

Thm Conjecture Compact space forms of x < 0 exist
— @gqany, p=0 (< k > 0)
@ q=0, pany (hyperbolic sp)

—

@qg=1, p=0 mod 2
@ qg=3, p=0 mod4 } (pseudo-Riemannian)
®qg=7p=238

<— True (Proved (1950-2005))
(D@ (Riemmanian) ; @@® (pseudo-Riemannian) Kulkarni, K-)

o |
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Space form conjecturex < 0

f ® For pseudo-Riemannian mfd of signature (p, q) T

Thm Conjecture Compact space forms of x < 0 exist
— @gqany, p=0 (< k > 0)
@ q=0, pany (hyperbolic sp)

—

@qg=1, p=0 mod 2
@ qg=3, p=0 mod4 } (pseudo-Riemannian)
®qg=7p=238

<— True (Proved (1950-2005))
(D@ (Riemmanian) ; @@® (pseudo-Riemannian) Kulkarni, K-)
—> Partial answers:

L g=1,p <gq, orpqisodd J

Hirzebruch’s proportionality principle (K—Ono)
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Methods
=

Understanding proper actions (m, ~),
cohomology of discrete groups

4



Methods
=

Understanding proper actions (m, ~),
cohomology of discrete groups

g

Construction of lattice
# Find a connected subgp L that acts on GG/H properly

and cocompactly.

® Take a uniform lattice I Iin L
= I" Is a uniform lattice for G/H.

o |
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Methods
=

Understanding proper actions (m, ~),
cohomology of discrete groups

g

Construction of lattice

# Find a connected subgp L that acts on GG/H properly

and cocompactly.

® Take a uniform lattice I Iin L
= I" Is a uniform lattice for G/H.

Obstruction of lattice
® Characteristic classes
» Comparison theorem: 'Y G/H < T G/H’
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Compact quotients for SL(n)/SL(m)
- |

Problem: Does there exist compact Hausdorff quotients of
SL(n,F)/SL(m,F) (n>m, F=R,C,H)
by discrete subgps of SL(n,F)?




SL(n)/SL(m) case
- -

Conjecture SL(n)/SL(m) (n>m > 1)
has no uniform lattice.




SL(n)/SL(m) case
- -

Conjecture SL(n)/SL(m) (n>m > 1)
has no uniform lattice.

K— criterion of proper actions 2 > [7H]
Zimmer orbit closure thm (Ratner) n > 2m
Labourier—-Mozes—Zimmer

ergodic action n > 2m
Benoist criterion of proper actions n =m + 1, m even
Margulis unitary representation (n >5m=2)
Shalom unitary representation n>4m=2

o |
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Compact quotients for SL(n)/SL(m)

fDo not exist if n > m satisfies:

P NDWR OO N 00 S

12345678 910111213 n



Compact quotients for SL(n)/SL(m)

fDo not exist if n > m satisfies:

PN WD OO NS

1 K- (90)

1 2 3 4 ¢

9

10 11 12 13 n

-



Compact quotients for SL(n)/SL(m)

fDo not exist if n > m satisfies: T

SN OXO
N OXO)
SR ONORONOXO,
IR N OJOXOXORO
JONONORONOXOROXO,

SR ONONORORONOXOXO,
OOOOOOOOOOO

| K—(90) O K- (Duke Math 92)
1 2 345678 910111213 n

P NDWR OO N 00 S




Compact quotients for SL(n)/SL(m)

fDo not exist if n > m satisfies: T

SN OXO
N OXO)

R ONORONOX(.!

