Global Geometry and Analysis on Locally Symmetric Spaces

beyond the Riemannian case

Differential Equations and Symmetric Spaces Conference in honor of Toshio Oshima's 60th birthday

Tokyo, 15 January 2009

Toshiyuki Kobayashi (the University of Tokyo)

http://www.ms.u-tokyo.ac.jp/~toshi/

Compact-like actions

compact groups (very nice behaviors)

Compact-like actions

Non-compact Lie groups

compact groups (very nice behaviors)

Compact-like actions

Non-compact Lie groups

occasionally behave nicely when embedded in $\infty\mbox{-dim}$ groups as if they were

compact groups (very nice behaviors)

 \mathcal{H} : Hilbert space $L \curvearrowright \mathcal{H}$

Non-compact Lie groups occasionally behave nicely when embedded in ∞ -dim groups as if they were compact groups.

 \mathcal{H} : Hilbert space $L \curvearrowright \mathcal{H}$

L: compact \implies unitarizable

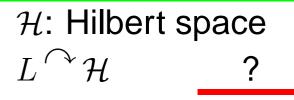
Unitarizability might be interpreted as one of "compact-like properties".

Non-compact Lie groups occasionally behave nicely when embedded in ∞ -dim groups as if they were compact groups.

 $\begin{array}{c} \mathcal{H}: \text{ Hilbert space} \\ L \overset{\frown}{\to} \mathcal{H} \\ \end{array} \quad unitarizability \end{array}$

 \cdots L behaves nicely in $B(\mathcal{H})$ (bounded operators) as if it were a compact group

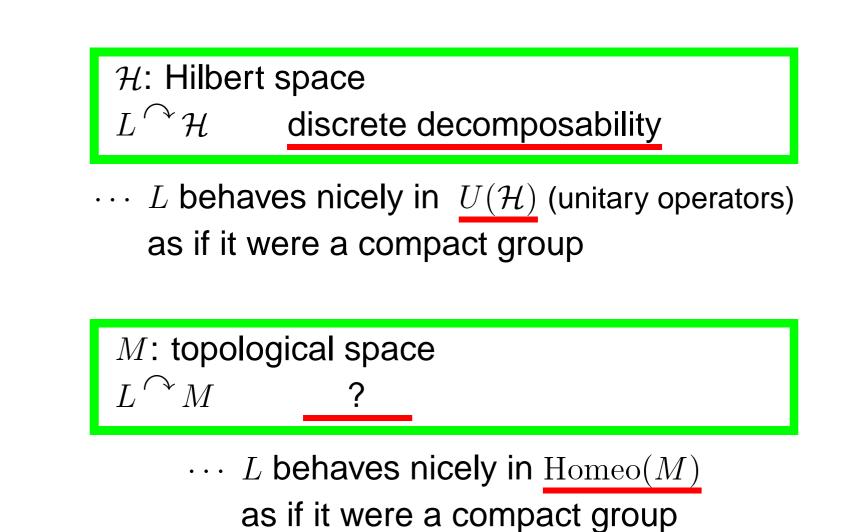
Non-compact Lie groups occasionally behave nicely when embedded in ∞ -dim groups as if they were compact groups.

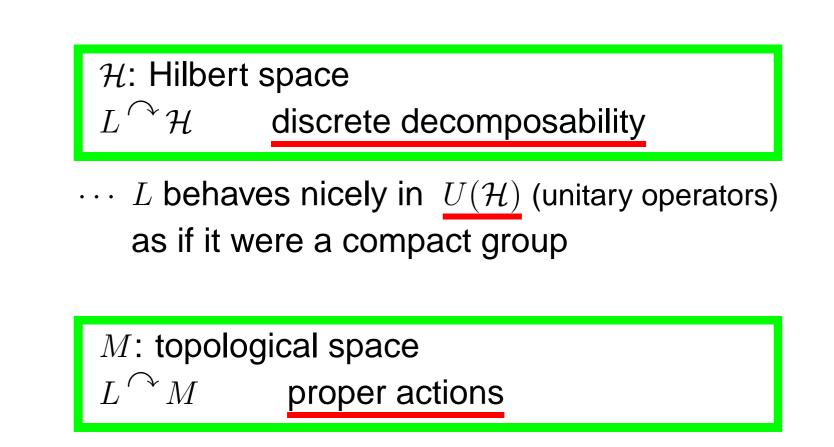


 \cdots L behaves nicely in $U(\mathcal{H})$ (unitary operators) as if it were a compact group

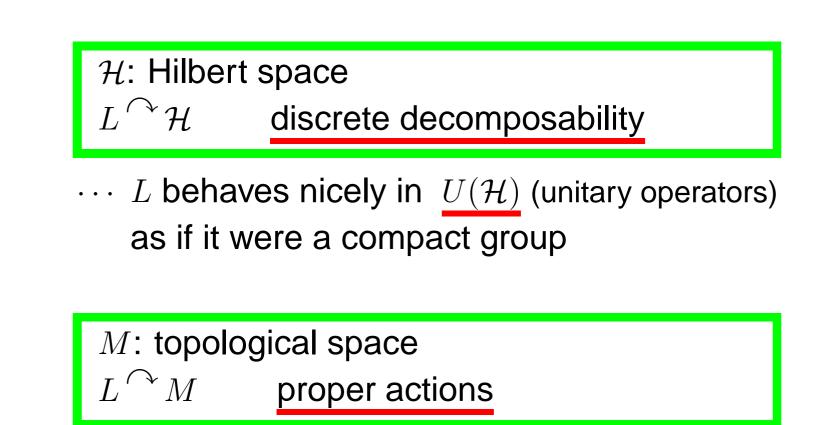
 \mathcal{H} : Hilbert space $L \curvearrowright \mathcal{H}$ discrete decomposability

 \cdots L behaves nicely in $U(\mathcal{H})$ (unitary operators) as if it were a compact group





i.e. $L \times M \to M \times M$, $(g, x) \mapsto (x, g \cdot x)$ is proper



 \cdots L behaves nicely in Homeo(M) as if it were a compact group

 \cdots L behaves nicely in $U(\mathcal{H})$ (unitary operators) as if it were a compact group

$$M = G/H$$
: topological space
 $L \curvearrowright M$ proper actions

 \cdots L behaves nicely in Homeo(M) as if it were a compact group

Decomposition into irreducible reps

Two important cases

 $G' \subset G$ subgroup

1) Induction

2) Restriction

Decomposition into irreducible reps

Two important cases

 $\widetilde{G} \supset G \supset H, \quad \pi: \text{ irred rep of } \widetilde{G}$

 $\widetilde{G} \supset G \supset H, \quad \pi: \text{ irred rep of } \widetilde{G}$

Special cases of restriction $\pi|_G$ are unitarily equivalent to $L^2(G/H)$ (concretely/abstractly).

 $\widetilde{G} \supset G \supset H, \quad \pi: \text{ irred rep of } \widetilde{G}$

Special cases of restriction $\pi|_G$ are unitarily equivalent to $L^2(G/H)$ (concretely/abstractly).

$$G/H = GL(n, \mathbb{R})/O(n)$$

$$\widetilde{G} \supset G \supset H, \quad \pi: \text{ irred rep of } \widetilde{G}$$

Special cases of restriction $\pi|_G$ are unitarily equivalent to $L^2(G/H)$ (concretely/abstractly).

•
$$G/H = GL(n, \mathbb{R})/O(n)$$

 $\Leftarrow (\widetilde{G}, \pi) = (Sp(n, \mathbb{R}), \text{ holo. disc. series})$

G/H = GL(p + q, ℝ)/GL(p, ℝ) × GL(q, ℝ)
 ⇐ (
$$\widetilde{G}, π$$
) = (G × G, certain degenerate principal series)
 ('canonical rep' of Gelfand–Graev–Vershik)

$$\widetilde{G} \supset G \supset H, \quad \pi: \text{ irred rep of } \widetilde{G}$$

Special cases of restriction $\pi|_G$ are unitarily equivalent to $L^2(G/H)$ (concretely/abstractly).

•
$$G/H = GL(n, \mathbb{R})/O(n)$$

 $\Leftarrow (\widetilde{G}, \pi) = (Sp(n, \mathbb{R}), \text{ holo. disc. series})$

G/H = GL(p + q, ℝ)/GL(p, ℝ) × GL(q, ℝ)

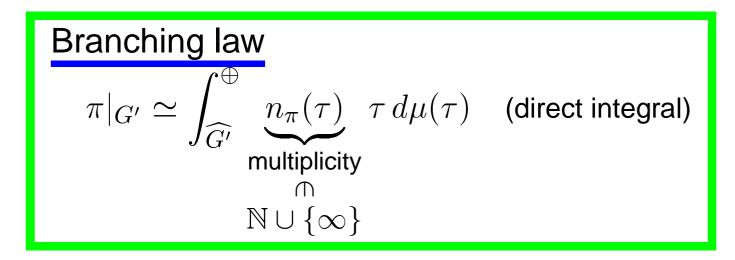
 ← (
$$\widetilde{G}, π$$
) = (G × G, certain degenerate principal series)

 ('canonical rep' of Gelfand–Graev–Vershik)

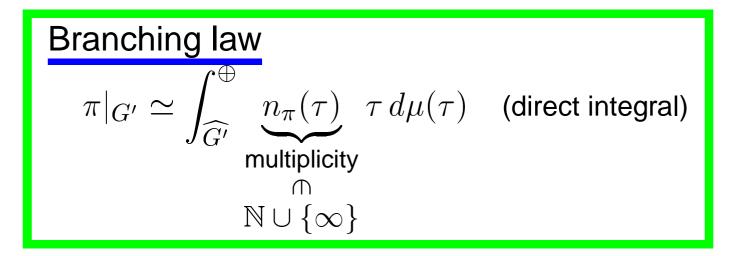
Many other restrictions $\pi|_G$ cannot be reduced to $L^2(G/H)$

Restrict $\pi \in \widehat{G}$ to a (reductive) subgroup G' of G.

Restrict $\pi \in \widehat{G}$ to a (reductive) subgroup G' of G.

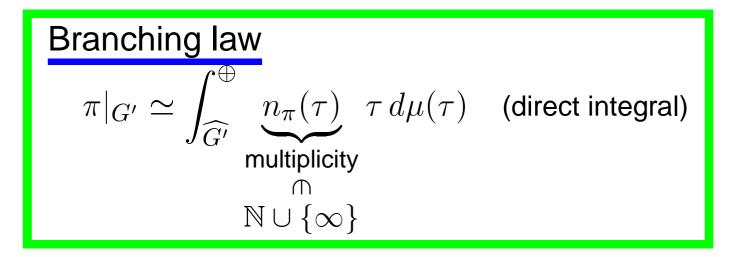


Restrict $\pi \in \widehat{G}$ to a (reductive) subgroup G' of G.



 $G': \text{compact} \Longrightarrow \text{discretely decomposable}$

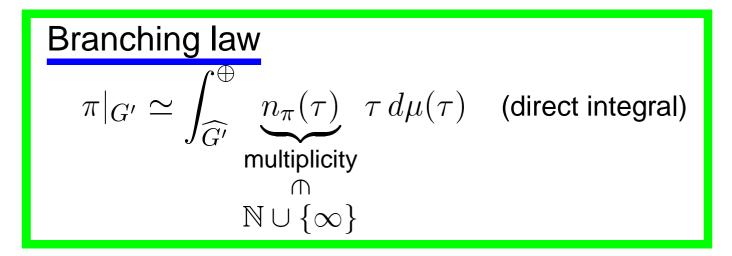
Restrict $\pi \in \widehat{G}$ to a (reductive) subgroup G' of G.



 $G': \text{compact} \Longrightarrow \text{discretely decomposable}$

discrete decomposability · · · compact-like actions

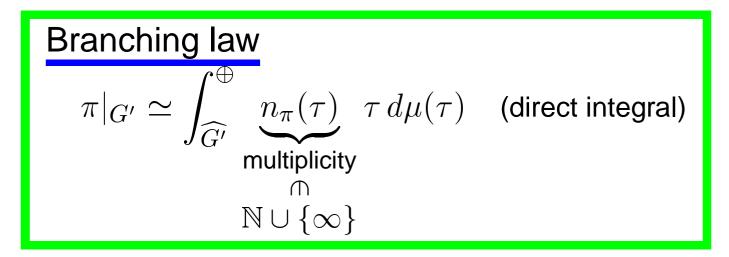
Restrict $\pi \in \widehat{G}$ to a (reductive) subgroup G' of G.



<u>Question</u> (to find "nicest settings")

- When does the restriction $\pi|_{G'}$ decompose discretely?
- When are all multiplicities finite?

Restrict $\pi \in \widehat{G}$ to a (reductive) subgroup G' of G.



<u>Question</u> (to find "nicest settings")

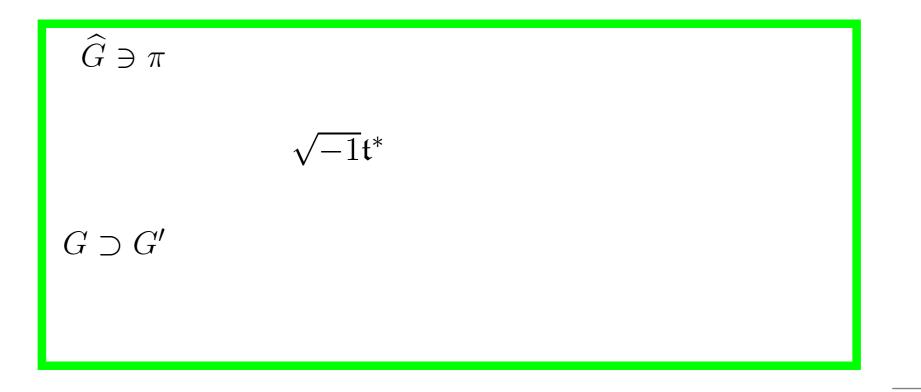
- When does the restriction $\pi|_{G'}$ decompose discretely?
- When are all multiplicities finite?

Say the restriction $\pi|_{G'}$ is G'-admissible if both are fulfilled.

