
SINGULAR UNITARY REPRESENTATIONS

AND DISCRETE SERIES FOR

INDEFINITE STIEFEL MANIFOLDS U(p, q;F)/U(p −m, q;F)

Toshiyuki Kobayashi

Department of Mathematics

University of Tokyo

Hongo, Tokyo 113, Japan.

Typeset by AMS-TEX

ii



Contents

0. Introduction - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1

1. Notation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 13

1. θ-stable parabolic subalgebra - - - - - - - - - - - - - - - - - - - - - - - - - - - 13

2. good range, fair range - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 15

3. cohomological parabolic induction - - - - - - - - - - - - - - - - - - - - - - - - 16

4. results from Zuckerman and Vogan - - - - - - - - - - - - - - - - - - - - - - - 16

5. results from Harish-Chandra and Oshima-Matsuki - - - - - - - - - - - - - - 17

2. Main results - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 19

1. G = Sp(p, q) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 19

2. main theorem for G = Sp(p, q) - - - - - - - - - - - - - - - - - - - - - - - - - - 20

3. G = U(p, q) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 22

4. main theorem for G = U(p, q) - - - - - - - - - - - - - - - - - - - - - - - - - - - 23

5. G = SO0(p, q) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 25

6. main theorem for G = SO0(p, q) - - - - - - - - - - - - - - - - - - - - - - - - - 26

7. list and figures of various conditions on parameters - - - - - - - - - - - - - 28

8. remarks - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 33

3. Further notations and preliminary results - - - - - - - - - - - - - - - - - - 35

1. Jantzen-Zuckerman’s translation functor - - - - - - - - - - - - - - - - - - - - 35

2. induction by stages - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 36

3. definition of A (λ . λ0) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 36

4. A (λ . λ0) and derived functor modules - - - - - - - - - - - - - - - - - - - - - 37
5. some symbols - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 40

4. Some explicit formulas on K multiplicities - - - - - - - - - - - - - - - - - 42

1. preliminaries - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 42

2. some alternating polynomials - - - - - - - - - - - - - - - - - - - - - - - - - - - 48

3. result in quaternionic case - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 52

4. result in complex case - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 54

5. result in real case - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 56

6. some auxiliary lemmas - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 58

iii



7. proof for quarternionic case - - - - - - - - - - - - - - - - - - - - - - - - - - - - 62

8. proof for complex case - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 65

9. proof for real case - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 69

5. An alternative proof of the sufficiency for RS
q (Cλ) 6= 0 - - - - - - - - - - 70

1. theorem: sufficient condition for RS
q (Cλ) 6= 0 - - - - - - - - - - - - - - - - - 71

2. key lemmas - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 75

3. proof of the combinatorial part - - - - - - - - - - - - - - - - - - - - - - - - - - 76

6. Proof of irreducibility results - - - - - - - - - - - - - - - - - - - - - - - - - - - 78

1. irreducibility in the fair range - - - - - - - - - - - - - - - - - - - - - - - - - - - 78

2. twisted differential operators - - - - - - - - - - - - - - - - - - - - - - - - - - - 79

3. theorem - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 81

4. irreducibility result - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 81

5. Vogan’s idea on the translation principle for Aγ(l : g) - - - - - - - - - - - - 82

6. notations about GL(n,C) and Sp(n,C) - - - - - - - - - - - - - - - - - - - - - 83

7. definition of Cλ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 85

8. verification of (6.5.4)(a) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 87

9. verification of (6.5.4)(b) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 91

10. verification of (6.5.4)(c) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 92

11. proof of Corollary(6.4.1) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 93

7. Proof of vanishing results outside the fair range - - - - - - - - - - - - - 96

1. proof in complex case - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 96

2. vanishing result in quaternionic case - - - - - - - - - - - - - - - - - - - - - - 97

3. maximal parabolic case - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 98

4. general parabolic case - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 99

8. Proof of the inequivalence results - - - - - - - - - - - - - - - - - - - - - - - 101

1. quarternionic case - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 101

2. orthogonal case - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 102

References - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 104

iv



Abstract

This paper treats the relatively singular part of the unitary dual of pseudo-orthogonal
groups over F = R, C and H. These representations arise from discrete series for in-
definite Stiefel manifolds U(p, q;F)/U(p − m, q;F) (2m ≤ p). Thanks to the duality
theorem between D-module construction and Zuckerman’s derived functor modules
(ZDF-modules), these discrete series are naturally described in terms of ZDF-modules
with possibly singular parameters. Some techniques including a newK-type formula are
offered to find the explicit condition deciding whether the corresponding ZDF-modules
RS
q (Cλ) vanish or not. We also investigate the irreducibility and pairwise inequivalence

among these ZDF-modules. Although our concern is limited to the discrete series, our
approach is purely algebraic and applicable to a less special setting. It is an interesting
phenomenon that our discrete series sometimes give a sharper condition for unitarizabil-
ity of ZDF-modules than those given by Vogan (1984) algebraically. This phenomenon
does not occur in the case of discrete series for group manifolds or semisimple symmetric
spaces.

1980 Mathematics Subject Classification (1985 Revision)
primary: 22E46, secondary: 43A85,22E45,22E47.

keywords and phrases: unitary representations of semisimple Lie groups, Zuckerman’s
derived functor modules, discrete series, symmetric spaces, pseudo-orthogonal groups
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0. Introduction

Interesting classes of (g,K)-modules are often described naturally in terms of coho-

mologically induced representations in various settings such as unitary highest weight

modules, the theory of dual reductive pairs, discrete series for semisimple symmetric

spaces, and etc. These have been stimulating the study of algebraic properties of derived

functor modules. Now an almost satisfactory theory on derived functor modules includ-

ing a functorial property about unitarizability, has been developed in the ‘good’ range

of parameters. However, actual interesting families of unitary representations contain

possibly singular parameters, so we are still faced with subtle problems such as finding

conditions for non-vanishing, irreducibility, or pairwise inequivalence of these (g, K)-

modules (see Problem(0.6)0). This paper treats such delicate algebraic properties of

Zuckerman’s derived functor modules with singular parameters which arise from discrete

series for indefinite Stiefel manifolds U(p, q;F)/U(p−m, q;F) (p ≥ 2m, F = R, C or H).

Some of them are isomorphic to “unipotent” representations in the philosophy of Arthur

(e.g. [1], §5), and some are out of the range given by Vogan [29] for his unitarizability

theorem. We should also remark that the unitary dual of a pseudo-orthogonal group

U(p, q;F) has not been classified yet, except in lower rank cases.

Let G be a connected real reductive linear Lie group and H be a closed subgroup

which is reductive in G. A homogeneous space G/H carries a G-invariant measure, so

we have a natural unitary representation of G on the Hilbert space L2(G/H). Harish-

Chandra modules of finite length realized in L2(G/H) are called discrete series for G/H .

These play a fundamental role in harmonic analysis on G/H . If H is noncompact,
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discrete series for G/H do not necessarily enter the Plancherel decomposition in L2(G)

and then should correspond to a relatively singular part of the unitary dual of G.

If H is an open subgroup of the fix point group of an involutive automorphism σ of

G, G/H is a typical example of a homogeneous space of reductive type and called a

semisimple symmetric space. Much progress on discrete series for semisimple symmetric

spaces has been made in the last ten years (see e.g. [2], [8], [9], [20], [21], [24], [33]). In

particular, discrete series for G/H is not empty iff

(0.1) rankG/H = rankK/H ∩K,

where K is a σ-stable maximal compact subgroup in G.

Suppose that H has a direct decomposition H1×H2 with H1 compact. Correspond-

ingly to the G-equivariant H1-principal bundle

H1 → G/H2 → G/H,

we have

L2(G/H) = L2(G/H ;1) ,→ L2(G/H2) '
M
τ

dim τ L2(G/H ; τ),

where the sum is taken over the unitary dual of the compact group H1 and L
2(G/H ; τ)

denotes the space of the square integrable sections of the vector bundle over G/H

associated to τ .

Throughout this section, we will write G/H , G/H2 as a symbol of semisimple sym-

metric spaces with the rank condition (0.1), homogeneous spaces in the above setting,

respectively. Since we allow the case H1 = {e} and H2 = H , G/H2 represents a

wider class of homogeneous spaces than G/H in this notation. Typical examples of

G ⊃ H = H1 × H2 are given in (0.10), and if G/H is any other classical irreducible

semisimple symmetric space then H1 is one dimensional (or zero dimensional).
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It is natural to extend the study of harmonic analysis from L2(G/H) to L2(G/H2),

in which more general unitary representations of G are expected to be realized. Dis-

crete series for G/H2 have not been studied very well before, except in Schlichtkrull’s

original work [23] generalizing Flensted-Jensen’s construction [8]. Building on work of

Schlichtkrull and Oshima-Matsuki [20], we construct a wider class of discrete series for

G/H2 whose parameters are possibly more singular.

Roughly, our construction is as follows: In a complexification GC of G, other real

forms Kr ⊂ Gr ⊃ Hr ≈ H1
r × H2r of KC ⊂ GC ⊃ HC ≈ H1C × H2C are defined

so that Hr is compact [9]. Let P r = MrArNr be a minimal parabolic subgroup of

Gr, ρ ≡ ρ(nr) be half the sum of roots as usual, and Xj (1 ≤ j ≤ l, finite) be the

closed Kr-orbits in Gr/P r. Denote by A the sheaf of analytic functions, by B that of

hyperfunctions. For (δ, V ) ∈dMr, ν ∈ cAr, we define F to be the A or B valued principal
series by

F(Gr/P r; δ ⊗ ν) := {F ∈ F(Gr;V ) ; F (gman) = δ(m)−1a−ν−ρF (g)

for m ∈Mr, a ∈ Ar, n ∈ Nr}.

Then naturally we have a Gr-invariant nondegenerate bilinear form

(0.2) B : B(Gr/P r; δ∗ ⊗ (−ν))×A(Gr/P r; δ ⊗ ν)→ C,

by B(F, v) :=
R
HrhF (k), v(k)i dk. If v is a cyclic vector in A(Gr/P r; δ⊗ ν) with trivial

H2
r-action, then B induces an injective mapping

(0.3) Pv : B(Gr/P r; δ∗ ⊗ (−ν))→ A(Gr/H2r),

by Pv(F )(g) := B(F (g · ), v) = B(F, g · v). Then Pv is an analogue of the Poisson

transform which respects the left Gr-action. Let

BjKr(δ ⊗ ν) := {F ∈ B(Gr/P r; δ ⊗ ν) ; suppF ⊂ Xj , F transforms according to

finite dimensional representations of KC under the action of K
r}.
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Now we are ready to state a construction of discrete series for G/H2:

Proposition 0.4. Assume that

BjKr (G
r/P r; δ∗ ⊗ (−ν)) 6= 0,(0.5)(a)

A(Gr/P r; δ ⊗ ν) contains a H2r-fixed cyclic vector v,(0.5)(b)

hν,αi > 0 for any α ∈ Σ(gr, ar).(0.5)(c)

Then the image of Pv
³
BjKr(δ∗ ⊗ (−ν))

´
(1 ≤ j ≤ l) by Flensted-Jensen duality (a kind

of holomorphic continuation) gives discrete series for L2(G/H2).

We remark that if H1 = {e},H2 = H and if δ = 1, then the above construction

exhausts all discrete series for semisimple symmetric spaces G/H (in particular, those

for group manifolds G ' G×G/diag(G)) (see Fact(1.5.1),(1.5.2)).

Since the proof of Proposition(0.4) is similar to [23] and [20], and since the proof

requires a lot of analytic notations in estimating square integrability, we do not give it in

this paper. Instead, we investigate algebraic properties of these unitary representations

realized in L2(G/H2). First of all, we must find the explicit conditions for (0.5)(a),(b),

which are satisfied if the parameter ν is sufficiently ‘regular’.

To obtain the explicit condition for (0.5)(b) is non-trivial but fairly easy: It is well

known that this condition is automatically satisfied under (0.5)(c) if H1
r = {e} due

to Helgason, Kostant [10], [16]. This condition is also known if dimH1
r = 1 (see

[19], Theorem 1.2, see also an explicit c-function obtained in [25](with a miswriting in

Sp(n,R) case), [26]). For a general H1r, we can calculate it by standard arguments

using Gindikin-Karpalevič method and the explicit knowledge of the socle filtration of

principal series for rank one simple Lie groups (see [5]). The arguments are independent

and we shall report it in another paper.

The most important and non-trivial part is (0.5)(a). So our interest in this paper

will be concentrated on the following algebraic properties involving (0.5)(a):
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Problem 0.6. Find each of the explicit conditions, deciding whether or not, (g,Kr)-

modules BjKr (δ∗ ⊗ (−ν)) (1 ≤ j ≤ l) vanish, are irreducible, are pairwise inequivalent

and etc.

Thanks to the duality theorem due to Hecht, Miličic, Schmid and Wolf ([4], [11], see

also [2] II.6), the modules BjKr(δ∗ ⊗ (−ν)) are isomorphic to the duals of a family of

(g,K)-modules defined by Zuckerman. Then we may reformulate Problem (0.6) into a

more familiar one:

Problem 0.60. Find an explicit condition guaranteeing

i) RS
q (Cλ) 6= 0 if S :=

1

2
dim(K/L ∩K).

ii) Rj
q(Cλ) = 0 for any j 6= S.

iii) RS
q (Cλ) is irreducible or zero.

iv) RS
q (Cλ) ' RS0

q0 (Cλ0).

Here q = l + u is a θ-stable parabolic subalgebra, Cλ is a metapletic (l, (L ∩ K)∼)

unitary character, andRj
q(Cλ) (j ∈ N) are Zuckerman’s cohomologically induced (g, K)-

modules (see §1.3 for our normalization).

Remark 0.7. Our discrete series for G/H2 are originally the dual of cohomologically

induced representations from finite dimensional representations according to δ ∈dMr.

If we use further induction by stages and the Borel-Weil-Bott theorem for compact

groups, we reduce them to those induced from characters.

Let t0 be a maximal abelian subalgebra of k0
⊥(h2)0, a subspace of k0 orthogonal to (h2)0.

Then the discrete series constructed in Proposition(0.4) correspond to the modules

RS
q (Cλ) where q is defined by a generic element of t0. The choice of closed Kr-orbits

Xj (1 ≤ j ≤ l) corresponds to the choice of polarizations. We will find that the

conditions (0.5)(a),(b) and (c) impose on λ some mild positivity conditions with respect

to q (see List(0.9), Theorems in §2).
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The difficulty in Problem(0.6)0 arises from singular parameters. Let us explain it.

Suppose that q = l + u is a θ-stable parabolic subalgebra and let Cλ be a metapletic

(l, (L ∩K)∼)-module. Three kinds of dominance conditions on λ are defined:

λ+ ρl is dominant for u,(0.8)(a)

λ is dominant for u,(0.8)(b)

μλ := λ+ ρ(u)− 2ρ(u ∩ k) is ∆+(k)-dominant.(0.8)(c)

We say (0.8)(a) (weekly) good and (0.8)(b) (weakly) fair according to [33] (more pre-

cisely, see Definition(1.2.1)).

General theory guarantees nice behaviors of the modules Rj
q(Cλ) when Cλ is in the

good range where Rj
q(Cλ) has a regular Z(g)-infinitesimal character (see Fact(1.4.1)).

Indeed, suppose that a unitary character Cλ is in the good range. Then,

Rj
q(Cλ) = 0 if j 6= S,

RS
q (Cλ) is nonzero, irreducible, and unitarizable.

Suppose one allows Cλ to be in the (weakly) fair range, the cohomology group

RS
q (Cλ) tends to be reducible or vanish (see Fact(1.4.2)). The condition (0.8)(c) is

sufficient for the non-vanishing of RS
q (Cλ). The normality of the moment map (see §6)

is sufficient for the irreducibility (or vanishing) of RS
q (Cλ). For example, these sufficient

conditions apply to Proposition 6.41 in [32] which is used in classifying the unitary dual

of GL(2n,R). (This part of the book [32] suggests some importance of the study in the

strip: fair but not good.) However, unfortunately none of these conditions is necessary

in general.

Suppose one allows Cλ to wander outside the (weakly) fair range, the cohomology

group RS
q (Cλ) may be non-unitary, and cohomology may turn up in other dimensions

as well.
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Here is a sketchy list of the ranges of the parameters of the discrete series constructed

in Proposition(0.4) in terms of Zuckerman’s derived functor modules (see Remark(0.7)

for precise meaning). Semisimple Lie groups G ' G×G/ diag(G), semisimple symmet-

ric spaces G/H , and our homogeneous spaces G/H2 are assumed to satisfy the rank

condition rankG = rankK, (0.1), and (0.1) respectively.

the parameter of discrete series RS
q (Cλ)

G G/H G/H2
Cλ is fair Yes Yes No
Cλ is good Yes No No

μλ is ∆
+(k)-dominant Yes No No

List 0.9.

Here “Yes” means that the corresponding condition is always satisfied, and otherwise

“No”.

Recall that the construction in Proposition(0.4) exhausts all discrete series for G and

G/H (see Fact(1.5.1),(1.5.2)). Counter examples (i.e. “No”) in List(0.9) for G/H2 are

given as follows:

Suppose that G/H2 is an indefinite Stiefel manifold

(0.10) G/H2 = U(p, q;F)/U(p−m, q;F), (p ≥ 2m, F = R, C or H),

which is one of the most interesting and typical homogeneous spaces in our setting. (In

this case H1 = U(m;F).) Then Theorem 1 ∼ 3 in §2 says that the discrete series for

G/H2 in Proposition(0.4) contains a module RS
q (Cλ) such that

i) Cλ is outside the weakly fair range when F = C or H with any p, q,m.

ii) μλ is not dominant for∆
+(k) when F = H with any p, q,m; when F = C with p 6= 2m;

when F = R with p− q − 2m ≥ 3.

The purpose of this paper is to make a detailed study on Problem(0.6)0 when G/H2

is of the form (0.10), by seeking for useful techniques which are applicable to derived
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functor modules with singular parameters and aiming at some understanding of the

unitary dual. Most of our results of this paper involve a special class of θ-stable parabolic

subalgebra: A Levi part is of the form L ' Tl × U(p− k, q;F). (l = k if F = C,H and

2l = k if F = R.) Our approach here is algebraic and does not depend on the fact that

the representations are realized in L2-functions; even H = H1 × H2 will not appear

explicitly in the proof. We shall sometimes deal with Problem(0.6)0 for less special

derived functor modules at the same time in the proof (e.g. §5).