¢ e e WOXM®®
c OO ®®

¢ O XX®W®»®X®
OO ®®®®X®

| K—(90) O K- (Duke Math 92)
1 2 345678 910111213 n

PN WD OO NS

X Zimmer (Jour. AMS '94)



Compact quotients for SL(n)/SL(m)

fDo not exist if n > m satisfies: T

A

SN OXO
N OXO)

R ONORONNY

¢ e e WOXM®®
c WO X®®®

¢ O XX®W®»®X®
OO ®®®®X®

| K—(90) O K- (Duke Math 92)
1 2 345678 910111213 n

PN WD OO NS

X Zimmer (Jour. AMS '94)
L A Labourie—-Mozes—Zimmer (GAFA '95) J



Compact quotients for SL(n)/SL(m)

fDo not exist if n > m satisfies: T
1 A Labourie—Zimmer (IMRN ’95)

VOO
N ORO

RN ONORONONOCY

¢ LPP®®®

c OO ®®®

*c A I®®®A®®
ORI ®®®®

| K—(90) O K- (Duke Math 92)
1 2 345678 910111213 n

PN WD OO NS

X Zimmer (Jour. AMS '94)
L A Labourie—-Mozes—Zimmer (GAFA '95) J



Compact quotients for SL(n)/SL(m)

fDo not exist if n > m satisfies: T

1 A Labourie—Zimmer (IMRN ’95)
O Benoist (Ann Math '96)
©@ « AP®G
e o L o (o (o
OB B ONONOROR-Y
¢ e APOB®®®
OO NONON -0
¢ AP AI®B®®
@PCARI®®R®I®®®®

| K—(90) O K- (Duke Math 92)
1 2 345678 910111213 n

PN WD OO NS

X Zimmer (Jour. AMS '94)
L A Labourie—-Mozes—Zimmer (GAFA '95) J



Compact quotients for SL(n)/SL(m)

fDo not exist if n > m satisfies: T

1 A Labourie—Zimmer (IMRN ’95)
O Benoist (Ann Math '96)
©@ « AP®G
e o L o (o (o
OB B ONONOROR-Y
¢ e APOB®®®
f Marguis ©OPOE®®®®®
¢ AP AI®B®®
AI®I®IB®®®®®

| K—(90) O K- (Duke Math 92)
1 2 345678 910111213 n

PN WD OO NS

X Zimmer (Jour. AMS '94)
L A Labourie—-Mozes—Zimmer (GAFA '95) J



Compact quotients for SL(n)/SL(m)

fDo not exist if n > m satisfies: T

1 A Labourie—Zimmer (IMRN ’95)
O Benoist (Ann Math '96)

® o o (& (®
oo&&@@
©+ PDO®O®O®
¢ LPOR®®
F s COPOR®®®®
\5--@@@@@@@®

ORI ®E®®

T -
K= (90) O K- (Duke Math '92) Shalom (Ann Math 2000)

12345678910111213n

PN WD OO NS

X Zimmer (Jour. AMS '94)
L A Labourie—-Mozes—Zimmer (GAFA '95) J
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SL(n)/SL(m) case
- -

Conjecture SL(n)/SL(m) (n>m > 1)
has no uniform lattice.

K— criterion of proper actions 2 > [7H]
Zimmer orbit closure thm (Ratner) n > 2m
Labourier—-Mozes—Zimmer

ergodic action n > 2m
Benoist criterion of proper actions n =m + 1, m even
Margulis unitary representation (n >5m=2)
Shalom unitary representation n>4m=2

o |
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Existence of compact quotients

f G/K: Riemannian symmetric space T

ucomplexification

Ge/Kc: complex symmetric space

o |
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Existence of compact quotients

G/K: Riemannian symmetric space T

ucomplexification

Ge/Kc: complex symmetric space

Ex. G/K =SL(n,R)/SO(n)
Ucomplexification

G@/K@ — SL(TL, C)/SO(TL, (C)

|
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Existence of compact quotients

G/K: Riemannian symmetric space T

ucomplexification

Ge/Kc: complex symmetric space

Fact (Borel 1963) Compact guotients
exist for YRiemannian symm sp. G/K.

|
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Existence of compact quotients

G/K: Riemannian symmetric space T

ucomplexification

Ge/Kc: complex symmetric space

Fact (Borel 1963) Compact guotients
exist for YRiemannian symm sp. G/K.