Define two closed cones in $\sqrt{-1}\mathfrak{t}^*$:

 $\begin{array}{cccc} G & \supset & K & \supset & T \\ & & \mathsf{max} \ \mathsf{compact} & \mathsf{max} \ \mathsf{torus} \end{array}$

Define two closed cones in $\sqrt{-1}\mathfrak{t}^*$:



 $\begin{array}{cccc} G & \supset & K & \supset & T \\ & & \mathsf{max} \ \mathsf{compact} & \mathsf{max} \ \mathsf{torus} \end{array}$

 $G \supset G'$

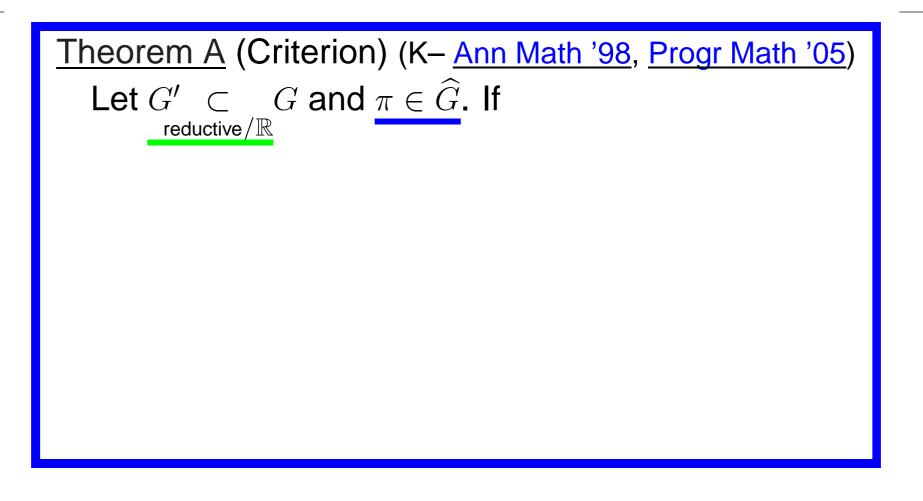
Define two closed cones in $\sqrt{-1}\mathfrak{t}^*$:

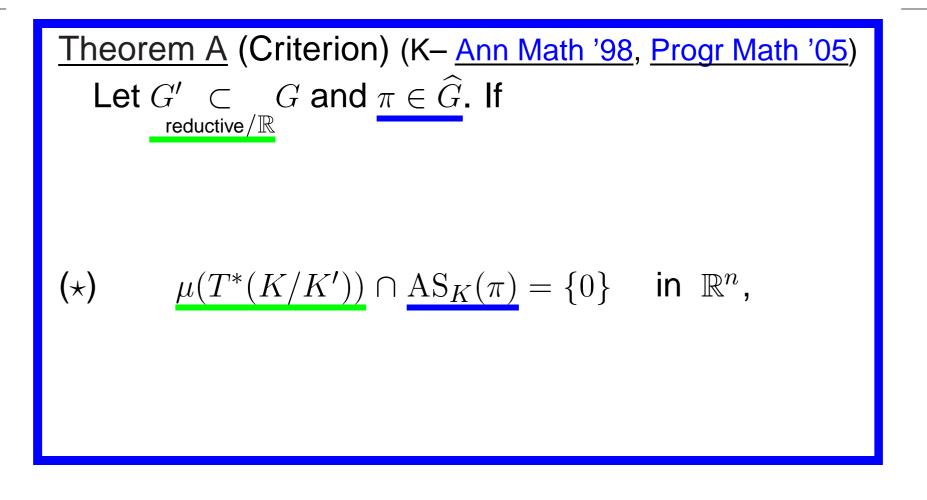
 $\widehat{G} \ni \pi \rightsquigarrow \qquad \operatorname{AS}_{K}(\pi) \\ \cap \\ \sqrt{-1} \mathfrak{t}^{*}$

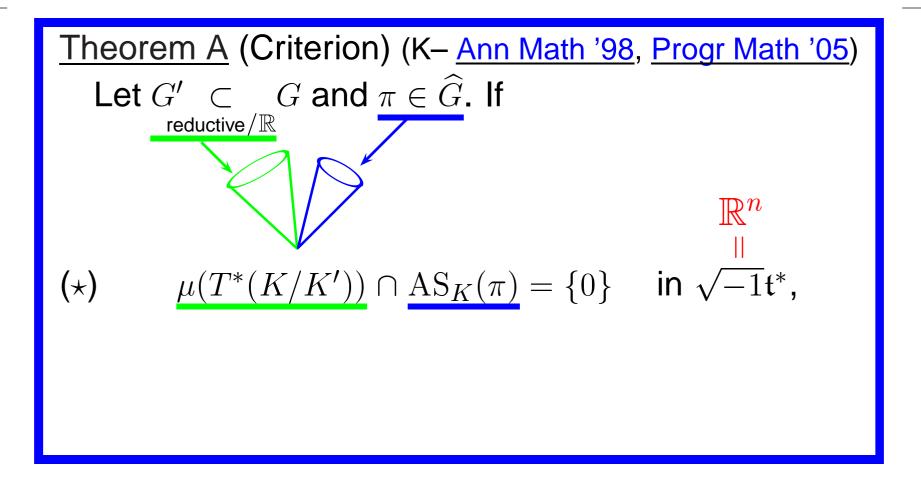
asymptotic *K*-support (Kashiwara–Vergne)

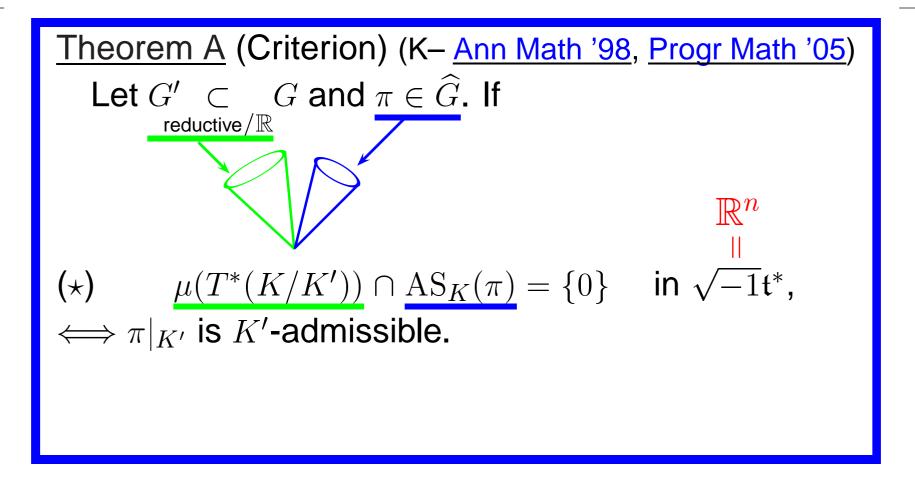
 $\begin{array}{cccc} G & \supset & K & \supset & T \\ & & \mathsf{max} \ \mathsf{compact} & \mathsf{max} \ \mathsf{torus} \end{array}$

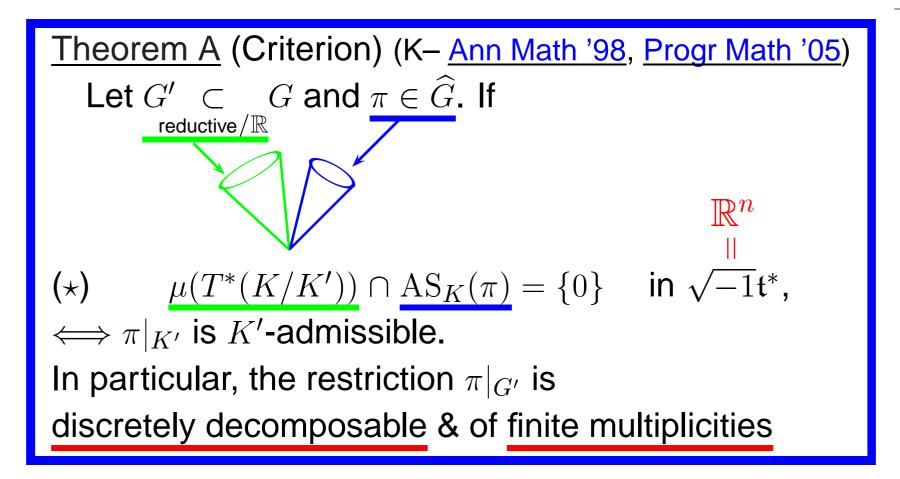
Define two closed cones in $\sqrt{-1}\mathfrak{t}^*$:



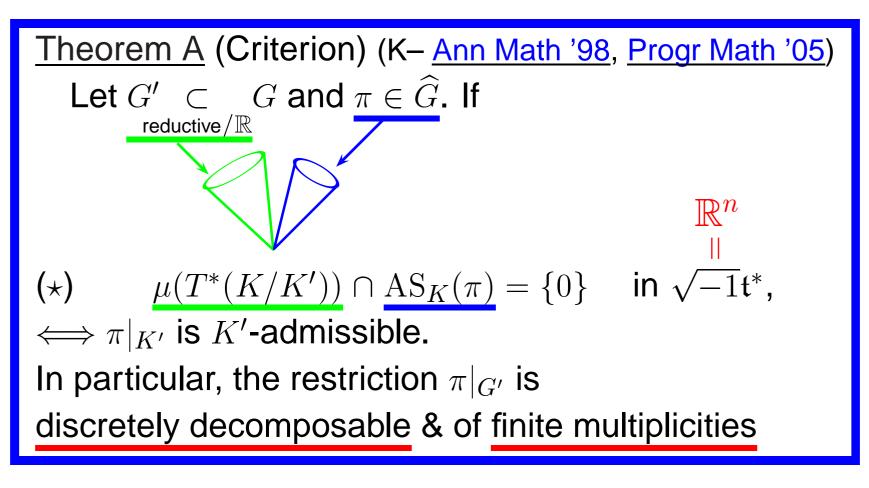








Criterion of admissible restriction



··· compact-like linear actions

 $\underline{\mathsf{Ex.1}} \quad \mu(T^*(K/K')) = \{0\} \Longleftrightarrow K = K' \Longleftrightarrow G' \supset K$ \implies Harish-Chandra's admissibility thm

 $\underline{\mathsf{Ex.2}} \operatorname{AS}_{K}(\pi) = \{0\} \Longleftrightarrow \dim \pi < \infty$

Ex.1
$$\mu(T^*(K/K')) = \{0\} \iff K = K' \iff G' \supset K$$

 \implies Harish-Chandra's admissibility thm

Ex.2
$$AS_K(\pi) = \{0\} \iff \dim \pi < \infty$$

<u>Ex.3</u> (G, G'): reductive symmetric pair $\implies \mu(T^*(K/K')) = \text{positive Weyl chamber}$

Ex.1
$$\mu(T^*(K/K')) = \{0\} \iff K = K' \iff G' \supset K$$

 \implies Harish-Chandra's admissibility thm

Ex.2
$$AS_K(\pi) = \{0\} \iff \dim \pi < \infty$$

<u>Ex.3</u> (G, G'): reductive symmetric pair $\implies \mu(T^*(K/K')) = \text{positive Weyl chamber}$

<u>Ex.4</u> (Vogan '80) π : minimal rep $\implies AS_{K}(\pi) = \mathbb{R}_{+}^{\exists} v$

Ex.1
$$\mu(T^*(K/K')) = \{0\} \iff K = K' \iff G' \supset K$$

 \implies Harish-Chandra's admissibility thm

Ex.2
$$AS_K(\pi) = \{0\} \iff \dim \pi < \infty$$

<u>Ex.3</u> (G, G'): reductive symmetric pair

 $\implies \mu(T^*(K/K')) = \text{positive Weyl chamber}$

<u>Ex.4</u> (Vogan '80) π : minimal rep $\implies AS_K(\pi) = \mathbb{R}_+^{\exists} v$

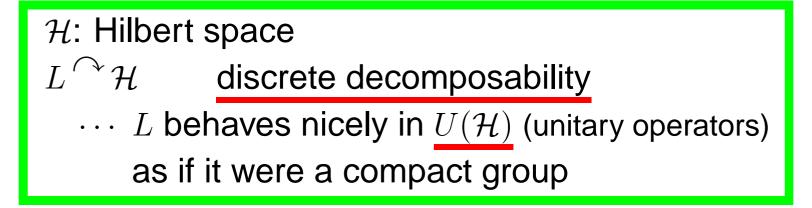
$$\begin{array}{ll} \underline{\mathsf{Ex.5}} & \pi = A_{\mathfrak{q}}(\lambda) \text{ (e.g. discrete series)} \\ \Longrightarrow \mathrm{AS}_{K}(\pi) \subset \mathbb{R}_{+} \text{-span of } \Delta(\mathfrak{u} \cap \mathfrak{p}, \mathfrak{t}) \\ & (\mathfrak{q} = \mathfrak{l} + \mathfrak{u}, \ \mathfrak{g} = \mathfrak{k} + \mathfrak{p}) \end{array}$$

Criterion for compact-like actions

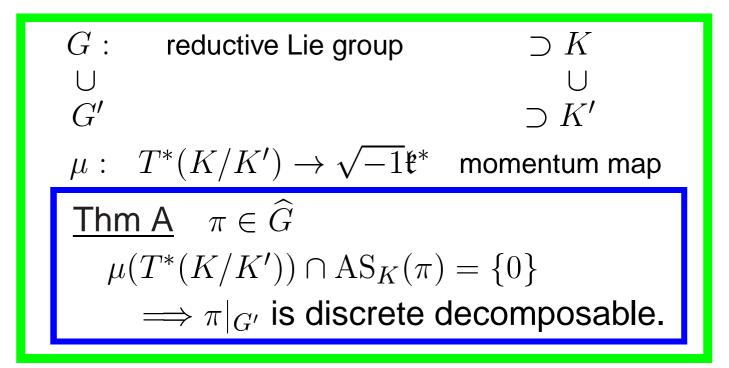
Some further developments in this framework (compact-like branching laws)

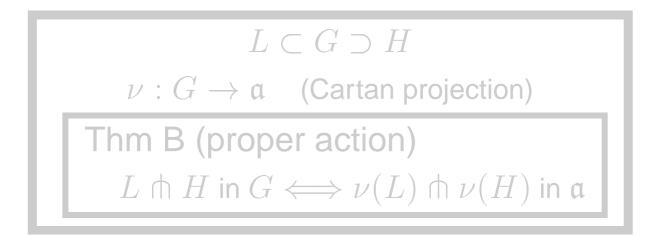
by D. Gross–N. Wallach, S.-T. Lee–H. Loke, M. Duflo–J. Vargas, B. Ørsted–B. Speh, J. S. Huang–D. Vogan, K–T. Oda, ...

