## **Existence Problem of Compact Locally Symmetric Spaces**

Colloquium, Harvard University

17 March 2008

Toshiyuki Kobayashi (Harvard University & University of Tokyo)

http://www.math.harvard.edu/~toshi/

**Naive question** 

# Discontinuous groups for homogeneous spaces

(e.g. symmetric spaces)

Riemannian  $\implies$  non-Riemannian?

#### **Representation theory**

#### Reps of Lie groups/algebras Non-commutative harmonic analysis

Great trends of developments through 20th cent.

| compact          | $\implies$        | non-compact        |
|------------------|-------------------|--------------------|
| Riemannian       | $\Longrightarrow$ | non-Riemannian     |
| finite dim'l rep | $\implies$        | $\infty$ dim'l rep |

**Naive question** 

# Discontinuous groups for homogeneous spaces

(e.g. symmetric spaces)

Riemannian  $\implies$  non-Riemannian?

**Naive question** 

## Discontinuous groups for homogeneous spaces

(e.g. symmetric spaces)

Riemannian  $\implies$  non-Riemannian?

A fruitful theory?

Existence Problem of Compact Locally Symmetric Spaces - p.4/53

Isometry gp for pseudo-Riemannian mfd

Isometry gp for pseudo-Riemannian mfd

E.g. 
$$X = \mathbb{R}^2 \setminus \{(0,0)\},$$
  
 $ds^2 = d(x+y)^2 - d(x-y)^2$  (Lorentz metric)

Isometry gp for pseudo-Riemannian mfd

E.g. 
$$X = \mathbb{R}^2 \setminus \{(0,0)\},$$
  
 $ds^2 = d(x+y)^2 - d(x-y)^2$  (Lorentz metric)  
 $\mathbb{Z} \xrightarrow{\text{isometry}} X$   
 $n \qquad (x,y)$   
 $\downarrow$   
 $(2^n x, 2^{-n} y)$ 

Isometry gp for pseudo-Riemannian mfd

E.g. 
$$X = \mathbb{R}^2 \setminus \{(0,0)\},$$
  
 $ds^2 = d(x+y)^2 - d(x-y)^2$  (Lorentz metric)  
 $\mathbb{Z} \xrightarrow{\text{isometry}} X$   
 $n \qquad (x,y)$   
 $\downarrow$   
 $(2^n x, 2^{-n} y)$ 

Isometry gp for pseudo-Riemannian mfd

E.g. 
$$X = \mathbb{R}^2 \setminus \{(0,0)\},$$
  
 $ds^2 = d(x+y)^2 - d(\overset{\times}{x} - y)^2$  (Lorentz metric)  
 $\mathbb{Z} \overset{\text{isometry}}{\frown} X$   
 $n \quad (x,y)$   
 $\downarrow$   
 $(2^n x, 2^{-n} y)$ 

Isometry gp for pseudo-Riemannian mfd

E.g. 
$$X = \mathbb{R}^2 \setminus \{(0,0)\},$$
  
 $ds^2 = d(x+y)^2 - d(\overset{\times}{x} - y)^2$  (Lorentz metric)  
no accumulation points  
all orbits are closed  
 $\overset{\times}{x}$   
 $n \qquad (x,y)$   
 $\downarrow$   
 $(2^nx, 2^{-n}y)$ 

Isometry gp for pseudo-Riemannian mfd

E.g. 
$$X = \mathbb{R}^2 \setminus \{(0,0)\},$$
  
 $ds^2 = d(x+y)^2 - d(x-y)^2$  (Lorentz metric)  
no accumulation points  
all orbits are closed  
 $x$   
 $n$   
 $(x,y)$   
 $\downarrow$   
 $(2^nx, 2^{-n}y)$ 

Isometry gp for pseudo-Riemannian mfd

E.g. 
$$X = \mathbb{R}^2 \setminus \{(0,0)\},$$
  
 $ds^2 = d(x+y)^2 - d(x-y)^2$  (Lorentz metric)  
no accumulation points  
all orbits are closed  
 $X$   
 $n$   $(x,y)$   
 $\downarrow$   
 $(2^nx, 2^{-n}y)$ 

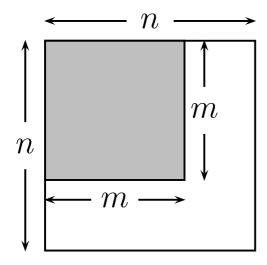
Isometry gp for pseudo-Riemannian mfd

Isometry gp for pseudo-Riemannian mfd

Problem: Does there exist compact Hausdorff quotients of

 $SL(n,\mathbb{F})/SL(m,\mathbb{F})$   $(n > m, \mathbb{F} = \mathbb{R}, \mathbb{C}, \mathbb{H})$ 

by discrete subgps of  $SL(n, \mathbb{F})$ ?

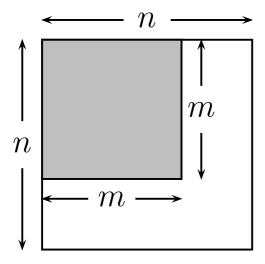


Problem: Does there exist compact Hausdorff quotients of

 $SL(n,\mathbb{F})/SL(m,\mathbb{F})$   $(n > m, \mathbb{F} = \mathbb{R}, \mathbb{C}, \mathbb{H})$ 

by discrete subgps of  $SL(n, \mathbb{F})$ ?

Conjecture: No for any n > m.



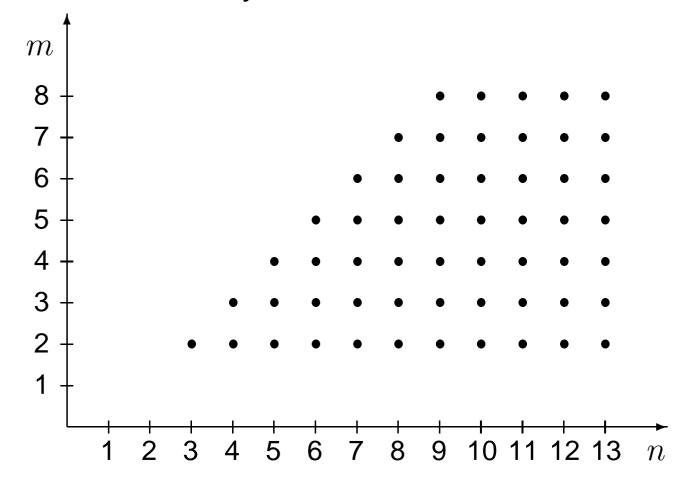
## SL(n)/SL(m) case

Cf. Space Form Conjecture (mentioned later)

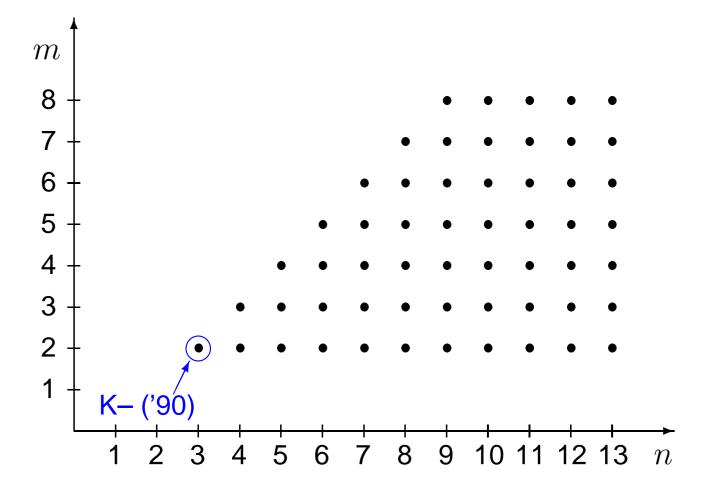
 $\begin{array}{ll} \underline{\text{Conjecture 1}} & SL(n)/SL(m) \; (n > m > 1) \\ & \text{has no uniform lattice.} \end{array}$ 

| K–                     | criterion of proper actions | $\frac{n}{3} > \left[\frac{m+1}{2}\right]$ |
|------------------------|-----------------------------|--------------------------------------------|
| Zimmer                 | orbit closure thm (Ratner)  | n > 2m                                     |
| Labourier-Mozes-Zimmer |                             |                                            |
|                        | ergodic action              | $n \ge 2m$                                 |
| Benoist                | criterion of proper actions | n = m + 1, m even                          |
| Margulis               | unitary rep                 | $(n \ge 5, m = 2)$                         |
| Shalom                 | unitary rep                 | $n \ge 4, m = 2$                           |

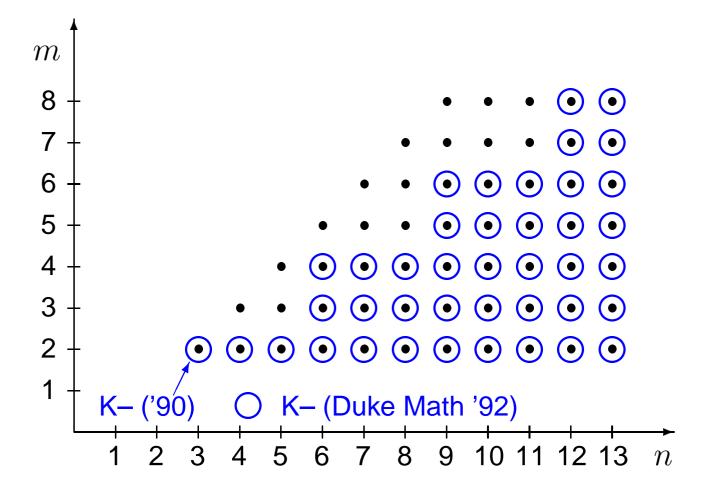
Conjecture: No for any n > m.



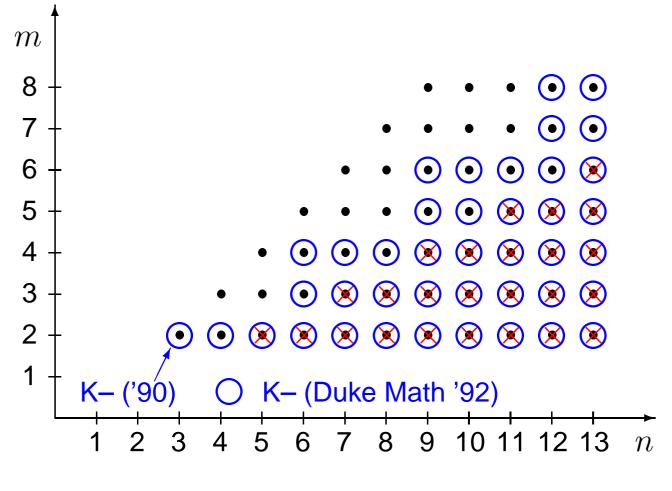
Do not exist if n > m satisfies:



Do not exist if n > m satisfies:

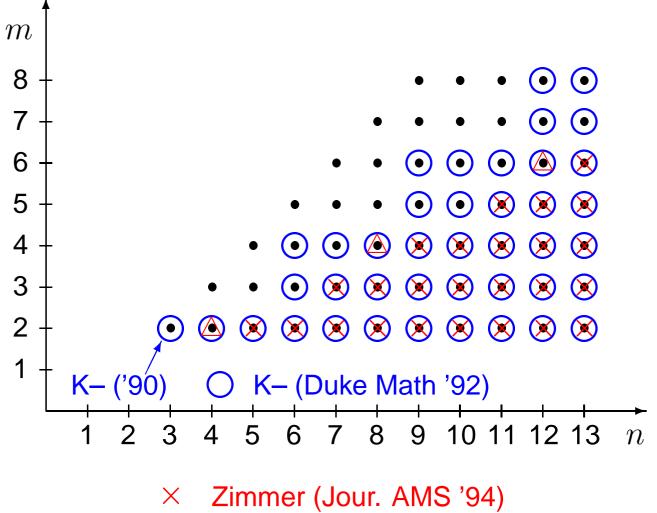


Do not exist if n > m satisfies:



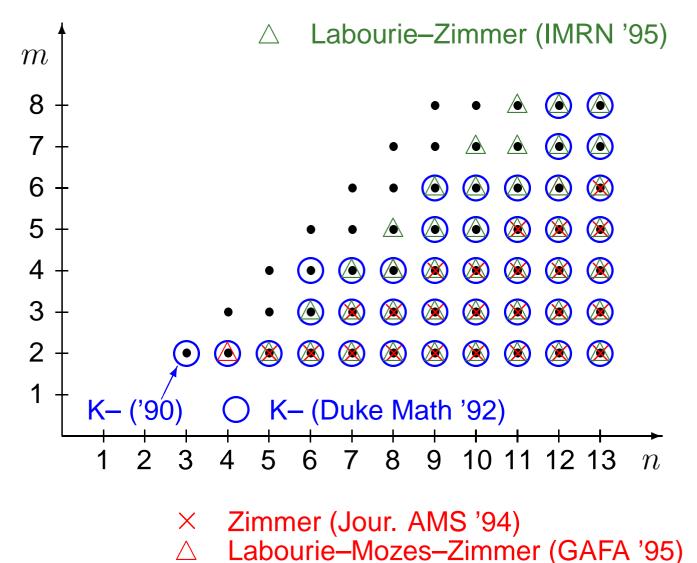
 $\times$  Zimmer (Jour. AMS '94)