Conj. Compact quotients exist for G¢ /K¢

|
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Existence of compact quotients

G/K: Riemannian symmetric space T

ucomplexification

Ge/Kc: complex symmetric space

Fact (Borel 1963) Compact guotients
exist for YRiemannian symm sp. G/K.
Conj. Compact quotients exist for G¢ /K¢
< G¢/Kc ~ S or complex group mfd

|
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Existence of compact quotients

G/K: Riemannian symmetric space T

ucomplexification

Ge/Kc: complex symmetric space

Fact (Borel 1963) Compact guotients
exist for YRiemannian symm sp. G/K.
Conj. Compact quotients exist for G¢ /K¢
< G¢/Kc ~ S or complex group mfd

< proved by K—Yoshino 05,
= remaining case S*~ ', k > 3 (Benoist, K- ) J
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Existence of compact locally symm. sp

f Theorem Exists a uniform lattice for the following G/ H: T
Exists a non-uniform lattice for G/H, too.

space form indefinite-Kahler complex symmetric
G/H

SU(2,2n)/Sp(1,n)
SU(2,n)/U(1,n)

~»

»-lkl\Dur—*[\Db—k
00 b~ D = I\
—O) W Oy W

~

~»
~

~»

S S33S
1o 1 (T

~»
~

OO0 O Ol Wb —

|
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Global analysis onl'\G/H
- -

General Problem: Find spectrum theory on L*(I'\G/H)

G-invariant diff. op. D

_ G/H e.g. Laplacian
covering | ;
N\G/H

differential operator D

Difficulties for the non-compact H case

o |
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Global analysis onl'\G/H
- -

General Problem: Find spectrum theory on L*(I'\G/H)

G-invariant diff. op. D

_ G/H e.g. Laplacian
covering | ;
N\G/H

differential operator D

Difficulties for the non-compact H case

e Laplacian is not elliptic
e volume(I'\G) = oo

o |

Global Geometry and Analysis on Locally Symmetric Spaces — p.47/52




Observation for RP:4

-

RP4 = (RPTY, dx% + -+ dibf, — d$129+1 T dxz29+q)

-



Observation for [RP:4

- N

RP4 = (RPTY, dx% + -+ d%% — d$129+1 T dxz29+q)
o2 2 O? 0?
A= — + .o — — =

o |
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Observation for [RP:4

- N

RP4 — (HQP‘I'C]7 dﬂj% R dx}% — dx}%—l—l S — d$}29_|_q)
o2 2 O? 0?

A:__|_..._|___ — e e —

[ : lattice for RPTY

Xt = F\Rp+q

o |
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Observation for [RP:4

- N

RP4 = (RPTY, dx% + -+ dac}% — d55129+1 T dxz29+q)
o2 0r 0 0’
A:__|_..._|___ — e e —

I" : lattice for RPTY  (~ 7ZPT9)
Xp:=TD\RPTe  (~ TPH9)

o |
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RP4 = (RPTY, dx% + -+ d%% — d$129+1 T dxz29+q)
o2 0r 0 0’
A:__|_..._|___ — e e —

I" : lattice for RPT?  (~ ZPT9)
Xp:=TD\RPTe  (~ TPH9)

Observation Spec(Xt,A) CR

can be
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Observation for [RP:4

- N

RP4 = (RPTY, dx% + -+ d%% — d$129+1 T dxz29+q)
o2 0r 0 0’
A:__|_..._|___ — e e —

I" : lattice for RPT?  (~ ZPT9)
Xp:=TD\RPTe  (~ TPH9)

Observation Spec(Xt,A) CR
{discrete

can be

o |
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Observation for [RP:4

- N

RP4 = (RPTY, dx% + -+ dac}% — d55129+1 T dxz29+q)
o2 0r 0 0’
A:__|_..._|___ — e e —

I" : lattice for RPTY  (~ 7ZPT9)
Xp:=TD\RPTe  (~ TPH9)

Observation Spec(Xt,A) CR

{discrete
can be

dense (cf. Oppenheim conjecture)

o |
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Observation for RP:4

- N

RP4 = (RPTY, dx% + -+ dibf, — d$129+1 T dxz29+q)
o2 0r 0 0’
A:__|_..._|___ — e e —

I" : lattice for RPTY  (~ 7ZPT9)
Xp:=TD\RPTe  (~ TPH9)

Observation Spec(Xt,A) CR

{discrete
can be

dense (cf. Oppenheim conjecture)

dependingon I.

o |
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Question Do there exist universal spectra of A
on I'\G/H that are independent of I" ?