Remark 0.11.

i) The discrete series which were first constructed by Flensted-Jensen for G/H , by

Schlichtkrull for G/H2 have the property that μλ is∆
+(k)-dominant, which corresponds

to the fact that BjKr(δ∗ ⊗ (−ν)) contains a measure valued function. We call these

discrete series Flensted-Jensen type, Schlichtkrull type, respectively. Among discrete

series of Schlichtkrull type, the representations which have stable Langlands parameters

are explicitly stated in Theorem 8.2 ∼ 8.4 in [23] (with some minor misprints). Some

of them were “new” unitary representations. It is known that Flensted-Jensen type

discrete series do not always exhaust all discrete series for L2(G/H) ([8] §8, [20]). We

notice that if G ⊃ H ⊃ H2 is of the form (0.10) and if F = H, the shortage of Flensted-

Jensen type for G/H happens only if p À q + 2m, while that of Schlichtkrull type for

G/H2 happens for any p, q and m. (This is similar if F = C.)

ii) Clearly, discrete series are unitarizable with respect to their L2-norm. On the

other hand, unitarizability of Zuckerman’s derived functor modules has been proven

algebraically in the weakly good range [29],[34]. If they are induced from characters,

the assumption can be weakened to the weakly fair range ([29], Theorem 7.1). Then

the latter stronger version covers the range of discrete series for semisimple symmetric

spaces G/H (see List(0.10)). One of the reasons why we reduce our discrete series

to cohomologically induced representations from characters (see Remark(0.7)) is to
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compare with these algebraic results.

It has also been observed by many people that the unitarizability of RS
q (Cλ) special

parabolic subalgebras q still holds outside the fair range with small spectrum λ (see

[7] and the references therein). It seems that our unitarizability results in Part(6) of

Theorems 1 and 2 contain some new cases, namely, the θ-stable parabolic subalgebras

q which we treat here are more general.

iii) None of Problem(0.6)0 is trivial even if Cλ is in the (weakly) fair range: For exam-

ple, Problem(0.6) has been recently investigated by Bien, Vogan, Matsuki and Oshima

([2], [21], [33]) for discrete series for G/H (semisimple symmetric spaces). J.F.Adams

[1] also deals with some part of Problem(0.6)0 in this range when q is “holomorphic” in

studying unitary highest weight modules.

Now let us explain briefly the methods of this paper to deal with Problem(0.6)0.

To find the condition that assures RS
q (Cλ) 6= 0, there are various techniques such as

i) Coherent continuation based on

a) the τ -invariant (Vogan’s Uα calculus) (e.g. [27], [1]),

b) a precise knowledge of the non-vanishing exponents in the asymptotic behavior of

spherical functions on semisimple symmetric spaces [22],

c) small parameters out of the fair range.

ii) Generalized Blattner formula.

The analytic approach (i-b) depends on the fact that these modules are realized in

eigenspaces on symmetric spaces. This idea was first introduced by Oshima and Matsuki

to check the non-vanishing of some part of the discrete series for G/H (unpublished).

We do not go into details here. A formulation with a detailed proof in a generalized

setting G/H2 and actual calculations in a special setting may be seen in [13], which

was our first approach to this subject.
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We take the approach of neither (i-a) nor (i-b) in this paper, because both of them

are only partially successful in covering all of the singular parameters in our Theorems

1 to 3 in §2.

The technique (i-c) is new and appears valuable because of its simplicity. The idea is

illustrated in §5 for G = Sp(p, q) and more general θ-stable parabolic subalgebras. The

point here is to concentrate on the range of most singular and small parameters (which

we write B standing for ‘bounded blocks’) by forgetting all about dominant conditions.

We will find that the picture of the set

{λ ; RS
q (Cλ) 6= 0, λ is fair with respect to q}

depends heavily on the choice of polarizations of θ-stable parabolic subalgebras with a

fixed Levi part.

As for the method (ii), notoriously complicated cancellations of many terms in a

generalized Blattner formula have prevented us from an explicit calculation of a general

K-type except some few cases such as

· G is small.

· a K-type is special (e.g. with a highest weight μλ under (0.8)(c)).

· a θ-stable parabolic subalgebra q is special (e.g. quasi abelian (see [7]) or corresponds

to unitary highest weight modules) and a K-type is less special.

Another novelty here is to get nice information on allK-types in our setting in §4. Let

us introduce the idea briefly. Put Θλ :=
P

j(−1)jRj
q(Cλ) as a virtual K-module. We

stratify bK by a subspace t of a Cartan subalgebra tc of k, and add all the multiplicities

(∼ dimensions) of K-types occurring in Θλ belonging to each stratum parametrized

by δ ∈ t∗. (If RS
q (Cλ) is a so called ladder representation, the parameter space t is

one dimensional in our definition.) The resulting function M(q,λ, δ) (precisely, see

§4.1) vanishes for all δ if Θλ = 0 by definition. Then we present an explicit formula
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for M(q,λ, δ) (Propositions in §4.3-5) in terms of the determinant of a matrix whose

entries are polynomials of λ and δ, from which we can determine the explicit condition

describing whether RS
q (Cλ) vanishes or not under the assumption Rj

q(Cλ) = 0 (j 6= S).

The special value of M(q,λ, δ) for the ‘minimal’ δ := μ̃λ (see (4.3.4),(4.4.4),(4.5.4) for

definition) is also found. It will play an important role in showing pairwise inequivalence

among our discrete series in §8. This method here is applicable not only when μλ is

not ∆+(k)-dominant but also when λ is small and out of the fair range.

We also mention that a related non-vanishing condition (necessity part) has been

proven generally by Matsuki [21] for discrete series for semisimple symmetric spaces

(i.e. H1 = {e} case). His proof is beautiful but depends on the fact that they are

realized in L2-eigenspaces on symmetric spaces.

To prove the irreducibility of RS
q (Cλ) in the fair range in our settings, we can use

the known theory of D-modules except the case G = Sp(p, q) (see Fact(6.2.4)). When

g = sp(n,C), we shall follow Vogan’s method in [33], Example 5.10. The main step

of the proof is to find a very special direction to which a translation of the twisted

differential operators on a generalized flag variety coming from U(g) behaves reasonably.

Although there is no new ideas in §6, we shall give a complete proof of this main step

(see Theorem(6.3.1), a slight refinement of Theorem 5.11 in [33]) which is formulated

more generally than what we need.

Here is an outline of the contents. In §1 we fix some notations and recall related

facts. They are restrictive and set the scene for §2. The main results are Theorem

1, 2 and 3 in §2. The rest of the paper is devoted to prove them (sometimes with

suitable generalization). Since the parameters outside the fair range are peculiar to our

discrete series, our concern will be mainly with F = C or H. §3 contains further useful

notations and preliminary results on translation functors that we need in the proof. This

is essentially standard material included for the benefit of the reader. §4, 5 and 6 are
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independent of each other and the reader can go directly to any of them. §4 considers the

necessary and sufficient condition that RS
q (Cλ) 6= 0 by a K-type formula. §5 provides

another method to prove quickly the sufficient condition for the non-vanishing of Θλ in

a more generalized situation. (We illustrate this idea when F = H case.) §6 gives the

proof of irreducibility result in the fair range when g = sp(n,C) with special parabolic

subalgebras. §7 proves some vanishing results Rj
q(Cλ) = 0 (j 6= S) outside the fair

range with small spectrum. The proof for pairwise inequivalence of these modules is

given in §8.

This paper consists of three lectures which were delivered at Conference on “Eigen-

functions on symmetric spaces and representations of Lie groups” held at RIMS Kyoto

on July 1987, Summer school at University of Industrial Technology on August 1987,

and Lie groups and representations Seminar at University of Tokyo on January 1989.

The results here except §5 were announced in [14] with a sketch of the proof. The

author expresses his sincere gratitude to Professor Toshio Oshima for the suggestion

of generalizing Schlichtkrull’s results which was a motivation of the initial work [13].

Moreover, our results in §4 are inspired by the idea of controlling the multiplicities of

‘small’ K-types, which I learned from him. It is a pleasure to thank Professor Toshi-

hiko Matsuki who is generously willing to allow me to publish our proof for §5 (quite

different from his) here first. I would like to thank Professor Henrik Schlichtkrull who

read quite carefully the original manuscript together with Dr. Jesper Bang-Jensen and

sent me a list of errors and comments, and Mr. Hiroyuki Ochiai who examined parts of

the manuscript. Thanks are also due to the referee for his careful and kind comments.

I am also grateful to Professor Mogens Flensted-Jensen for his lectures in Japan in

1986 which stimulated my interest in this field, Professor David Vogan, Dr. Susana

Salamanca-Riba and Professor Joseph A. Wolf for their interest in this work, and Dr.

Itaru Terada for the instruction of TEX.
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1. Notation

In this section we set up notation. See [28] and [32] for general references. Let H be a

connected real linear reductive Lie group, with real Lie algebra h0 and complexified Lie

algebra h. Since H is contained in a complex Lie group, we denote by HC the connected

complex Lie subgroup with Lie algebra h. The center of the universal enveloping algebra

U(h) is written as Z(h). In what follows analogous notation will be applied to Lie groups

denoted by other Roman upper case letters without comment.

We will use the standard notation N, Z, R, C and H. Here N means the set of

non-negative integers and H means the R-algebra of quarternionic numbers. We denote

by N+ the set of positive integers. For x ∈ R, we write [x] := sup{n ∈ Z ; n ≤ x}, the

Gaussian integer of x.

1.1. θ-stable parabolic subalgebra

Let G be a connected real linear reductive Lie group. Let K ⊂ G be a maximal

compact subgroup and fix a Cartan involution θ so that g0 = k0 + p0 is a Cartan

decomposition of g0. Fix a nondegenerate bilinear form h , i on g invariant under G

and θ, which is positive definite on p0 and negative definite on k0. This form will be

restricted to subspaces and transferred to dual vector spaces without change of notation.

If the restriction of h , i to each subspace a, b with a ⊂ b is non-degenerate, we look

upon

(1.1.1) a∗ ⊂ b∗

through this bilinear form.
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Fix an abelian subalgebra t0 of k0. Define L to be the centralizer of t0 in G. Let

u be the vector space spanned by positive eigenspaces of a fixed generic element of

√
−1t∗0. Then q := l+ u gives a Levi decomposition and q is called a θ-stable parabolic

subalgebra ([28] Definition 5.2.1). Note that L coincides with the normalizer of q in G

and is a connected reductive Lie group. Clearly t is contained in the center of l, and in

this paper we shall usually assume that t satisfies

(1.1.2) t coincides with the center of l.

We use this assumption only for simplifying notation. In most situations we will let

(1.1.3) S := dim(u ∩ k) = 1

2
dimK/L ∩K.

Write C2ρ(u) for the determinant character of L on u whose differential is given by

(1.1.4) 2ρ(u)(X) = trace(ad(X)|u) (X ∈ l).

Let h be a Cartan subalgebra of l. Then t ⊂ h and h is also a Cartan subalgebra of g. We

sometimes view ρ(u) as an element of h∗ or of t∗ under the assumption(1.1.2) according

to notation(1.1.1). Let L∼ ≡ L∼G be the metapletic two-fold cover of L (Duflo; see

[32] Definition 5.7) defined by the square root ρ(u) of 2ρ(u). (The definition of L∼ is

independent of the particular choice of the nilradical u). Write ζ for the non-trivial

element of the kernel of the covering map L∼ → L. Then the evaluation of ρ(u) at ζ is

by definition −1. A metapletic representation of L∼ is the one that is −1 on ζ.

There is a natural bijection between metapletic representations of L∼ and represen-

tations of L by the assignment

(1.1.5) τ 7→ τ ⊗ C−ρ(u)

for each metapletic representation τ .
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We denote by Cλ the one-dimensional metapletic representation of L∼ whose differ-

ential is given by λ ∈ l∗. (Then automatically λ ∈ t∗ in the sense of (1.1.1) under the

assumption (1.1.2).) We use the same notation Cλ when it is a character of L or L∼.

1.2. good range, fair range

Take a Cartan subalgebra h of g and let W (g, h) be the Weyl group of the root

system ∆(g, h). We usually assume h0 is a fundamental Cartan subalgebra. This means

h0 = θh0 and h0 = t
c
0 + a

c
0 ≡ (h0 ∩ k0) + (h0 ∩ p0) such that tc0 is a Cartan subalgebra of

k0. A maximal ideal of Z(g) is identified with a W (g, h) orbit in h
∗:

Hom C−algebra(Z(g),C) ' h∗/∼W (g,h)

via the Harish-Chandra isomorphism Z(g) ' S(h)W (g,h) which involves a shift by

ρ(∆+(g, h)).

We follow the terminologies below from [33] Definition 2.5. Suppose that h is con-

tained in l in the setting of §1.1.

Definition 1.2.1. Let W be a metapletic (l, (L ∩ K)∼)-module which has a Z(l)-

infinitesimal character represented by γ ∈ h∗. We say that W is in the good range

if

(1.2.2) Rehα, γi > 0 for each α ∈ ∆(u, h).

In this case we also say that γ is in the good range with respect to q ⊂ g. Clearly, this

condition is invariant under the action of the Weyl group W (l, h).

Suppose that [l, l] acts by zero on W . We say that W is in the fair range if

(1.2.2) Rehα, γ|ti > 0 for each α ∈ ∆(u, h)
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(notation §1.1). W (or γ) is called weakly good (respectively weakly fair) if the weak

inequalities (≥ ) hold.

One should notice that good implies fair if [l, l] acts by zero on W . Conversely, there

exists in general a strip of the fair range that is not in the good range. Roughly, the

size of this strip corresponds to that of a Levi part of q and it is empty when q is a

Borel subalgebra.

1.3. cohomological parabolic induction

As an algebraic analogue of Dolbeault cohomology on a homogeneous complex man-

ifold G/L, Zuckerman introduced the cohomological parabolic induction (we follow [32]

Definition 6.20)

Rj
q ≡

¡
Rg
q

¢j
(j ∈ N),

which is a covariant functor from the category of metapletic (l, (L ∩K)∼)-modules to

the category of (g, K)-modules.

With notation as before, fix a Cartan subalgebra h ⊂ l. The definition here dif-

fers from [28] Definition 6.3.1 only by a ρ-shift. In our normalization, if a metapletic

(l, (L ∩K)∼)-module W has Z(l)-infinitesimal character γ ∈ h∗, then Rj
q(W ) has Z(g)-

infinitesimal character γ in the Harish-Chandra parametrization.

1.4. results from Zuckerman and Vogan

Retain notations as in §1.1-2. The following theorem is due to Zuckerman and Vogan

(see [28],[32],[35]).

Fact 1.4.1. In the setting of §1.1, suppose thatW is a metapletic (l, (L∩K)∼)-module.

1) Assume that W is weakly good.

a) Rj
q(W ) = 0 for all j 6= S.
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b) RS
q (W ) is an irreducible (g,K)-module or zero if W is irreducible.

c) RS
q (W ) is unitarizable if W is unitary.

2) If W ( 6= 0) is good, then RS
q (W ) 6= 0.

3) If W is good and if RS
q (W ) is unitary, then W is unitarizable.

When W is fair, it is known that some of the properties in the above theorem fail:

Fact 1.4.2. Retain notations as in Fact(1.4.1) and assume that [l, l] acts by zero on

W .

1) Assume that W is weakly fair.

a) (true) Rj
q(W ) = 0 for all j 6= S.

b) (false) RS
q (W ) is an irreducible (g,K)-module or zero.

c) (true) RS
q (W ) is unitarizable if W is unitary.

2) (false) If W is fair, then RS
q (W ) 6= 0.

Part(1)(a),(c) is due to Vogan [29], Theorem7.1. A counter example for (1)(b) is

given in [31] when g is of type C4. As for (2), see also §4 and §5.

Note that if W is fair Rj
q(W ) does not necessarily have a regular Z(g)-infinitesimal

character and does not always have nice behavior under translation.

1.5. results from Harish-Chandra and Oshima-Matsuki

We do not use directly the results cited here in later sections. However, they will

help us to understand what we are doing in this paper. Retain notations in §1.1-

3. Cohomologically induced representations from θ-stable parabolic subalgebras are

convenient in describing ‘discrete series’:
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Fact 1.5.1 (Harish-Chandra). Any discrete series for G is of the form RS
q (Cλ) with t

a Cartan subalgebra of g contained in k and with Cλ in the good range. (In this case q

is a Borel subalgebra of g.)

Fact 1.5.2 (Oshima-Matsuki [20], cf. [9], [33] Definition(2.8)). Let σ be an involution

of G commuting with the Cartan involution θ, and H be an open subgroup of the fixed

points of σ. Then any discrete series for a semisimple symmetric space G/H is of the

form RS
q (Cλ) with t a Cartan subalgebra of k contained in {X ∈ k ; σ(X) = −X} and

with Cλ in the fair range.

Remark 1.5.3. Several remarks are in order. First, the existence of such an abelian

subspace t is equivalent to the famous rank condition rankG = rankK (respectively,

rankG/H = rankK/H∩K), which is known to be the necessary and sufficient condition

for the existence of discrete series. Second, Oshima and Matsuki do not use derived

functor modules directly as alluded to in the Introduction. Third, we have mentioned

neither the necessary evenness condition on λ (e.g. (2.7.4)(c)) nor the condition for

RS
q (Cλ) 6= 0. Finally, there exist now algebraic proofs of the unitarizability of these

modules (Fact(1.4.2)).
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2. Main results

In this section, we state our main theorems.

2.1. G = Sp(p, q)

Let G = Sp(p, q) where p, q ≥ 1 and let θ be a Cartan involution of g corresponding

to the maximal compact subgroup K = Sp(p)× Sp(q) naturally embedded in a matrix

group G.