Do not exist if n > m satisfies:

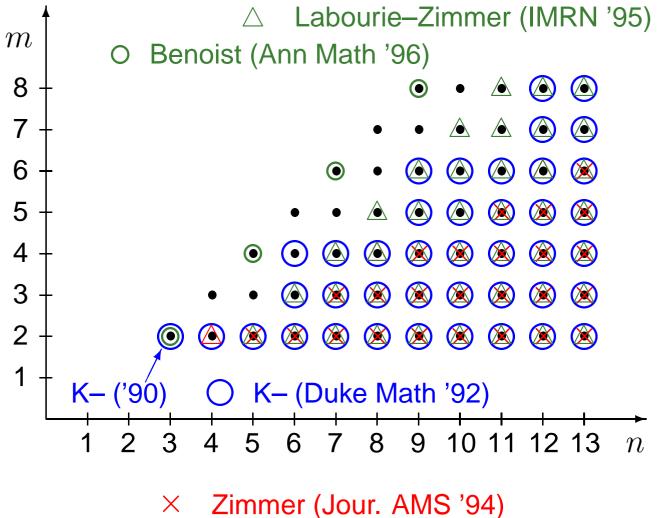


△ Labourie–Mozes–Zimmer (GAFA '95)

Do not exist if n > m satisfies:

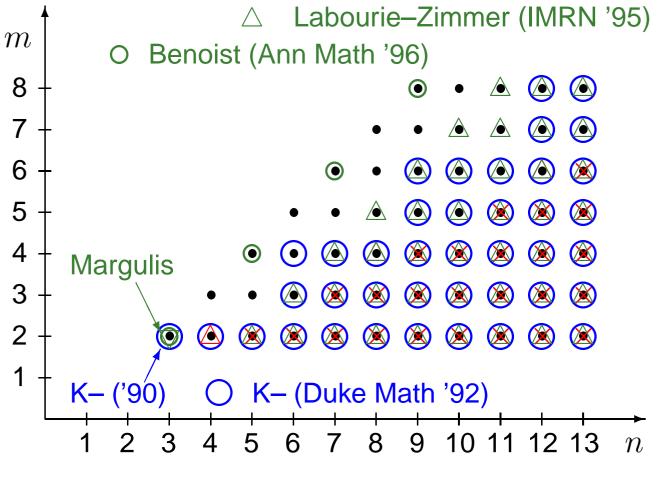


Do not exist if n > m satisfies:



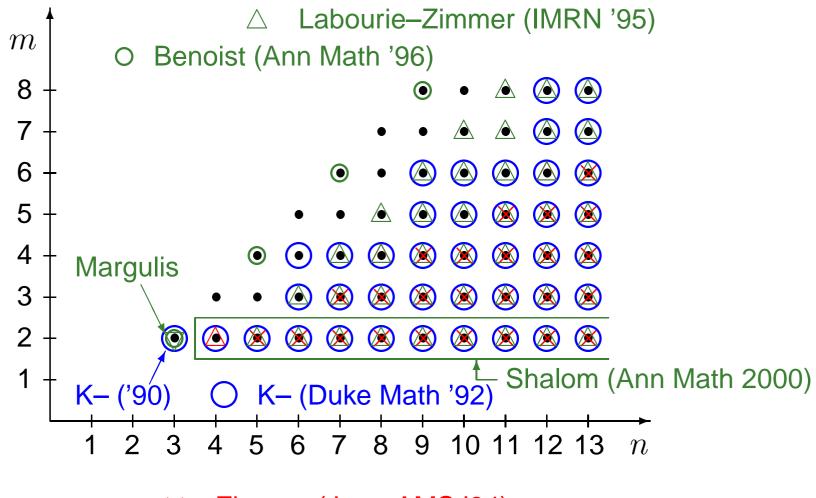
△ Labourie–Mozes–Zimmer (GAFA '95)

Do not exist if n > m satisfies:



× Zimmer (Jour. AMS '94)  $\triangle$  Labourie–Mozes–Zimmer (GAFA '95)

Do not exist if n > m satisfies:



× Zimmer (Jour. AMS '94)  $\triangle$  Labourie–Mozes–Zimmer (GAFA '95)

Discrete subgp  $\rightleftharpoons$  Discontinuous gp

for non-Riemannian homo. spaces

Discrete subgp  $\rightleftharpoons$  Discontinuous gp

for non-Riemannian homo. spaces

## How does a local geometric structure affect the global nature of manifolds?

New phenomena & methods?

Discrete subgp  $\rightleftharpoons$  Discontinuous gp

for non-Riemannian homo. spaces

Fundamental problems

 Are there many discont. gps? (cf. Calabi–Markus phenomenon)

Discrete subgp  $\rightleftharpoons$  Discontinuous gp

for non-Riemannian homo. spaces

Fundamental problems

- Are there many discont. gps? (cf. Calabi–Markus phenomenon)
- Existence problem of compact quotients (unsolved even for space forms)

Discrete subgp  $\rightleftharpoons$  Discontinuous gp

for non-Riemannian homo. spaces

Fundamental problems

- Are there many discont. gps? (cf. Calabi–Markus phenomenon)
- Existence problem of compact quotients (unsolved even for space forms)
- Rigidity and deformation (rigidity may fail even for high dim.)

## **Existence Problem of Compact Locally Symmetric Spaces**

Colloquium, Harvard University

17 March 2008

Toshiyuki Kobayashi (Harvard University & University of Tokyo)

http://www.math.harvard.edu/~toshi/

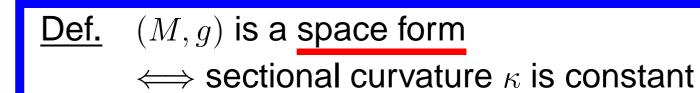
#### Contents

#### 0. Introduction

- 1. Space form problem
- 2. Locally homogeneous spaces
- 3. Method: Criterion for proper discontinuity
- 4. Existence problem of compact quotients
- 5. Rigidity, stability, and deformation

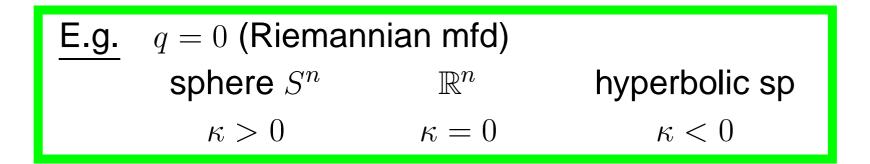
## **1. Space form of signature** (p,q)

(M,g): pseudo-Riemannian mfd, geodesically complete



## **Space forms (examples)**

 $\begin{array}{l} {\rm Space \ form \ \cdots \ } \left\{ \begin{array}{l} {\rm Signature \ }(p,q) \ {\rm of \ pseudo-Riemannian \ metric \ }g \\ {\rm Curvature \ }\kappa \in \{+,0,-\} \end{array} \right. \end{array} \right.$ 



# **Space forms (examples)**

 $\begin{array}{l} {\rm Space \ form \ \cdots \ } \left\{ \begin{array}{l} {\rm Signature \ }(p,q) \ {\rm of \ pseudo-Riemannian \ metric \ }g \\ {\rm Curvature \ }\kappa \in \{+,0,-\} \end{array} \right. \end{array} \right.$ 

E.g.
$$q = 0$$
 (Riemannian mfd)sphere  $S^n$  $\mathbb{R}^n$ hyperbolic sp $\kappa > 0$  $\kappa = 0$  $\kappa < 0$ 

E.g.
$$q = 1$$
 (Lorentz mfd)de Sitter spMinkowski spanti-de Sitter sp $\kappa > 0$  $\kappa = 0$  $\kappa < 0$ 

# **Space form problem**

Space form problem for pseudo-Riemannian mfds

Local Assumption signature (p,q), curvature  $\kappa \in \{+,0,-\}$ 

#### $\Downarrow$

**Global Results** 

- Do compact quotients exist?
- What groups can arise as their fundamental groups?

# **Space form problem**

Space form problem for pseudo-Riemannian mfds

Local Assumption

signature (p,q), curvature  $\kappa \in \{+,0,-\}$ 

#### $\Downarrow$

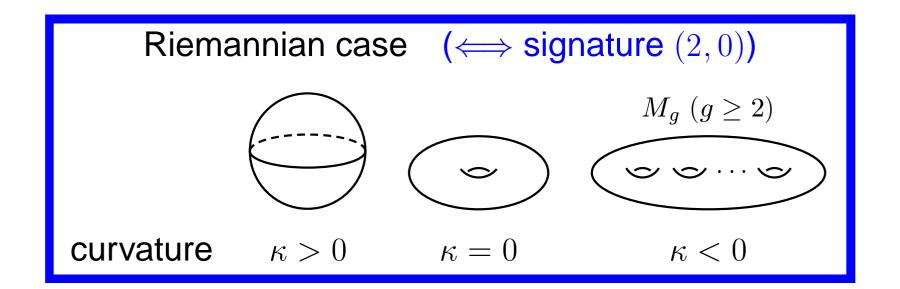
**Global Results** 

• Do compact quotients exist?

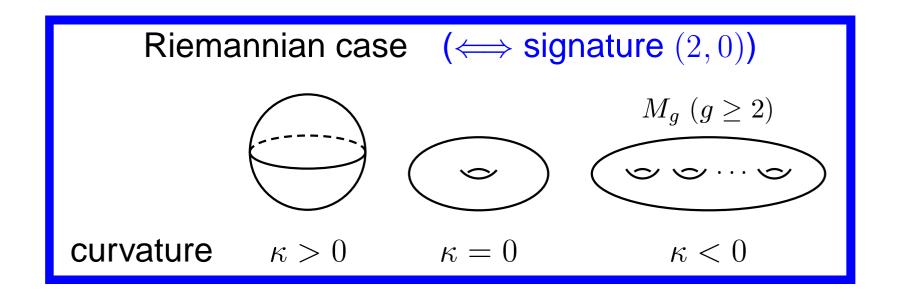
Is the universe closed?

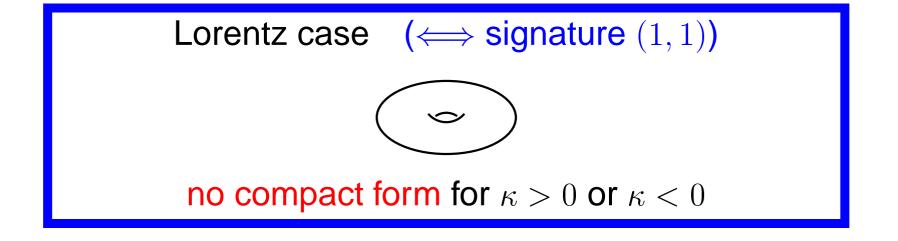
• What groups can arise as their fundamental groups?

#### 2-dim'l compact space forms



#### 2-dim'l compact space forms





(p,q): signature of metric, curvature  $\kappa \in \{+, 0, -\}$ 

Assume  $p \ge q$  (without loss of generality).

(p,q): signature of metric, curvature  $\kappa \in \{+, 0, -\}$ 

Assume  $p \ge q$  (without loss of generality).

κ > 0: Calabi–Markus phenomenon
 (Calabi, Markus, Wolf, Wallach, Kulkarni, K–)

(p,q): signature of metric, curvature  $\kappa \in \{+,0,-\}$ 

Assume  $p \ge q$  (without loss of generality).

- κ > 0: Calabi–Markus phenomenon
   (Calabi, Markus, Wolf, Wallach, Kulkarni, K–)
- *κ* = 0: Auslander conjecture
   (Bieberbach, Auslander, Milnor, Margulis, Goldman, Abels, Soifer, ...)

(p,q): signature of metric, curvature  $\kappa \in \{+,0,-\}$ 

Assume  $p \ge q$  (without loss of generality).