Compact-like linear/non-linear actions

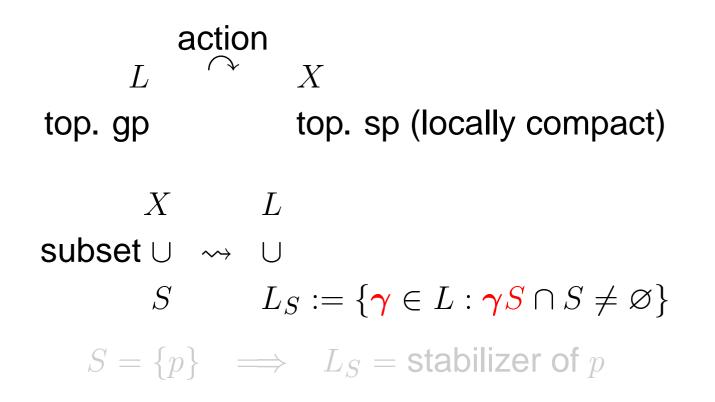


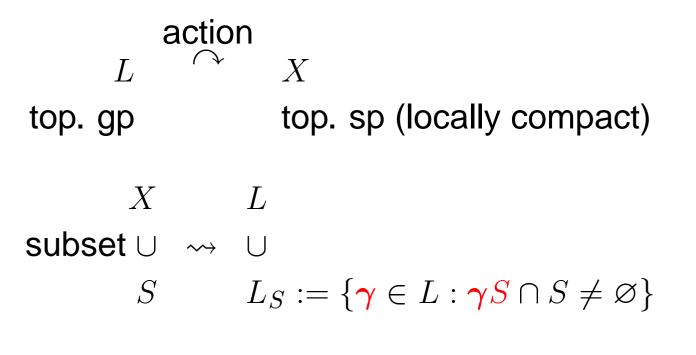
Criterion for compact-like actions

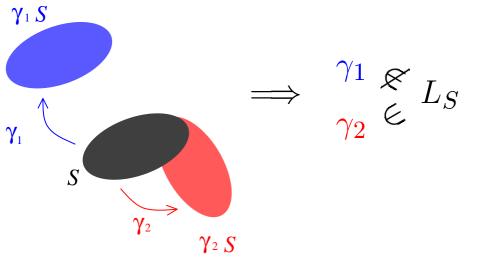


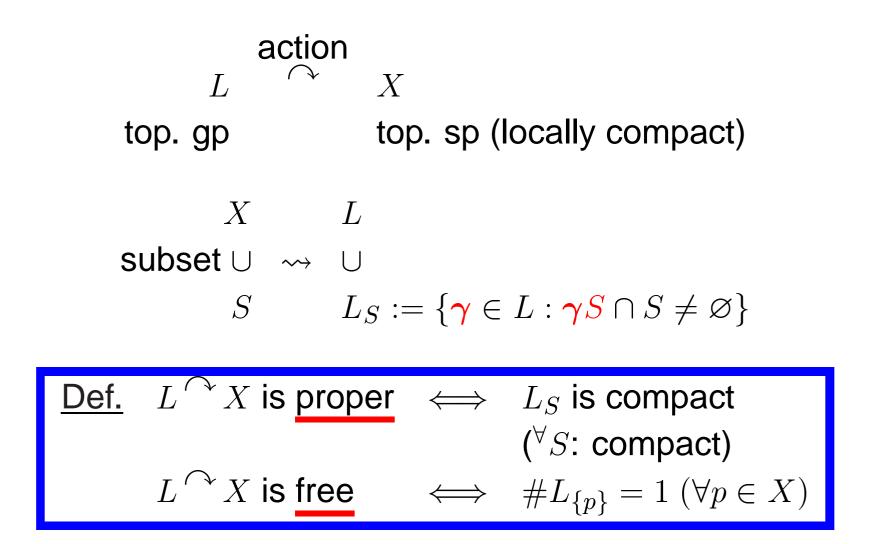


 $L \longrightarrow X$ top. gp top. sp (locally compact) $X \qquad L$ subset $\cup \quad \rightsquigarrow \quad \cup$ $S \qquad L_S := \{\gamma \in L : \gamma S \cap S \neq \phi\}$ $S = \{p\} \implies L_S = \text{stabilizer of } p$









$$L \frown X$$

(A)

free action $\stackrel{?}{\Longrightarrow}$ proper action all orbits are closed $\stackrel{?}{\Longrightarrow} L \setminus X$ Hausdorff (B)

$$L \frown X$$

(A) free action $\neq \Rightarrow$ proper action (B) all orbits are closed $\neq \Rightarrow L \setminus X$ Hausdorff

Counterexamples to (A) & (B) even for

$$L \simeq \mathbb{R}^k, \ X = G/H$$
 where $L \subset \underset{\text{Lie groups}}{G} \supset H$

$$L \frown X$$

(A) free action $\neq \Rightarrow$ proper action (B) all orbits are closed $\neq \Rightarrow L \setminus X$ Hausdorff

Counterexamples to (A) & (B) even for

$$L\simeq \mathbb{R}^k, \; X=G/H \quad \text{where} \quad L\subset \begin{array}{c} G \ \text{Lie groups} \end{array} \supset H$$

Ex.
$$(G = SL(2, \mathbb{R}))$$

 $L = \mathbb{R}^{\frown} X = \mathbb{R}^2 \setminus \{0\}$ (Lorentz isometry)

$$L \frown X$$

(A) free action $\neq \Rightarrow$ proper action (B) all orbits are closed $\neq \Rightarrow L \setminus X$ Hausdorff

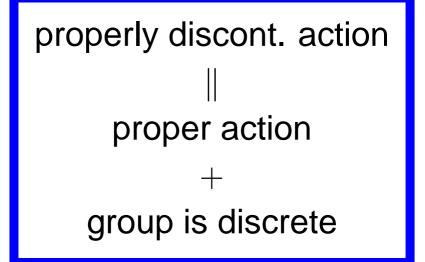
Counterexamples to (A) & (B) even for

$$L\simeq \mathbb{R}^k, \; X=G/H \quad \text{where} \quad L\subset \underset{\text{Lie groups}}{G}\supset H$$

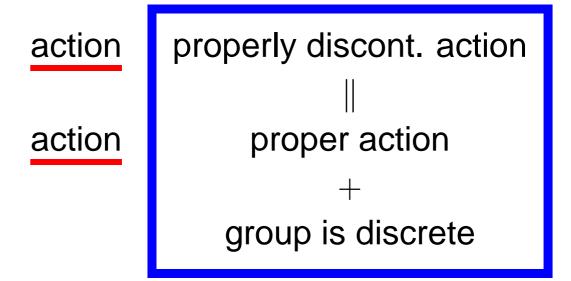
$$\underline{\mathsf{Ex.}} (G = SL(2, \mathbb{R}))$$
$$L = \mathbb{R}^{\frown} X = \mathbb{R}^2 \setminus \{0\} \text{ (Lorentz isometry)}$$

<u>Ex.</u> (G = 1-conn. nilpotent Lie gp) $L = \mathbb{R}^2 \stackrel{\frown}{\longrightarrow} X = \mathbb{R}^5$ (nilmanifolds) (Yoshino 2004, counterexample to Lipsman's conjecture)

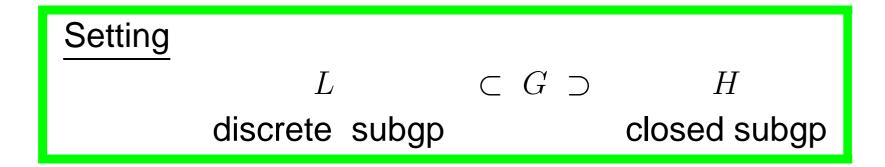
proper + **discrete** = **properly discont**.



proper + **discrete** = **properly discont**.



Criterion for discontinuous groups

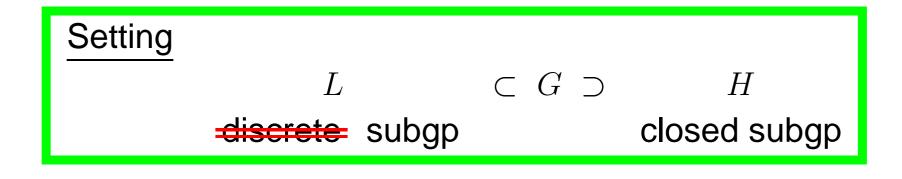


General Problem

Find effective methods to determine whether

 $L^{\frown}\overline{G/H}$ is properly discont.

Criterion for discontinuous groups



 $L \cap G/H$ is properly discont. proper

$\begin{tabular}{ll} $ \begin{tabular}{ll} $ \end{tabular} $ \begin{tabular}{ll} $ \end{tabular} $ \end{tab$

Idea: forget even that L and H are group

\pitchfork and \sim (definition)

 $L \subset G \supset H$

Idea: forget even that L and H are group

Def. (K–) 1) $L \pitchfork H \iff \overline{L \cap SHS}$ is compact for \forall compact $S \subset G$ 2) $L \sim H \iff \exists$ compact $S \subset G$ s.t. $L \subset SHS$ and $H \subset SLS$.

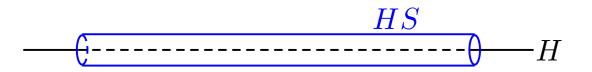
-H

\pitchfork and \sim (definition)

 $L \subset G \supset H$

Idea: forget even that L and H are group

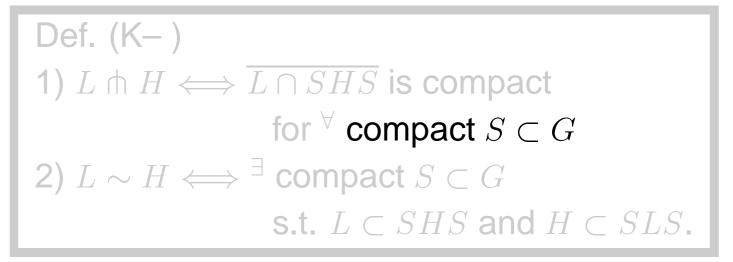
Def. (K–) 1) $L \pitchfork H \iff \overline{L \cap SHS}$ is compact for \forall compact $S \subset G$ 2) $L \sim H \iff \exists$ compact $S \subset G$ s.t. $L \subset SHS$ and $H \subset SLS$.

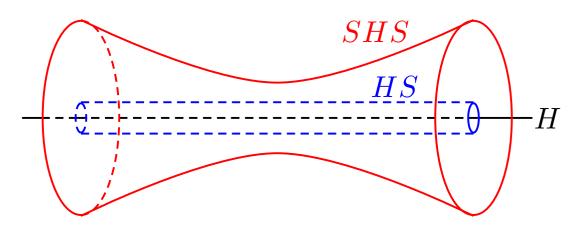


\pitchfork and \sim (definition)

 $L \quad \subset \quad G \quad \supset \quad H$

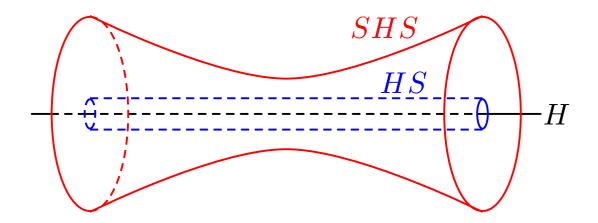
Idea: forget even that L and H are group





Idea: forget even that L and H are group

Def. (K−) 1) $L \pitchfork H \iff \overline{L \cap SHS}$ is compact for \forall compact $S \subset G$ 2) $L \sim H \iff \exists$ compact $S \subset G$ s.t. $L \subset SHS$ and $H \subset SLS$.



$\begin{tabular}{ll} $ \begin{tabular}{ll} $ \end{tabular} \end{tabul$

Idea: forget even that L and H are group

Def. (K−) 1) $L \pitchfork H \iff \overline{L \cap SHS}$ is compact for \forall compact $S \subset G$ 2) $L \sim H \iff \exists$ compact $S \subset G$ s.t. $L \subset SHS$ and $H \subset SLS$.

E.g.
$$G = \mathbb{R}^n$$
; L, H subspaces
 $L \pitchfork H \iff L \cap H = \{0\}.$
 $L \sim H \iff L = H.$

$L \quad \subset \quad G \quad \supset \quad H$

Forget even that L and H are group

1) L h H ⇔ generalization of proper actions
2) L ~ H ⇔ economy in considering

Meaning of h:

$$L \pitchfork H \iff L \frown G/H$$
 proper action

for closed subgroups L and H

 \sim provides economies in considering \pitchfork

$$H \sim H' \Longrightarrow \qquad H \pitchfork L \Longleftrightarrow H' \pitchfork L$$

$L \quad \subset \quad G \quad \supset \quad H$

Forget even that L and H are group

1) L h H ⇐⇒ generalization of proper actions
 2) L ~ H ⇐⇒ economy in considering

Meaning of *h*:

$$L \pitchfork H \iff L \frown G/H$$
 proper action

for closed subgroups \boldsymbol{L} and \boldsymbol{H}

 \sim provides economies in considering \pitchfork

$$H \sim H' \Longrightarrow H \pitchfork L \Longleftrightarrow H' \pitchfork L$$

$L \quad \subset \quad G \quad \supset \quad H$

Forget even that L and H are group

1) L h H ⇐⇒ generalization of proper actions
 2) L ~ H ⇐⇒ economy in considering

Meaning of *h*:

$$L \pitchfork H \iff L^{\frown}G/H$$
 proper action

for closed subgroups L and H

 \sim provides economies in considering \pitchfork

$$H \sim H' \Longrightarrow H \pitchfork L \Longleftrightarrow H' \pitchfork L$$

G: real reductive Lie group $G = K \exp(\mathfrak{a}) K$: Cartan decomposition ν : $G \rightarrow \mathfrak{a}$: Cartan projection (up to Weyl gp.)

G: real reductive Lie group $G = K \exp(\mathfrak{a}) K$: Cartan decomposition $\nu: G \rightarrow \mathfrak{a}$: Cartan projection (up to Weyl gp.)

E.g.
$$\nu$$
: $GL(n, \mathbb{R}) \to \mathbb{R}^n$
 $g \mapsto \frac{1}{2}(\log \lambda_1, \cdots, \log \lambda_n)$
Here, $\lambda_1 \ge \cdots \ge \lambda_n$ (> 0) are the eigenvalues of tgg .

G: real reductive Lie group $G = K \exp(\mathfrak{a}) K$: Cartan decomposition $\nu: G \rightarrow \mathfrak{a}$: Cartan projection (up to Weyl gp.)

Thm B (K-, Benoist)1)
$$L \sim H$$
 in $G \iff \nu(L) \sim \nu(H)$ in a.2) $L \pitchfork H$ in $G \iff \nu(L) \pitchfork \nu(H)$ in a.

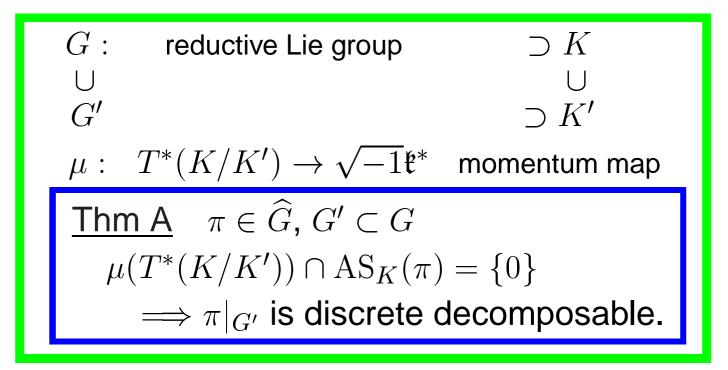
G: real reductive Lie group $G = K \exp(\mathfrak{a}) K$: Cartan decomposition $\nu: G \to \mathfrak{a}$: Cartan projection (up to Weyl gp.)