Let h0 be a fundamental Cartan subalgebra of g0; then h0 is contained in k0. Choose

coordinates {fi ; 1 ≤ i ≤ p+ q} on h∗ such that the root systems of g and k for h are

given by,

∆(g, h) = {±(fi ± fj),±2fl ; 1 ≤ i < j ≤ p+ q, 1 ≤ l ≤ p+ q},

∆(k, h) = {±(fi ± fj) ; 1 ≤ i < j ≤ p or p+ 1 ≤ i < j ≤ q}

∪ {±2fl ; 1 ≤ l ≤ p+ q}.

Let {Hi} ⊂ h be the dual basis for {fi} ⊂ h∗. Fix an integer r such that 1 ≤ r ≤ p. Set

t :=

rX
j=1

CHj (⊂ h).

Let l be the centralizer of t in g, and L be the centralizer of t in G. Then L is θ-stable

in G, isomorphic to Tr × Sp(p− r, q) with complexified Lie algebra l.

Let q ≡ q(r) = l + u (Levi decomposition) be a θ-stable parabolic subalgebra of g,

whose nilpotent radical u is defined by the following roots for h.

∆(u, h) := {fi ± fj , 2fl ; 1 ≤ i ≤ r, i < j ≤ p+ q, 1 ≤ l ≤ r}.
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Then ρ(u) =
Pr

j=1(p+ q + 1− j)fj , S ≡ dimC(u ∩ k) = r(2p− r).

Set Q := p+ q − r(> 0). Let

λ :=

rX
i=1

λifi (λi ∈ C)

be an element of t∗, which will be sometimes regarded as an element of h∗.

2.2. main theorem for G = Sp(p, q)

Theorem 1. Retain notations in §2.1.

0) Any θ-stable parabolic subalgebra of g with Levi part l is conjugate to q = l+ u by

an element of K.

1) Cλ lifts to a metapletic (l, (L∩K)∼)-module if and only if λi ∈ Z for all i (1 ≤ i ≤ r).

From Part (2) to (6), we always assume

(2.2.1) λi ∈ Z (1 ≤ i ≤ r).

2) If λ satisfies

(2.2.2) λ1 ≥ λ2 ≥ · · · ≥ λr−1 ≥ |λr| and λr ≥ −Q,

then RS−j
q (Cλ) = 0, for any j 6= 0.

3) Under the assumption (2.2.2), RS
q (Cλ) 6= 0 if and only if

(2.2.3)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λ1 ≥ λ2 ≥ · · · ≥ λr−1 ≥ |λr| and λr ≥ −Q,

λi 6= λj (i 6= j)

λr−2q ≥ Q+ 1 (when r > 2q).
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Here we impose the third condition only when r > 2q.

If (2.2.3) is satisfied, then RS
q (Cλ) has Z(g)-infinitesimal character

(λ1, . . . ,λr, Q,Q− 1, . . . , 1) ∈ h∗

in the Harish-Chandra parametrization.

4) The set {RS
q (Cλ) ; λ satisfies (2.2.3)} consists of non-zero (g,K)-modules which are

pairwise inequivalent.

5) If λ satisfies (2.2.3) and λr > 0, thenRS
q (Cλ) is a non-zero irreducible (g, K)-module.

6) Assume that r is an even number. Set r = 2m (0 < 2m ≤ p). If λ satisfies (2.2.3)

and λr−1 + λr > 0, then there is an injective (g, K)-homomorphism

RS
q (Cλ) −→ L2(Sp(p, q)/Sp(p−m, q))

into discrete series for an indefinite quarternionic Stiefel manifold G/H2 =

Sp(p, q)/Sp(p−m, q). In particular, the corresponding derived functor modules are

non-zero unitarizable.

Remark 2.2.4. We can derive the unitarizability of RS
q (Cλ) from Part(6) in the above

theorem under the assumption (2.2.3). In fact, the case λr−1 + λr = 0 with r = 2m

corresponds to “limit of discrete series” for Sp(p, q)/Sp(p −m, q) and is still unitariz-

able. As for an odd integer r, we can deduce the unitarizability from the even integer

r + 1 case. Actually, we choose sufficiently large λ1 and make use of Fact(1.4.1)(3),

Lemma(3.2.1)(2).

Remark 2.2.5. If we apply our result to the case where r = 1 under (2.2.3), we

have the known result on the unitarizability, the non-vanishing, and an explicit K-type

formula (see also §4.3) ofRS
q (Cλ) due to Enright, Parthasarathy, Wallach, and Wolf (see

[7], §9). In this case (r = 1), q is quasi abelian and RS
q (Cλ) is a ladder representation in
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their terminology. Our assumption(2.2.3) is nothing but λ1 ≥ −Q when r = 1, which

is equivalent to “z < 0” after a careful comparison of ρ-shift (This range is referred as

“especially curious” in [7], p126).

2.3. G = U(p, q)

Let G = U(p, q) where p, q ≥ 1 and let θ be a Cartan involution corresponding to the

maximal compact subgroup K = U(p) × U(q) naturally embedded in a matrix group

G.

Let h0 be a fundamental Cartan subalgebra of g0; then h0 is contained in k0. Choose

coordinates {fi ; 1 ≤ i ≤ p+ q} on h∗ such that the root systems of g and k for h are

given by

∆(g, h) = {±(fi − fj) ; 1 ≤ i < j ≤ p+ q},

∆(k, h) = {±(fi − fj) ; 1 ≤ i < j ≤ p or p+ 1 ≤ i < j ≤ p+ q}.

Let {Hi} ⊂ h be the dual basis of {fi} ⊂ h∗. Fix two nonnegative integers r and s

such that 1 ≤ r + s ≤ p. Set

t :=

r+sX
i=1

CHi + C
p+qX
i=1

Hi (⊂ h).

Then the centralizer L of t in G is isomorphic to Tr+s × U(p− r − s, q).

Let q ≡ q(r, s) = l+ u be a θ-stable parabolic subalgebra of g with nilpotent radical

u given by,

∆(u, h) := {fi − fj ; 1 ≤ i < j ≤ r + s}

∪ {fi − fj ; 1 ≤ i ≤ r, r + s+ 1 ≤ j ≤ p+ q}

∪ {−fi + fj ; r + 1 ≤ i ≤ r + s, r + s+ 1 ≤ j ≤ p+ q}.

Then S =
1

2
(r + s)(2p− r − s− 1). Set Q := 1

2
(p+ q − r − s− 1) (≥ 0).
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Finally, let

λ :=

r+sX
i=1

λifi +
−r + s
2

p+qX
i=1

fi ∈ t∗ (λi ∈ C).

2.4. main theorem for G = U(p, q)

Theorem 2. Retain notations in §2.3 and fix r, s.

0) There are r + s+ 1 K-conjugacy classes of θ-stable parabolic subalgebras of g with

Levi part l. A complete system of representatives is given by

{q(a, b) ; a, b ∈ N, a+ b = r + s}.

1) Cλ lifts to a metapletic (l, (L ∩ K)∼)-module if and only if λi ∈ Z + Q for all

i (1 ≤ i ≤ r + s).

From Part (2) to (6), we assume

(2.4.1) λi ∈ Z+Q (1 ≤ i ≤ r + s).

2) If λ satisfies

(2.4.2)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λ1 ≥ λ2 ≥ · · · ≥ λr ≥ λr+1 ≥ · · · ≥ λr+s,

λr ≥ −Q when r > 0,

λr+1 ≤ Q when s > 0,

then RS−j
q (Cλ) = 0 for any j 6= 0.
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3) Under the assumption (2.4.2), RS
q (Cλ) 6= 0 if and only if

(2.4.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1 > λ2 > · · · > λr ≥ λr+1 > λr+2 > · · · > λr+s,

λr−q ≥ Q+ 1 when r > q,

λr ≥ −Q when r > 0,

λr+q+1 ≤ −Q− 1 when s > q,

λr+1 ≤ Q when s > 0.

If (2.4.3) is satisfied, then RS
q (Cλ) has Z(g)-infinitesimal character

(λ1, . . . ,λr+s, Q,Q− 1, . . . ,−Q) +
−r + s
2

(1, 1, . . . , 1) ∈ h∗.

4) The set {RS
q (Cλ) ; λ satisfies (2.4.3)} consists of non-zero (g,K)-modules which are

pairwise inequivalent.

5) If λ satisfies (2.4.3) and λr ≥ 0 ≥ λr+s, then RS
q (Cλ) is a non-zero irreducible

(g, K)-module.

6) Assume that r = s. Set m := r (= s). If λ satisfies (2.4.3) and λr > λr+1, then there

is an injective (g,K)-homomorphism

RS
q (Cλ) −→ L2(U(p, q)/U(p−m, q))

into discrete series for an indefinite complex Stiefel manifold U(p, q)/U(p−m, q). In

particular, the corresponding derived functor modules are non-zero unitarizable.

Remark 2.4.4. The unitarizability of RS
q (Cλ) under the assumption (2.4.3) (without

assuming r = s) is derived from Part(6) in the above theorem by reasoning similar to

Remark(2.2.4)
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Remark 2.4.5. Our parabolic subalgebra q ≡ q(r, s) is holomorphic ([1], Definition

1.6) iff r = 0 or s = 0. q ≡ q(r, s) is quasi abelian ([7], p.109) iff (r, s) = (1, 0), (1, 1) or

(0, 1). Another algebraic approach of some part of our results may be seen in the above

cases (cf. Part(ii) and (iii) in Remark(0.11)).

2.5. G = SO0(p, q)

Let G = SO0(p, q) where p, q ≥ 1 and let θ be a Cartan involution corresponding to

the maximal compact subgroup K = SO(p) × SO(q) naturally embedded in a matrix

group G.

Let h0 = (h0 ∩ k0) + (h0 ∩ p0) ≡ tc0 + ac0 be a fundamental Cartan subalgebra of g.

If both p and q are odd, then dimC a
c = 1, otherwise dimC a

c = 0 and h = tc. Choose

coordinates {fi ; 1 ≤ i ≤ [
p+ q

2
]} on h∗ such that the root systems of g and k are given

by

∆(g, h) ={±(fi ± fj) ; 1 ≤ i < j ≤ [
p+ q

2
]}

∪
µ
{±fl ; 1 ≤ l ≤ [

p+ q

2
]} (p+ q:odd)

¶

∆(k, tc) ={±(fi ± fj) ; 1 ≤ i < j ≤ [
p

2
]}

∪ {±(fi ± fj) ; [
p+ q

2
]− [q

2
] + 1 ≤ i < j ≤ [p+ q

2
]}

∪
³
{±fl ; 1 ≤ l ≤ [

p

2
]} (p:odd)

´
∪
µ
{±fl ; [

p+ q

2
]− [q

2
] + 1 ≤ l ≤ [p+ q

2
]} (q:odd)

¶
,

respectively. Let {Hi} ⊂ h be the dual basis for {fi} ⊂ h∗. Fix an integer r such

that 1 ≤ r ≤ [p
2
]. Set t :=

Pr
j=1CHj (⊂ tc ⊂ h). Then the centralizer L of t in G is

isomorphic to Tr × SO0(p− 2r, q). Define two elements of t∗ (⊂ (tc)∗ ⊂ h∗) by,

μ :=

rX
i=1

(
p+ q

2
− i)fi, μ0 := μ− (p+ q − 2r)fr ∈ t∗.
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Let q = l+ u (resp. q0 := l+ u0) be a θ-stable parabolic subalgebra of g with nilpotent

radical u (resp. u0) given by,

∆(u, h) := {α ∈ ∆(g, h) ; hα,μi > 0},

∆(u0, h) := {α ∈ ∆(g, h) ; hα,μ0i > 0}.

Then ρ(u) = μ (resp. ρ(u0) = μ0) when restricted to h and S = r(p − r − 1). Set

Q :=
p+ q

2
− r − 1(≥ −1

2
). Finally, let

λ :=

rX
i=1

λifi, λ0 := λ− 2λrfr ∈ t∗ (λi ∈ C).

2.6. main theorem for G = SO0(p, q)

Theorem 3. Retain notations in §2.5.

0) A complete system of representatives of the K-conjugacy classes of θ-stable parabolic

subalgebras of g with Levi part l is given by,

a) {q} when p 6= 2r,

b) {q}, {q0} when p = 2r.

1) The following three conditions on λ are equivalent:

a) Cλ lifts to a metapletic (l, (L ∩K)∼)-module.

b) Cλ0 lifts to a metapletic (l, (L ∩K)∼)-module.

c) λi ∈ Z+Q for all i (1 ≤ i ≤ r).

From Part (2) to (6), we always assume

(2.6.1) λi ∈ Z+Q (1 ≤ i ≤ r).
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2) If λ satisfies

(2.6.2) λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0,

then RS−j
q (Cλ) = RS−j

q0 (Cλ0) = 0 for any j 6= 0.

3) Under the assumption (2.6.2), the following three conditions are equivalent.

a) RS
q (Cλ) 6= 0.

b) RS
q0(Cλ0) 6= 0.

c) λ satisfies

(2.6.3)

⎧⎨⎩
λ1 > λ2 > · · · > λr ≥ 0,

λr−q ≥ Q+ 1 (when r > q).

In this case, RS
q (Cλ) and RS

q0(Cλ0) have the same Z(g)-infinitesimal character

(λ1, . . . ,λr, Q,Q− 1, . . . , Q− [Q]) ∈ h∗.

4) When p 6= 2r, RS
q (Cλ) ' RS

q0(Cλ0) and the set

{RS
q (Cλ) ; λ satisfies (2.6.3)}

consists of pairwise inequivalent (g,K)-modules.

When p = 2r, the set

{RS
q (Cλ), RS

q0(Cλ0) ; λ satisfies (2.6.3)}

consists of pairwise inequivalent (g,K)-modules.

5) If λ satisfies (2.6.3), then the (g, K)-modules RS
q (Cλ) and RS

q0(Cλ0) are non-zero and

irreducible.
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6) If λ satisfies (2.6.3) and λr > 0, then there is an injective (g, K)-homomorphism

RS
q (Cλ) −→ L2(SO0(p, q)/SO0(p− r, q)), when p 6= 2r,

RS
q (Cλ)⊕RS

q0(Cλ0) −→ L2(SO0(p, q)/SO0(p− r, q)), when p = 2r,

into discrete series for an indefinite real Stiefel manifold SO0(p, q)/SO0(p− r, q).

Remark 2.6.4. As opposed to the quarternionic case or the complex case, our result

for real pseudo-orthogonal groups, on the unitarizability of derived functor modules,

is completely contained in general theory because the parameter is always in the fair

range.

2.7. list and figures of various conditions on parameters

For reference below we list various conditions on λ explicitly. We denote by (a) the

case where G = Sp(p, q), by (b) the case where G = U(p, q), and by (c) the case where

G = SO(p, q) respectively.

Q = p+ q − r,(2.7.0)(a)

Q =
1

2
(p+ q − r − s− 1),(2.7.0)(b)

Q =
1

2
(p+ q)− r − 1.(2.7.0)(c)

The condition that Cλ is in the weakly fair range amounts to

λ1 ≥ · · · ≥ λr ≥ 0,(2.7.1)(a)

λ1 ≥ · · · ≥ λr ≥ 0 ≥ λr+1 ≥ · · · ≥ λr+s,(2.7.1)(b)

λ1 ≥ · · · ≥ λr ≥ 0.(2.7.1)(c)
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The condition that Cλ is in the weakly good range amounts to

λ1 ≥ · · · ≥ λr ≥ Q,(2.7.2)(a)

λ1 ≥ · · · ≥ λr ≥ Q and −Q ≥ λr+1 ≥ · · · ≥ λr+s,(2.7.2)(b)

λ1 ≥ · · · ≥ λr ≥ max(0, Q).(2.7.2)(c)

The condition that μλ is dominant for ∆
+(k) amounts to

λ1 > · · · > λr ≥ p− q − r + 1,(2.7.3)(a)

⎧⎪⎨⎪⎩
λ1 > · · · > λr ≥

p− q − r − s+ 1
2

,

λr+1 > · · · > λr+s ≥ −
p− q − r − s+ 1

2
,

(2.7.3)(b)

λ1 > · · · > λr ≥
p− q − 2r

2
.(2.7.3)(c)

Let r = 2m in (a), r = s = m in (b) and r = m in (c), respectively.

The condition that RS
q (Cλ) is discrete series for a semisimple symmetric space G/H =

U(p, q;F)/U(m;F) × U(p − m, q;F) amounts to the following condition (conversely,

discrete series for G/H are exhausted): λi ∈ Z+Q, Cλ is in the fair range, and

λ2i−1 = λ2i + 1 (1 ≤ i ≤ m),(2.7.4)(a)

λi = −λ2r+1−i (1 ≤ i ≤ m),(2.7.4)(b)

λi+1 − λi ∈ 2Z+ 1 (1 ≤ i ≤ m− 1).(2.7.4)(c)
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Example 2.7.5. Retain notation in Theorem 2 (6) and choose r = s = m = 1. Let

G = U(p, q) ⊃ H = U(1) × U(p − 1, q) ⊃ H2 = U(p − 1, q) with p + q = 9, 2 ≤ p ≤ 8.

In particular, rankG/H = 1.

· · · · · · · · · · · · · · · · ·
· · · · · · · · · · • • • • • • •
· · · · · · · · · • • • • • • • •
· · · · · · · · • • • • • • • • •
· · · · · · · • • • • • • • • • •
· · · · · · × • • • • • • • • • •
· · · · · • • × • • • • • • • • •
· · · · • • • • × • • • • • • • •
· · · • • • • • • × • • • • • • •
· · • • • • • • • • × • • • • • •
· · • • • • • • • • • × • • • • •

Figure 2.7.6. (Q =
1

2
(p+ q − 3) = 3)

• : RS
q (Cλ) (6= 0) is discrete series for G/H2 given in Theorem 2 (6);

(λ1,λ2) ∈ Z2, λ1 > λ2, −3 ≤ λ1 and λ2 ≤ 3.

× : RS
q (Cλ) (6= 0) is discrete series for G/H ; λ1 = −λ2 ∈ N+.

μλ is ∆
+(k)-dominant (Schlichtkrull type) ⇔ λ1 > 2, p− 5 ≤ λ1 andλ2 ≤ −p+ 5,

Cλ is weakly fair (cf. Fact(1.4.2)) ⇔ λ1 ≥ 0 ≥ λ2,

Cλ is good (cf. Fact(1.4.1)) ⇔ λ1 > 3 > −3 > λ2,

RS
q (Cλ) has singular infinitesimal character⇔ λ1(or λ2) ∈ {0,±1,±2,±3}.