- κ > 0: Calabi–Markus phenomenon
   (Calabi, Markus, Wolf, Wallach, Kulkarni, K–)
- κ = 0: Auslander conjecture
   (Bieberbach, Auslander, Milnor, Margulis, Goldman, Abels, Soifer, ...)
- **•**  $\kappa < 0$ : Space form conjecture

# (Geometry) Compact space forms exist for $\kappa < 0$ and signature (p, q)

(Geometry) Compact space forms exist for  $\kappa < 0$  and signature (p, q) $\iff$  (Group theoretic formulation) Cocompact discontinuous gps exist for symmetric space O(p, q + 1)/O(p, q)

Riemannian case · · · hyperbolic space

Compact hyperbolic spaces

Riemannian case · · · hyperbolic space

Compact hyperbolic spaces

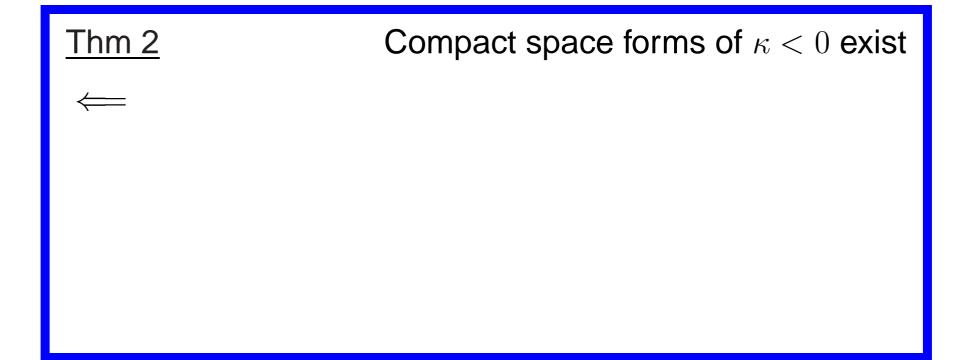
 $\iff \begin{array}{l} \text{Cocompact discrete subgp of } O(n,1) \\ \text{(uniform lattice)} \end{array}$ 

Riemannian case · · · hyperbolic space

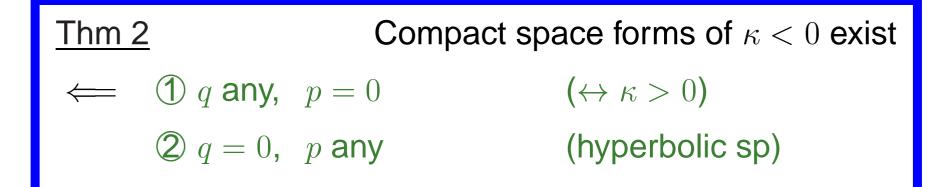
#### Compact hyperbolic spaces $\iff$ Cocompact discrete subgp of O(n, 1)(uniform lattice)

Exist by Siegel, Borel, Vinberg, Gromov–Piateski-Shapiro ··· arithmetic non-arithmetic

#### Pseudo-Riemannian mfd of signature (p,q)



Pseudo-Riemannian mfd of signature (p,q)



$$\leftarrow \text{True (Proved (1950-2005))}$$

$$\textcircled{12} (Riemmanian)$$

Pseudo-Riemannian mfd of signature (p,q)

Thm 2Compact space forms of  $\kappa < 0$  exist $\Leftarrow$ () q any, p = 0( $\leftrightarrow \kappa > 0$ )(2) q = 0, p any(hyperbolic sp)(3) q = 1,  $p \equiv 0 \mod 2$ 

True (Proved (1950–2005))
①② (Riemmanian)

Pseudo-Riemannian mfd of signature (p,q)

Thm 2Compact space forms of  $\kappa < 0$  exist $\Leftarrow$ () q any, p = 0( $\leftrightarrow \kappa > 0$ )(2) q = 0, p any(hyperbolic sp)(3) q = 1,  $p \equiv 0 \mod 2$ ( $\Rightarrow q = 3$ ,  $p \equiv 0 \mod 4$ 

← True (Proved (1950–2005))
①② (Riemmanian)

Pseudo-Riemannian mfd of signature (p,q)

Thm 2Compact space forms of  $\kappa < 0$  exist $\Leftarrow$ () q any, p = 0( $\leftrightarrow \kappa > 0$ )() q = 0, p any(hyperbolic sp)()  $q = 1, p \equiv 0 \mod 2$ ( $q = 3, p \equiv 0 \mod 4$ )() q = 7, p = 8(pseudo-Riemannian)

 $\leftarrow \text{True (Proved (1950-2005))} \\ (12) (Riemmanian); 345 (pseudo-Riemannian) Kulkarni, K-)$ 

- Pseudo-Riemannian mfd of signature (p,q)
  - $\begin{array}{l} \hline \text{Thm 2} & \underline{\text{Conjecture 3}} & \text{Compact space forms of } \kappa < 0 \text{ exist} \\ & \overleftarrow{\qquad} & \textcircled{\ } q \text{ any, } p = 0 & (\leftrightarrow \kappa > 0) \\ & \textcircled{\ } p = 0, \ p \text{ any} & (\text{hyperbolic sp}) \\ & \textcircled{\ } q = 1, \ p \equiv 0 \mod 2 \\ & \textcircled{\ } q = 3, \ p \equiv 0 \mod 4 \\ & \textcircled{\ } q = 7, \ p = 8 \end{array} \right\} \text{ (pseudo-Riemannian)}$

 $\leftarrow \text{True (Proved (1950-2005))} \\ (12) (Riemmanian); 345 (pseudo-Riemannian) Kulkarni, K-)$ 

- Pseudo-Riemannian mfd of signature (p,q)
  - $\begin{array}{l} \hline \text{Thm 2} & \underline{\text{Conjecture 3}} & \text{Compact space forms of } \kappa < 0 \text{ exist} \\ \hline \leftarrow & \leftarrow \\ \Rightarrow & \textcircled{1} & q \text{ any, } p = 0 & (\leftrightarrow \kappa > 0) \\ \hline & \textcircled{2} & q = 0, \ p \text{ any} & (\text{hyperbolic sp}) \\ \hline & \textcircled{3} & q = 1, \ p \equiv 0 \mod 2 \\ \hline & \textcircled{4} & q = 3, \ p \equiv 0 \mod 4 \\ \hline & \textcircled{5} & q = 7, \ p = 8 \end{array} \right\} \text{ (pseudo-Riemannian)}$

True (Proved (1950–2005))
(12) (Riemmanian); 345 (pseudo-Riemannian) Kulkarni, K–)
Partial answers:

$$q=1$$
,  $p\leq q$ , or  $pq$  is odd

#### **Methods**

Understanding of proper actions as "coarse geometry" ( $\pitchfork, \sim$ )  $\Rightarrow$  criterion for proper actions (§3)  $\Downarrow$ 

#### Methods

Understanding of proper actions as "coarse geometry" ( $\pitchfork, \sim$ )  $\Rightarrow$  criterion for proper actions (§3)

#### **Construction of lattice**

- Solve "continuous analog".
- Use a lattice in a smaller group (and deform).

### Methods

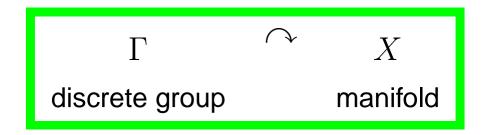
Understanding of proper actions as "coarse geometry" ( $\pitchfork, \sim$ )  $\Rightarrow$  criterion for proper actions (§3)

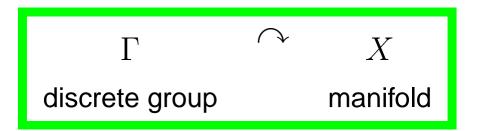
#### **Construction of lattice**

- Solve "continuous analog".
- Use a lattice in a smaller group (and deform).

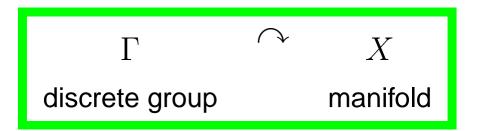
#### **Obstruction of lattice**

- Topological obstructions
- Comparison theorem:  $\Gamma \frown X \iff \Gamma \frown Y$

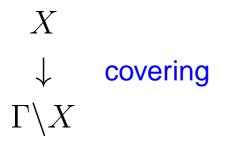


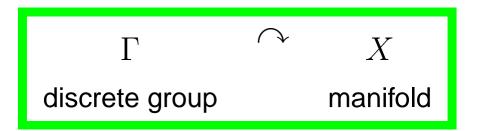


#### If $\Gamma \cap X$ properly discontinuously and freely, then



If  $\Gamma \cap X$  properly discontinuously and freely, then





If  $\Gamma \cap X$  properly discontinuously and freely, then







 $\Gamma \cap X = G/H$  (homogeneous sp)



 $\Gamma \cap X = G/H$  (homogeneous sp)

<u>**Def.**</u>  $\Gamma$  is a discontinuous gp of G/H

 $\iff$  Action  $\Gamma \cap G/H$  is properly discontinuous and free.



 $\Gamma \cap X = G/H$  (homogeneous sp)

<u>**Def.**</u>  $\Gamma$  is a discontinuous gp of G/H

 $\iff$  Action  $\Gamma \cap G/H$  is properly discontinuous and free.

$$G/H \xrightarrow{\text{covering}} \Gamma \backslash G/H \quad (\text{Hausdorff}, C^{\omega} \text{ mfd})$$

$$Clifford-Klein \text{ form}$$



 $\Gamma \cap X = G/H$  (homogeneous sp)

<u>**Def.**</u>  $\Gamma$  is a discontinuous gp of G/H

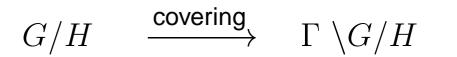
 $\iff$  Action  $\Gamma \cap G/H$  is properly discontinuous and free.

$$G/H \xrightarrow{\text{covering}} \Gamma \backslash G/H \quad (\text{Hausdorff}, C^{\omega} \text{ mfd})$$

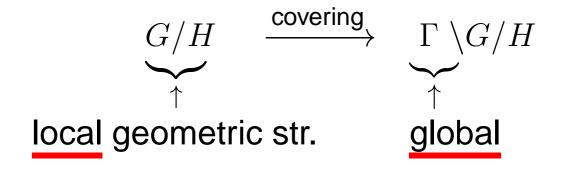
$$Clifford-Klein \text{ form}$$

(Local) geometric structures on  $\Gamma \setminus G/H$  inherit from G/H.

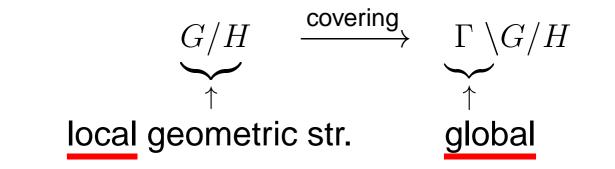
# Locally symmetric sp.



# Locally symmetric sp.

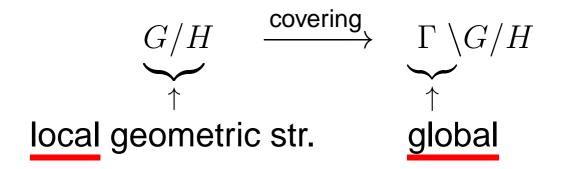


# Locally symmetric sp.



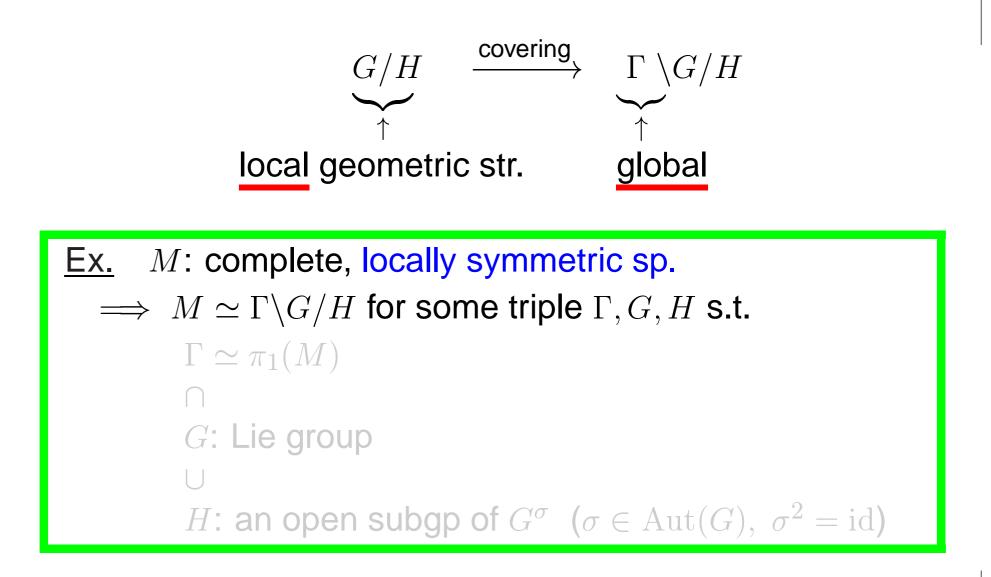
<u>Ex.</u> M: complete, locally symmetric sp.