The answer may be NO.
If yes, how to find them?

o |
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Spectra independent ofl’

Question Do there exist universal spectra of A
on I'\G/H that are independent of I" ?

The answer may be NO.
If yes, how to find them?

e,

Naive idea (L'NC*>®)(G/H)

C*(IN\G/H)

o |
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The answer may be NO.
If yes, how to find them?

Naive idea (L' N C®)(G/H) (T\G/H)

eigenfunction ~» elgenfunction
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Spectra independent ofl’

Question Do there exist universal spectra of A
on I'\G/H that are independent of I" ?

The answer may be NO.
If yes, how to find them?

Naive idea (L' N C®)(G/H) (T\G/H)

eigenfunction ~» elgenfunction

This naive idea does not work for

G/H =RPF?,  G/K (Riemannian symmetric sp.)

o |
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Spectra independent ofl’

Question Do there exist universal spectra of A
on I'\G/H that are independent of I" ?

The answer may be NO.
If yes, how to find them?

Naive idea (L' N C®)(G/H) (T\G/H)

eigenfunction ~» elgenfunction

This naive idea does not work for
G/H =RPF?,  G/K (Riemannian symmetric sp.)

Lbecause L! eigenfunction of Laplacian must be zero! J
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Construction of eigenfunction onl'\G/H
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ldea (L'nC™)G/H) 25 C~(M\G/H)

eigenfunction ~»  elgenfunction



Construction of eigenfunction onl'\G/H

- N

ldea (L'nC™)G/H) 25 C~(M\G/H)

eigenfunction ~»  elgenfunction

ldea Works for semisimple symmetric sp. G/H !

under the Flensted-Jensen — Matsuki—Oshima condition
rank G/H =rank K/H N K

o |
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~ {lz1 : 29 : 23 : 24| € P3C - |,21|2 + |,22|2 > |,23|2 + |z4|2}

complex 3-dim’l (real 6-dim’l preudo-Riemannian mfd)

[': torsion free, cocompact lattice of Spin(4,1)

|

Global Geometry and Analysis on Locally Symmetric Spaces — p.51/52



Universal Specy (I'\G/H)

G/H =U(2,2)/U(1) x U(1,2) -

~ {lz1 : 29 : 23 : 24| € P3C - |,21|2 + |,22|2 > |,23|2 + |z4|2}

complex 3-dim’l (real 6-dim’l preudo-Riemannian mfd)
[': torsion free, cocompact lattice of Spin(4,1)
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Universal Specy (I'\G/H)

G/H =U(2,2)/U(1) x U(1,2) -

~ {lz1 : 29 : 23 : 24| € P3C - |,21|2 + |,22|2 > |,23|2 + |z4|2}

complex 3-dim’l (real 6-dim’l preudo-Riemannian mfd)
[': torsion free, cocompact lattice of Spin(4,1)

Note Vol(I'\G) = oo, A: ultrahyperbolic operator

Thm C 1) Mr:=T\G/H is a 6-dim’l compact mfd
with indefinite metric of signature (4, 2).

2) Ais essentially self-adjoint on L?(Mr).
3) Speca(Mr) D {2n(n+3):n €Z, n> 0}.

|
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ldea of proof
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I c Spin(4,1) c U(2,2) D U(1) x U(1,2)

lattice
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- N

r ¢c L ¢ G DO H

lattice

Induction Restriction
Analysis on G/H | [Branching problem G | L]
Flensted-Jensen, Oshima Thm A
Matsuki, Sekiguchi, Delorme x /

van den Ban, Schlichtkrull

[Thm C Specp (F\G/H)]
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ldea of proof

- N

r ¢c L ¢ G DO H

lattice
Induction Restriction
Analysis on G/H | [Branching problem G | L]
Flensted-Jensen, Oshima Thm A
Matsuki, Sekiguchi, Delorme N /

van den Ban, Schlichtkrull

[Thm C Specp (F\G/H)J

|

(Geometry of I'\G/H| Thm B

L Happy Birthday to Professor Oshima! J
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