The figure for G/H2 = U(p, q)/U(p − 1, q) (2 ≤ p, 1 ≤ q) is similar via the usual

identification
√−1t∗0 ' R2. Roughly, λ1−λ2 (resp. λ1+λ2) determines the asymptotic

behavior (resp. the right action of H1 = U(1)) of the functions on G/H2 contained in

a (g,K)-module RS
q (Cλ).
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Example 2.7.9. Retain notation in Theorem 1 (6) and choose r = 2m = 2. Let

G = Sp(p, q) ⊃ H = Sp(1)×Sp(p−1, q) ⊃ H2 = Sp(p−1, q) with p+ q = 5, 2 ≤ p ≤ 4.

In particular, rankG/H = 1.

· · · · · · · · · · · · × • • • • • •
· · · · · · · · · · · × • • • • • • •
· · · · · · · · · · × • • • • • • • •
· · · · · · · · · × • • • • • • • • •
· · · · · · · · × • • • • • • • • • •
· · · · · · · × • • • • • • • • • • •
· · · · · · × • • • • • • • • • • • •
· · · · · · · • • • • • • • • • • • •
· · · · · · · · • • • • • • • • • • •
· · · · · · · · · • • • • • • • • • •
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·

Figure 2.7.10. (Q = p+ q − 2 = 3)

• : RS
q (Cλ) (6= 0) is discrete series for G/H2 given in Theorem 1 (6);

(λ1,λ2) ∈ Z2, λ1 > |λ2|, λ2 ≥ −3.

× : RS
q (Cλ) (6= 0) is discrete series for G/H ; λ1 = λ2 + 1 ∈ N+.

μλ is ∆
+(k)-dominant ⇔ λ1 > λ2 ≥ 2p− 6,

Cλ is weakly fair ⇔ λ1 ≥ λ2 ≥ 0,

Cλ is good ⇔ λ1 > λ2 > 3,

RS
q (Cλ) has singular infinitesimal character⇔ λ1 = ±λ2 or λi ∈ {0,±1,±2,±3}.
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The curious condition λr−2q ≥ Q + 1 in (2.2.3) occurs only if r > 2q ≥ 2. Choose

r = 2m = 4. Let G = Sp(p, q) ⊃ H = Sp(2) × Sp(p − 2, q) ⊃ H2 = Sp(p − 2, q) with

p + q = 7, 4 ≤ p ≤ 6. In particular, rankG/H = 2. The cross section cut out by the

(λ2,λ4) plane makes this figure visible, revealing the essential structure.

· · · · · · · · · · · · · • • • • • •
· · · · · · · · · · · · • • • • • • •
· · · · · · · · · · · • • • • • • • •
· · · · · · · · · · • • • • • • • • •
· · · · · · · · · • • • • • • • • • •
· · · · · · · · · • • • • • • • • • •
· · · · · · · · · • • • • • • • • • •
· · · · · · · · · • • • • • • • • • •
· · · · · · · · · • • • • • • • • • •
· · · · · · · · · • • • • • • • • • •
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·

Figure 2.7.11. (p, q) = (6, 1), Q = p+ q − 4 = 3

· · · · · · · · · · · · · • • • • • •
· · · · · · · · · · · · • • • • • • •
· · · · · · · · · · · • • • • • • • •
· · · · · · · · · · • • • • • • • • •
· · · · · · · · · • • • • • • • • • •
· · · · · · · · • • • • • • • • • • •
· · · · · · · • • • • • • • • • • • •
· · · · · · · • • • • • • • • • • • •
· · · · · · · · • • • • • • • • • • •
· · · · · · · · · • • • • • • • • • •
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·

Figure 2.7.12. (p, q) = (5, 2) or (4, 3), Q = p+ q − 4 = 3
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Let us explain what Figures (2.7.11) and (2.7.12) means. For each (λ2,λ4) cor-

responding to a black point • there, we have discrete series RS
q (Cλ) for G/H2 =

Sp(p, q)/Sp(p−2, q) with parameter λ = (λ1,λ2,λ3,λ4) whenever (λ1,λ3) ∈ Z2 satisfies

λ1 > λ2 > λ3 > λ4. There exist infinitely many such (λ1,λ3) for each (λ2,λ4) corre-

sponding to a black point •. Among them, there exists a unique choice of (λ1,λ3) cor-

responding to discrete series for a semisimple symmetric space G/H = Sp(p, q)/Sp(2)×

Sp(p − 2, q), namely λ1 := λ2 + 1,λ3 := λ4 + 1. In this case where r = 2m = 4, the

condition λr−2q ≥ Q + 1 appears iff q = 1, which distinguishes Figure(2.7.11) (q = 1)

from Figure(2.7.12) (q ≥ 2).

2.8. remarks

Suppose we are in the setting of Theorem 1, i.e. G = Sp(p, q). We explain what is

easy and what is non-trivial by existing theories. The later sections are devoted to the

proof for only non-trivial parts.

Part (0) and (1) are obvious. From Fact(1.4.2)(1-a), the non trivial part in (2) is

when Cλ is outside the weakly fair range, i.e. 0 > λr ≥ −Q. This case is proved in §7.1.

We remark that if −Q > λr, then it may happen that the cohomology RS−j
q (Cλ) 6= 0

for j = 0, 1.

As for Part (3), it is easy to understand the conditions λi 6= λj because they corre-

spond to the ‘compact simple root condition’ (see Lemma(3.2.1)(1)). The last condition

λr−2q ≥ Q + 1 is mysterious. Understanding this condition is the main subject of §4

(K-type method) and §5.

The irreducibility results (5) in the weakly fair range in Theorems 2 and 3 are derived

from existing D-module theory (Fact(6.2.4)). So we shall restrict ourselves to the case

g = sp(n,C) in §6. It is likely that all the discrete series in Part(6) are irreducible even

if the fair range condition λr > 0 is dropped. I have checked only the case where p = r
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by Vogan’s Uα-calculus.

Finally, the condition λr ≥ −Q corresponds to the condition that there exists a cyclic

H2
r-fixed vector in some principal series (see (0.2)(b)), while the condition λr−1+λr > 0

corresponds to square integrability. As we said in the Introduction, the proof of Part

(6) is not treated in this paper.
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3. Further notations and preliminary results

3.1. Jantzen-Zuckerman’s translation functor

Let G be a linear connected reductive Lie group as in §1 and H ⊂ G be a Cartan

subgroup. When ξ ∈ h is in the weight lattice for g we write

(3.1.1)(a) F (g, ξ).

for the unique irreducible finite dimensional representation of g of extremal weight ξ.

Analogously, if this representation lifts to G, we denote the lift by

(3.1.1)(b) F (G, ξ).

This is unambiguous because G is connected. The lifting condition is that ξ is in

the weight lattice in H of G, that is, the the subgroup of h∗ consisting of weights of

finite dimensional representations of G. With a little abuse of notation, we also write

F (GC, ξ) for the holomorphic representation of GC with extremal weight ξ ∈ h∗ in §6,

and F (L∼, ξ) for the metapletic representation F (L, ξ − ρ(u))⊗ Cρ(u) in the setting of

§1.1.

If X is a Z(g)-finite g-module and γ is a character of Z(g), we define

Pγ(X) := {x ∈ X; (z − γ(z))nx = 0 for some n > 0, and all z ∈ Z(g)}.

Suppose ξ ∈ h∗ is in the weight lattice, and γ ∈ h∗. The Jantzen-Zuckerman trans-

lation functor is defined by

ψγ+ξγ (X) := Pγ+ξ(Pγ(X)⊗ F (G, ξ)).
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3.2. induction by stages

The spectral sequence of induction by stages sometimes clarifies critical points in

proof. We shall frequently need the following well-known

Lemma 3.2.1 (see [28] Proposition 6.3.6). Let q = l + u ⊂ p = m + n be θ-stable

parabolic subalgebras of g with l ⊂ m. Fix a metapletic (l, (L ∩ K)∼G)-module W

with respect to l ⊂ g (see §1.1 for notation). Notice that W ⊗ C−ρ(n) is a metapletic

(l, (L ∩K)∼M )-module with respect to l ⊂ m. Then there is a first quadrant spectral

sequence of (g,K)-modules:

¡
Rg
p

¢i ³Cρ(n) ⊗ ¡Rm
q∩m

¢j
(W ⊗ C−ρ(n))

´
⇒
¡
Rg
q

¢i+j
(W ).

If Cρ(n) lifts to a character of M , then we can write this simply as

¡
Rg
p

¢i ³¡Rm
q∩m

¢j
(W )

´
⇒
¡
Rg
q

¢i+j
(W ).

Finally, suppose that W has Z(l)-infinitesimal character γ ∈ h∗. As a special case of

the above spectral sequence, we have

1) Assume that M/L is compact and that W is finite dimensional. If γ is not regular

and integral for m, then
¡
Rg
q

¢j
(W ) = 0 for all j.

2) If γ is in the weakly good range with respect to p ⊂ g, then

¡
Rg
p

¢s ³Cρ(n) ⊗ ¡Rm
q∩m

¢j
(W ⊗ C−ρ(n))

´
'
¡
Rg
q

¢s+j
(W ).

where s := dim(n ∩ k).

3.3. definition of A (λ . λ0)

Let l be the centralizer in g of a semisimple abelian subspace t and fix a Cartan

subalgebra h ⊂ l and a positive system ∆+(l, h). For λ, λ0 ∈ h∗ such that λ0 − λ is
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contained in the weight lattice of g, we introduce a finite subset A(∆+(l);λ . λ0) ≡

A (λ . λ0) of h∗ as follows: For μ ∈ h∗, μ is an element of A (λ . λ0) iff

μ− λ is dominant for ∆+(l, h),(3.3.1)(a)

μ− λ occurs as a weight of F (g,λ0 − λ) for h,(3.3.1)(b)

μ+ ρl ∈W (g, h) · (λ0 + ρl). (Weyl group orbit)(3.3.1)(c)

Inspecting the definition, one finds

σ · A(∆+(l);λ . λ0) = A(σ ·∆+(l);σ · λ . σ · λ0),

for σ ∈ W (l, h).

In later applications we will usually choose λ, λ0 ∈ h∗ so that

(3.3.2) A (λ . λ0) ⊂ t∗

as well as λ, λ0 ∈ t∗ in the notation(1.1.1).

3.4. A (λ . λ0) and derived functor modules

We describe a standard lemma for the connection between the translation principle

and derived functor modules in terms of A (λ . λ0). The smaller the cardinality of

A (λ . λ0) is, the less complicated the effect of translation functors on cohomologically

induced representations becomes. This is the reason why we shall often use translation

away from one wall to another wall avoiding regular infinitesimal characters.

Lemma(3.4.1) has two typical applications in later sections, in which we can proceed

by induction on appropriate strings of λ’s in proving some properties on Ri
q(Cλ). One

is to show RS−i
q (Cλ) = 0 (i 6= 0) where Cλ is not necessarily in the fair range (see §7).

The starting point of induction here is of course in the fair (or good) range. The other

is to find a sufficient condition for RS
q (Cλ) 6= 0 (see §5), which is non-trivial even if Cλ

is fair. The starting point here is sometimes outside the fair range.
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Lemma 3.4.1 (cf. [28] Chapter 7 §4). Suppose we are given two metapletic (l, (L ∩

K)∼)-modules Cλ, Cλ0 with λ, λ0 ∈ t∗.

1) If Rj
q(Cλ) = Rj

q(F (L
∼,μ)) = 0 for all j ∈ Z and all μ ∈ A (λ . λ0) \ {λ0}, then

Rj
q(Cλ0) = 0 for all j ∈ Z.

2) If A (λ . λ0) = {λ0}, then

ψλ
0+ρl

λ+ρl

¡
Rj
q(Cλ)

¢
= Rj

q(Cλ0).

In particular, Rj
q(Cλ) = 0 implies Rj

q(Cλ0) = 0 for each fixed j ∈ Z.

3) Suppose that A (λ . λ0) consists of two elements. Say, let A (λ . λ0) = {μ, λ0}. As-

sume that Rj
q(Cλ) = Rj

q(F (L
∼,μ)) = 0 for all j 6= S. Then,

a) Rj
q(Cλ0) = 0 for j 6= S − 1, S.

b) If λ0 /∈ μ+∆(U(u), h) and if

(3.4.2) Hom (g,K)(RS−1
q (Cλ0),RS

q (F (L
∼,μ))) = 0,

then Rj
q(Cλ0) = 0 for j 6= S.

b)0 If λ0 /∈ μ +∆(U(u), h) and if μ − λ is a unique weight of F (G,λ0 − λ) with the

property (3.3.1)(a), then there is a long exact sequence of (g, K)-modules:

· · ·→ Rp−1
q (Cλ0)→ Rp

q(F (L
∼,μ))→ ψλ

0+ρl
λ+ρl

¡
Rp
q(Cλ)

¢
→ Rp

q(Cλ0)→ Rp+1
q (F (L∼,μ))→ · · · .

c) If μ /∈ λ0 +∆(U(u), h) (especially, if λ0 ∈ μ +∆(U(u), h)), then Rj
q(Cλ0) = 0 for

j 6= S.

Remark 3.4.3. In Part (3) of the above lemma, we allow the multiplicity of a weight

μ− λ in F (G,λ0 − λ) to be greater than one. Observe that the multiplicity of λ0 − λ is

always one.
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Proof. We can prove this Lemma by an argument similar to that in Chapter 7 §4 [28],

where the Z(g)-infinitesimal characters λ+ρl and λ
0+ρl are assumed that one is regular

and another lies in a generic point in the walls. So we review the argument there with

a sketch of a necessary modification in our setting.

We first recall from Lemma(7.2.3) in [28] the following fact: Let F be a finite dimen-

sional representation of G, and

(3.4.4) {0} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F

be a (q, L∩K) stable filtration with trivial induced action of u on Fi/Fi−1. Then there

is a natural spectral sequence of (g,K)-modules

(3.4.5) Rp
q(W ⊗ Fi/Fi−1)⇒ Rp

q(W )⊗ F.

Assume that W ' Cλ (λ ∈ t∗ ⊂ l∗), F = F (G,λ0 − λ) and Fi/Fi−1 ' F (L,μi) with

μi ∈ h∗ dominant for ∆+(l, h). Applying the projection Pλ0+ρl on the both sides of

(3.4.5), we obtain

(3.4.6) Pλ0+ρl
¡
Rp
q(F (L

∼,λ+ μi))
¢
⇒ ψλ

0+ρl
λ+ρl

¡
Rp
q(Cλ)

¢
.

But Pλ0+ρl (Rp
q(F (L

∼,λ+ μi))) 6= 0 only if λ+ρl+μi = w·(λ0+ρl) for some w ∈W (g, h),

thus only if λ+ μi ∈ A (λ . λ0) .

Recall that Rj
q(W ) = 0 for any (l, (L∩K)∼) moduleW and any j > S ([28] Corollary

6.3.21). Now a standard spectral sequence argument, combined with the following claim,

completes the proof of the lemma. ¤

Recall that F|l ' ⊕ni=1F (L,μi) as a (l, L ∩K)-module.

Claim 3.4.7. With notation as above, assume ν1, ν2 ∈ {μ1, . . . ,μn} satisfy ν2 /∈ ν1 +

∆(U(u)). Then

U(q)F (L, ν1) $ U(q)(F (L, ν1) + F (L, ν2)).
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In particular, we can choose a filtration (3.4.4) so that i < j whenever μi = ν1 and

μj = ν2.

Proof of Claim. Consider an (l, L ∩K) surjective homomorphism

U(u)⊗ F (L, ν1)→ U(u)F (L, ν1) ' U(q)F (L, ν1) ⊂ F,

given by u⊗v 7→ u·v for u ∈ U(u) and v ∈ F (L, ν1). The highest weight of an irreducible

finite dimensional l module occurring in U(u)⊗F (L, ν1) is of the form ν1+ δ with some

δ ∈ ∆(U(u)). Therefore this remains true for the (l, L∩K)-module U(q)F (L, ν1). From

our assumption, we conclude that F (L, ν2) does not occur in U(q)F (L, ν1). ¤

3.5. some symbols

Let k,m ∈ C, and n ∈ N. Write

[k;m,n] := (k, k +m, . . . , k + (n− 1)m) ∈ Cn.

We also use the following notations:

hni := [n;−1, n] = (n, n− 1, . . . , 1),

kn := [k; 0, n] = (k, k, . . . , k).

From definition we have

a1[k1;m1, n] + a2[k2;m2, n] = [a1k1 + a2k2; a1m1 + a2m2, n],

[k;m,n1 + n2] = [k;m,n1]⊕ [k + n1m;m,n2],

for ai, ki, k, mi, m ∈ C and ni, n ∈ N (i = 1, 2).

When λ = (λ1, . . . ,λn) ∈ Cn, we write tλ for (λn, . . . ,λ1), the transpose of λ.
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The Weyl group W (Cn) ' Sn n Z2n acts by permuting and changing the signs of

the coordinates of Cn. For a fixed p (1 ≤ p ≤ n), 1×W (Cn−p), W (An) ' Sn and so on

are regarded as subgroups of W (Cn) in an obvious way. These actions are sometimes

restricted to an invariant subspace of Cn.
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4. Some explicit formulas on K multiplicities

4.1. preliminaries

In this section, we shall give some explicit formulas about K-types occurring inP
i(−1)iRS−i

q (Cλ). If the modules RS−i
q (Cλ) vanish except in a single degree i = 0, this

formula determines immediately whether RS
q (Cλ) = 0 or not. A condition guaranteeing

the vanishing of RS−i
q (Cλ) (i 6= 0) outside the fair range (cf. Fact(1.4.2)) will be given

in §7 when RS
q (Cλ) corresponds to discrete series for U(p, q;F)/U(p−m, q;F) (see §2).

The setting of this section will be slightly more general in the range of Cλ than the

results in §2.

Suppose we are in the setting of §1.1. Let h = tc + ac be a fundamental Cartan sub-

algebra of g with h ⊂ l. As usual we write half the sum of roots as ρc ≡ ρ(k, tc), ρ(u) ≡

ρ(u, h) and ρ(u∩ k) ≡ ρ(u ∩ k, tc), respectively. Let μλ := (λ+ ρ(u)− 2ρ(u∩ k))|tc ∈ tc∗.