# Locally symmetric sp.

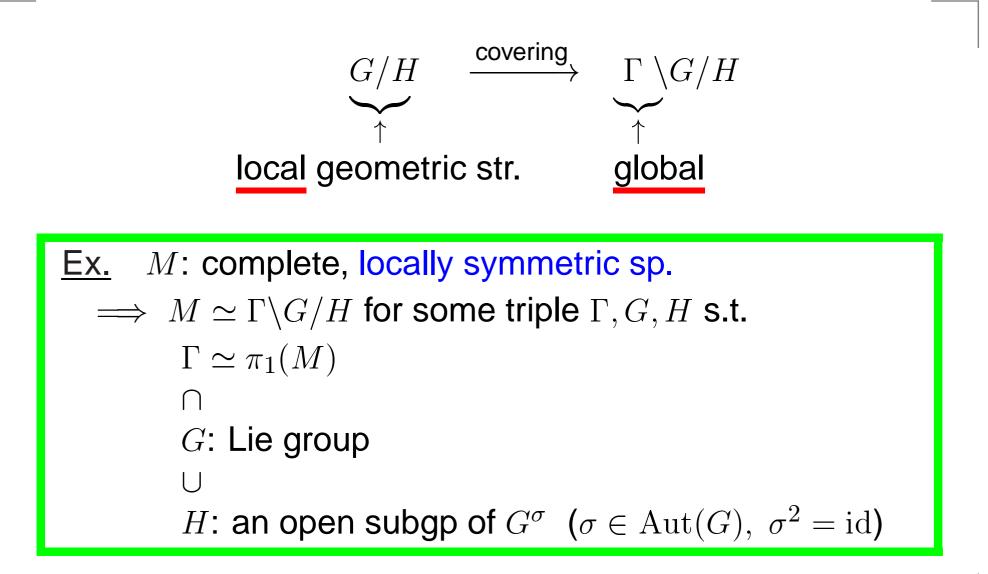


- <u>Ex.</u> *M*: complete, locally symmetric sp.
  - i.e.  $M: C^{\infty}$  manifold with affine connection
    - s.t. M is geodesically complete
      - geodesic symmetry at every point is affine

# Locally symmetric sp.



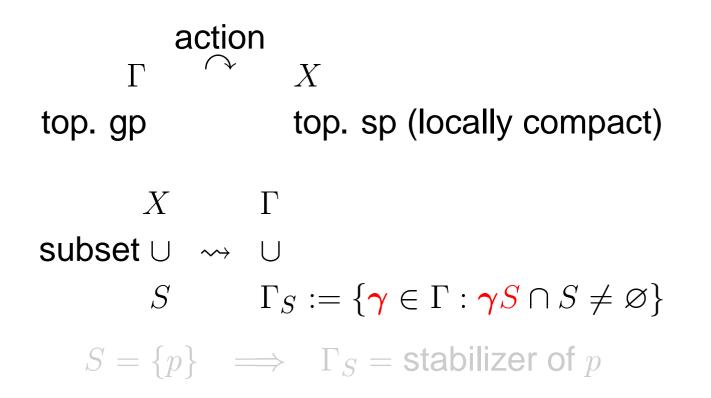
# Locally symmetric sp.



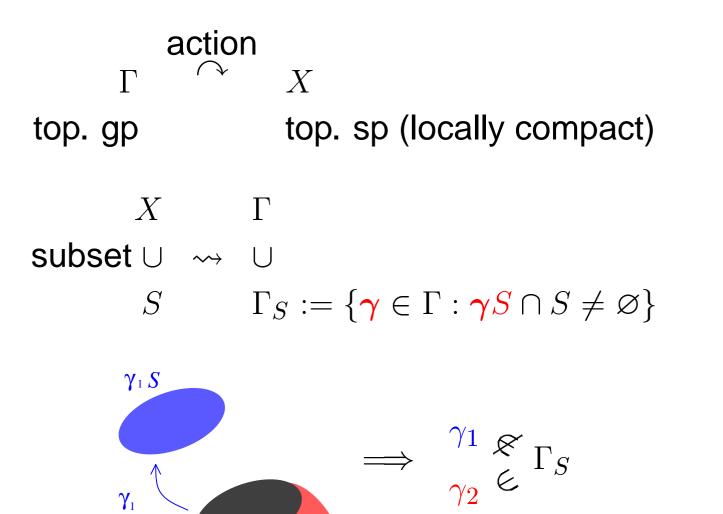
# **Examples of Clifford–Klein forms**

| $(G,\Gamma,H)$                                                  | $\Gamma \backslash G / H$                       |
|-----------------------------------------------------------------|-------------------------------------------------|
| $(\mathbb{R}^n,\mathbb{Z}^n,\{0\})$                             | $\mathbb{T}^n$ ( <i>n</i> -torus)               |
| $(SL(2,\mathbb{R}),SL(2,\mathbb{Z}),\{e\})$                     | (non-compact, finite volume)                    |
| $(PSL(2,\mathbb{R}), PSO(2), \pi_1(M_g))$                       | $M_g \simeq \underbrace{(g \ge 2)}_{(g \ge 2)}$ |
| $(O(p,q+1),O(p,q),\Gamma)$                                      | Space form (signature $(p,q)$ , $\kappa < 0$ )  |
| $(GL(n,\mathbb{R})\ltimes\mathbb{R}^n,GL(n,\mathbb{R}),\Gamma)$ | affinely flat                                   |





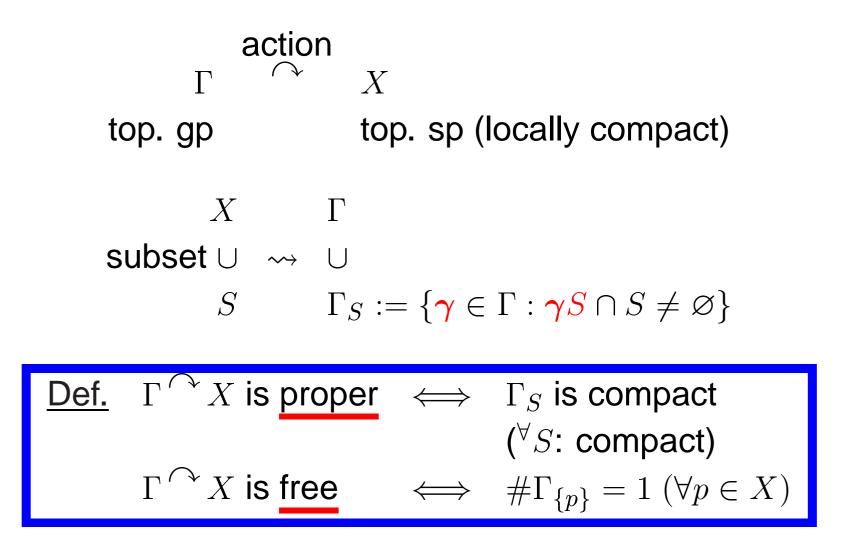
 $\Gamma \qquad X$ top. gp top. sp (locally compact)  $X \qquad \Gamma$ subset  $\cup \qquad \cdots \qquad \cup$   $S \qquad \Gamma_S := \{ \boldsymbol{\gamma} \in \Gamma : \boldsymbol{\gamma}S \cap S \neq \emptyset \}$   $S = \{ p \} \implies \Gamma_S = \text{stabilizer of } p$ 



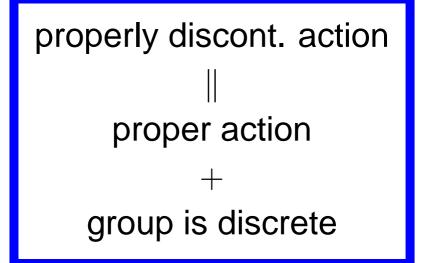
 $\gamma_1$ 

 $\gamma_2$ 

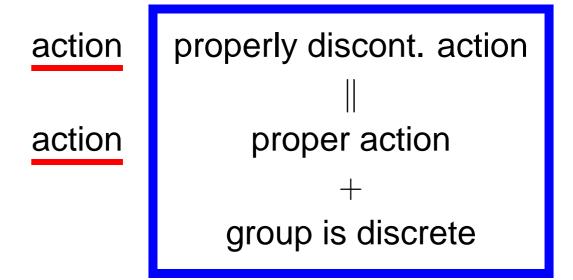
 $\gamma_2 S$ 



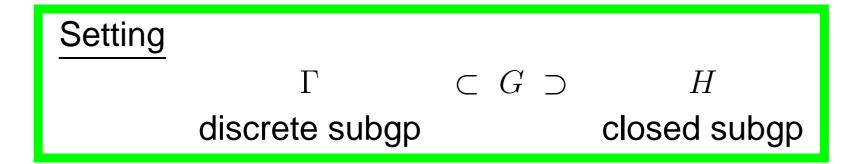
#### **proper** + **discrete** = **properly discont**.



### **proper** + **discrete** = **properly discont**.

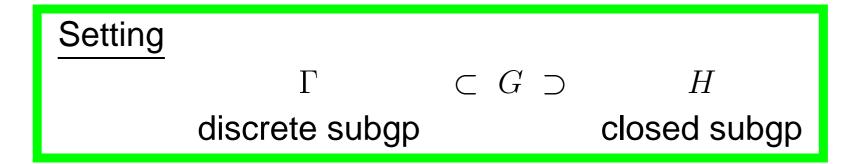


# **3. Criterion for proper discontinuity**



| <u>Problem A</u> | Find effective methods to              |
|------------------|----------------------------------------|
|                  | determine whether                      |
|                  | $\Gamma \cap G/H$ is properly discont. |

# **3. Criterion for proper discontinuity**



| <u>Problem A</u> | Find effective methods to              |
|------------------|----------------------------------------|
|                  | determine whether                      |
|                  | $\Gamma \cap G/H$ is properly discont. |

#### Idea: Forget that $\Gamma$ and H are group

 $\pitchfork$  and  $\sim$  (definition)

 $L \quad \subset \quad G \quad \supset \quad H$ 

Forget even that L and H are group

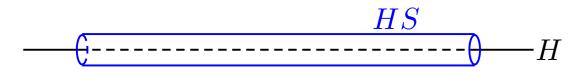
Def. (K−) 1)  $L \pitchfork H \iff \overline{L \cap SHS}$  is compact for  $\forall$  compact  $S \subset G$ 2)  $L \sim H \iff \exists$  compact  $S \subset G$ s.t.  $L \subset SHS$  and  $H \subset SLS$ .

 $\pitchfork$  and  $\sim$  (definition)  $L \subset G \supset H$ Forget even that L and H are group <u>Def.</u> (K– ) 1)  $L \pitchfork H \iff \overline{L \cap SHS}$  is compact for  $\forall$  compact  $S \subset G$ 2)  $L \sim H \iff \exists \text{ compact } S \subset G$ 



s.t.  $L \subset SHS$  and  $H \subset SLS$ .

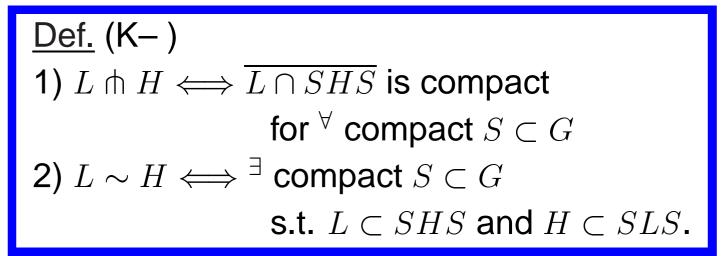
 $\pitchfork$  and  $\sim$  (definition)  $L \subset G \supset H$ Forget even that L and H are group <u>Def.</u> (K– ) 1)  $L \pitchfork H \iff \overline{L \cap SHS}$  is compact for  $\forall$  compact  $S \subset G$ 2)  $L \sim H \iff \exists \text{ compact } S \subset G$ s.t.  $L \subset SHS$  and  $H \subset SLS$ .

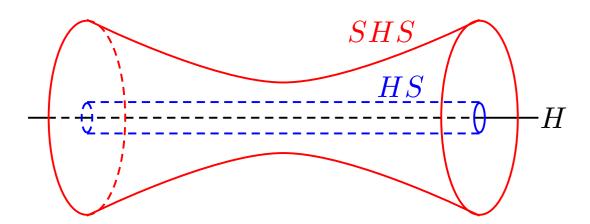


 $\pitchfork$  and  $\sim$  (definition)

 $L \quad \subset \quad G \quad \supset \quad H$ 

Forget even that L and H are group





 $\pitchfork$  and  $\sim$  (definition)

 $L \quad \subset \quad G \quad \supset \quad H$ 

Forget even that L and H are group

Def. (K− ) 1)  $L \pitchfork H \iff \overline{L \cap SHS}$  is compact for  $\forall$  compact  $S \subset G$ 2)  $L \sim H \iff \exists$  compact  $S \subset G$ s.t.  $L \subset SHS$  and  $H \subset SLS$ .

**E.g.** 
$$G = \mathbb{R}^n$$
;  $L, H$  subspaces  
 $L \pitchfork H \iff L \cap H = \{0\}.$   
 $L \sim H \iff L = H.$ 



#### $L \quad \subset \quad G \quad \supset \quad H$

Forget even that L and H are group

1) 
$$L \pitchfork H \iff$$
 generalization of proper actions  
2)  $L \sim H \iff$  economy in considering

h means in special case that

*L* is discrete subgp & *H* is closed subgp

$$L \pitchfork H \iff L \frown G/H$$
 properly discont.