Thm B (K-, Benoist)1)
$$L \sim H$$
 in $G \iff \nu(L) \sim \nu(H)$ in a.2) $L \pitchfork H$ in $G \iff \nu(L) \pitchfork \nu(H)$ in a.

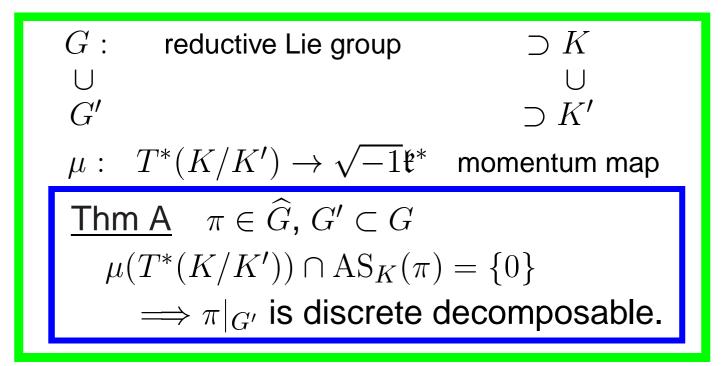
Special cases include

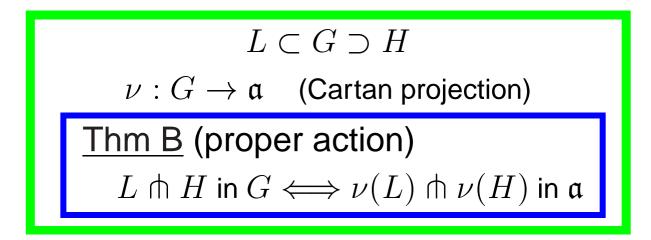
- (1)'s \Rightarrow : Uniform bounds on errors in eigenvalues when a matrix is perturbed.
- (2)'s \Leftrightarrow : Criterion for properly discont. actions.

Criterion for compact-like actions

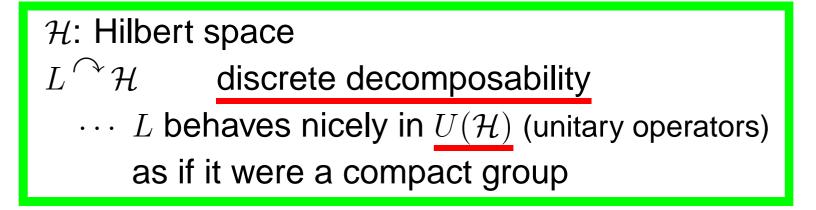


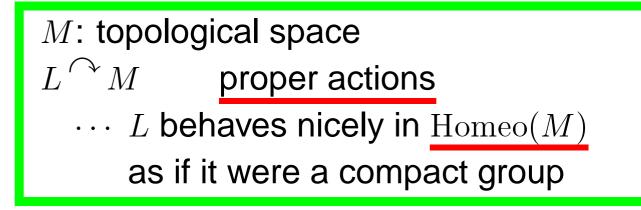
Criterion for compact-like actions





Compact-like linear/non-linear actions





Compact-like linear/non-linear actions

$$\mathcal{H} = L^2(G/H), L^2(G/\Gamma)$$
: Hilbert space
 $L \curvearrowright \mathcal{H}$ discrete decomposability
 \cdots L behaves nicely in $U(\mathcal{H})$ (unitary operators)
as if it were a compact group

$$M = G/H$$
: topological space
 $L \curvearrowright M$ proper actions
 $\cdots L$ behaves nicely in $Homeo(M)$
as if it were a compact group

Compact-like non-linear/linear actions

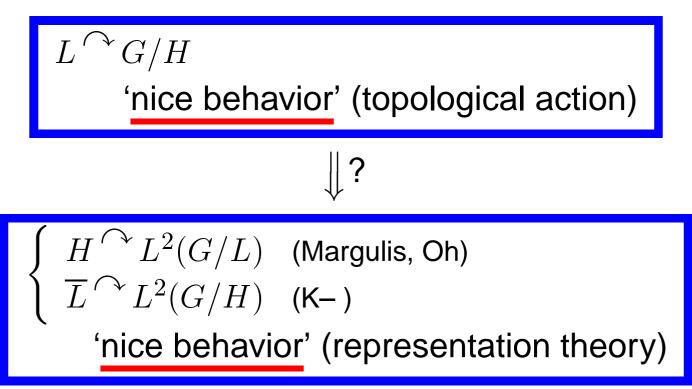
 $L \subset G \supset H$

Compact-like non-linear/linear actions

$L\subset G\supset H$

$L \curvearrowright G/H$ 'nice behavior' (topological action)

Compact-like non-linear/linear actions



Ex. (K-1988)
$$(G, L) = (SO(4, 2), SO(4, 1))$$

 $\pi :$ discrete series of G with GK-dim 5

(quarternionic discrete series)

 $\implies \pi|_L$ is <u>L</u>-admissible

Ex. (K-1988)
$$(G, L) = (SO(4, 2), SO(4, 1))$$

 $\pi :$ discrete series of G with GK-dim 5

(quarternionic discrete series)

 $\implies \pi|_L$ is <u>L</u>-admissible

$$G$$
 X

Ex. (K-1988)
$$(G, L) = (SO(4, 2), SO(4, 1))$$

 $\pi :$ discrete series of G with GK-dim 5

(quarternionic discrete series)

 $\implies \pi|_L$ is <u>L</u>-admissible

Ex. (K-1988)
$$(G, L) = (SO(4, 2), SO(4, 1))$$

 $\pi :$ discrete series of G with GK-dim 5

(quarternionic discrete series)

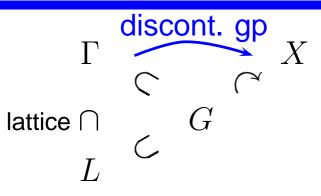
 $\implies \pi|_L$ is <u>L</u>-admissible

Ex. (K-1988)
$$(G, L) = (SO(4, 2), SO(4, 1))$$

 $\pi :$ discrete series of G with GK-dim 5

(quarternionic discrete series)

 $\implies \pi|_L$ is <u>L</u>-admissible

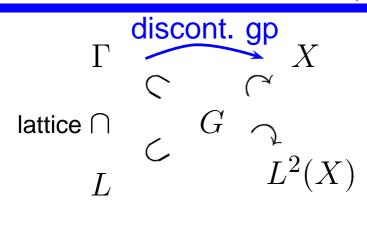


Ex. (K-1988)
$$(G, L) = (SO(4, 2), SO(4, 1))$$

 $\pi :$ discrete series of G with GK-dim 5

(quarternionic discrete series)

 $\implies \pi|_L$ is <u>L</u>-admissible



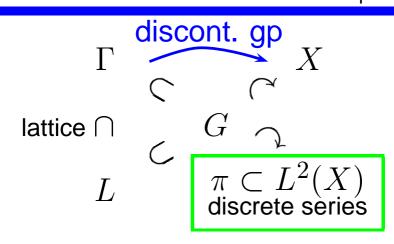
Ex. (K-1988)
$$(G, L) = (SO(4, 2), SO(4, 1))$$

 π : discrete series of G with GK-dim 5

(quarternionic discrete series)

 $\implies \pi|_L$ is <u>L</u>-admissible

Idea: Tessellation of pseudo-Riemannian mfd X $X = SO(4,2)/U(2,1) \quad (\subset \mathbb{P}^3\mathbb{C})$

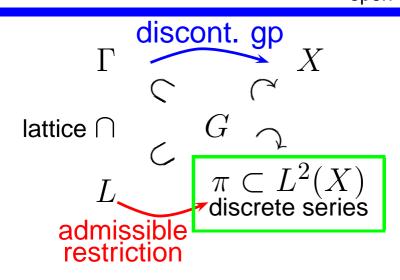


Ex. (K-1988)
$$(G, L) = (SO(4, 2), SO(4, 1))$$

 $\pi :$ discrete series of G with GK-dim 5

(quarternionic discrete series)

 $\implies \pi|_L$ is <u>L</u>-admissible



Pseudo-Riemannian manifold X $X = G/H = SO(4,2)/U(2,1) \quad (\subset \mathbb{P}^3\mathbb{C})$

 $\begin{array}{l} \textbf{Pseudo-Riemannian manifold } X\\ X=G/H=SO(4,2)/U(2,1) \quad (\underset{\text{open}}{\subset} \mathbb{P}^3\mathbb{C}) \end{array}$

• Cocompact discontinuous group for X = G/H

<u>Thm</u> G/H admits a cocompact, discontinuous gp Γ .

Proof. Take $\Gamma \subset L = SO(4, 1)$.

 $\begin{array}{l} \textbf{Pseudo-Riemannian manifold } X\\ X=G/H=SO(4,2)/U(2,1) \quad \big(\underset{\text{open}}{\subset} \mathbb{P}^3\mathbb{C}\big) \end{array}$

• Cocompact discontinuous group for X = G/H

<u>Thm</u> G/H admits a cocompact, discontinuous gp Γ .

Proof. Take $\Gamma \subset L = SO(4, 1)$.

• Function space on X = G/H

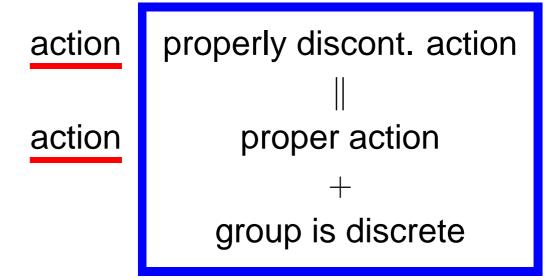
<u>Thm</u> If $\pi \in \widehat{G}$ is realized in $L^2(G/H)$, then $\pi|_L$ decomposes discretely.

Compact-like linear/non-linear actions

$$\mathcal{H} = L^2(G/H), L^2(G/\Gamma)$$
: Hilbert space
 $L \curvearrowright \mathcal{H}$ discrete decomposability
 $\cdots L$ behaves nicely in $U(\mathcal{H})$ (unitary operators)
as if it were a compact group

$$M = G/H$$
: topological space
 $L \curvearrowright M$ proper actions
 $\cdots L$ behaves nicely in Homeo(M)
as if it were a compact group

proper + **discrete** = **properly discont**.



$\Gamma \subset G \supset H$

Knowledge of discrete subgp Γ

 $\downarrow \Leftarrow \text{ criterion of } \pitchfork \text{ (Thm B)}$ Knowledge of Γ -actions on G/H

 $\Gamma \subset G \supset H$

Knowledge of discrete subgp Γ

 $\downarrow \Leftarrow \text{ criterion of } \pitchfork \text{ (Thm B)}$ Knowledge of Γ -actions on G/H

 $\Gamma \subset G \supset H$

Knowledge of discrete subgp Γ

 $\label{eq:criterion of fluc} \left\| \Leftarrow \text{ criterion of fluc} \left(\mathsf{Thm B} \right) \right\|$ Knowledge of Γ -actions on G/H

existence problem of cocompact discont. gp E.g. rigidity / deformation

 $\Gamma \subset G \supset H$

Knowledge of discrete subgp Γ

 \rightarrow

 $\label{eq:criterion of fluc} \left\| \Leftarrow \text{ criterion of fluc} \left(\mathsf{Thm B} \right) \right\|$ Knowledge of Γ -actions on G/H

local geometric structure

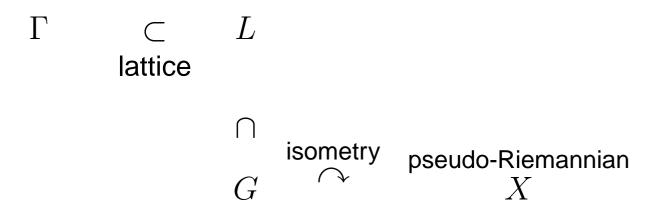
global

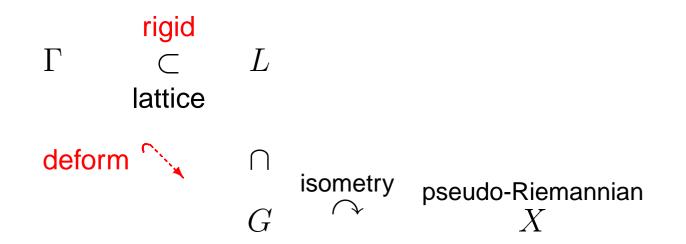
Positivity of 'metric' is crucial?

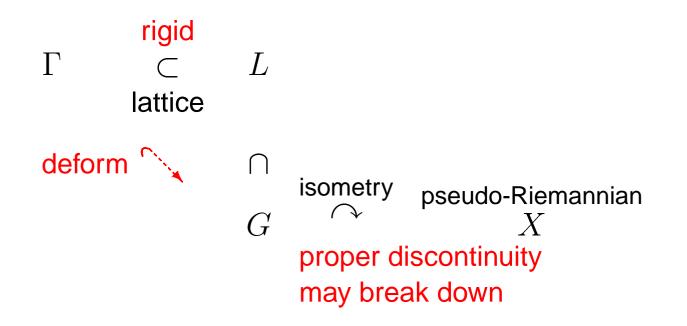
$\begin{array}{ccc} \Gamma & \subset & L \\ & \text{lattice} \end{array}$

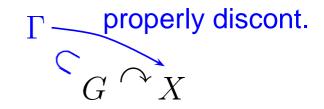
Positivity of 'metric' is crucial?

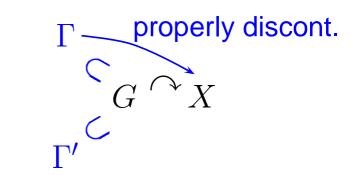
$\begin{array}{ccc} \Gamma & \subset & L \\ & \text{lattice} \\ & & \cap \\ & & G \end{array}$

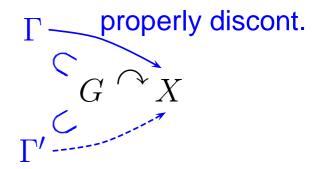


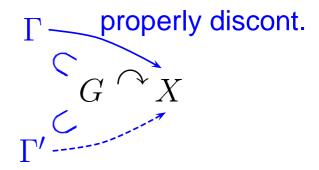




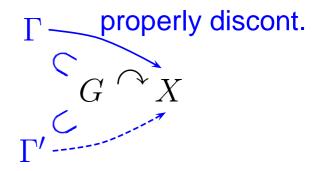






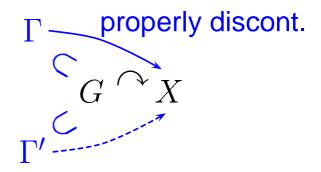


(R) (local rigidity)
$$\Gamma' = g\Gamma g^{-1} (\exists g \in G)$$



(R) (local rigidity)
$$\Gamma' = g\Gamma g^{-1} \ (\exists g \in G)$$

(S) (stability) $\Gamma' \curvearrowright X$ properly discont.