We remark that our definition of RS−i
q (Cλ) here follows [32] Definition 6.20 and differs

from [28] Definition 6.3.1 by a ρ(u)-shift (see §1.3). Recall that S = dim(u ∩ k). Then

the Blattner formula due to Hecht-Schmid and generalized by Vogan ([28] Theorem

6.3.12) gives

(4.1.1)
X
i

(−1)i dimHomK
¡
π,RS−i

q (Cλ)
¢

=
X
j

(−1)j dimHomL∩K
¡
Hj(u ∩ k,π), S(u ∩ p)⊗ Cμλ

¢

for π ∈ bK, where S(V ) denotes a symmetric tensor algebra of a vector space V . When
μλ is ∆

+(k) dominant, it is easy to see that the multiplicity of the particular K-type
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π = F (K,μλ) (notation (3.1.1)) in
P

i(−1)iRS−i
q (Cλ) equals one, from formula (4.1.1),

whence
P

i(−1)iRS−i
q (Cλ) 6= 0. However, for actual calculation with more general λ or

π, too many cancellations occur, so that it is hard to tell even whether the formula(4.1.1)

vanishes or not. T.Oshima showed me an unpublished note (Lemma(4.2.6)) on how

to calculate the Blattner formula for some particular small K type (which frequently

coincides with one of the minimal K-types in Vogan’s sense, cf. [28]) occurring in the

discrete series for a semisimple symmetric space G/H = SO(p, q)/SO(m)×SO(p−m, q)

even if μλ is not ∆
+(k) dominant. Inspired by his technique, we are able to control all

K-types in terms of some alternating polynomial functions (see (4.2.2)). To do this we

also need another idea about ‘collectingK-types’. Communications with H.Schlichtkrull

clarified this idea in the following general setting. Now let us explain it roughly.

Retain notations in §1.1-3. (So t0 is a fixed abelian subalgebra of k0 and h0 is a

fundamental Cartan subalgebra of l0 (and also of g0) such that t ⊂ tc = k ∩ h ⊂ h ⊂ l.)

We may assume that a θ-stable parabolic subalgebra q = l+ u is defined by

∆(u, h) = {α ∈ ∆(g, h) ; hα, νi ≥ 1},

∆(l, h) = {α ∈ ∆(g, h) ; hα, νi = 0},

with a normalized generic element ν ∈ √−1t∗0.

We choose a positive system of ∆(k, tc) so that ∆(u ∩ k) ⊂ ∆+(k). Set Θλ :=P
i(−1)iRS−i

q (Cλ) and π = F (K,μ). The information of each K-type occurring in Θλ

(e.g. [Θλ|K : π] =
P

j(−1)j dimHomK(π,RS−j
q (Cλ)) is so detailed that we can hardly

expect that it is a nice function of μ ∈ (tc)∗ and λ ∈ t∗. In fact, such a function

may behave somewhat irregularly when λ and μ are small enough. So our idea is to

investigate more course information about K-types:
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Set

bK(Θλ) := {π ∈ bK ; [Θλ|K : π] 6= 0},
bK(δ) := {π ∈ bK ; the highest weight μ of π satisfies μ|t = δ},

for λ ∈ t∗ and δ ∈ t∗. If λ does not satisfy the integrality conditions so that Cλ lifts to

a metapletic (l, (L ∩K)∼)-character, we set bK(Θλ) := {∅}. Similarly bK(δ) := {∅} if δ
does not lie in the obvious lattice in

√−1t∗0. Clearly,

Θλ|K ≡ 0⇐⇒ bK(Θλ) = ∅,
bK =

a
δ∈t∗

bK(δ).
Writing P( bK) for the totality of subsets in bK, we have a map

t∗ × t∗ 3 (λ, δ) 7→ bK(Θλ) ∩ bK(δ) ∈ P( bK).
Take a positive-valued function d : bK → N+ (e.g. d(π) ≡ 1, or d(π) := dimπ). Now we

define a map M : t∗ × t∗ → Z by

(4.1.2) M(λ, δ) :=
X

π∈ bK(δ)
d(π) [Θλ|K : π] =

X
π∈ bK(Θλ)∩ bK(δ)

d(π) [Θλ|K : π].

If Ri
q(Cλ) vanishes except in a single degree, then it follows from definition that

M(λ, δ) = 0 for all δ ∈ t∗ ⇐⇒ Ri
q(Cλ) = 0 for all i.

What we would expect now is that, with a suitable choice of d : bK → N+, this

M(λ, δ) is a restriction of a nice polynomial function of δ and λ so that we can tell

explicitly whether or not M(λ, δ) = 0 for all δ ∈ t∗. One of the simplest examples is a

ladder representation which has K-highest weights lying along a single line ([7]) and in

this case dim t = 1. We will give a beautiful formula of M(λ, δ) with a special choice
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of d in some settings (see (4.1.8) for precise definition). The formula is expressed as

a determinant of a certain matrix whose entries are polynomials of λ and δ, and the

matrix reduces to a scalar if dim t = 1. First of all, let us check that Definition(4.1.2)

always makes sense. This is guaranteed by the following

Proposition 4.1.3. Retain notations as above. Then,

]
³ bK(Θλ) ∩ bK(δ)´ <∞.

We note that bK(δ) is possibly an infinite set, as is bK(Θλ). The proof of Proposi-
tion(4.1.3) is based on a uniform estimate over bK(δ) as used in calculating the Blattner
formula. That is,

Lemma 4.1.4. With notations as above, fix δ, b ∈ √−1t∗0. Recall that ν is a fixed

element of
√−1t∗0, defining a θ-stable parabolic subalgebra q = l + u. If π ∈ bK(δ)

satisfies HomT (H
j(u ∩ k,π), Sm(u ∩ p)⊗ Cb) 6= 0, then

m ≤ hδ − b, νi− j.

Postponing the proof of Lemma(4.1.4) for a while, we first prove Proposition(4.1.3).

Proof of Proposition(4.1.3). Let πμ ∈ bK(δ). From (4.1.1) and Lemma(4.1.4),

|[Θλ : πμ]| ≤
X
j

dimHomL∩K(H
j(u ∩ k,π),

∞M
m=0

Sm(u ∩ p)⊗ Cμλ)

≤
X
j

dimHomL∩K(H
j(u ∩ k,π),

hδ−μλ,νiM
m=0

Sm(u ∩ p)⊗ Cμλ).

Therefore, we have

bK(Θλ) ∩ bK(δ) ⊂[
j,τ

{π ∈ bK ; HomL∩K(Hj(u ∩ k,π), τ) 6= 0},
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where τ runs over the finite subset of \L ∩K occurring in
Lhδ−μλ,νi

m=0 Sm(u ∩ p) ⊗ Cμλ .

From Kostant’s Borel-Weil-Bott theorem ([15], see also [28] Corollary 3.2.16), the high-

est weight of an irreducible representation of L ∩K occurring in Hj(u ∩ k,π) is of the

form

w · (μ+ ρc)− ρc ∈ (tc)∗,

with w ∈W l∩k
K and l(w) = j. Here

W l∩k
K := {w ∈W (k, tc) ; ∆+(w) ⊂ ∆(u ∩ k)},

∆+(w) := ∆+(k) ∩ w ·∆−(k),

l(w) = ]∆+(w).

Write η ∈ (tc)∗ for the highest weight of τ ∈ \L ∩K (recall that L∩K is of maximal

rank in K). Then the equation w · (μ+ ρc)− ρc = η determines μ uniquely for each w

and τ . Thus, for any τ ∈ \L ∩K, we have

X
j

]{π ∈ bK ; HomL∩K(Hj(u ∩ k,π), τ) 6= 0} ≤ ]W l∩k
K <∞,

whence ]
³ bK(Θλ) ∩ bK(δ)´ <∞. ¤

Remark 4.1.5. Define a subset of bK by

bK(ν)(δ) := {π ∈ bK ; the highest weight μ of π satisfies hμ, νi = hδ, νi}.
Then bK(ν)(δ) ⊃ bK(δ). The above proof actually has shown the following statement:

]
³ bK(Θλ) ∩ bK(ν)(δ)

´
<∞.

This might be used to give some variations of the definition of M(λ, δ) in (4.1.2).

Proof of Lemma(4.1.4). As in the above proof, any t-weight occurring in Hj(u ∩ k,π)

is of the form

(w · (μ+ ρc)− ρc)|t
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with w ∈ W l∩k
K and l(w) = j. Since μ ∈ (tc)∗ is ∆+(k) dominant, there are non-

negative real numbers {nα ; α ∈ ∆+(k)} such that μ− w · μ =Pα∈∆+(k) nαα. We also

have ρc−w ·ρc =
P

α∈∆+(w) α from definition of ∆
+(w). Thus, taking an inner product

with ν ∈ √−1t∗0 ⊂ (tc)∗, we have

hδ, νi = hμ, νi = h(μ− w · μ) + (ρc − w · ρc) + w · (μ+ ρc)− ρc, νi

= h
X

α∈∆+(k)

nαα+
X

α∈∆+(w)

α+ w · (μ+ ρc)− ρc, νi

≥ j + hw · (μ+ ρc)− ρc, νi.(4.1.6)

In the last inequality, we have used ∆+(k) ⊂ ∆(l) ∪∆(u) and ∆+(w) ⊂ ∆(u ∩ k).

On the other hand, any t-weight of Sm(u ∩ p)⊗ Cb is of the form

X
α∈∆(u∩p)

mαα|t + b

with some mα ∈ N satisfying
P
mα = m. In particular,

(4.1.7) h
X

α∈∆(u∩p)
mαα|t + b, νi ≥ m+ hb, νi.

From (4.1.6) and (4.1.7), HomT (H
j(u ∩ k,π), Sm(u ∩ p)⊗Cb) 6= 0 implies m+ hb, νi ≤

hδ, νi− j. ¤

From now on, let us restrict ourselves to the following settings: Suppose that K has

a direct decomposition K = K1 × K2 and t ⊂ k1. We write t
c = tc1 + t

c
2 according

to k = k1 + k2. Clearly, we have t ⊂ tc1. Let π = π1 £ π2 ∈ bK ' cK1 × cK2. Putting

d(π) := dim π2 in (4.1.2), we introduce a multiplicity function

(4.1.8) M(q,λ, δ) :=
X

π∈ bK(δ)
dim(π2) [Θλ|K : π],

for λ, δ ∈ t∗(⊂ (tc1)∗).
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The rest of this section will be devoted to showing that this M(q,λ, δ) behaves

as a nice polynomial of δ under some hypotheses on λ (see §4.3-5 for results) when

G = U(p, q;F). We finish this subsection with another formula for M(q,λ, δ).

Set

(4.1.9) m(q,λ,π1) :=

SX
i=0

(−1)i dimHomK1(π1,RS−i
q (Cλ)).

Since Hj(u ∩ k,π) ' Hj(u ∩ k1,π1)£ π2 as L ∩K ' (L ∩K1)×K2 module, we have

(4.1.10) m(q,λ,π1) =
X
j

∞X
m=0

(−1)j dimHomL∩K1(H
j(u ∩ k1,π1), Sm(u ∩ p)⊗ Cμλ).

If δ(1) ∈ (tc1)∗ is the highest weight of π1 ∈ cK1, we sometimes write m(q,λ, δ
(1)) for

m(q,λ,π1). Now we have

(4.1.11) M(q,λ, δ) =
X
π1

m(q,λ,π1),

where the sum is taken over the set:

{π1 ∈ cK1 ; the restriction of the highest weight of π1 to t is δ}.

4.2. some alternating polynomials

Fix positive integers n and l. Define a polynomial of t by

(4.2.1) a(t, n)
def
=

Γ(n+ t)

Γ(n)Γ(1 + t)
=
(t+ n− 1) · · · (t+ 1)

(n− 1)! .

and polynomials of x = (x1, . . . , xl) and y = (y1, . . . , yl) by

F (n, l;x, y)
def
= det (a(xi + yj ;n)1≤i,j≤l) ,(4.2.2)(a)

d(n, l;x)
def
= det (a(xi − j;n)1≤i,j≤l) .(4.2.2)(b)
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By definition we have

(4.2.3) d(n, l;x) = F (n, l;x, (−1,−2, . . . ,−l)).

If t ∈ Z and t ≥ −n+ 1, then

(4.2.4) a(t, n) = dimSt(Cn),

where dimSt(Cn) := 0 for t < 0. The point of (4.2.4) is that it covers small negative in-

tegers because a(t, n) = 0 for −n+1 ≤ t ≤ −1. This will be useful for later applications

(see §4.3-5).

Lemma 4.2.5. As a polynomial of x and y,

F (n, l;x, y) ≡ 0 if and only if n < l.

The following lemma is due to T.Oshima and J.Sekiguchi. We include here its proof,

which is also due to them, for the sake of completeness. The author is grateful to them.

Lemma 4.2.6(Oshima-Sekiguchi).

d(n, l;x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

lQ
i=1

n−lQ
k=1

(k + xi − 1)
lQ

j=1

(n− l + j − 1)!
× Q
i>j

(xi − xj) if n ≥ l,

0 : if n < l.

In particular, for fixed n, l ∈ N+ and x ∈ Cl,

d(n, l;x) 6= 0 iff

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n ≥ l,

xi /∈ {0,−1, . . . , 1− n+ l} for any i,

xi 6= xj for any i 6= j.



50 TOSHIYUKI KOBAYASHI

Proof of Lemma 4.2.5. Since F (n, l;x, y) is an alternating polynomial function of (say)

x, it is divisible by the simplest alternating polynomial
Q
i>j(xi − xj). On the other

hand, F (n, l;x, y) is of degree ≤ n−1 with respect to x1 (expand the determinant along

the first column), while
Q
i>j(xi−xj) is of degree l−1. Hence the ‘if’ part of the lemma.

The ‘only if’ part is guaranteed by the special values given in Lemma(4.2.6). ¤

Proof of Lemma(4.2.6). From definition, we have

a(t, n)− a(t− 1, n) =

⎧⎨⎩
a(t, n− 1) if n ≥ 2,

0 if n = 1.

(4.2.7)(a)

a(t, n+ 1) =
n+ t

n
a(t, n)(4.2.7)(b)

We put a(t, n) ≡ 0 if n ∈ −N, then (4.2.7)(a) can be rewritten for n ∈ Z:

(4.2.8) a(xi − j, n) = a(xi − (j + 1), n) + a(xi − j, n− 1).

If we apply (4.2.8) to all j (1 ≤ j ≤ l − 1) and iterate on (4.2.8) then we conclude

d(n, l;x) =

⎧⎨⎩
det (a(xi − j, n− l + j)1≤i,j≤l) if n ≥ l,

0 if n < l.

From now on, assume that n ≥ l. Iteration on (4.2.7)(b) yields

a(xi − j, n− l + j) =
Ã
n−lY
k=1

k + xi − 1
k + j − 1

!
a(xi − j, j)

=

Ã
n−lY
k=1

(k + xi − 1)
!
(xi − 1) · · · (xi − j + 1)

(n− l + j − 1)! .
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Therefore

d(n, l;x) =

lQ
i=1

n−lQ
k=1

(k + xi − 1)
lQ

j=1

(n− l + j − 1)!
det ((xi − 1) · · · (xi − j + 1)1≤i,j≤l)

=

lQ
i=1

n−lQ
k=1

(k + xi − 1)
lQ

j=1

(n− l + j − 1)!
det

³
(x j−1i )1≤i,j≤l

´

Vandermonde’s determinant equals the simplest alternating polynomial, which leads to

the desired formula. ¤

Finally we prove the following lemma for use in §4.8.

Lemma 4.2.8. Let

(4.2.9) d0(n, l;x) := det (a(xi + j;n)1≤i,j≤l) . (cf. (4.2.2)(b))

Then we have

d0(n, l;x) = (−1)l(n−1)d(n, l;−x− [n; 0, l]).

(Recall notation(3.5).) In particular,

d0(n, l;x) 6= 0 iff

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n ≥ l,

xi /∈ {−l − 1,−l − 2, . . . ,−n} for any i,

xi 6= xj for any i 6= j.

Proof. This is a direct consequence of combinatorial reciprocity:

(4.2.10) a(t, n) = (−1)n−1a(−t− n, n).

The last statement is a translation of Lemma(4.2.6) via (4.2.10). ¤
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4.3. result in quaternionic case

Retain notations in §4.1-2 and §2.1. We have tc = h ' Cp+q in this case. Then,

ρc = [p;−1, p]⊕ [q;−1, q] = (p, p− 1, . . . , 1, q, q − 1, . . . , 1),

ρ(u) = [p+ q;−1, r]⊕ [0; 0, p+ q − r] = (p+ q, . . . , p+ q − r + 1, 0, . . . , 0),

ρ(u ∩ k) = [p;−1, r]⊕ [0; 0, p+ q − r] = (p, p− 1, . . . , p− r + 1, 0, . . . , 0).

Thus we have,

ρ(u)− 2ρ(u ∩ k) = [−p+ q; 1, r]⊕ [0; 0, p+ q − r]

= (−p+ q,−p+ q + 1, . . . ,−p+ q + r − 1, 0, . . . , 0).

For λ := (λ1, . . . ,λr, 0, . . . , 0) ∈ h∗, we set

μλ := λ+ ρ(u)− 2ρ(u ∩ k) = (b1, . . . , br, 0, . . . , 0),

where

(4.3.1) bi := λi − p+ q + i− 1 (1 ≤ i ≤ r).

Proposition 4.3.2. Retain notations as above. Let λi ∈ Z (1 ≤ i ≤ r), δ ∈ Zr. Recall

that we assign b = (b1, . . . , br) to λ by (4.3.1) and that Q = p+ q − r. Assume that

Q ≥ λ1 > λ2 > · · · > λr ≥ −Q,(4.3.3)(a)

δ1 ≥ · · · ≥ δr ≥ 0.(4.3.3)(b)

Define y ≡ y(λ) = (y1, . . . , yr) ∈ Zr, z ≡ z(δ) = (z1, . . . , zr) ∈ Zr by yi := i − bi =

−λi + p− q + 1 and zj := δj − j. Set

k := max[{i; 1 ≤ i ≤ r, bi ≥ 0} ∪ {0}].(4.3.4)(a)

μ̃λ := (b1, . . . , bk, 0, . . . , 0) ∈ Zr ⊂ t∗(4.3.4)(b)
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Then the following holds.