 $\sim$  provides economies in considering  $\pitchfork$ 

$$H \sim H' \Longrightarrow H \pitchfork L \Longleftrightarrow H' \pitchfork L$$



#### $L \quad \subset \quad G \quad \supset \quad H$

Forget even that L and H are group

1)  $L \pitchfork H \iff$  generalization of proper actions 2)  $L \sim H \iff$  economy in considering

 $\pitchfork$  means in special case that

L is discrete subgp & H is closed subgp

$$L \pitchfork H \iff L \frown G/H$$
 properly discont.

 $\sim$  provides economies in considering  $\pitchfork$ 

$$H \sim H' \Longrightarrow H \pitchfork L \Longleftrightarrow H' \pitchfork L$$



#### $L \quad \subset \quad G \quad \supset \quad H$

Forget even that L and H are group

1)  $L \pitchfork H \iff$  generalization of proper actions 2)  $L \sim H \iff$  economy in considering

 $\pitchfork$  means in special case that

L is discrete subgp & H is closed subgp

$$L \pitchfork H \iff L \frown G/H$$
 properly discont.

 $\sim$  provides economies in considering  $\pitchfork$ 

$$H \sim H' \Longrightarrow H \pitchfork L \Longleftrightarrow H' \pitchfork L$$

### **Discontinuous duality theorem**

 $G \supset H$  subset  $\Longrightarrow H^{\pitchfork} := \{L : L \pitchfork H\}$  discont. dual

# **Discontinuous duality theorem**

 $G \supset H$  subset  $\Longrightarrow H^{\pitchfork} := \{L : L \pitchfork H\}$  discont. dual

<u>Thm 4</u> (Discontinuous duality; K– , Yoshino) G: loc. compact top. gp, separable H: subset Then, H is recovered up to ~ from  $H^{\uparrow}$ .

# **Discontinuous duality theorem**

 $G \supset H$  subset  $\Longrightarrow H^{\pitchfork} := \{L : L \pitchfork H\}$  discont. dual

<u>Thm 4</u> (Discontinuous duality; K– , Yoshino) G: loc. compact top. gp, separable H: subset Then, H is recovered up to ~ from  $H^{\uparrow}$ .

cf. 
$$G \implies \widehat{G}$$
 (unitary dual)

Fact 5 (Pontrjagin–Tannaka–Tatsuuma duality theorem) *G*: loc. compact top. gp Then, *G* is recovered from the unitary dual  $\hat{G}$ .

*G*: real reductive Lie group  $G = K \exp(\mathfrak{a}_+) K$ : Cartan decomposition  $\nu: G \to \mathfrak{a}_+$ : Cartan projection

*G*: real reductive Lie group  $G = K \exp(\mathfrak{a}_+) K$ : Cartan decomposition  $\nu: G \to \mathfrak{a}_+$ : Cartan projection

**E.g.** 
$$\nu$$
:  $GL(n, \mathbb{R}) \to \mathbb{R}^n$   
 $g \mapsto \frac{1}{2}(\log \lambda_1, \cdots, \log \lambda_n)$   
Here,  $\lambda_1 \ge \cdots \ge \lambda_n$  (> 0) are the eigenvalues of  ${}^tgg$ .

*G*: real reductive Lie group  $G = K \exp(\mathfrak{a}_+) K$ : Cartan decomposition  $\nu: G \to \mathfrak{a}_+$ : Cartan projection

Thm 6 (K-, Benoist)1) 
$$L \sim H$$
 in  $G \iff \nu(L) \sim \nu(H)$  in  $\mathfrak{a}$ .2)  $L \pitchfork H$  in  $G \iff \nu(L) \pitchfork \nu(H)$  in  $\mathfrak{a}$ .

*G*: real reductive Lie group  $G = K \exp(\mathfrak{a}_+) K$ : Cartan decomposition  $\nu: G \to \mathfrak{a}_+$ : Cartan projection

Thm 6(K-, Benoist)1) 
$$L \sim H$$
 in  $G \iff \nu(L) \sim \nu(H)$  in a.2)  $L \pitchfork H$  in  $G \iff \nu(L) \pitchfork \nu(H)$  in a.

#### Special cases include

- (1)'s  $\Rightarrow$ : Uniform bounds on errors in eigenvalues when a matrix is perturbed.
- (2)'s  $\Leftrightarrow$  : Criterion for properly discont. actions.

- $G \supset H$  reductive Lie groups
- $\implies$  G/H pseudo-Riemannian homo. sp

- $G \supset H$  reductive Lie groups
- $\implies$  G/H pseudo-Riemannian homo. sp

$$\begin{array}{ll} \underline{\operatorname{Cor} 7} & \operatorname{Any \, discont. \, gp \, for } G/H \text{ is finite} & \textcircled{1} \\ \Leftrightarrow & \operatorname{rank}_{\mathbb{R}} G = \operatorname{rank}_{\mathbb{R}} H & \textcircled{2} \end{array}$$

- $G \supset H$  reductive Lie groups
- $\implies$  G/H pseudo-Riemannian homo. sp

$$\begin{array}{ll} \underline{\operatorname{Cor} 7} & \operatorname{Any \, discont. \, gp \, for } G/H \text{ is finite} & \textcircled{1} \\ \Leftrightarrow & \operatorname{rank}_{\mathbb{R}} G = \operatorname{rank}_{\mathbb{R}} H & \textcircled{2} \end{array}$$

Application (space form of signature (p,q),  $\kappa < 0$ ) Exists a space form M s.t.  $|\pi_1(M)| = \infty$  $\iff p > q$  or (p,q) = (1,1)(Calabi, Markus, Wolf, Kulkarni, Wallach)

- $G \supset H$  reductive Lie groups
- $\implies$  G/H pseudo-Riemannian homo. sp

$$\begin{array}{ll} \underline{\operatorname{Cor} 7} & \operatorname{Any \, discont. \, gp \, for } G/H \text{ is finite} & \textcircled{1} \\ \Leftrightarrow & \operatorname{rank}_{\mathbb{R}} G = \operatorname{rank}_{\mathbb{R}} H & \textcircled{2} \end{array}$$

Application (space form of signature (p,q),  $\kappa < 0$ ) Exists a space form M s.t.  $|\pi_1(M)| = \infty$  $\iff p > q$  or (p,q) = (1,1)(Calabi, Markus, Wolf, Kulkarni, Wallach) p > q + 1 $\implies \exists M$  with free non-commutative  $\pi_1(M)$ 

# Criterion of $\pitchfork$ and $\sim$ (general case)



G: general Lie gp  $\Longrightarrow$  Unsolved

Not known an effective criterion for  $\pitchfork$  even in the case  $(G, H) = (GL(n, \mathbb{R}) \ltimes \mathbb{R}^n, GL(n, \mathbb{R}))$ cf. Auslander conjecture (unsolved) Goldman–Kamishima, Tomanov, Milnor, Margulis, Abels, Soifer, ···

# **Criterion of** $\pitchfork$ **and** $\sim$ (**nilpotent case**)

#### G : nilpotent Lie group

Criterion for  $\pitchfork$  for connected H, L (Lipsman conjecture) Does criterion analogous to reductive case hold for nilpotent case?

# **Criterion of** $\pitchfork$ **and** $\sim$ (**nilpotent case**)

#### G : nilpotent Lie group

Criterion for  $\pitchfork$  for connected H, L (Lipsman conjecture) Does criterion analogous to reductive case hold for nilpotent case?

1-step (abelian) OK2-step $OK (Nasrin)_{2001}$ 3-step $OK (Baklouti-Khlif, Yoshino, A. Püttemann)_{2005}$ ' 4-step $No (Yoshino)_{2005}$ 

more non-commutative

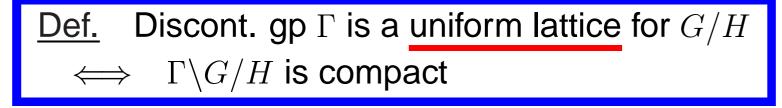
### 4. Existence problem of compact quotients

 $\Gamma \ \subset \ G \ \supset \ H$ 

 $\Gamma \curvearrowright G/H$  discont. gp



$$\Gamma \xrightarrow{\frown} G/H$$
 discont. gp





$$\Gamma \xrightarrow{\frown} G/H$$
 discont. gp

**<u>Def.</u>** Discont. gp  $\Gamma$  is a uniform lattice for G/H $\iff \Gamma \setminus G/H$  is compact

## Remark $\Gamma \subset G$ uniform lattice, torsion free

- *H*: compact
- $\implies$   $\Gamma$  is uniform lattice for G/H
  - $\Gamma \setminus G/H$ : compact



$$\Gamma \xrightarrow{\frown} G/H$$
 discont. gp

 $\begin{array}{ll} \underline{\mathsf{Def.}} & \mathsf{Discont.} \ \mathsf{gp} \ \Gamma \ \mathsf{is} \ \mathsf{a} \ \mathsf{uniform} \ \mathsf{lattice} \ \mathsf{for} \ G/H \\ \iff & \Gamma \backslash G/H \ \mathsf{is} \ \mathsf{compact} \end{array}$ 

# Remark $\Gamma \subset G$ uniform lattice, torsion freeH: non-compact

- $\implies$   $\Gamma$  is not uniform lattice for G/H
  - $\Gamma \setminus G/H$ : compact



$$\Gamma \xrightarrow{\frown} G/H$$
 discont. gp

**<u>Def.</u>** Discont. gp  $\Gamma$  is a uniform lattice for G/H $\iff \Gamma \setminus G/H$  is compact

## Remark $\Gamma \subset G$ uniform lattice, torsion freeH: non-compact

- $\implies$   $\Gamma$  is not uniform lattice for G/H
  - $\Gamma \setminus G/H$ : compact but non-Hausdorff



$$\Gamma \longrightarrow G/H$$
 discont. gp

**<u>Def.</u>** Discont. gp  $\Gamma$  is a uniform lattice for G/H $\iff \Gamma \setminus G/H$  is compact

# Remark $\Gamma \subset G$ uniform lattice, torsion freeH: non-compact

- $\implies$   $\Gamma$  is not uniform lattice for G/H
  - $\Gamma \setminus G/H$ : compact but non-Hausdorff





e.g. 
$$G/H = SL(n, \mathbb{R})/SO(n), SL(n, \mathbb{C})/SU(n), \dots$$

- H is compact
- $\implies \exists G$ -invariant Riemannian structure on G/H

e.g.  

$$G/H = SL(n, \mathbb{R})/SO(n), SL(n, \mathbb{C})/SU(n), \ldots$$



- H is compact
- $\implies$   $\exists$  *G*-invariant Riemannian structure on *G*/*H*

<u>Fact 8</u> (Borel 1963) G/H is a Riemannian symmetric sp.  $\implies$  Yes

i.e. Compact forms exist for <sup>∀</sup> Riemannian symmetric sp.
 e.g.

 $G/H = SL(n, \mathbb{R})/SO(n)$ ,  $SL(n, \mathbb{C})/SU(n)$ , ...



- H is non-compact
- $\implies$  ?

**Ex.**  $G/H = SL(n, \mathbb{R})/SL(m, \mathbb{R}), SL(n, \mathbb{R})/SO(p, n-p)$ 

<u>Problem B</u> Does there exist a uniform lattice for G/H?

• M = G/H is para-Hermitian symmetric sp

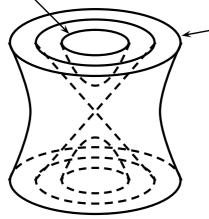
 $TM = TM_+ + TM_-$  (Whitney direct sum)  $TM_{\pm}$ : completely integrable, equi-dimensional  $T_xM_{\pm}$ : maximally totally isotropic subspaces

<u>Problem B</u> Does there exist a uniform lattice for G/H?

• M = G/H is para-Hermitian symmetric sp

 $TM = TM_+ + TM_-$  (Whitney direct sum)  $TM_{\pm}$ : completely integrable, equi-dimensional  $T_xM_{\pm}$ : maximally totally isotropic subspaces

Hermitian symmetric sp



para-Hermitian symmetric sp

<u>Problem B</u> Does there exist a uniform lattice for G/H?

#### • M = G/H is para-Hermitian symmetric sp

 $TM = TM_+ + TM_-$  (Whitney direct sum)  $TM_{\pm}$ : completely integrable, equi-dimensional  $T_xM_{\pm}$ : maximally totally isotropic subspaces

<u>Thm 9</u> G/H is a para-Hermitian symmetric sp.  $\Longrightarrow$  No

**Ex.**  $M = GL(p+q,\mathbb{R})/GL(p,\mathbb{R}) \times GL(q,\mathbb{R}),$  $GL(n,\mathbb{C})/GL(n,\mathbb{R}), Sp(n,\mathbb{R})/GL(n,\mathbb{R}), \dots$ 

<u>Problem B</u> Does there exist a uniform lattice for G/H?