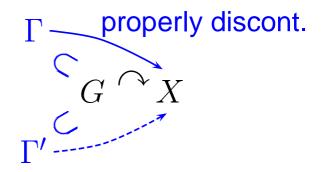


Suppose Γ' is 'close to' Γ

(R) (local rigidity)
$$\Gamma' = g\Gamma g^{-1} \ (\exists g \in G)$$

(S) (stability) $\Gamma' \curvearrowright X$ properly discont.

In general,



Suppose Γ' is 'close to' Γ

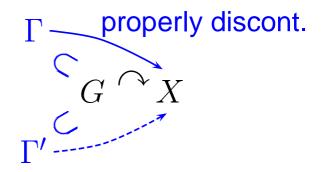
(R) (local rigidity)
$$\Gamma' = g\Gamma g^{-1} (\exists g \in G)$$

(S) (stability) $\Gamma' \curvearrowright X$ properly discont.

In general,

• (R)
$$\Rightarrow$$
 (S).

Rigidity, stability, and deformation



Suppose Γ' is 'close to' Γ

(R) (local rigidity)
$$\Gamma' = g\Gamma g^{-1} (\exists g \in G)$$

(S) (stability) $\Gamma' \curvearrowright X$ properly discont.

In general,

- $\ \, \bullet \ \, (\mathsf{R}) \Rightarrow (\mathsf{S}).$
- (S) may fail (so does (R)).

Local rigidity and deformation

 $\Gamma \subset G \cap X = G/H$ cocompact, discontinuous gp

General Problem

- 1. When does local rigidity (R) fail?
- 2. Does stability (S) still hold?

Local rigidity and deformation

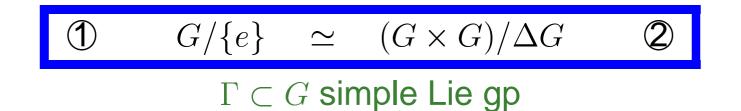
 $\Gamma \subset G \cap X = G/H$ cocompact, discontinuous gp

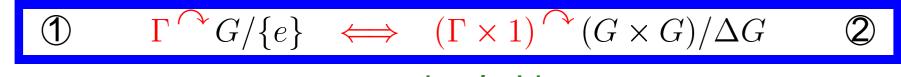
General Problem

- 1. When does local rigidity (R) fail?
- 2. Does stability (S) still hold?

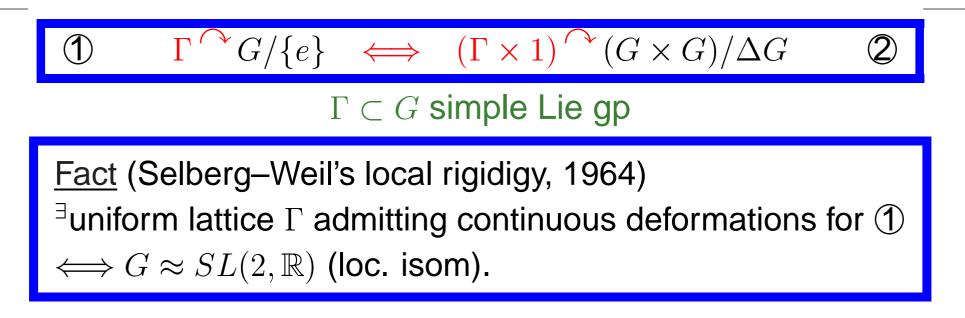
Point: for non-compact H

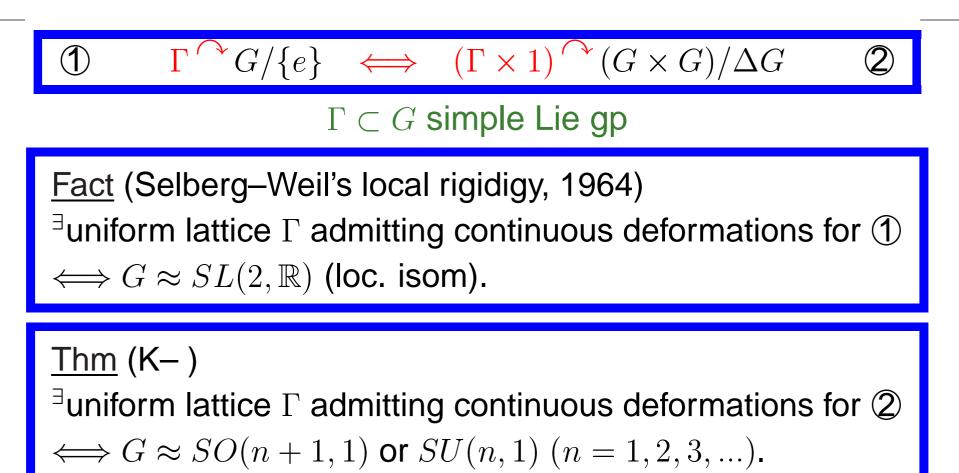
- 1. (good aspect) There may be large room for deformation of Γ in G.
- 2. (bad aspect) Properly discontinuity may fail under deformation.

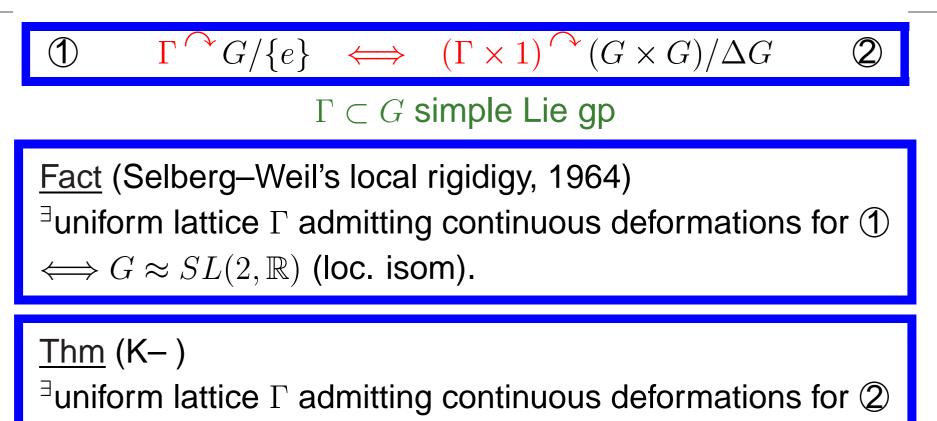




$\Gamma \subset G$ simple Lie gp

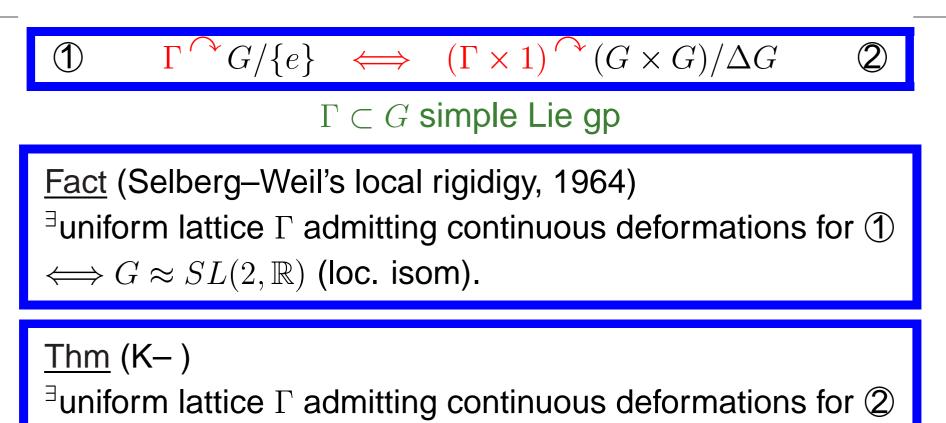






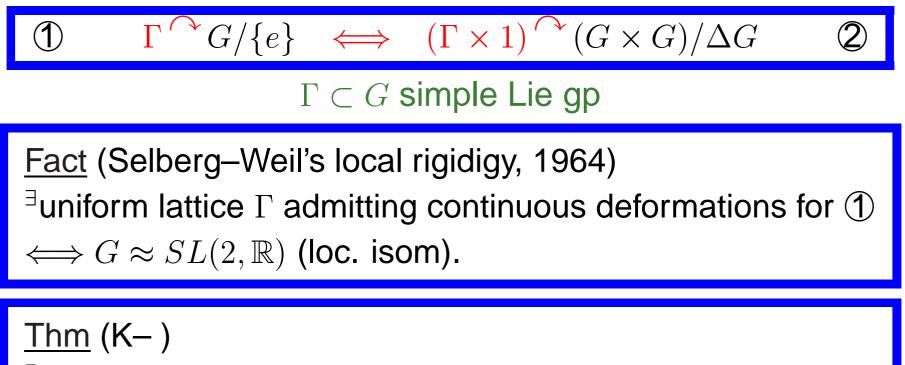
 $\iff G \approx SO(n+1,1) \text{ or } SU(n,1) \ (n=1,2,3,\ldots).$

↔ trivial representation is not isolated in the unitary dual (not having Kazhdan's property (T))



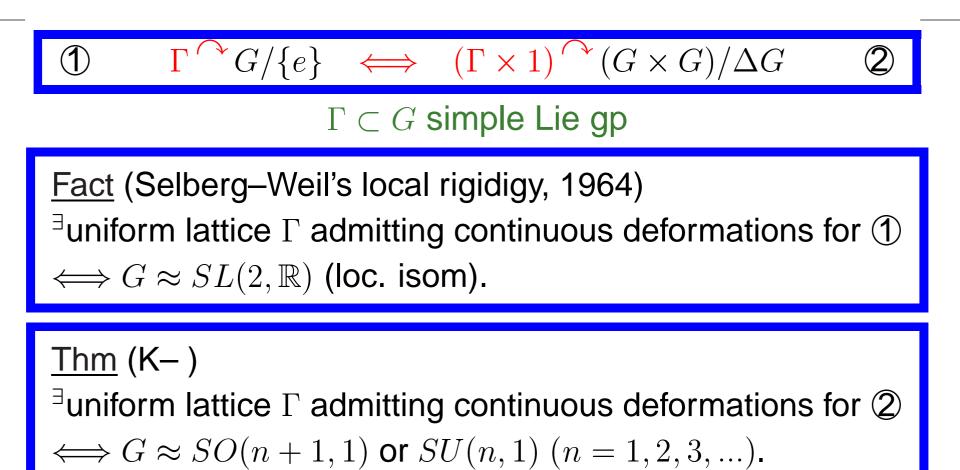
 $\iff G \approx SO(n+1,1) \text{ or } SU(n,1) \ (n=1,2,3,\ldots).$

Local rigidity (R) may fail for pseudo-Riemannian symm. sp. even for high and irreducible case!

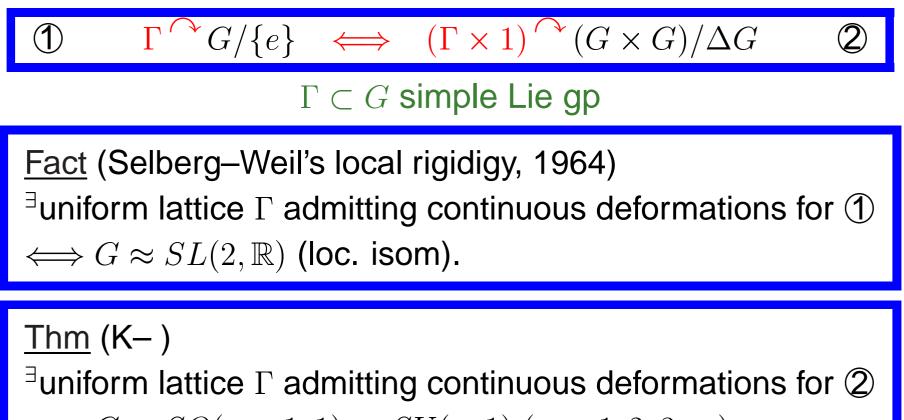


[∃]uniform lattice Γ admitting continuous deformations for ② $\iff G \approx SO(n+1,1)$ or SU(n,1) (n = 1, 2, 3, ...).

Method: use the criterion of \pitchfork (\Rightarrow criterion for properly discontinuous actions)

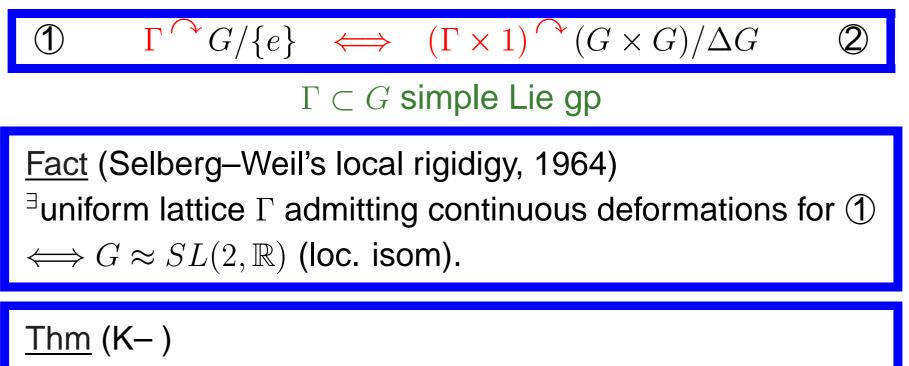


Local rigidity (R) may fail.



 $\iff G \approx SO(n+1,1) \text{ or } SU(n,1) \ (n=1,2,3,\ldots).$

Local rigidity (R) may fail. Stability (S) still holds.



[∃]uniform lattice Γ admitting continuous deformations for ② $\iff G \approx SO(n+1,1)$ or SU(n,1) (n = 1, 2, 3, ...).

Local rigidity (R) may fail. Stability (S) still holds.

··· Solution to Goldman's stability conjecture (1985), 3-dim case

 $G\supset H$

$(\Gamma \subset) G \supset H$

<u>General Problem</u> For which pair (G, H)does there exist a discrete subgroup Γ s.t.

- $\Gamma \cap G/H$ properly discont, freely,
- $\Gamma \setminus G/H$ is compact (or of finite volume) ?

$\left(\Gamma \subset \right) G \supset H$

<u>General Problem</u> For which pair (G, H)does there exist a discrete subgroup Γ s.t.

- $\Gamma \cap G/H$ properly discont, freely,
- $\Gamma \setminus G/H$ is compact (or of finite volume) ?