1) M(q,λ, δ) = F (2q, r; y(λ), z(δ)).

2) Assume moreover that
Pr

i=1 δi =
Pk

i=1 bi. Then

a) If δ 6= μ̃λ, then M(q,λ, δ) = 0.

b) If δ = μ̃λ, then M(q,λ, δ) = d(2q, r − k; yk+1(λ), . . . , yr(λ)).

3) M(q,λ, δ) = 0 if
Pr

i=1 δi <
Pk

i=1 bi.

Remark 4.3.5. In the above Proposition the assumption Q ≥ λ1 in (4.3.3)(a) can be

relaxed to Q ≥ λk+1 in (2) and can be dropped in (3).

The proof of this Proposition together with Remark(4.3.5) will be given in §4.7 after

some preparations in §4.6. We observe that r − 2q > 0 iff r − 2q > k under the

assumption (4.3.3)(a). Indeed, br−2q = λr−2q −Q− 1 when r > 2q.

Since yi(λ) = i − bi ≥ 1 (k + 1 ≤ i ≤ r), combining Proposition(4.3.2) with

Lemma(4.2.5-6), we have

Corollary 4.3.6. Retain the same notation as in Proposition(4.3.2). If λ ∈ Zr⊕0p+q−r

satisfies (4.3.3)(a) and if RS−i
q (Cλ) = 0 for i 6= 0, then the following two conditions are

equivalent:

a) RS
q (Cλ) = 0.

b) 2q < r.

If we use induction by stages (see an argument in Remark(5.1.5) in the next section),

we have immediately

Corollary 4.3.60. Retain the same notation as in Proposition(4.3.2). If λ ∈ Zr ⊕

0p+q−r satisfies

λ1 > λ2 > · · · > λr ≥ −Q,
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and if RS−i
q (Cλ) = 0 for i 6= 0, then the following two conditions are equivalent:

a) RS
q (Cλ) = 0.

b) 2q < r and λr−2q ≤ Q.

Remark 4.3.8. μλ is a K-dominant weight only if k = r (see (4.3.4)(a) for definition).

(It is always the case when λ is ‘sufficiently’ regular.) This is the reason why we use

μ̃λ(∈ t∗) instead of μλ.

4.4. result in complex case

Retain notations in §4.1-2 and §2.1. Note that tc = h in this case.

We abbreviate [k;m,n] as [k;m] when this vector is understood to be contained in

Cn. According to the direct decomposition:

h∗ ' Cp+q = Cr ⊕ Cs ⊕ Cp−r−s ⊕ Cq

defined by basis {fi ; 1 ≤ i ≤ p+ q}, we have

ρc = [
p− 1
2
;−1]⊕ [−p+ 2s− 1

2
;−1]⊕ [p− 2r − 1

2
;−1]⊕ [q − 1

2
;−1],

ρ(u) = [
p+ q − 1

2
;−1]⊕ [−p− q + 2s− 1

2
;−1]⊕ [−r + s

2
; 0]⊕ [−r + s

2
; 0],

ρ(u ∩ k) = [p− 1
2
;−1]⊕ [−p+ 2s− 1

2
;−1]⊕ [−r + s

2
; 0]⊕ [0; 0].

Thus, ρ(u)− 2ρ(u ∩ k)

= [
−p+ q + 1

2
; 1]⊕ [p− q − 2s+ 1

2
; 1]⊕ [r − s

2
; 0]⊕ [−r + s

2
; 0].

For λ := (λ1, . . . ,λr+s, 0, . . . , 0) + [
−r + s
2

; 0, p+ q], we set

μλ := λ+ ρ(u)− 2ρ(u ∩ k) = (b1, . . . , br+s)⊕ [0; 0, p− r − s]⊕ [−r + s; 0, q],
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where

(4.4.1)

⎧⎪⎨⎪⎩
bi := λi +

−p+ q − r + s− 1
2

+ i (1 ≤ i ≤ r)

br+i := λr+i +
p− q − r − s− 1

2
+ i (1 ≤ i ≤ s)

Proposition 4.4.2. Retain notations as above. Let λi ∈ Z + Q (1 ≤ i ≤ r + s), δ ∈

Zr+s. Recall that we defined Q =
1

2
(p+ q − r − s− 1). Assume that

Q ≥ λ1 > λ2 > · · · > λr ≥ −Q,(4.4.3)(a)

Q ≥ λr+1 > λr+2 > · · · > λr+s ≥ −Q,(4.4.3)(b)

δ1 ≥ δ2 ≥ · · · ≥ δr ≥ 0 ≥ δr+1 ≥ δr+2 ≥ · · · ≥ δr+s.(4.4.3)(c)

We define y(1) ≡ y(1)(λ) = (y
(1)
1 , . . . , y

(1)
r ) ∈ Zr, y(2) ≡ y(2)(λ) = (y

(2)
1 , . . . , y

(2)
s ) ∈

Zs, z(1) ≡ z(1)(δ) = (z
(1)
1 , . . . , z

(1)
r ) ∈ Zr and z(2) ≡ z(2)(δ) = (z

(2)
1 , . . . , z

(2)
s ) ∈ Zs by

y
(1)
i := i− bi = −λi−

1

2
(−p+q− r+s−1) (1 ≤ i ≤ r), y(2)i := i− br+i = −λr+i−

1

2
(p−

q− r− s− 1) (1 ≤ i ≤ s), z(1)j := δj − j (1 ≤ j ≤ r) and z(2)j := δr+j − j (1 ≤ j ≤ s). Set

⎧⎨⎩
k := max[{i; 1 ≤ i ≤ r, bi ≥ 0} ∪ {0}],

l := max[{i; 1 ≤ i ≤ s, 0 ≥ br+s+1−i} ∪ {0}],
(4.4.4)(a)

μ̃λ := (b1, . . . , bk, 0, . . . , 0, br+s−l+1, . . . , br+s, 0, . . . , 0) ∈ t∗(4.4.4)(b)

Then the following holds:

1) M(q,λ, δ) = F (q, r; y(1)(λ), z(1)(δ)) · F (q, s;−y(2)(λ),−z(2)(δ)).

2) Assume moreover that
Pr

i=1 δi =
Pk

i=1 bi and that
Ps

i=1 δr+i =
Pl

i=1 br+s−l+i.

a) If δ 6= μ̃λ, then M(q,λ, δ) = 0.

b) If δ = μ̃λ, then

M(q,λ, δ) = d(q, r − k; y(1)k+1, . . . , y(1)r ) · d0(q, s− l;−y(2)1 , . . . ,−y(2)s−l).

3) M(q,λ, δ) = 0 if
Pr

i=1 δi <
Pk

i=1 bi or if
Ps

i=1 δr+i >
Pl

i=1 br+s−l+i.
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Remark 4.4.5. In the above Proposition, the assumption Q ≥ λ1 in (4.4.3)(a) (re-

spectively, λr+s ≥ −Q in (4.4.3)(b)) can be relaxed to Q ≥ λk+1 (respectively, λr+s−l ≥

−Q) in (2) and can be dropped in (3).

The argument parallels Proposition(4.3.2) in the quarternionic case; we will explicitly

give only the necessary steps in §4.8. We observe that r− q > 0 iff r− q > k under the

assumption (4.4.3)(a) and that s− q > 0 iff s− q > l under the assumption (4.4.3)(b).

Indeed, br−q = λr−q −Q− 1 when r > q and br+q+1 = λr+q+1 +Q+ 1 when s > q.

Since y
(1)
i (λ) = i− bi ≥ 1 (k + 1 ≤ i ≤ r), −y(2)i (λ) = −i+ br+i ≥ −(s− l) (1 ≤ i ≤

s− l), combining Proposition(4.4.2) with Lemma(4.2.5),(4.2.6) and (4.2.8), we have

Corollary 4.4.6. Retain the same notations in Proposition(4.4.2). If (λ1, . . . ,λr+s) ∈

Zr+s + [Q; 0, r + s] satisfies

λ1 > λ2 > · · · > λr ≥ −Q,

Q ≥ λr+1 > λr+2 > · · · > λr+s,

and if RS−i
q (Cλ) = 0 for i 6= 0, then the following two conditions are equivalent:

a) RS
q (Cλ) = 0.

b) q < r and λr−q ≤ Q or q < s and λr+q+1 ≥ −Q.

4.5. result in real case

Retain notations in §4.1-2 and §2.5. Note that tc = h iff pq is even. Set p0 := [
p

2
]

and q0 := [
q

2
]. We have

ρc = [
p

2
− 1;−1, p0]⊕ [q

2
− 1;−1, q0],

ρ(u)|tc = [
p+ q

2
− 1;−1, r]⊕ [0; 0, p0 + q0 − r],

ρ(u ∩ k) = [p
2
− 1;−1, r]⊕ [0; 0, p0 + q0 − r],
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Thus, ρ(u)− 2ρ(u ∩ k)|tc = [
−p+ q
2

+ 1; 1, r]⊕ [0; 0, p0 + q0 − r].

For λ := (λ1, . . . ,λr, 0, . . . , 0), λ
0 := λ− 2λrfr ∈ (tc)∗(⊂ −h∗), we set

μλ : = λ+ ρ(u)− 2ρ(u ∩ k) = (b1, . . . , br, 0, . . . , 0) ∈ (tc)∗,

μ0λ0 : = λ0 + ρ(u0)− 2ρ(u0 ∩ k)= (b01, . . . , b0r, 0, . . . , 0) ∈ (tc)∗,

where

(4.5.1)

⎧⎪⎨⎪⎩
bi : = λi +

−p+ q
2

+ i (1 ≤ i ≤ r),

bi = b
0
i (1 ≤ i ≤ r − 1), br = −b0r.

Proposition 4.5.2. Retain notations as above. Let λi ∈ Z + Q (1 ≤ i ≤ r), δ ∈ Zr.

Recall that Q =
1

2
(p+ q)− r − 1. Assume that

Q ≥ λ1 > λ2 > · · · > λr ≥ −Q,(4.5.3)(a)

δ1 ≥ δ2 ≥ · · · ≥ δr ≥ 0 (p 6= 2r)(4.5.3)(b)

δ1 ≥ δ2 ≥ · · · ≥ δr−1 ≥ |δr| (p = 2r)(4.5.3)(b0)

We define y ≡ y(λ) = (y1, . . . , yr) ∈ Zr, z ≡ z(δ) = (z1, . . . , zr) ∈ Zr by yi := i−bi =

−λi −
p− q
2

(1 ≤ i ≤ r), zj := δj − j (1 ≤ j ≤ r). Set

k := max[{i; 1 ≤ i ≤ r, bi ≥ 0} ∪ {0}].(4.5.4)(a)

μ̃λ := (b1, . . . , bk, 0, . . . , 0).(4.5.4)(b)

Then the following holds:

1) M(q,λ, δ) = F (q, r; y(λ), z(δ)).

2) Assume moreover that
Pr

i=1 δi =
Pk

i=1 bi. Then
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a) If δ 6= μ̃λ, then M(q,λ, δ) = 0.

b) If δ = μ̃λ, then M(q,λ, δ) = d(q, r − k; yk+1(λ), . . . , yr(λ)).

3) M(q,λ, δ) = 0 if
Pr

i=1 δi <
Pk

i=1 bi.

Similar statements are valid for λ0.

Corollary 4.5.5. Retain the same notations in Proposition(4.5.2). If (λ1, . . . ,λr) ∈

Zr + [Q; 0, r] satisfies

λ1 > λ2 > · · · > λr ≥ −Q,

and if RS−i
q (Cλ) = RS−i

q0 (Cλ0) = 0 for i 6= 0, then the following three conditions are

equivalent:

a) RS
q (Cλ) = 0.

a0) RS
q0(Cλ0) = 0.

b) q < r and λr−q ≤ Q.

4.6. some auxiliary lemmas

In this subsection, we collect elementary lemmas used in the proof of §4.3-5. Our

strategy is to reduce an alternating sum in a generalized Blattner formula to the de-

terminant of some matrix. The main point is that only a (possibly small) symmetric

group contained in a Weyl group appears in the actual calculation. In particular the

elements in a Weyl group which reverse the signature of coordinates do not appear

under suitable inequalities of vectors. This is what we describe here.

Fix p, r ∈ N with 1 ≤ r ≤ p.

Lemma 4.6.1. Let a = (a1, . . . , ar, 0, . . . , 0) ∈ Zp. Assume that

(4.6.2) aj ≥ −2p+ 2r − 1 for any j (1 ≤ j ≤ r).
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If

(4.6.3) w · (δ + hpi)− hpi = a

for some w ∈ Sp n Z2p, δ = (δ1, . . . , δp) ∈ Np, then we have

⎧⎨⎩
w ∈ Sr × 1p−r (⊂ Sr ×Sp−r ⊂ Sp n Z2p),

δj = 0 (r + 1 ≤ j ≤ p).

Proof. The equation(4.6.3) is written as

(4.6.30) w · (δ1 + p, δ2 + p− 1, . . . , δp + 1)

= (a1 + p, a2 + p− 1, . . . , ar + p+ 1− r, p− r, p− r − 1, . . . , 1).

Therefore there are at least p−r elements among {δj+p+1−j; 1 ≤ j ≤ p} whose absolute

values are not greater than p− r. Since δj ≥ 0, this implies w ∈ (Sr nZ2r)× 1p−r and

δj = 0 (r + 1 ≤ j ≤ p).

Now we must show that w does not reverse any signs. The condition (4.6.2) assures

that aj + p+1− j ≥ −(p− r), while δj + p+1− j ≥ p+1− j ≥ p+1− r for 1 ≤ j ≤ r.

Hence aj + p+ 1− j must be positive and w ∈ Sr × 1p−r, which completes the proof.

Note that we have also proved at the same time that aj + p + 1 − j ≥ p + 1 − r, that

is, aj ≥ −r + j (1 ≤ j ≤ r). ¤

Lemma 4.6.4. Let b = (b1, . . . , br) ∈ Zr satisfy

b1 ≥ b2 ≥ · · · ≥ bk ≥ 0,(4.6.5)(a)

0 > bj (k + 1 ≤ j ≤ r),(4.6.5)(b)

for some k (0 ≤ k ≤ r). Set

(4.6.6) n := −
rX

j=k+1

bj ∈ N.
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Assume that there are w ∈ Sr, c = (c1, . . . , cr) ∈ Zr, δ = (δ1, . . . , δr) ∈ Zr such that

w · (δ + hri)− hri = b+ c,(4.6.7)

cj ≥ 0 (1 ≤ j ≤ k),(4.6.8)(a)

δ1 ≥ δ2 ≥ · · · ≥ δr ≥ 0(4.6.8)(b)

Then the following holds.

1)
Pr

j=1 cj =
Pr

j=1(δj − bj) ≥ n.

2) If
Pr

j=1 cj = n or equivalently if
Pr

j=1 δj =
Pk

j=1 bj , then

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
w ∈ 1k ×Sr−k,

δj = bj (1 ≤ j ≤ k), δj = 0 (k + 1 ≤ j ≤ r),

cj = 0 (1 ≤ j ≤ k), ck+j = −bk+j + j − w · j (1 ≤ j ≤ r − k).

3) If
Pr

j=1 cj > n, then
Pr

j=1 δj >
Pk

j=1 bj . In particular, we have

δ 6= (b1, . . . , bk, 0, . . . , 0).

Proof. From definition(4.6.6) of n and the equation(4.6.7), we have

(4.6.9)

rX
j=1

δj =

rX
j=1

(bj + cj) =

kX
j=1

bj +

rX
j=1

cj − n.

Using inequalities (4.6.8)(a),(b), we have

(4.6.10)

kX
j=1

bj ≤
kX
j=1

(bj + cj) ≤
kX
j=1

δj ≤
rX
j=1

δj .

Here the middle inequality is because b+ c− δ = w · (δ + hri)− (δ + hri) and because

the components of δ + hri are strictly decreasing.
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The statement (3) is clear from (4.6.9). Substitution of (4.6.9) into (4.6.10) givesPr
j=1 cj ≥ n, namely, (1).

Finally assume
Pr

j=1 cj = n. Then all the terms in (4.6.10) must be equal, which

implies ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
w ∈ Sk ×Sr−k,

δj = 0 (k + 1 ≤ j ≤ r),

cj = 0 (1 ≤ j ≤ k).

Then both of the first k coordinates of δ+ hri and b+ c+ hri are strictly decreasing, so

that w ∈ 1k ×Sr−k. Now the remaining assertions in (2) are clear. ¤

The following result is a direct consequence of Lemma(4.6.1) and Lemma(4.6.4).

Proposition 4.6.11. Let b = (b1, . . . , br, 0, . . . , 0) ∈ Zp. Assume that

⎧⎨⎩
b1 ≥ b2 ≥ · · · ≥ bk ≥ 0

0 > bj ≥ −2p+ 2r − 1 (k + 1 ≤ j ≤ r),

for some k (0 ≤ k ≤ r). Suppose that there are w ∈ SpnZ2p, c = (c1, . . . , cr, 0, . . . , 0) ∈

Zp and δ = (δ1, . . . , δp) ∈ Zp such that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
w · (δ + hpi)− hpi = b+ c,

cj ≥ 0 (1 ≤ j ≤ r),

δ1 ≥ δ2 ≥ · · · ≥ δp ≥ 0.

Set n := −Pr
j=k+1 bj . Then the following holds.

1)
Pr

j=1 cj ≥ n,
Pr

j=1 δj ≥
Pk

j=1 bj , w ∈ Sr × 1p−r, and

δj = 0 (r + 1 ≤ j ≤ p).
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2) If
Pr

j=1 cj = n or equivalently if
Pr

j=1 δj =
Pk

j=1 bj , then,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
w ∈ 1k ×Sr−k,

δj = bj (1 ≤ j ≤ k), δj = 0 (k + 1 ≤ j ≤ r),

cj = 0 (1 ≤ j ≤ k), ck+j = −bk+j + j − w · j (1 ≤ j ≤ r − k).

3) If
Pr

j=1 cj > n, then
Pr

j=1 δj >
Pk

j=1 bj . In particular,

δ 6= (b1, . . . , bk, 0, . . . , 0).