#### • M = G/H is para-Hermitian symmetric sp

 $TM = TM_+ + TM_-$  (Whitney direct sum)  $TM_{\pm}$ : completely integrable, equi-dimensional  $T_xM_{\pm}$ : maximally totally isotropic subspaces

<u>Thm 9</u> G/H is a para-Hermitian symmetric sp.  $\Longrightarrow$  No

Ex.  $M = GL(p+q,\mathbb{R})/GL(p,\mathbb{R}) \times GL(q,\mathbb{R})$ ,  $GL(n,\mathbb{C})/GL(n,\mathbb{R})$ ,  $Sp(n,\mathbb{R})/GL(n,\mathbb{R})$ , ... Proof: use Cor 7 (criterion for Calabi–Markus phenomenon)

<u>Problem B</u> Does there exist a uniform lattice for G/H?

• G/H is complex sphere  $S^n_{\mathbb{C}}$ , i.e.  $G/H := SO(n+1,\mathbb{C})/SO(n,\mathbb{C})$  $= \{(z_1,\ldots,z_{n+1}) \in \mathbb{C}^{n+1} : z_1^2 + \cdots + z_{n+1}^2 = 1\}$ 

<u>Problem B</u> Does there exist a uniform lattice for G/H?

• G/H is complex sphere  $S^n_{\mathbb{C}}$ , i.e.  $G/H := SO(n+1,\mathbb{C})/SO(n,\mathbb{C})$  $= \{(z_1, \dots, z_{n+1}) \in \mathbb{C}^{n+1} : z_1^2 + \dots + z_{n+1}^2 = 1\}$ 

$$\frac{\text{Thm 10} (2005)}{G/H = SO(n+1, \mathbb{C})/SO(n, \mathbb{C})}$$
$$n = 1, 3, 7 \implies \text{Yes}$$

There exist closed complex manifolds that are locally isomorphic to complex spheres if its dimension = 1, 3 or 7.



• G/H is complex sphere, i.e.  $S^n_{\mathbb{C}} \simeq SO(n+1,\mathbb{C})/SO(n,\mathbb{C})$ 

 $\frac{\text{Thm 10 Conjecture 11}}{G/H = SO(n+1, \mathbb{C})/SO(n, \mathbb{C})}$  $n = 1, 3, 7 \implies \text{Yes}$ 



• G/H is complex sphere, i.e.  $S^n_{\mathbb{C}} \simeq SO(n+1,\mathbb{C})/SO(n,\mathbb{C})$ 

$$\frac{\text{Thm 10 Conjecture 11}}{G/H = SO(n+1, \mathbb{C})/SO(n, \mathbb{C})}$$
$$n = 1, 3, 7 \implies \text{Yes}$$

**Evidence:** 

n: odd

 $\leftarrow$  Yes (K– )



• G/H is complex sphere, i.e.  $S^n_{\mathbb{C}} \simeq SO(n+1,\mathbb{C})/SO(n,\mathbb{C})$ 

 $\frac{\text{Thm 10 Conjecture 11}}{G/H = SO(n+1, \mathbb{C})/SO(n, \mathbb{C})}$  $n = 1, 3, 7 \implies \text{Yes}$ 

Evidence:

 $n: \text{ odd} \quad \Leftarrow \text{ Yes } (\text{K}-)$  $n = 4k + 3 \text{ (or } n = 1) \Leftarrow \text{ Yes } (\text{Benoist})$ 



• G/H is complex sphere, i.e.  $S^n_{\mathbb{C}} \simeq SO(n+1,\mathbb{C})/SO(n,\mathbb{C})$ 

Evidence:

 $\frac{\text{Thm 10 Conjecture 11}}{G/H = SO(n+1, \mathbb{C})/SO(n, \mathbb{C})}$  $n = 1, 3, 7 \implies \text{Yes}$ 

*n*: odd  $\Leftarrow$  Yes (K– ) n = 4k + 3 (or n = 1)  $\Leftarrow$  Yes (Benoist) Infinitesimal version:  $n = 1, 3, 7 \Leftrightarrow$  Yes

<u>Problem A</u> Does there exist a uniform lattice for G/H?

• M = G/H is irreducible complex symmetric sp

<u>Problem A</u> Does there exist a uniform lattice for G/H?

• M = G/H is irreducible complex symmetric sp

<u>Thm 12</u> (K– , Benoist) Yes  $\implies M \approx S_{\mathbb{C}}^{4k+3}$  or complex group mfd

<u>Problem A</u> Does there exist a uniform lattice for G/H?

• M = G/H is irreducible complex symmetric sp

<u>Thm 12</u> (K– , Benoist) Yes  $\implies M \approx S_{\mathbb{C}}^{4k+3}$  or complex group mfd

 $\frac{\text{Thm 10}}{\text{Yes}} \longleftarrow M \approx S_{\mathbb{C}}^7 \text{ or complex group mfd}$ 

<u>Problem A</u> Does there exist a uniform lattice for G/H?

• M = G/H is irreducible complex symmetric sp

<u>Thm 12</u> (K– , Benoist) Yes  $\implies M \approx S_{\mathbb{C}}^{4k+3}$  or complex group mfd

 $\frac{\text{Thm 10}}{\text{Yes}} \longleftarrow M \approx S_{\mathbb{C}}^7 \text{ or complex group mfd}$ 

 $M \approx S^{11}_{\mathbb{C}}, S^{15}_{\mathbb{C}}, \dots$  not known

<u>Problem A</u> Does there exist a uniform lattice for G/H?

• M = G/H is irreducible complex symmetric sp

<u>Thm 12</u> (K– , Benoist) Yes  $\implies M \approx S_{\mathbb{C}}^{4k+3}$  or complex group mfd

 $\frac{\text{Thm 10}}{\text{Yes}} \longleftarrow M \approx S_{\mathbb{C}}^7 \text{ or complex group mfd}$ 

Methods: criterion of h,  $F_2$  action, comparison thm

#### **Real form of complex spheres** $S^n_{\mathbb{C}}$

n = p + q

#### O(p, q+1)/O(p, q) two viewpoints

· · · "real form" of  $O(n+1,\mathbb{C})/O(n,\mathbb{C}) \simeq S^n_{\mathbb{C}}$ 

 $\cdots$  space form: pseudo-Riemannian mfd of signature (p,q) with negative constant sectional curvature

Hermitian symmetric sp (p,q) = (2,0)

para-Hermitian symmetric sp (p,q) = (1,1)

#### **Real form of complex spheres** $S^n_{\mathbb{C}}$

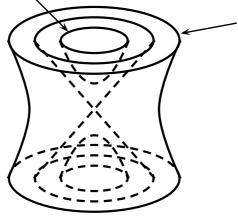
$$n = p + q$$

O(p, q+1)/O(p, q) two viewpoints

· · · "real form" of  $O(n+1,\mathbb{C})/O(n,\mathbb{C}) \simeq S^n_{\mathbb{C}}$ 

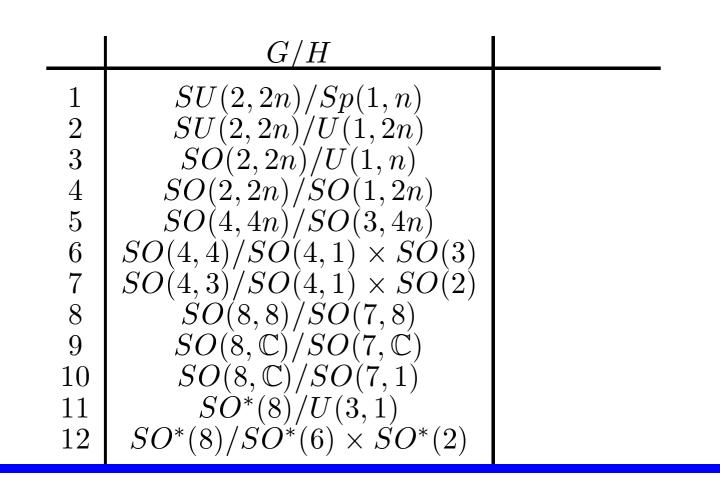
 $\cdots$  space form: pseudo-Riemannian mfd of signature (p,q) with negative constant sectional curvature

Hermitian symmetric sp (p,q) = (2,0)

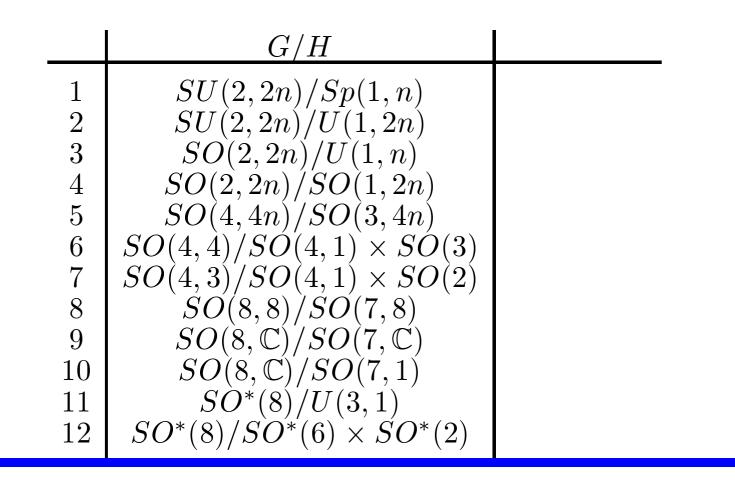


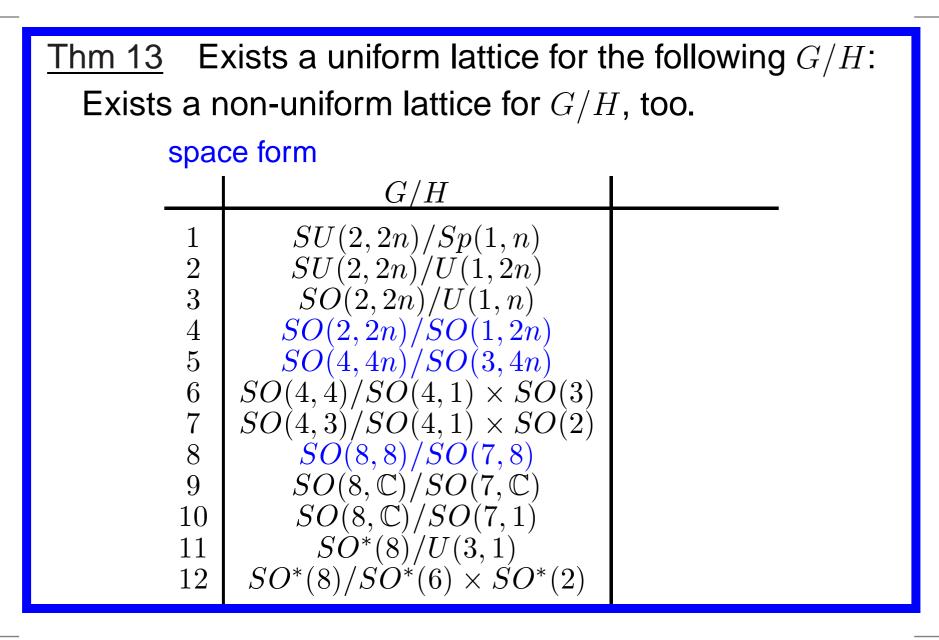
para-Hermitian symmetric sp (p,q) = (1,1)

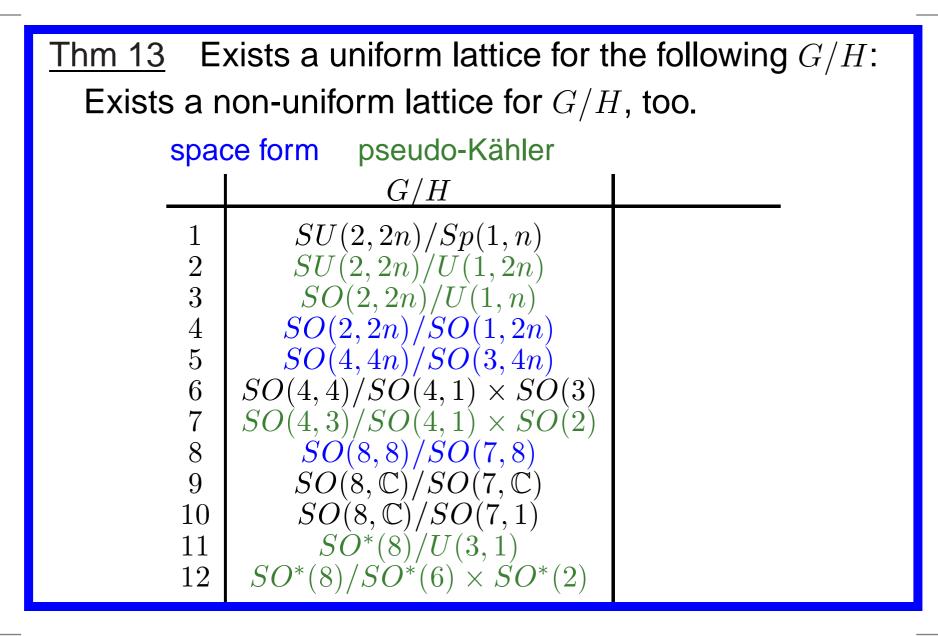
<u>Thm 13</u> Exists a uniform lattice for the following G/H:



<u>Thm 13</u> Exists a uniform lattice for the following G/H: Exists a non-uniform lattice for G/H, too.