 $G/H = SL(2,\mathbb{R})/SO(2)$ (Riemannian symm. sp.)

$$\Gamma \backslash G / H \simeq \textcircled{ \textcircled{ \ } \textcircled{ \ } } (g \geq 2)$$

$\left(\Gamma \subset \right) G \supset H$

<u>General Problem</u> For which pair (G, H)does there exist a discrete subgroup Γ s.t.

- $\Gamma \cap G/H$ properly discont, freely,
- $\Gamma \setminus G/H$ is compact (or of finite volume) ?

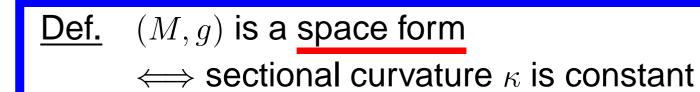
 $G/H = SL(2,\mathbb{R})/SO(2)$ (Riemannian symm. sp.)

$$\Gamma \backslash G / H \simeq \textcircled{ \textcircled{ \ } \textcircled{ \ } } (g \geq 2)$$

Consider the case when H is non-compact.

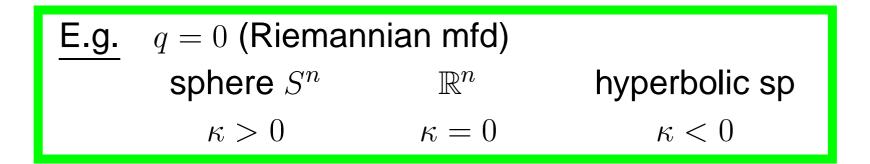
Space forms (definition)

(M,g): pseudo-Riemannian mfd, geodesically complete



Space forms (examples)

 $\begin{array}{l} {\rm Space \ form \ \cdots \ } \left\{ \begin{array}{l} {\rm Signature \ }(p,q) \ {\rm of \ pseudo-Riemannian \ metric \ }g \\ {\rm Curvature \ }\kappa \in \{+,0,-\} \end{array} \right. \end{array} \right.$



Space forms (examples)

 $\begin{array}{l} {\rm Space \ form \ } \cdots \ \left\{ \begin{array}{l} {\rm Signature \ } (p,q) \ {\rm of \ pseudo-Riemannian \ metric \ } g \\ {\rm Curvature \ } \kappa \in \{+,0,-\} \end{array} \right. \end{array} \right.$

E.g.
$$q = 0$$
 (Riemannian mfd)sphere S^n \mathbb{R}^n hyperbolic sp $\kappa > 0$ $\kappa = 0$ $\kappa < 0$

E.g.
$$q = 1$$
 (Lorentz mfd)de Sitter spMinkowski spanti-de Sitter sp $\kappa > 0$ $\kappa = 0$ $\kappa < 0$

Space form problem

Space form problem for pseudo-Riemannian mfds

Local Assumption signature (p,q), curvature $\kappa \in \{+,0,-\}$

\Downarrow

Global Results

- Do compact quotients exist?
- What groups can arise as their fundamental groups?

Space form problem

Space form problem for pseudo-Riemannian mfds

Local Assumption

signature (p,q), curvature $\kappa \in \{+,0,-\}$

\Downarrow

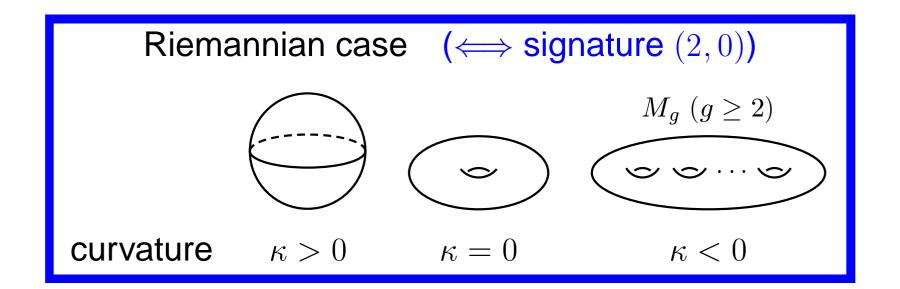
Global Results

• Do compact quotients exist?

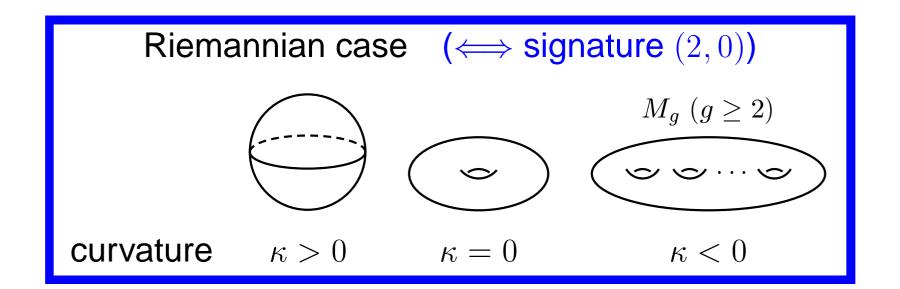
Is the universe closed?

• What groups can arise as their fundamental groups?

2-dim'l compact space forms



2-dim'l compact space forms



Lorentz case (\iff signature (1, 1)) compact forms do NOT exist for $\kappa > 0$ and $\kappa < 0$

Geometry \iff Group theoretic formulation

Compact space forms exist for $\kappa < 0$ and signature (p, q)

 $\Rightarrow \quad \text{Cocompact discont. gps exist} \\ \text{for symmetric sp } O(p, q+1)/O(p, q)$

Riemannian case · · · hyperbolic space

Compact quotients

Riemannian case · · · hyperbolic space

Compact quotients

- \iff Cocompact discont. gp for $O(n,1)/O(n) \times O(1)$
- $\iff \text{Cocompact discrete subgp of } O(n,1)$ (uniform lattice)

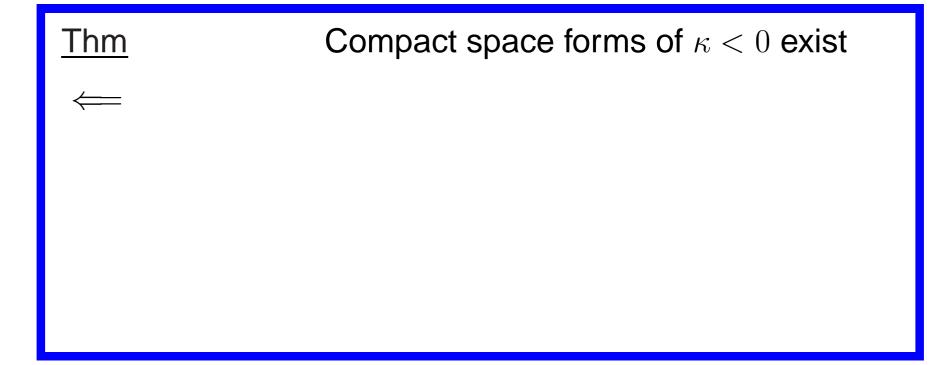
Riemannian case · · · hyperbolic space

Compact quotients

- \iff Cocompact discont. gp for $O(n,1)/O(n) \times O(1)$
- $\iff \text{Cocompact discrete subgp of } O(n,1)$ (uniform lattice)

Exist by Siegel, Borel, Vinberg, Gromov–Piateski-Shapiro · · · arithmetic non-arithmetic

• For pseudo-Riemannian mfd of signature (p,q)



For pseudo-Riemannian mfd of signature (p,q)

<u>Thm</u>	Compact space forms of $\kappa < 0$ exist	
⇐==	(1) q any, $p = 0$	$(\leftrightarrow \kappa > 0)$
	② $q = 0$, p any	(hyperbolic sp)

True (Proved (1950–2005))
①② (Riemmanian)

For pseudo-Riemannian mfd of signature (p,q)

ThmCompact space forms of $\kappa < 0$ exist \Leftarrow () q any, p = 0($\leftrightarrow \kappa > 0$)(2) q = 0, p any(hyperbolic sp)(3) q = 1, $p \equiv 0 \mod 2$

← True (Proved (1950–2005))
①② (Riemmanian)

For pseudo-Riemannian mfd of signature (p,q)

ThmCompact space forms of $\kappa < 0$ exist \Leftarrow () q any, p = 0($\leftrightarrow \kappa > 0$)(2) q = 0, p any(hyperbolic sp)(3) q = 1, $p \equiv 0 \mod 2$ ($\Rightarrow q = 3$, $p \equiv 0 \mod 4$

← True (Proved (1950–2005))
①② (Riemmanian)

• For pseudo-Riemannian mfd of signature (p,q)

<u>Thm</u>Compact space forms of $\kappa < 0$ exist \Leftarrow (1) q any, p = 0($\leftrightarrow \kappa > 0$)(2) q = 0, p any(hyperbolic sp)(3) q = 1, $p \equiv 0 \mod 2$ ($a = 3, p \equiv 0 \mod 4$ (4) $q = 3, p \equiv 0 \mod 4$ (pseudo-Riemannian)(5) q = 7, p = 8

 $\leftarrow \text{True (Proved (1950-2005))} \\ (12) (Riemmanian); 345 (pseudo-Riemannian) Kulkarni, K-)$

• For pseudo-Riemannian mfd of signature (p,q)

 $\leftarrow True (Proved (1950-2005)) \\ (12) (Riemmanian); 345 (pseudo-Riemannian) Kulkarni, K-)$

- For pseudo-Riemannian mfd of signature (p,q)
 - $\begin{array}{c} \hline \text{Thm} & \underline{\text{Conjecture}} \text{ Compact space forms of } \kappa < 0 \text{ exist} \\ \hline \longleftarrow & 1 \ q \text{ any, } p = 0 & (\leftrightarrow \kappa > 0) \\ \hline \bigcirc & 2 \ q = 0, \ p \text{ any} & (\text{hyperbolic sp}) \\ \hline \bigcirc & q = 1, \ p \equiv 0 \mod 2 \\ \hline \bigcirc & q = 3, \ p \equiv 0 \mod 4 \\ \hline \bigcirc & q = 7, \ p = 8 \end{array} \right\} \text{ (pseudo-Riemannian)}$

 $q = 1, p \le q$, or pq is odd Hirzebruch's proportionality principle (K–Ono)

Methods

Understanding proper actions (\pitchfork , \sim), cohomology of discrete groups

Methods

Understanding proper actions (\pitchfork,\sim), cohomology of discrete groups

Construction of lattice

• Find a connected subgp L that acts on G/H properly and cocompactly.

• Take a uniform lattice Γ in L $\Rightarrow \Gamma$ is a uniform lattice for G/H.

Methods

Understanding proper actions (h, \sim), cohomology of discrete groups

Construction of lattice

• Find a connected subgp L that acts on G/H properly and cocompactly.

• Take a uniform lattice Γ in L $\Rightarrow \Gamma$ is a uniform lattice for G/H.

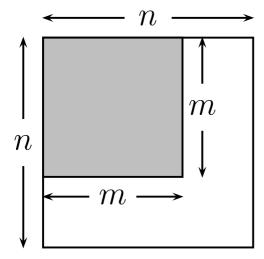
Obstruction of lattice

- Characteristic classes
- Comparison theorem: $\Gamma \frown G/H \iff \Gamma \frown G/H'$

Problem: Does there exist compact Hausdorff quotients of

 $SL(n,\mathbb{F})/SL(m,\mathbb{F})$ $(n > m, \mathbb{F} = \mathbb{R}, \mathbb{C}, \mathbb{H})$

by discrete subgps of $SL(n, \mathbb{F})$?



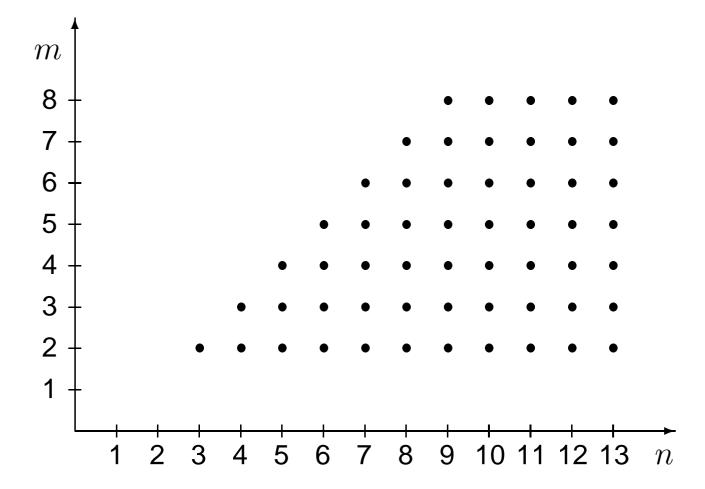
SL(n)/SL(m) case

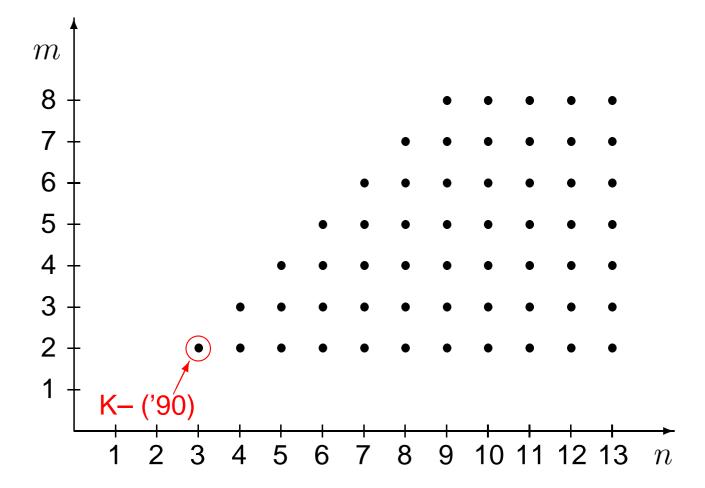
<u>Conjecture</u> SL(n)/SL(m) (n > m > 1)has no uniform lattice.

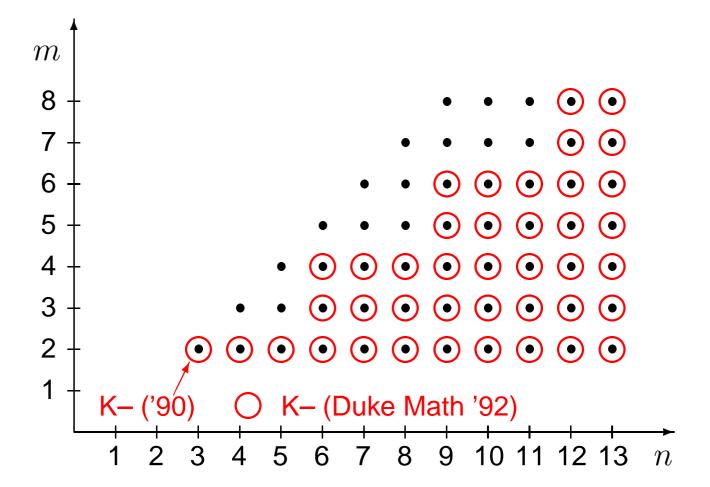
SL(n)/SL(m) case

<u>Conjecture</u> SL(n)/SL(m) (n > m > 1)has no uniform lattice.