4.7. proof for quarternionic case

In this subsection, we complete the proof of Proposition(4.3.2). Suppose we are in

the setting of §4.3. First recall (cf. §2.1) that the root system of u for tc = h is given

by

∆(u ∩ p, h) := {fi ± fj ; 1 ≤ i ≤ r, p+ 1 ≤ j ≤ p+ q},

and that L ∩K ' Tr × Sp(p− r)× Sp(q) acts on u ∩ p ' C2rq by

rM
i=1

(F (Tr, fi)£ 1£ F (Sp(q), (1, 0, . . . , 0))) .

Assume that λ ∈ Zr satisfies

λ1 > λ2 > · · · > λr ≥ −Q ≡ −p− q + r.

Then μλ ≡ (b1, . . . , br, 0, . . . , 0) with bj ≡ λj − p+ q + j − 1 satisfies

(4.7.1) b1 ≥ b2 ≥ · · · ≥ br ≥ −2p+ 2r − 1

Define k (0 ≤ k ≤ r) by (4.3.4).
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Lemma 4.7.2. Retain notation as above, let λ ∈ Zr, δ ∈ Zp with the same hypotheses

on λ and δ1 ≥ · · · ≥ δp ≥ 0.

1) If (δr+1, . . . , δp) = (0, . . . , 0), then

(4.7.3) m(q,λ, δ) =
X
w,{ci}

sgn(w)

rY
i=1

dimSci(C2q).

(See §4.1 for notation.) Here the sum is taken over the set satisfying

w ∈ Sr, c = (c1, . . . , cr) ∈ Nr,(4.7.4)(a)

w · ((δ1, . . . , δr) + hri)− hri = b+ c.(4.7.4)(b)

2) If

(4.7.5) (δr+1, . . . , δp) 6= (0, . . . , 0) or

rX
i=1

δi <

kX
i=1

bi,

then m(q,λ, δ) = 0.

Proof. As an L ∩K1 ' Tr × Sp(p− r)-module,

S(u ∩ p) '
M
c∈Nr

Ã
rY
i=1

dimSci(C2q).

!
· (c1, . . . , cr)£ 1,

where the multiplier in the right hand stands for the multiplicity of each representation

and c = (c1, . . . , cr) ∈ Zr denotes an additive character of Tr. Thus for each π1 ∈ cK1,

(4.7.6) HomL∩K1(H
j(u ∩ k1,π1), S(u ∩ p)⊗ Cμλ)

'
M
c∈Nr

Ã
rY
i=1

dimSci(C2q)

!
· HomTr×Sp(p−r)(Hj(u ∩ k1,π1), (b+ c)£ 1).

We will regard c as an element of Np by putting c = (c1, . . . , cr, 0, . . . , 0) without

comment. Appealing to Kostant’s Borel-Weil theorem

dimHomTr×Sp(p−r)(H
j(u ∩ k1,π1), (b+ c)£ 1)
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is the number of elements w of

W l∩k1
K1

:= {w ∈W (k1) ; ∆+(k1) ∩ w ·∆−(k1) ⊂ ∆(u ∩ k1)}

such that

l(w) = j,(4.7.7)(a)

w · (δ + hpi)− hpi = b+ c.(4.7.7)(b)

Assume that (4.7.7)(b) holds. From (4.7.1) and ci ≥ 0, we are able to apply Propo-

sition(4.6.11), so that we conclude w ∈ Sr × 1p−r, δi = 0 (r + 1 ≤ i ≤ p) andPr
i=1 δi ≥

Pk
i=1 bi. Thus the statement (2) is clear. Now Part (1) is followed from

(4.7.6) since Sr × 1p−r ⊂W l∩k1
K1

. ¤

Proof of Proposition(4.3.2). First notice that we have

(4.7.8) M(q,λ, δ) = m(q,λ, δ ⊕ [0; 0, p− r]),

from Lemma(4.7.2). Therefore the third statement is plain in view of Lemma(4.7.2)(2).

1) . Fix w ∈ Sr and define c ∈ Zr by the formula(4.7.4)(b). Then putting j := w ·i (1 ≤

i ≤ r), we have

ci = −bi + (δj + r − j + 1)− (r − i+ 1)

= −bi + (δj − j) + i

= −λi + p− q + 1 + δj − j

≥ −(p+ q − r) + p− q + 1− r

= 1− 2q,(4.7.9)

for any i (1 ≤ i ≤ r). In the third inequality we used (4.3.3)(a). Then this inequal-

ity(4.7.9) assures the condition for (4.2.4) so that we have

a(ci, 2q) = dimS
ci(C2q).
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Therefore, combining (4.7.3) with (4.7.8), we get

M(q,λ, δ) =
X
w∈Sr

sgn(w)

Ã
rY
i=1

a(i− bi + δw·i − w · i, 2q)
!

(4.7.10)

= F (2q, r; y(λ), z(δ)) (Definition(4.2.2)(a)).

2) Assume
Pr

i=1 δi =
Pk

i=1 bi. From Lemma(4.6.4)(2), each term in the right hand

side of (4.7.3) is non-zero only if δ = (b1, . . . , bk, 0, . . . , 0) and w ∈ 1k × Sr−k. From

(4.7.8), the first statement follows. If δ = (b1, . . . , bk, 0, . . . , 0), then we have

M(q,λ, δ) =
X

w∈1k×Sr−k

sgn(w)

Ã
rY

i=k+1

a(i− bi − w · i, 2q)
!

= d(2q, r − k; yk+1(λ), . . . , yr(λ)),

which is the desired result. ¤

We remark that in the proof of the second statement i−bi−w·i ≥ 1−2q (k+1 ≤ i ≤ r)

if Q ≥ λk+1. In this way Remark(4.3.5) is justified.

4.8. proof for complex case

Set v ∈ Cp(' (tc1)∗) by

v := [
p− 1
2
;−1, r]⊕ [−p+ 2s− 1

2
;−1, s]⊕ [p− 2r − 1

2
;−1, p− r − s]

= [p;−1, r]⊕ [s;−1, s]⊕ [p− r;−1, p− r − s] + [−p− 1
2

; 0, p].

We need first the next Lemma as a slight variant of Proposition(4.6.11).

Lemma 4.8.1. Let b = (b1, . . . , br, br+1, . . . , br+s, 0, . . . , 0) ∈ Zp. Assume that

b1 ≥ b2 ≥ · · · ≥ bk ≥ 0,(4.8.2)(a)

0 > bi ≥ −p+ s+ i (k + 1 ≤ i ≤ r),(4.8.2)(b)

p− r − s− 1 + i ≥ br+i > 0 (1 ≤ i ≤ s− l),(4.8.2)(c)

0 ≥ br+s+1−l ≥ · · · ≥ br+s,(4.8.2)(d)
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for some k (0 ≤ k ≤ r) and l (0 ≤ l ≤ s). Suppose that there are w ∈ Sp, c =

(c1, . . . , cr+s, 0, . . . , 0) ∈ Zp, δ = (δ1, . . . , δp) ∈ Zp such that

w · (δ + v)− v = b+ c,(4.8.3)(a)

ci ≥ 0 (1 ≤ i ≤ r), ci ≤ 0 (r + 1 ≤ i ≤ r + s),(4.8.3)(b)

δ1 ≥ δ2 ≥ · · · ≥ δr ≥ δr+s+1 ≥ δr+s+2 ≥ · · · ≥ δp ≥ δr+1 ≥ δr+2 ≥ · · · ≥ δr+s.

(4.8.3)(c)

Set n := −Pr
i=k+1 bi, m :=

Ps−l
i=1 br+i ∈ N. Then the following holds:

1) w ∈ Sr×Ss×1p−r−s, δi = 0 (r+s+1 ≤ i ≤ p),
Pr

i=1 ci ≥ n, and
Ps

i=1 cr+i ≤ −m.

2) If

(4.8.4)

rX
i=1

ci = n and

sX
i=1

cr+i = −m,

then, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w ∈ 1k ×Sr−k ×Ss−l × 1l × 1p−r−s,

δi = bi (1 ≤ i ≤ k, r + s− l + 1 ≤ i ≤ r + s),

δi = 0 (k + 1 ≤ i ≤ r + s− l, r + s+ 1 ≤ i ≤ p)

ci = 0 (1 ≤ i ≤ k, r + s− l + 1 ≤ i ≤ r + s),

ck+i = −bk+i + i− w0 · i (1 ≤ i ≤ r − k),

cr+i = −br+i + i− w00 · i (1 ≤ i ≤ s− l).

Here w0 ∈ Sr−k and w00 ∈ Ss−l are the obvious restrictions of w.

3) If
Pr

i=1 ci > n, then
Pr

i=1 δi >
Pk

i=1 bi. If
Ps

i=1 cr+i < −m, then
Ps

i=1 δr+i >Pl
i=1 br+s−l+i. In particular, if (4.8.4) is not satisfied, then

δ 6= (b1, . . . , bk)⊕ [0; 0, r + s− k − l]⊕ (br+s+1−l, . . . , br+s)⊕ [0; 0, p− r − s].



UNITARY REPRESENTATIONS IN L2(U(p, q;F)/U(p−m, q;F)) 67

Proof. We may replace v by [p;−1, r]⊕ [s;−1, s]⊕ [p−r;−1, p−r−s] without changing

notations. The condition(4.8.2)(b)(c) and (4.8.3)(b) assure

(b+ c+ v)i ≡ bi + ci + p+ 1− i ≥ s+ 1 (1 ≤ i ≤ r)

(b+ c+ v)r+i ≡ br+i + cr+i + s+ 1− i ≤ p− r (1 ≤ i ≤ s)

{(b+ c+ v)r+s+i ; 1 ≤ i ≤ p− r − s} = {s+ 1, s+ 2, . . . , p− r}

From (4.8.3)(a)(c), b+ c+ v consists of distinct entries, which implies w ∈ Sr ×Ss ×

1p−r−s, δi = 0 (r + s+ 1 ≤ i ≤ p).

Now we apply (4.6.4) to the first r block (respectively the second s block) and then

the lemma follows. ¤

Suppose we are in the setting of §4.4. Recall that the root system of u for tc = h is

given by (see §2.3)

∆(u ∩ p, h) := {fi − fj ; 1 ≤ i ≤ r, p+ 1 ≤ j ≤ p+ q}

∪ {−fi + fj ; r + 1 ≤ i ≤ r + s, p+ 1 ≤ j ≤ p+ q}.

and that L ∩K ' Tr+s × U(p− r − s)× U(q) acts on u ∩ p ' C(r+s)q by

rM
i=1

¡
F (Tr+s, fi)£ 1£ F (U(q), (−1, 0, . . . , 0))

¢

⊕
sM
i=1

¡
F (Tr+s,−fr+i)£ 1£ F (U(q), (1, 0, . . . , 0))

¢
.

Assume that ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λi ∈ Z+Q,

λ1 > λ2 > · · · > λr ≥ −Q.

Q ≥ λr+1 > λr+2 > · · · > λr+s
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Then μλ = (b1, . . . , br+s, 0, . . . , 0) (Definition (4.4.1)) satisfies

⎧⎨⎩
b1 ≥ b2 ≥ · · · ≥ br ≥ −p+ s+ r,

p− r − s ≥ br+1 ≥ br+2 ≥ · · · ≥ br+s.

Now the proof of Proposition(4.4.2) is done in the same way as the previous section

based on the following lemma (cf. Lemma(4.7.2)). We omit the proof.

Lemma 4.8.5. Retain notation as above, let λ ∈ Zr+s + [Q; 0, r + s], δ ∈ Zp with the

same hypotheses on λ and δ1 ≥ δ2 ≥ · · · ≥ δr ≥ δr+s+1 ≥ δr+s+2 ≥ · · · ≥ δp ≥ δr+1 ≥

δr+2 ≥ · · · ≥ δr+s. Then

1) If δr+s+1 = · · · = δp = 0, then

(4.8.6) m(q,λ, δ) =

⎛⎝ X
w0,{ci}

sgn(w0)
rY
i=1

dimSci(Cq)

⎞⎠

×

⎛⎝ X
w00,{cr+i}

sgn(w00)
sY
i=1

dimS−cr+i(Cq)

⎞⎠

Here the sums are taken over the sets satisfying

w0 ∈ Sr, ci ∈ N (1 ≤ i ≤ r),(4.8.7)(a)

w0 · ((δ1, . . . , δr) + hri)− hri = (b1 + c1, . . . , br + cr),(4.8.7)(b)

w00 ∈ Ss, cr+i ∈ −N (1 ≤ i ≤ s),(4.8.8)(a)

w00 · (δr+1, . . . , δr+s) + hsi)− hsi = (br+1 + cr+1, . . . , br+s + cr+s),

(4.8.8)(b)

respectively.
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2) If (δr+s+1, . . . , δp) 6= (0, . . . , 0) or
Pr

i=1 δi <
Pk

i=1 bi or
Ps

i=1 δr+i >
Pl

i=1 br+s−l+i,

then m(q,λ, δ) = 0.

4.9. proof for real case

L ∩K ' Tr × SO(p− r)× SO(q) acts on u ∩ p ' Crq by

rM
i=1

(F (Tr, fi)£ 1£ F (SO(q), (−1, 0, . . . , 0))) .

The proof of Proposition(4.5.2) reduces to the same calculation for the quarternionic

case, owing to the following

Lemma 4.9.1. Let a = (a1, . . . , ar, 0, . . . , 0) ∈ Zp
0
. Assume that

(4.9.2) ai ≥ −p+ 2r + 1 for any i (1 ≤ i ≤ r).

If

w · (δ + [p
2
− 1;−1, p0])− [p

2
− 1;−1, p0] = a

for some w ∈ W (SO(p)), δ = (δ1, . . . , δp0) ∈ Np
0
such that δ1 ≥ · · · ≥ δp0 ≥ 0 when

p is odd, δ1 ≥ · · · ≥ δp0−1 ≥ |δp0 | when p is even, then we have w ∈ Sr × 1p0−r and

δi = 0 (r + 1 ≤ i ≤ p0).

The proof of this Lemma is similar to that of Lemma(4.6.1) and so we omit it. The

condition(4.9.2) guarantees ai +
p

2
− i ≥ −(p

2
− r − 1) (1 ≤ i ≤ r) and is satisfied by

putting ai = bi + ci (notation(4.5.1)) when λi ≥ −Q and ci ∈ N.
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5. An alternative proof of the sufficiency for RS
q (Cλ) 6= 0

In studying our discrete series for G/H2, we are obliged to deal with the parameters

outside the fair range. Usually, we move from good parameters toward bad (e.g. fair

or non-fair) ones. But this is a negative way of thinking. In this section, a positive

application of bad parameters is offered: making use of direct information for possibly

non-fair parameters.

Retain notation in §1. Suppose that Cλ is in the fair range. Then (g,K)-modules

Rj
q(Cλ) vanish except in the single degree j = S, but the remaining module may also

vanish as we saw in the previous section. A recent (unpublished) method (cf. §0)

to check the sufficiency for RS
q (Cλ) 6= 0 due to Matsuki and Oshima is based on a

computation of very special ‘small’ K-types case-by-case. They explained to me that

it sometimes requires a long calculation and some preparations on finite dimensional

representations and that the special case of this section (in particular F = H case) is

extremely tedious because of a non-triviality of a partition function for u∩ p as well as

a complicated polarization of a parabolic subalgebra.

In the present case Cλ is in the fair range. Nevertheless, treating the parameters

outside the fair range at the same time leads us to another simple proof of the sufficient

condition for RS
q (Cλ) 6= 0.

Here is our idea:

i) nice information may be buried outside the fair range.

ii) the modules with small (but not necessarily fair) parameters form a closed universe.

Actually we make use of the difference between the fair range and the condition that

μλ is ∆
+(k, tc) dominant when λ is small.
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5.1. theorem: sufficient condition for RS
q (Cλ) 6= 0

Let G = Sp(p, q) and h0 be a fundamental Cartan subalgebra of g0. Take bases of h

and h∗ as in §2.1. Fix r and s with 0 < r ≤ p, 0 ≤ s ≤ q and put

t :=

rX
i=1

CHi +
sX
i=1

CHp+i ⊂ h,(5.1.1)(a)

Q := p+ q − r − s,(5.1.1)(b)

L : the centralizer of t in G (' Tr+s × Sp(p− r, q − s)).(5.1.1)(c)

First of all, let us parametrize θ-stable parabolic subalgebras of g with Levi part

l. Let (mM , . . . ,m1), (nN , . . . , n1) be partitions of r and s respectively, that is, r =PM
j=1mj , s =

PN
j=1 nj with mj , nj ∈ N+. Assume that M = N or M = N + 1. Then

a θ-stable parabolic subalgebra q = l+ u is defined by giving the nilradical u so that

(5.1.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ρ(u)|mj
= [Q+

jX
k=1

mk +

j−1X
k=1

nk;−1,mj ],

ρ(u)|nj = [Q+
jX

k=1

mk +

jX
k=1

nk;−1, nj ].

Here we identify t∗ with Cr+s via the basis {Hi ; 1 ≤ i ≤ r, p+ 1 ≤ i ≤ p+ s} as usual.

We denote by ρ(u)|mj
, ρ(u)|nj the obvious restriction of ρ(u) ∈ h∗ to each subspace

Cmj ' Pmj

i=1CHmM+···+mj+1+i (⊂ h), Cnj '
Pnj

i=1CHp+nN+···+nj+1+i (⊂ h), respec-

tively. See §3.5 for the notation of [k;m,n]. Conversely, any θ-stable parabolic subal-

gebra q with Levi part l is obtained in this manner up to conjugation by an element of

K and up to exchange of p by q.

In the setting above, q ∩ k is a parabolic subalgebra of k and we have (with similar
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notations as above):

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ρ(u ∩ k)|mj
= [p− r +

jX
k=1

mk;−1,mj ],

ρ(u ∩ k)|nj = [q − s+
jX

k=1

nk;−1, nj ].