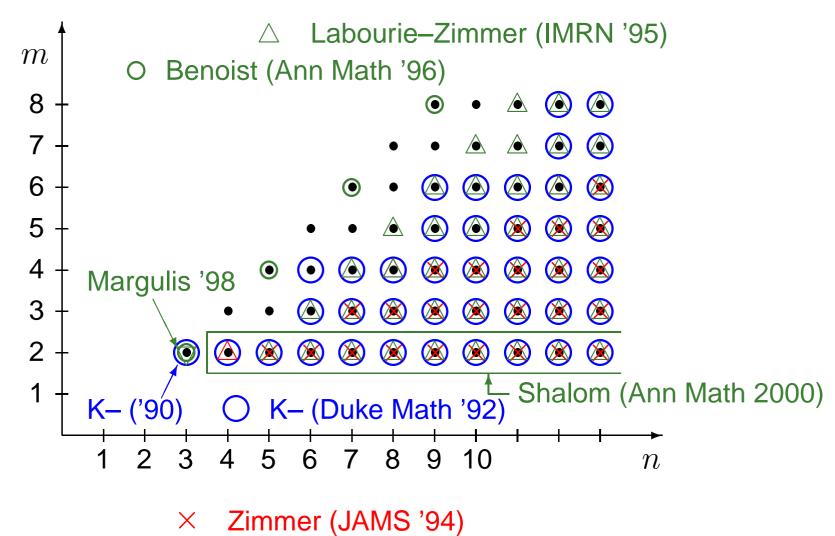


| <u>Thm 13</u> Exists a uniform lattice for the following $G/H$ : |                                     |  |  |  |
|------------------------------------------------------------------|-------------------------------------|--|--|--|
| Exists a non-uniform lattice for $G/H$ , too.                    |                                     |  |  |  |
| space form pseudo-Kähler complex symmetric                       |                                     |  |  |  |
|                                                                  | G/H                                 |  |  |  |
| 1                                                                | SU(2,2n)/Sp(1,n)                    |  |  |  |
| 2                                                                | SU(2,2n)/U(1,2n)                    |  |  |  |
| 3                                                                | SO(2,2n)/U(1,n)                     |  |  |  |
| 4                                                                | SO(2,2n)/SO(1,2n)                   |  |  |  |
| 5                                                                | SO(4,4n)/SO(3,4n)                   |  |  |  |
| 6                                                                | $SO(4,4)/SO(4,1) \times SO(3)$      |  |  |  |
| 7                                                                | $SO(4,3)/SO(4,1) \times SO(2)$      |  |  |  |
| 8                                                                | SO(8,8)/SO(7,8)                     |  |  |  |
| 9                                                                | $SO(8,\mathbb{C})/SO(7,\mathbb{C})$ |  |  |  |
| 10                                                               | $SO(8,\mathbb{C})/SO(7,1)$          |  |  |  |
| 11                                                               | $SO^{*}(8)/U(3,1)$                  |  |  |  |
| 12                                                               | $SO^*(8)/SO^*(6) \times SO^*(2)$    |  |  |  |

| <u>Thm 13</u> Exists a uniform lattice for the following $G/H$ : |    |                                        |                      |  |
|------------------------------------------------------------------|----|----------------------------------------|----------------------|--|
| Exists a non-uniform lattice for $G/H$ , too.                    |    |                                        |                      |  |
| space form pseudo-Kähler complex symmetric                       |    |                                        |                      |  |
|                                                                  |    | G/H                                    | L                    |  |
|                                                                  | 1  | SU(2,2n)/Sp(1,n)                       | U(1,2n)              |  |
|                                                                  | 2  | SU(2,2n)/U(1,2n)                       | Sp(1,n)              |  |
|                                                                  | 3  | SO(2,2n)/U(1,n)                        | SO(1,2n)             |  |
|                                                                  | 4  | SO(2,2n)/SO(1,2n)                      | U(1,n)               |  |
|                                                                  | 5  | SO(4,4n)/SO(3,4n)                      | Sp(1,n)              |  |
|                                                                  | 6  | $SO(4,4)/SO(4,1) \times SO(3)$         | Spin(4,3)            |  |
|                                                                  | 7  | $SO(4,3)/SO(4,1) \times SO(2)$         | $G_{2(2)}$           |  |
|                                                                  | 8  | SO(8,8)/SO(7,8)                        | Spin(1, 8)           |  |
|                                                                  | 9  | $SO(8,\mathbb{C})/SO(7,\mathbb{C})$    | Spin(1,7)            |  |
| -                                                                | 10 | $SO(8,\mathbb{C})/SO(7,1)$             | $Spin(7,\mathbb{C})$ |  |
| -                                                                | 11 | $SO^{*}(8)/U(3,1)$                     | Spin(1,6)            |  |
| -                                                                | 12 | $SO^{*}(8)/SO^{*}(6) \times SO^{*}(2)$ | Spin(1,6)            |  |

### **Compact quotients for** SL(n)/SL(m)

There is no compact quotients if n > m satisfies:

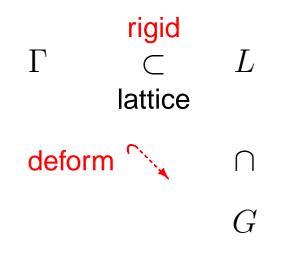


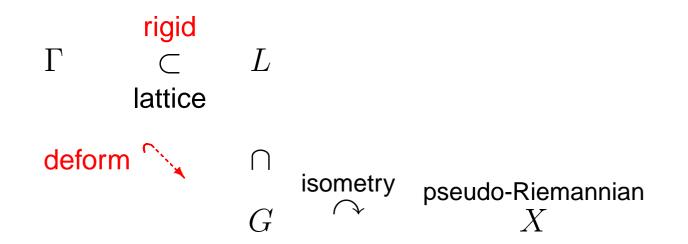
Labourie–Mozes–Žimmer (GAFA '95)

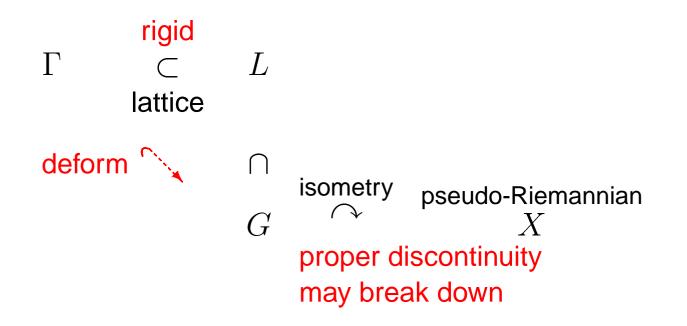
#### **Rigidity/deformation**

Positivity of 'metric' is crucial?

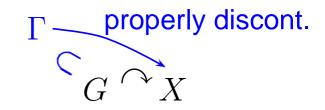


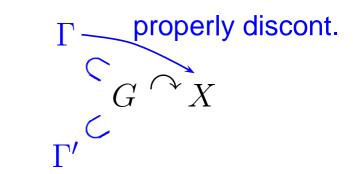


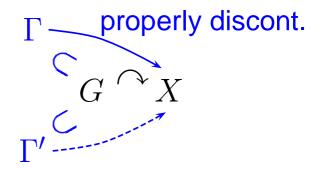


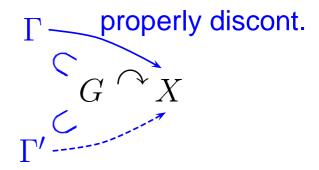




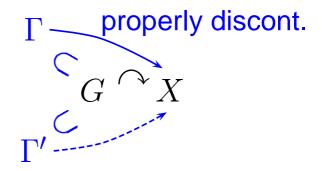




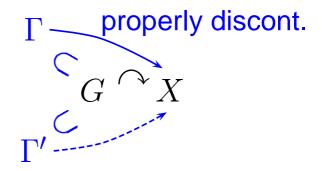




(R) (local rigidity) 
$$\Gamma' = g\Gamma g^{-1} \ (\exists g \in G)$$

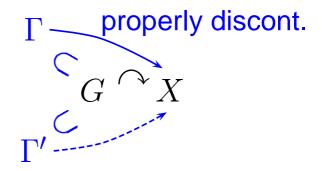


(R) (local rigidity) 
$$\Gamma' = g\Gamma g^{-1} (\exists g \in G)$$
  
(S) (stability)  $\Gamma' \curvearrowright X$  properly discont.



Suppose  $\Gamma'$  is 'close to'  $\Gamma$ 

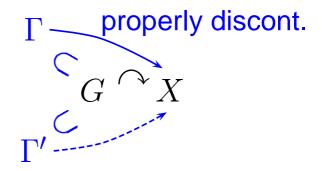
(R) (local rigidity) 
$$\Gamma' = g\Gamma g^{-1} (\exists g \in G)$$
  
(S) (stability)  $\Gamma' \curvearrowright X$  properly discont.



Suppose  $\Gamma'$  is 'close to'  $\Gamma$ 

(R) (local rigidity) 
$$\Gamma' = g\Gamma g^{-1} (\exists g \in G)$$
  
(S) (stability)  $\Gamma' \curvearrowright X$  properly discont.

• (R) 
$$\Rightarrow$$
 (S).



Suppose  $\Gamma'$  is 'close to'  $\Gamma$ 

(R) (local rigidity) 
$$\Gamma' = g\Gamma g^{-1} (\exists g \in G)$$
  
(S) (stability)  $\Gamma' \curvearrowright X$  properly discont.

- $\ \, \bullet \ \, (\mathsf{R}) \Rightarrow (\mathsf{S}).$
- (S) may fail (so does (R)).

### Local rigidity and deformation

 $\Gamma \subset G \cap X = G/H$  uniform lattice

Problem C

- 1. When does local rigidity (R) fail?
- 2. Does stability (S) still hold?

### Local rigidity and deformation

### $\Gamma \subset G \cap X = G/H$ uniform lattice

### Problem C

- 1. When does local rigidity (R) fail?
- 2. Does stability (S) still hold?

Point: for non-compact H

- 1. There may be large room for deformation of  $\Gamma$  itself.
- 2. Properly discontinuity may fail under deformation.

 $\Gamma$  : finitely generated,  $\,G\,$ 

 $\operatorname{Hom}(\Gamma,G)$ 

 $\Gamma$  : finitely generated,  $G^{\frown}X$ 

 $Hom(\Gamma, G)$   $\cup$   $R(\Gamma, G; X) = \{u \in Hom(\Gamma, G) : (1) \text{ and } (2)\}$ 

 $\Gamma$  : finitely generated,  $G \frown X$ 

Hom $(\Gamma, G)$   $\cup$   $R(\Gamma, G; X) = \{u \in \operatorname{Hom}(\Gamma, G) : (1) \text{ and } (2)\}$ (1)  $u \colon \Gamma \to G$  is injective (2)  $u(\Gamma) \frown X$  properly discont.

 $\Gamma : \text{finitely generated, } G \stackrel{\frown}{\sim} X$   $\operatorname{Hom}(\Gamma, G) \stackrel{\stackrel{\text{Int}}{\leftarrow} G$   $\cup$   $R(\Gamma, G; X) = \{ u \in \operatorname{Hom}(\Gamma, G) : (1) \text{ and } (2) \}$ (1)  $u \colon \Gamma \to G \text{ is injective}$  (2)  $u(\Gamma) \stackrel{\frown}{\sim} X$  properly discont.

 $\mathcal{T}(\Gamma, G; X) := R(\Gamma, G; X)/G$ 

(deformation space)

 $\Gamma : \text{finitely generated, } G \stackrel{\frown}{\sim} X$   $\operatorname{Aut}(\Gamma) \stackrel{\frown}{\sim} \operatorname{Hom}(\Gamma, G) \stackrel{\stackrel{\text{Int}}{\leftarrow} G$   $\cup$   $R(\Gamma, G; X) = \{u \in \operatorname{Hom}(\Gamma, G) : (1) \text{ and } (2)\}$ (1)  $u \colon \Gamma \to G \text{ is injective}$  (2)  $u(\Gamma) \stackrel{\frown}{\sim} X$  properly discont.

 $\mathcal{T}(\Gamma, G; X) := R(\Gamma, G; X)/G \qquad \text{(deformation space)} \\ \mathcal{M}(\Gamma, G; X) := \operatorname{Aut}(\Gamma) \backslash R(\Gamma, G; X)/G \text{(moduli space)}$ 

 $\Gamma : \text{finitely generated, } G \stackrel{\frown}{\sim} X$   $\operatorname{Aut}(\Gamma) \stackrel{\frown}{\sim} \operatorname{Hom}(\Gamma, G) \stackrel{\stackrel{\text{Int}}{\leftarrow} G$   $\cup$   $R(\Gamma, G; X) = \{u \in \operatorname{Hom}(\Gamma, G) : (1) \text{ and } (2)\}$ (1)  $u : \Gamma \to G$  is injective (2)  $u(\Gamma) \stackrel{\frown}{\sim} X$  properly discont.