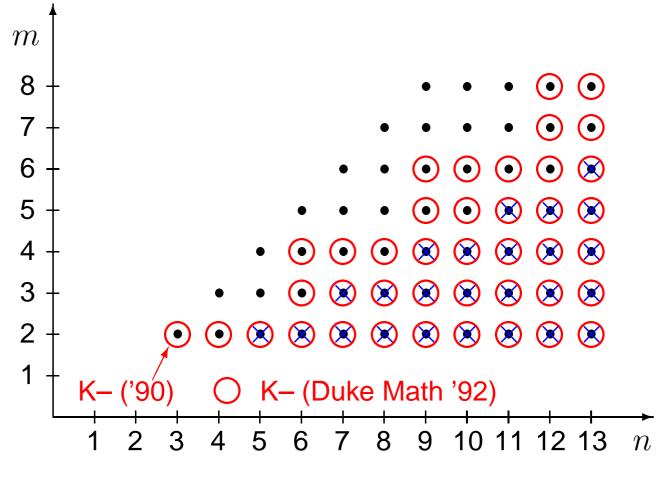
criterion of proper actions $\frac{n}{3} > \left[\frac{m+1}{2}\right]$ K– n > 2mZimmer orbit closure thm (Ratner) Labourier-Mozes-Zimmer ergodic action n > 2mBenoist criterion of proper actions n = m + 1, m even Margulis unitary representation $(n \ge 5, m = 2)$ Shalom n > 4, m = 2unitary representation





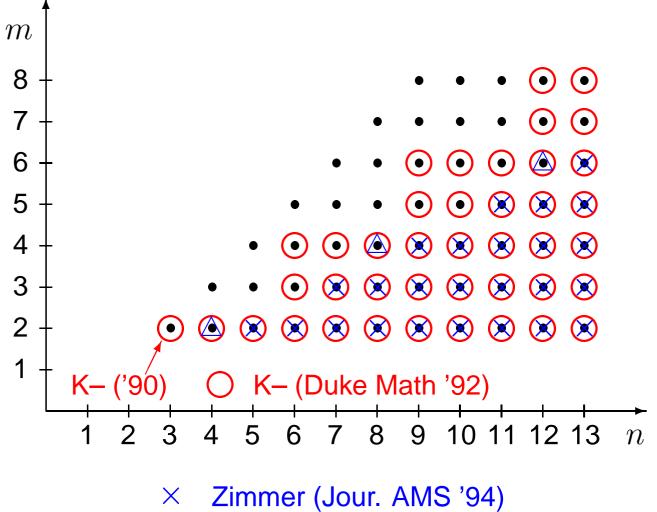


Do not exist if n > m satisfies:

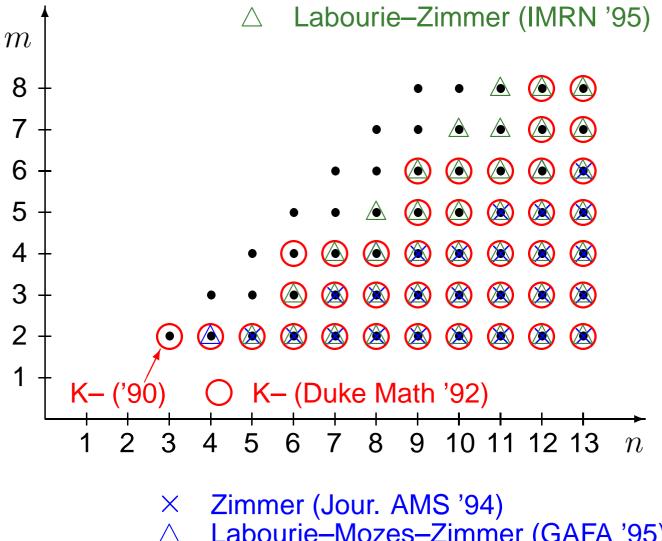


 \times Zimmer (Jour. AMS '94)

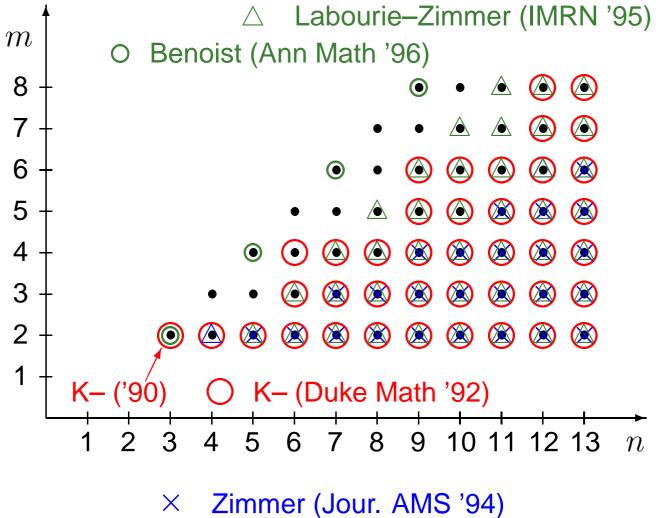
Do not exist if n > m satisfies:



△ Labourie–Mozes–Zimmer (GAFA '95)

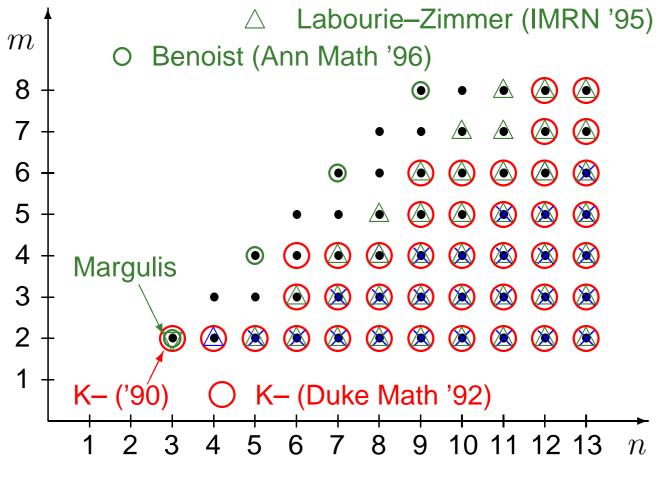


Do not exist if n > m satisfies:



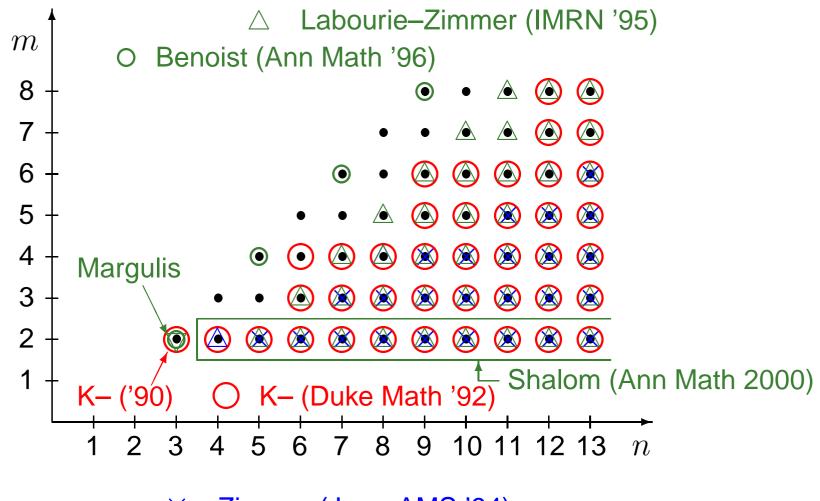
△ Labourie–Mozes–Zimmer (GAFA '95)

Do not exist if n > m satisfies:



× Zimmer (Jour. AMS '94)
△ Labourie–Mozes–Zimmer (GAFA '95)

Do not exist if n > m satisfies:



× Zimmer (Jour. AMS '94) \triangle Labourie–Mozes–Zimmer (GAFA '95)

SL(n)/SL(m) case

<u>Conjecture</u> SL(n)/SL(m) (n > m > 1)has no uniform lattice.

criterion of proper actions $\frac{n}{3} > \left[\frac{m+1}{2}\right]$ K– n > 2mZimmer orbit closure thm (Ratner) Labourier-Mozes-Zimmer ergodic action n > 2m**Benoist** criterion of proper actions n = m + 1, m even Margulis unitary representation $(n \ge 5, m = 2)$ Shalom n > 4, m = 2unitary representation

Riemannian symmetric space G/K:

G/K: Riemannian symmetric space

 \parallel complexification

 $G_{\mathbb{C}}/K_{\mathbb{C}}$: complex symmetric space

G/K: Riemannian symmetric space

 $G_{\mathbb{C}}/K_{\mathbb{C}}$: complex symmetric space

<u>Fact</u> (Borel 1963) Compact quotients exist for \forall Riemannian symm sp. G/K.

G/K: Riemannian symmetric space

 $G_{\mathbb{C}}/K_{\mathbb{C}}$: complex symmetric space

<u>Fact</u> (Borel 1963) Compact quotients exist for \forall Riemannian symm sp. G/K.

<u>Conj.</u> Compact quotients exist for $G_{\mathbb{C}}/K_{\mathbb{C}}$

Riemannian symmetric space G/K:

<u>Fact</u> (Borel 1963) Compact quotients exist for \forall Riemannian symm sp. G/K.

Compact quotients exist for $G_{\mathbb{C}}/K_{\mathbb{C}}$ $\iff G_{\mathbb{C}}/K_{\mathbb{C}} \approx S_{\mathbb{C}}^7$ or complex group mfd

G/K: Riemannian symmetric space

 $G_{\mathbb{C}}/K_{\mathbb{C}}$: complex symmetric space

<u>Fact</u> (Borel 1963) Compact quotients exist for \forall Riemannian symm sp. G/K.

<u>Conj.</u> Compact quotients exist for $G_{\mathbb{C}}/K_{\mathbb{C}}$ $\iff G_{\mathbb{C}}/K_{\mathbb{C}} \approx S_{\mathbb{C}}^7$ or complex group mfd

⇐ proved by K–Yoshino 05, ⇒ remaining case $S_{\mathbb{C}}^{4k-1}$, $k \ge 3$ (Benoist, K–)

Existence of compact locally symm. sp

<u>Theorem</u> Exists a uniform lattice for the following G/H : Exists a non-uniform lattice for G/H , too.			
space form indefinite-Kähler G/H			
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ \end{array} $	SU(SO(2SO(2SO(2SO(4,4)/SO(4,4)/SO(4,3)/SO(4,3)/SO(8SO(8SO(8SO(8SO(8)S	(S/H) = (S/H) + (S/N) + (S/N	$n = 1, 2, 3, \dots$ $n = 2, 4, 6, \dots$ $n = 1, 2, 3, \dots$ $n = 2, 4, 6, \dots$ $n = 4, 8, 12, \dots$

What can we expect?

G-invariant diff. op. \widetilde{D} e.g. Laplacian \diamondsuit differential operator *D*

G/H
covering \downarrow
 $\Gamma \backslash G/H$

What can we expect?

G/H
covering \downarrow
 $\Gamma \backslash G/H$

G-invariant diff. op. \widetilde{D} e.g. Laplacian \diamondsuit differential operator *D*

What can we expect?

G/H
covering \downarrow
 $\Gamma \backslash G/H$

G-invariant diff. op. \widetilde{D} e.g. Laplacian $\stackrel{\stackrel{\scriptstyle >}{\downarrow}}{}$ differential operator *D*

What can we expect?

G/Hcovering \downarrow $\Gamma \backslash G/H$ *G*-invariant diff. op. \widetilde{D} e.g. Laplacian \diamondsuit differential operator *D*

General Problem: Find spectrum theory on $L^2(\Gamma \setminus G/H)$

G/Hcovering \downarrow $\Gamma \backslash G/H$ *G*-invariant diff. op. \widetilde{D} e.g. Laplacian \diamondsuit differential operator *D*

General Problem: Find spectrum theory on $L^2(\Gamma \setminus G/H)$

G/H $Covering \downarrow$ $\Gamma \setminus G/H$ $G-invariant diff. op. \widetilde{D}$ G.g. Laplacian \downarrow Gifferential operator D

Difficulties for the non-compact H case
•
•

General Problem: Find spectrum theory on $L^2(\Gamma \setminus G/H)$

G/H $Covering \downarrow$ $\Gamma \setminus G/H$ $G-invariant diff. op. \widetilde{D}$ e.g. Laplacian \downarrow G friction friction

Difficulties for the non-compact *H* case

• Laplacian is not elliptic

• volume
$$(\Gamma \backslash G) = \infty$$

$$\begin{split} \mathbb{R}^{p,q} &= \left(\mathbb{R}^{p+q}, \ dx_1^2 + \dots + dx_p^2 - dx_{p+1}^2 - \dots - dx_{p+q}^2\right) \\ \Delta &= \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \dots - \frac{\partial^2}{\partial x_{p+q}^2} \\ \Gamma &: \text{lattice for } \mathbb{R}^{p+q} \quad (\simeq \mathbb{Z}^{p+q}) \\ X_{\Gamma} &:= \Gamma \backslash \mathbb{R}^{p+q} \quad (\simeq \mathbb{T}^{p+q}) \end{split}$$

Observation
$$Spec(X_{\Gamma}, \Delta) \subset \mathbb{R}$$
can be $\begin{cases} discrete \\ dense (cf. Oppenheim conjecture) \\ depending on Γ. \end{cases}$

$$\mathbb{R}^{p,q} = (\mathbb{R}^{p+q}, \ dx_1^2 + \dots + dx_p^2 - dx_{p+1}^2 - \dots - dx_{p+q}^2)$$

$$\Delta = \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \dots - \frac{\partial^2}{\partial x_{p+q}^2}$$

$$\Gamma : \text{lattice for } \mathbb{R}^{p+q} \quad (\simeq \mathbb{Z}^{p+q})$$

$$X_{\Gamma} := \Gamma \backslash \mathbb{R}^{p+q} \quad (\simeq \mathbb{T}^{p+q})$$