 $\mathcal{T}(\Gamma, G; X) := R(\Gamma, G; X)/G \qquad \text{(deformation space)} \\ \mathcal{M}(\Gamma, G; X) := \operatorname{Aut}(\Gamma) \backslash R(\Gamma, G; X)/G \text{(moduli space)}$ 

<u>Def.</u>  $u \in R(\Gamma, G; X)$  is locally rigid as a discontinuous gp for X if  $\{[u]\}$  is open in  $Hom(\Gamma, G)/G$ .

### **Group manifold case**

1

 $G/\{e\} \simeq (G \times G)/\Delta G$ Riemannian pseudo-Riemannian left action left-right action



### **Group manifold case**

1

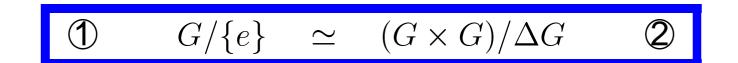
 $G/\{e\} \simeq (G \times G)/\Delta G$ Riemannian pseudo-Riemannian left action left-right action

 $\Gamma \subset G$  simple Lie gp

 ${}^{\diamond}G \iff (\Gamma \times 1)^{\frown}(G \times G)/\Delta G$ 



### $\Gamma \subset G$ simple Lie gp



### $\Gamma \subset G$ simple Lie gp

<u>Fact 14</u> (Selberg–Weil's local rigidigy, 1964) <sup>∃</sup>uniform lattice  $\Gamma$  admitting continuous deformations for ①  $\iff G \approx SL(2, \mathbb{R})$  (loc. isom).



### $\Gamma \subset G$ simple Lie gp

<u>Fact 14</u> (Selberg–Weil's local rigidigy, 1964) <sup>∃</sup>uniform lattice  $\Gamma$  admitting continuous deformations for ①  $\iff G \approx SL(2, \mathbb{R})$  (loc. isom).

# $\begin{array}{l} \underline{\text{Thm 15}} \ (\text{K-}) \\ \exists \text{uniform lattice } \Gamma \text{ admitting continuous deformations for } \textcircled{2} \\ \Longleftrightarrow G \approx SO(n+1,1) \ \text{or } SU(n,1) \ (n=1,2,3,\ldots). \end{array}$



### $\Gamma \subset G$ simple Lie gp

<u>Fact 14</u> (Selberg–Weil's local rigidigy, 1964) <sup>∃</sup>uniform lattice  $\Gamma$  admitting continuous deformations for ①  $\iff G \approx SL(2, \mathbb{R})$  (loc. isom).

#### <u>Thm 15</u> (K-)

<sup>∃</sup>uniform lattice  $\Gamma$  admitting continuous deformations for ②  $\iff G \approx SO(n+1,1)$  or SU(n,1) (n = 1, 2, 3, ...).

#### Kazhdan's property (T) fails

 $\iff$  trivial representation is not isolated in the unitary dual



### $\Gamma \subset G$ simple Lie gp

<u>Fact 14</u> (Selberg–Weil's local rigidigy, 1964) <sup> $\exists$ </sup>uniform lattice  $\Gamma$  admitting continuous deformations for (1)  $\iff G \approx SL(2, \mathbb{R})$  (loc. isom).

#### <u>Thm 15</u> (K-)

<sup>∃</sup>uniform lattice  $\Gamma$  admitting continuous deformations for ②  $\iff G \approx SO(n+1,1)$  or SU(n,1) (n = 1, 2, 3, ...).

Local rigidity (R) may fail. for pseudo-Riemannian symmetric space even for high and irreducible case!



### $\Gamma \subset G$ simple Lie gp

<u>Fact 14</u> (Selberg–Weil's local rigidigy, 1964) <sup>∃</sup>uniform lattice  $\Gamma$  admitting continuous deformations for ①  $\iff G \approx SL(2, \mathbb{R})$  (loc. isom).

#### <u>Thm 15</u> (K-)

<sup>∃</sup>uniform lattice  $\Gamma$  admitting continuous deformations for ②  $\iff G \approx SO(n+1,1)$  or SU(n,1) (n = 1, 2, 3, ...).

Local rigidity (R) may fail. Stability (S) still holds. for pseudo-Riemannian symmetric space even for high and irreducible case!



### $\Gamma \subset G$ simple Lie gp

<u>Fact 14</u> (Selberg–Weil's local rigidigy, 1964) <sup> $\exists$ </sup> uniform lattice  $\Gamma$  admitting continuous deformations for (1)  $\iff G \approx SL(2, \mathbb{R})$  (loc. isom).

#### <u>Thm 15</u> (K-)

<sup>∃</sup>uniform lattice  $\Gamma$  admitting continuous deformations for ②  $\iff G \approx SO(n+1,1)$  or SU(n,1) (n = 1, 2, 3, ...).

Method: use the criterion of  $\pitchfork$ ( $\Rightarrow$  criterion for properly discontinuous actions)

### Local rigidity and stability

 $\Gamma', \Gamma \subset G \curvearrowright X$  $\Gamma \curvearrowright X$  properly discont. &  $\Gamma'$  is 'close to'  $\Gamma$ 

(R) (local rigidity) 
$$\Gamma' = g\Gamma g^{-1} \ (\exists g \in G)$$
  
(S) (stability)  $\Gamma' \stackrel{\frown}{\to} X$  properly discont.

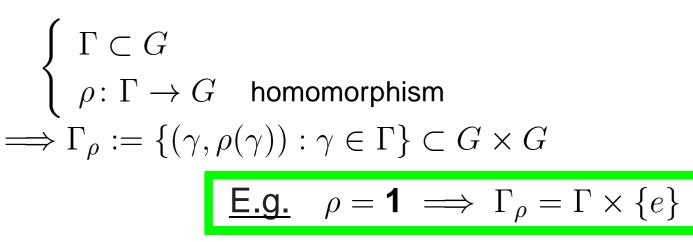
- $\ \, \bullet \ \, (\mathsf{R}) \Rightarrow (\mathsf{S}).$
- (S) may fail (so does (R)).
- Goldman's theorem and conjecture (1985)
   X = 3-dim'l Lorentz space form
   (R) fails. It is likely that (S) holds.

$$\left\{ \begin{array}{l} \Gamma \subset G \\ \rho \colon \Gamma \to G \quad \text{homomorphism} \end{array} \right.$$

- $\begin{cases} \Gamma \subset G \\ \rho \colon \Gamma \to G \quad \text{homomorphism} \\ \Longrightarrow \Gamma_{\rho} := \{(\gamma, \rho(\gamma)) : \gamma \in \Gamma\} \subset G \times G \end{cases}$
- $\rho$ : 'deformation' parameter

$$\begin{cases} \Gamma \subset G \\ \rho \colon \Gamma \to G \quad \text{homomorphism} \\ \Longrightarrow \Gamma_{\rho} \coloneqq \{(\gamma, \rho(\gamma)) : \gamma \in \Gamma\} \subset G \times G \\ \hline \underline{\mathsf{E.g.}} \quad \rho = \mathbf{1} \implies \Gamma_{\rho} = \Gamma \times \{e\} \end{cases}$$

 $\rho$ : 'deformation' parameter

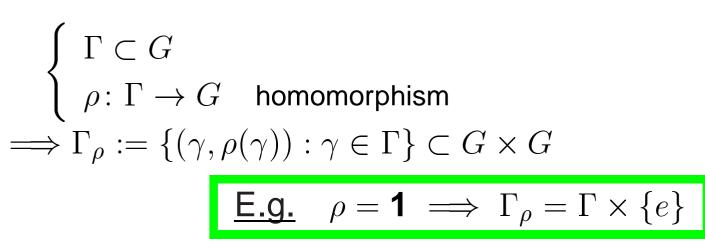


 $\rho$ : 'deformation' parameter

Thm 16 (Kulkarni–Raymond )

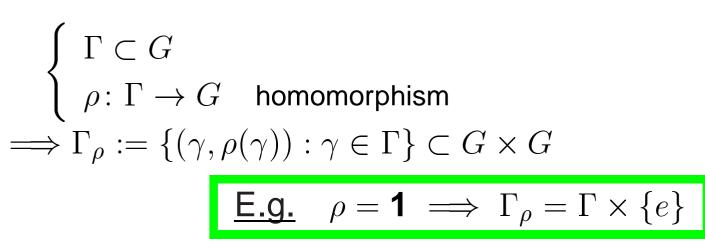
$$G = SL(2, \mathbb{R})$$

Any discontinuous gp for  $G = (G \times G)/\Delta G$  is virtually of the form  $\Gamma_{\rho}$  for some  $\Gamma$  and  $\rho$  up to switch of factors.



 $\rho$ : 'deformation' parameter

<u>Thm 16</u> (Kulkarni–Raymond, K– )  $G = SL(2,\mathbb{R})$  G: semisimple Lie gp, rank<sub>R</sub> G = 1  $\Rightarrow$  Any discontinuous gp for  $G = (G \times G)/\Delta G$  is virtually of the form  $\Gamma_{\rho}$  for some  $\Gamma$  and  $\rho$ up to switch of factors.



 $\rho$ : 'deformation' parameter

<u>Thm 16</u> (Kulkarni–Raymond, K–)  $G = SL(2,\mathbb{R})$  G: semisimple Lie gp, rank<sub>R</sub> G = 1  $\Rightarrow$  Any discontinuous gp for  $G = (G \times G)/\Delta G$  is virtually of the form  $\Gamma_{\rho}$  for some  $\Gamma$  and  $\rho$ up to switch of factors.

### Low dimensional case

 $G = SL(2,\mathbb{R}) \ (\approx SO(2,1) \approx SU(1,1))$ 

Deformations for ①

··· deformation of complex structure of Riemann surface

Deformations for ②

··· negatively curved 3-dim'l Lorentz space forms (Goldman, K–, Salein, ...)

 $G = SL(2, \mathbb{C}) \ (\approx SO(3, 1))$ 

Deformation for ② … 3-dimensional complex mfd (Ghys, …)

# **Criterion for proper action**

| Discrete             | properly<br>discontinuous                 | Benoist, K–<br>(Thm 6)                               |
|----------------------|-------------------------------------------|------------------------------------------------------|
| Continuous<br>analog | proper action                             | K–                                                   |
| <b>?</b>             |                                           |                                                      |
| Representations      | discretely<br>decomposable<br>restriction | K- (Invent Math 94)<br>Ann Math 98<br>Invent Math 98 |

- $\boldsymbol{M}$  : topological space
  - Γ: discontinuous gp  $\frown M$ 
    - $\cdots$   $\Gamma$  behaves nicely in Homeo(M) as if it were a finite group

- M: topological space
  - Γ: discontinuous gp  $\frown M$ 
    - $\cdots$   $\Gamma$  behaves nicely in Homeo(M) as if it were a finite group
- $\mathcal{H}$  : Hilbert space
  - $L \curvearrowright \mathcal{H}$  "nice" unitary representations
    - $\cdots$  L behaves nicely in  $U(\mathcal{H})$ as if it were a compact group

- $M = G/\Gamma$ : topological space
  - Γ: discontinuous gp  $\frown M$ 
    - $\cdots$   $\Gamma$  behaves nicely in Homeo(M) as if it were a finite group
- $\mathcal{H}$  : Hilbert space
  - $L \curvearrowright \mathcal{H}$  "nice" unitary representations
    - $\cdots$  L behaves nicely in  $U(\mathcal{H})$ as if it were a compact group

 $M = G/\Gamma$ : topological space

Γ: discontinuous gp  $\frown M$ 

 $\cdots$   $\Gamma$  behaves nicely in Homeo(M) as if it were a finite group

$$\mathcal{H} = L^2(G/H), L^2(G/\Gamma)$$
: Hilbert space

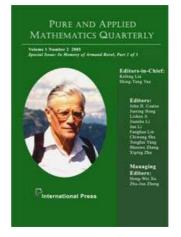
 $L \cap \mathcal{H}$  "nice" unitary representations

 $\cdots$  L behaves nicely in  $U(\mathcal{H})$ as if it were a compact group

decay of matrix coefficients (Margulis, Oh) discretely decomposable restrictions (K–)

### **References**

### 1) PAMQ vol.1 (2005) Borel Memorial Volume



- 2) math.DG/0603319 (survey paper, translated by M. Reid)
- 3) work in progress (with T. Yoshino)

For more references:

http://www.math.harvard.edu/~toshi

### **Existence problem of compact quotients**

Various approaches including

- criterion for proper actions
- Hirzebruch's proportionality principle
- cohomology of discrete groups
- symplectic geometry
- ergodic actions
- unitary representation theory

#### **9** .