Observation
$$\operatorname{Spec}(X_{\Gamma}, \Delta) \subset \mathbb{R}$$
 $\operatorname{can be} \begin{cases} \operatorname{discrete} \\ \operatorname{dense} (cf. Oppenheim conjecture) \\ \end{array}$ $\operatorname{depending on } \Gamma.$

$$\begin{split} \mathbb{R}^{p,q} &= (\mathbb{R}^{p+q}, \ dx_1^2 + \dots + dx_p^2 - dx_{p+1}^2 - \dots - dx_{p+q}^2) \\ \Delta &= \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \dots - \frac{\partial^2}{\partial x_{p+q}^2} \\ \Gamma &: \text{lattice for } \mathbb{R}^{p+q} \quad (\simeq \mathbb{Z}^{p+q}) \\ X_{\Gamma} &:= \Gamma \backslash \mathbb{R}^{p+q} \quad (\simeq \mathbb{T}^{p+q}) \end{split}$$

$$\mathbb{R}^{p,q} = (\mathbb{R}^{p+q}, \ dx_1^2 + \dots + dx_p^2 - dx_{p+1}^2 - \dots - dx_{p+q}^2)$$

$$\Delta = \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \dots - \frac{\partial^2}{\partial x_{p+q}^2}$$

$$\Gamma : \text{lattice for } \mathbb{R}^{p+q} \quad (\simeq \mathbb{Z}^{p+q})$$

$$X_{\Gamma} := \Gamma \backslash \mathbb{R}^{p+q} \quad (\simeq \mathbb{T}^{p+q})$$

Observation
$$\operatorname{Spec}(X_{\Gamma}, \Delta) \subset \mathbb{R}$$
 $\operatorname{can be} \begin{cases} \operatorname{discrete} \\ \operatorname{dense} (\operatorname{cf. Oppenheim conjecture}) \\ \end{array}$ $\operatorname{depending on } \Gamma.$

$$\begin{split} \mathbb{R}^{p,q} &= (\mathbb{R}^{p+q}, \ dx_1^2 + \dots + dx_p^2 - dx_{p+1}^2 - \dots - dx_{p+q}^2) \\ \Delta &= \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \dots - \frac{\partial^2}{\partial x_{p+q}^2} \\ \Gamma &: \text{lattice for } \mathbb{R}^{p+q} \quad (\simeq \mathbb{Z}^{p+q}) \\ X_{\Gamma} &:= \Gamma \backslash \mathbb{R}^{p+q} \quad (\simeq \mathbb{T}^{p+q}) \end{split}$$

$$\begin{array}{ll} \underline{Observation} & \operatorname{Spec}(X_{\Gamma}, \Delta) \subset \mathbb{R} \\ & \mbox{ can be } \begin{cases} \mbox{discrete} \\ \mbox{dense (cf. Oppenheim conjecture)} \\ & \mbox{depending on } \Gamma. \end{cases}$$

$$\begin{split} \mathbb{R}^{p,q} &= (\mathbb{R}^{p+q}, \ dx_1^2 + \dots + dx_p^2 - dx_{p+1}^2 - \dots - dx_{p+q}^2) \\ \Delta &= \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \dots - \frac{\partial^2}{\partial x_{p+q}^2} \\ \Gamma &: \text{lattice for } \mathbb{R}^{p+q} \quad (\simeq \mathbb{Z}^{p+q}) \\ X_{\Gamma} &:= \Gamma \backslash \mathbb{R}^{p+q} \quad (\simeq \mathbb{T}^{p+q}) \end{split}$$

$$\begin{split} \mathbb{R}^{p,q} &= (\mathbb{R}^{p+q}, \ dx_1^2 + \dots + dx_p^2 - dx_{p+1}^2 - \dots - dx_{p+q}^2) \\ \Delta &= \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \dots - \frac{\partial^2}{\partial x_{p+q}^2} \\ \Gamma &: \text{lattice for } \mathbb{R}^{p+q} \quad (\simeq \mathbb{Z}^{p+q}) \\ X_{\Gamma} &:= \Gamma \backslash \mathbb{R}^{p+q} \quad (\simeq \mathbb{T}^{p+q}) \end{split}$$

$$\begin{array}{ll} \underline{\text{Observation}} & \operatorname{Spec}(X_{\Gamma}, \Delta) \subset \mathbb{R} \\ & \mbox{can be} \begin{cases} \mbox{discrete} \\ \mbox{dense} \ (\mbox{cf. Oppenheim conjecture}) \\ & \mbox{depending on } \Gamma. \end{cases}$$

Observation for $\mathbb{R}^{p,q}$

$$\begin{split} \mathbb{R}^{p,q} &= (\mathbb{R}^{p+q}, \ dx_1^2 + \dots + dx_p^2 - dx_{p+1}^2 - \dots - dx_{p+q}^2) \\ \Delta &= \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_p^2} - \frac{\partial^2}{\partial x_{p+1}^2} - \dots - \frac{\partial^2}{\partial x_{p+q}^2} \\ \Gamma &: \text{lattice for } \mathbb{R}^{p+q} \quad (\simeq \mathbb{Z}^{p+q}) \\ X_{\Gamma} &:= \Gamma \backslash \mathbb{R}^{p+q} \quad (\simeq \mathbb{T}^{p+q}) \end{split}$$

$$\begin{array}{ll} \underline{Observation} & \operatorname{Spec}(X_{\Gamma}, \Delta) \subset \mathbb{R} \\ & \mbox{ can be } \begin{cases} \mbox{discrete} \\ \mbox{dense (cf. Oppenheim conjecture)} \\ & \mbox{depending on } \Gamma. \end{cases} \end{array}$$

<u>Question</u> Do there exist universal spectra of Δ on $\Gamma \setminus G/H$ that are independent of Γ ?

<u>Question</u> Do there exist universal spectra of Δ on $\Gamma \setminus G/H$ that are independent of Γ ?

The answer may be NO. If yes, how to find them?

<u>Question</u> Do there exist universal spectra of Δ on $\Gamma \setminus G/H$ that are independent of Γ ?

The answer may be NO. If yes, how to find them?

Naive idea
$$(L^1 \cap C^\infty)(G/H) \xrightarrow{\int_{\Gamma}} C^\infty(\Gamma \setminus G/H)$$

<u>Question</u> Do there exist universal spectra of Δ on $\Gamma \setminus G/H$ that are independent of Γ ?

The answer may be NO. If yes, how to find them?

$$\begin{array}{lll} \underline{\text{Naive idea}} & (L^1 \cap C^\infty)(G/H) & \xrightarrow{\int_{\Gamma}} & C^\infty(\Gamma \backslash G/H) \\ & \text{eigenfunction} & \leadsto & \text{eigenfunction} \end{array}$$

<u>Question</u> Do there exist universal spectra of Δ on $\Gamma \setminus G/H$ that are independent of Γ ?

The answer may be NO. If yes, how to find them?

$$\begin{array}{lll} \underline{\text{Naive idea}} & (L^1 \cap C^\infty)(G/H) & \xrightarrow{\int_{\Gamma}} & C^\infty(\Gamma \backslash G/H) \\ & \text{eigenfunction} & \rightsquigarrow & \text{eigenfunction} \end{array}$$

This naive idea does not work for

 $G/H = \mathbb{R}^{p+q}, \quad G/K$ (Riemannian symmetric sp.)

<u>Question</u> Do there exist universal spectra of Δ on $\Gamma \setminus G/H$ that are independent of Γ ?

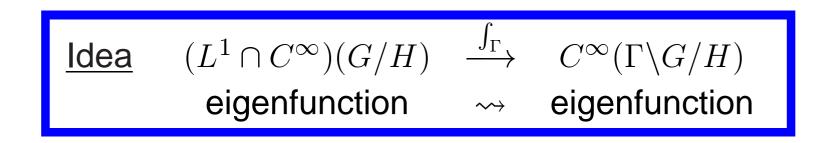
The answer may be NO. If yes, how to find them?

This naive idea does not work for

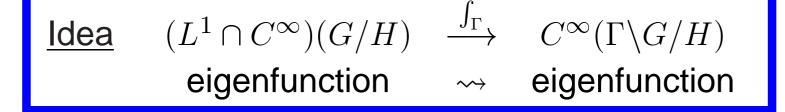
 $G/H = \mathbb{R}^{p+q}, \quad G/K$ (Riemannian symmetric sp.)

because L^1 eigenfunction of Laplacian must be zero!

Construction of eigenfunction on $\Gamma \backslash G/H$



Construction of eigenfunction on $\Gamma \backslash G/H$



Idea works for semisimple symmetric sp. G/H !

under the Flensted-Jensen – Matsuki–Oshima condition $\operatorname{rank} G/H = \operatorname{rank} K/H \cap K$

 $G/H = U(2,2)/U(1) \times U(1,2)$ $\simeq \{ [z_1 : z_2 : z_3 : z_4] \in \mathbb{P}^3 \mathbb{C} : |z_1|^2 + |z_2|^2 > |z_3|^2 + |z_4|^2 \}$ complex 3-dim'l (real 6-dim'l preudo-Riemannian mfd)

 Γ : torsion free, cocompact lattice of Spin(4,1)

Note $Vol(\Gamma \setminus G) = \infty$, Δ : ultrahyperbolic operator

 $G/H = U(2,2)/U(1) \times U(1,2)$ $\simeq \{ [z_1 : z_2 : z_3 : z_4] \in \mathbb{P}^3 \mathbb{C} : |z_1|^2 + |z_2|^2 > |z_3|^2 + |z_4|^2 \}$ complex 3-dim'l (real 6-dim'l preudo-Riemannian mfd)

 Γ : torsion free, cocompact lattice of Spin(4, 1)

Note $Vol(\Gamma \setminus G) = \infty$, Δ : ultrahyperbolic operator

 $G/H = U(2,2)/U(1) \times U(1,2)$ $\simeq \{ [z_1 : z_2 : z_3 : z_4] \in \mathbb{P}^3 \mathbb{C} : |z_1|^2 + |z_2|^2 > |z_3|^2 + |z_4|^2 \}$ complex 3-dim'l (real 6-dim'l preudo-Riemannian mfd)

 Γ : torsion free, cocompact lattice of Spin(4, 1)

Note $Vol(\Gamma \setminus G) = \infty$, Δ : ultrahyperbolic operator

 $G/H = U(2,2)/U(1) \times U(1,2)$ $\simeq \{ [z_1 : z_2 : z_3 : z_4] \in \mathbb{P}^3 \mathbb{C} : |z_1|^2 + |z_2|^2 > |z_3|^2 + |z_4|^2 \}$ complex 3-dim'l (real 6-dim'l preudo-Riemannian mfd)

 Γ : torsion free, cocompact lattice of Spin(4, 1)

<u>Note</u> $Vol(\Gamma \setminus G) = \infty$, Δ : ultrahyperbolic operator

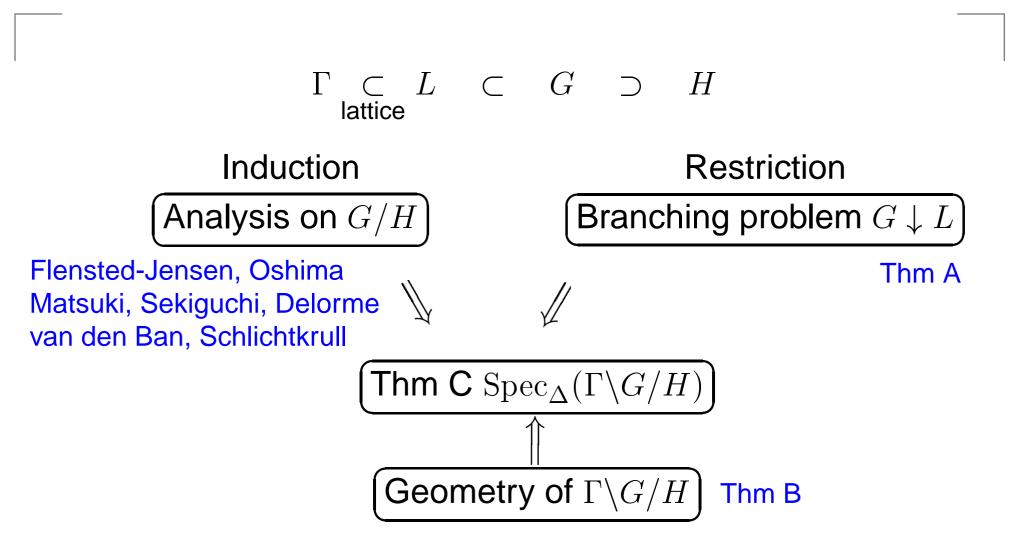
 $G/H = U(2,2)/U(1) \times U(1,2)$ $\simeq \{ [z_1 : z_2 : z_3 : z_4] \in \mathbb{P}^3 \mathbb{C} : |z_1|^2 + |z_2|^2 > |z_3|^2 + |z_4|^2 \}$ complex 3-dim'l (real 6-dim'l preudo-Riemannian mfd)

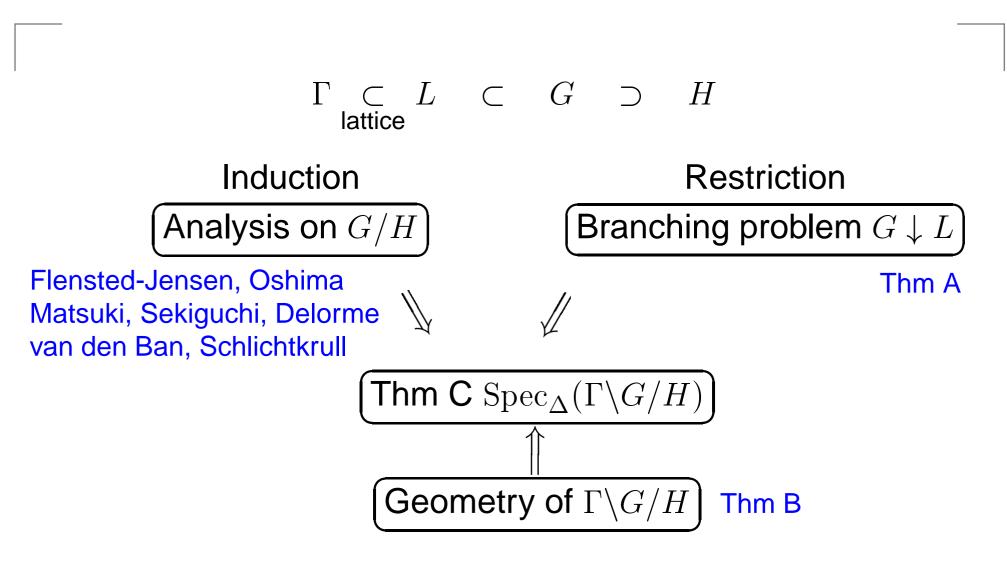
 Γ : torsion free, cocompact lattice of Spin(4, 1)

<u>Note</u> $Vol(\Gamma \setminus G) = \infty$, Δ : ultrahyperbolic operator

 $\Gamma \underset{\text{lattice}}{\subset} Spin(4,1) \ \subset \ U(2,2) \ \supset \ U(1) \times U(1,2)$

$\label{eq:general} \Gamma \ \subset \ L \ \subset \ G \ \supset \ H$ lattice





Happy Birthday to Professor Oshima!