In the present case ρ(u), ρ(u ∩ k) ∈ t∗ (⊂ h∗ in the notation (1.1.1)). Set

t∗Z : = {λ ∈ t∗ ; hλ,α∨i ∈ Z for all α ∈ ∆(u, h) }

= {λ = (λ1, . . . ,λr+s) ∈ t∗ ; λi ∈ Z}

B : = {λ = (λ1, . . . ,λr+s) ∈ t∗ ; −Q ≤ λi ≤ Q}

F : = {λ ∈ t∗ ; hλ,αi > 0 for all α ∈ ∆(u, h) }

BZ : = B ∩ t∗Z, FZ := F ∩ t∗Z.

Note that a weight λ ∈ t∗ lifts to a metapletic (l, (L ∩K)∼)-module iff λ ∈ t∗Z.

Definition 5.1.3. Suppose we are given q ⊂ g as above and λ ∈ t∗. Set

r0 := #{i ; 1 ≤ i ≤ r, λi ≤ Q},

s0 := #{i ; p+ 1 ≤ i ≤ p+ s, λi ≤ Q},

p0 := p− r + r0, q0 := q − s+ s0,

t000 :=
r−r0X
i=1

R
√−1Hi +

s−s0X
i=1

R
√−1Hp+i,

g00 := the semisimple part of the centralizer of t
00
0 in g0

' sp(p0, q0) ⊂ g0,

q0 := g0 ∩ q ⊃ g.

In extremal cases, (g00, q
0) = (g0, q) if λ ∈ B, and (g00, q0) = (l0, l) if λ ∈ F is

sufficiently ‘regular’. We shall use similar notations for (g00, q
0) by adding 0. For example,
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t0 =
Pr0

i=1 CHr−r0+i +
Ps0

i=1 CHp+s−s0+i, Q0 = (p− r+ r0) + (q − s+ s0)− r0 − s0 = Q,

and etc.

Now we are ready to state the main result in this section.

Theorem 5.1.4. Let G = Sp(p, q), q be a θ-stable parabolic subalgebra of g given by

(5.1.2), and λ ∈ FZ. Let (g00, q0) be associated to (g0, q,λ) by Definition(5.1.3). Then

RS
q (Cλ) 6= 0 if −ρ(u0) + 2ρ(u0 ∩ k0) ∈ B0.

We emphasize again that the conclusion was essentially found first by Matsuki and

Oshima. In fact, if RS
q (Cλ) is realized as discrete series for a semisimple symmetric

space (in this case, the parameter λ is so degenerate as in (2.7.4)(a) and all of mj , nj ’s

are even), the above sufficient condition in Theorem(5.1.4) coincides with the neces-

sary one given in [21] after some calculations. We remark that our formulation based

on Definition(5.1.3) helps us to understand the somewhat complicated and different

description given in [21] in this case.

If Cλ is in the good range with respect to q, then q0 = l and −ρ(u0) + 2ρ(u0 ∩ k0) =

0 ∈ B0, whence Theorem(5.1.4) implies a well known result RS
q (Cλ) 6= 0. The opposite

extremal case is essential. Recall that (g00, q
0) = (g0, q) if λ ∈ B in Definition(5.1.3).

Then the following is a special case of Theorem(5.1.4) by assuming λ ∈ B.

Theorem 5.1.40 (special case). With notation as above, if −ρ(u)+2ρ(u∩ k) ∈ B, then

RS
q (Cλ) 6= 0 for all λ ∈ B ∩ FZ.

Since the essence of our proof for Theorem(5.1.4) lies in this special case, we shall

prove only this case. Indeed, we shall iterate translations among small singular parame-

ters, where the components (strictly) larger than Q are always stable, so that the proof

for Theorem(5.1.4) parallels exactly to that for Theorem(5.1.4)0.

Remark 5.1.5. We can also reduce Theorem(5.1.4) to Theorem(5.1.4)0 directly. In

fact, according to the direct decomposition t = t00 + t0, we write λ = λ00 + λ0, and
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ρ(u) = ρ00 + ρ0. If λ ∈ F , then ρ0 = ρ(u0) in this quarternionic case. Assume that

hλ, α|t00i > 0 for any α ∈ ∆(u) with α|t00 6= 0,

λi ≥ −Q for any i (1 ≤ i ≤ r + s).

(This condition is clearly weaker than λ ∈ F .) Then we have

¡
Rg
q

¢j+S−S0
(Cλ) 6= 0⇐⇒

¡
Rg
q

¢j+S−S0
(Cλ+ξρ00) 6= 0 (∀ξ ∈ N)

⇐⇒
³
Rg0

q0

´j
(Cλ0) 6= 0

The first equivalence is derived from Lemma(3.4.1)(2). Indeed, we can easily find a

sequence λ(0) = λ,λ(1), . . . ,λ(n) = λ+ ξρ00 so that

A
³
λ(i−1) . λ(i)

´
= {λ(i)}, A

³
λ(i) . λ(i−1)

´
= {λ(i−1)} for i = 1, 2, . . . , n.

The second equivalence is from Lemma(3.2.1)(2) and Fact(1.4.1)(2). Hence we have, in

particular,
¡
Rg
q

¢S
(Cλ) 6= 0 ⇔

³
Rg0

q0

´S0
(Cλ0) 6= 0. Since Q0 = Q, we have λ0 ∈ B and

we are done.

Remark 5.1.6. Let λ̃ ≡ λ̃(q) := −ρ(u) + 2ρ(u ∩ k). We write the coordinates of λ̃

as λ̃i (1 ≤ i ≤ r + s) by restricting it to t. Then elementary arithmetic shows the

equivalence of the following four conditions:

λ̃ ∈ B.(5.1.7)(a)

Q ≥ λ̃i > −Q for all i (1 ≤ i ≤ r + s).(5.1.7)(b)

Q ≥ λ̃i for all i (1 ≤ i ≤ r + s).(5.1.7)(c) ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

jX
k=1

mk ≤ 2(q − s) +
j−1X
k=1

nk (1 ≤ j ≤M),

jX
k=1

nk ≤ 2(p− r) +
jX

k=1

mk (1 ≤ j ≤ N).

(5.1.7)(d)



UNITARY REPRESENTATIONS IN L2(U(p, q;F)/U(p−m, q;F)) 75

The implication (5.1.7)(c)⇒ (5.1.7)(b) looks strange, but it turns out that the estimate

on mj and nj blocks (see after (5.1.2) for notation) plays a ‘complementary’ role to each

other with reverse signs.

5.2. key lemmas

Definition 5.2.1. For each subset S of BZ, we define eS ⊂ BZ to be the smallest set
such that

eS ⊃ S(5.2.2)(a)

λ ∈ eS, λ0 ∈ t∗Z and A (λ . λ0) ⊂ eS ∪ {λ0}⇒ λ0 ∈ eS.(5.2.2)(b)

By definition A (λ . λ0) is a subset of h∗. However, as is easy to see, if λ, λ0 ∈ BZ(⊂

t∗), then A (λ . λ0) ⊂ BZ, where we regard t∗ as a subspace of h∗ as usual. Finally, set

N ≡ N (q) := {λ ∈ BZ ; Ri
q(Cλ) = 0 for all i}.

Here are two key lemmas.

Lemma 5.2.3. With notation as above,

1)
eeS = eS for any subset S of BZ.

2) eN = N .

Lemma 5.2.4. g{λ} = BZ if λ ∈ B ∩ FZ.
Proof of Lemma(5.2.3). Part (1) is clear from definition and Part (2) is a direct con-

sequence of the relation between translation functor and cohomologically parabolic

induction in Lemma(3.4.1)(1). ¤

Admitting Lemma(5.2.4) for a while, we shall complete the proof of Theorem(5.1.4)0.
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Proof of Theorem(5.1.4)0. If λ̃ ≡ −ρ(u) + 2ρ(u ∩ k) ∈ B, then λ̃ /∈ N because

X
i

(−1)i dimHomK(1,RS−i
q (Cλ̃)) = 1,

as is easy to see by the generalized Blattner formula. Thus N $ BZ, which implies

B ∩ FZ ⊂ FZ \ N because of Lemma(5.2.3) and Lemma(5.2.4). On the other hand, if

λ ∈ FZ then Cλ is in the fair range and Ri
q(Cλ) = 0 for all i 6= S. Therefore RS

q (Cλ) 6= 0

for any λ ∈ B ∩ FZ. ¤

5.3. proof of the combinatorial part

We are now left with the proof of Lemma(5.2.4), whose statement depends only on

r+s and Q, and dose not depend on the particular partitions of r and s. Set n := r+s.

Let t∗R := {λ = (λ1, . . . ,λn) ∈ t∗ ; λi ∈ R}. Each connected component of

{λ = (λ1, . . . ,λn) ∈ t∗R ; λi 6= λj (i 6= j), λi 6= 0} ⊂ t∗R

is a Weyl chamber for W (Cn).

Claim(5.3.1). Let C ⊂ t∗R be a Weyl chamber. If λ ∈ BZ ∩ C, then g{λ} ⊃ BZ ∩ C.
Proof. Fix λ0 ∈ BZ ∩ C. Then we can easily find a sequence λ = λ(0),λ(1), . . . ,λ(k) = λ0

such that A
¡
λ(i−1) . λ(i)

¢
= {λ(i)} (1 ≤ i ≤ k). Now the property(5.2.2) shows

λ0 ∈g{λ}. ¤

Claim(5.3.2). Let λ = (n, n− 1, . . . , 1). Then g{λ} contains λ0 in each case below.
a) λ0 = (n, n− 1, . . . , j, j + 1, . . . , 1) (1 ≤ j ≤ n− 1)

b) λ0 = (n, n− 1, . . . , 2,−1)

Proof. A (λ . λ00) = {λ00} and A (λ00 . λ0) = {λ,λ0} if we choose λ00 as follows:

a) λ00 := (n, n− 1, . . . , j, j, . . . , 1),
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b) λ00 = (n, n− 1, . . . , 2, 0).

Now the claim follows from the property(5.2.2). ¤

Claim(5.3.1) and Claim(5.3.2) lead us to

(5.3.3) g{λ} = BZ
for each fixed λ ∈ BZ ∩ C, and for each Weyl chamber C. Now Lemma(5.2.4) is proved.



78 TOSHIYUKI KOBAYASHI

6. Proof of irreducibility results

6.1. irreducibility in the fair range

In this section, we prove a result about irreducibility of certain series of cohomo-

logically induced representations. Suppose we are in the setting of §1.1-3. One might

expect that

If a metapletic representation Cλ of (l, (L ∩K)∼) is in(6.1.1)

the weakly fair range, then the derived functor module

RS
q (Cλ) is irreducible as a (g, K)-module or zero.

This is known to be false in general as alluded to in Fact(1.4.2)(2). However, it still

holds in some interesting cases:

0) Cλ is in the weakly good range (see Fact(6.2.4)(c)).

i) g is of type A (see Fact(6.2.4)(b)).

ii) (g0, q) arises in a natural description of discrete series for a semisimple symmetric

space ([33], see Fact(1.5.2) for notation).

In this section we shall prove a positive answer for (6.1.1) when Cλ is in the fair

range and when

iii) g is of type C and [l, l] is also of type C.

To prove this, we need a slight refinement (Theorem(6.3.1)) of [33] Theorem 5.11,

which assures a nice behavior under translation in an extremely special direction when
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applied to some Harish-Chandra bimodules: namely, twisted differential operators com-

ing from U(g) when g = sp(n,C).

Our approach parallels exactly Vogan’s proof there. But we isolate the necessary

steps explicitly since it is complicated in detail (ex. (6.7.7)).

6.2. twisted differential operators

We introduce some notation used throughout this section §6. For materials of this

subsection, we refer to [2], [3], [6], [30] and [33].

Fix a connected complex reductive (algebraic) group GC with Lie algebra g. We iden-

tify Harish-Chandra bimodules with actual Harish-Chandra modules for GC (regarded

as a real group) by a Chevalley anti-automorphism. Fix a Cartan subalgebra h and a

parabolic subalgebra q of g with Levi decomposition q = l+ u so that l contains h. Fix

a weakly fair weight γ ∈ h∗. Write Rγ(l : l) for the one-dimensional Harish-Chandra

bimodule for LC with Z(l ⊗ C)-infinitesimal character (γ, γ) ∈ h∗ ⊕ h∗. That is, its

bimodule structure is given by,

X · y = y ·X = γ(X1)y

for y ∈ Rγ(l : l), X = X1 +X2 ∈ t⊕ [l, l] = l (notation (1.1.2)). Define

(6.2.1) Rγ(l : g) = Ind(QC ↑ GC)(Rγ(l : l)),

a Harish-Chandra bimodule for GC, which has a unique GC-fixed vector. Here we denote

by Ind(QC ↑ GC) normalized parabolic induction for Harish-Chandra bimodules.

Note that Rγ(l : g) may be identified with aGC-equivariant twisted ring of differential

operators on the generalized flag variety GC/QC. Then Rγ(l : g) has a natural algebra

structure with

(6.2.2) d : U(g)→ Rγ(l : g)
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an algebra homomorphism that is nonzero on the unique GC-fixed vector. Define

Iγ(l : g) : = Ker(d : U(g)→ Rγ(l : g))(6.2.3)(a)

Aγ(l : g) : = Image(d : U(g)→ Rγ(l : g))(6.2.3)(b)

' U(g)/Iγ(l : g).

If q is a Borel subalgebra, we write simply I(γ) for Iγ(h : g), which is nothing but

the ideal in U(g) generated by the corresponding maximal ideal in Z(g). From this view

point, we put I(w · γ) = I(γ) (w ∈W (g, h)) so that I(γ) is defined for all γ ∈ h∗. Here

is the irreducibility result due to J.Bernstein that we need (see [30] Proposition 16.8,

[2] Proposition III.2.2.2 and I.5.6, see also [33] Proposition 5.7).

Fact 6.2.4. Retain notations as above.

a) Suppose that W is a one dimensional metapletic (l, (L∩K)∼) representation having

Z(l)-infinitesimal character γ in the weakly fair range. The algebra Rγ(l : g) acts on

RS
q (W ), and the resulting (Rγ(l : g),K)-module is irreducible or zero.

b) If the moment map

π : T ∗(GC/QC) ' GC ×
QC
q⊥ → G · (q⊥) ⊂ g∗

is birational and has a normal image, then Aγ(l : g) = Rγ(l : g).

c) If γ is in the weakly good range, then Aγ(l : g) = Rγ(l : g).

If Aγ(l : g) = Rγ(l : g), then Part (a) implies the irreducibility (or vanishing)

of RS
q (Cλ) as a (g,K)-module. It is known that the assumption in Fact(6.2.4)(b) is

satisfied if g = gl(n,C) and q is any parabolic (see [17]) or if g = so(n,C) and q

is of the form in §2.5 (see [12] for birationality and [18] for normality, see also [2]

III.3.2), whence Part (5) of Theorem 2, 3. But unfortunately, the birationality fails

(although the image of π is normal) when g = sp(n,C) and q is of the form in §2.1.
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This should be compared with the fact that the normality frequently fails (although π is

birational) in the setting of Fact(1.5.2) (discrete series for semisimple symmetric spaces)

if g = sp(n,C). Thus, throughout the rest of this section we shall restrict ourselves to

the case where g = sp(n,C) and q is a general parabolic subalgebra and to the case of

singular Z(g)-infinitesimal characters.

6.3. theorem

Theorem 6.3.1 (cf. [33] Theorem 5.11). Suppose g is sp(n,C). Let h be the

standard Cartan subalgebra identified with Cn as usual. Fix non-negative integers N ,

r such that 1 ≤ N ≤ n − r. Write l = n − N − r. Let q be the standard parabolic

subalgebra with Levi factor

l = gl(N,C)⊕ gl(1,C)r ⊕ sp(l,C).

Suppose γ is the Z(l)-infinitesimal character of a one-dimensional representation of l:

(6.3.2)(a) γ = (λ0 +N − 1,λ0 +N − 2, . . . ,λ0,λ1, . . . ,λr, l, l − 1, . . . , 1).

Assume that

(6.3.2)(b) λj ∈ Z for any j, l ≥ λ0 ≥ · · · ≥ λr ≥ 0 and λ0 > 0.

Set ξ := (l − λ0)N ⊕ 0n−N = (l − λ0, . . . , l − λ0, 0, . . . , 0). Suppose M is an irreducible

g-module annihilated by Iγ+ξ(l : g). Then ψ
γ
γ+ξM is an irreducible g-module or zero.

Remark 6.3.3. Theorem 5.11 in [33] is the case where N = 2. But the above theorem

with N = 1 may also apply to the irreducibility results in [33] owing to the Borel-Weil-

Bott theorem for U(2). In order to prove Part(5) of Theorem 1 (§2.2), we need the case

where N = 1.

6.4. irreducibility result
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Corollary 6.4.1. Let G be a real form of Sp(n,C), K a maximal compact subgroup

of G and θ the corresponding Cartan involution of G. Let p = m + n be a θ-stable

parabolic subalgebra (see §1.1) of g with a Levi factor

m ' gl(n1,C)⊕ gl(n2,C)⊕ · · ·⊕ gl(nk,C)⊕ sp(l,C),

for some 0 ≤ l ≤ n and nj ∈ N+ such that
Pk

j=1 nj = n− l. Fix a Cartan subalgebra h

of m. LetW be a metapletic (m, (M ∩K)∼)-character with Z(m)-infinitesimal character

γ = (γ1, . . . , γn−l, l, l − 1, . . . , 1) ∈ h∗. Assume that γj ∈ Z and

γ1 ≥ γ2 ≥ · · · ≥ γn−l > 0.

Then Rs
p(W ) is an irreducible (g, K)-module or zero.

This includes the irreducibility assertions in Part (5) of Theorem 1. In fact, it is

obtained by applying the above corollary to the case when n1 = · · · = nk = 1.

6.5. Vogan’s idea on the translation principle for Aγ(l : g)

We shall review shortly a technique due to Vogan [33] which shows irreducibility of

certain series of derived functor modules. The main tools for reduction to good param-

eters are a combination of induction by stages and translation principle. Translation is

used in a pair of translation functors for Harish-Chandra modules and Harish-Chandra

bimodules.

Let R be a complex algebra, endowed with Harish-Chandra bimodule structure for

GC through an algebra homomorphism

(6.5.1) d : U(g)→ R.

Let M be an R-module which is Z(g)-finite via (6.5.1). Let F be a finite dimensional

representation of g with extremal weight −ξ on which the adjoint action of g exponen-

tiates to GC. A formal argument (the Jacobson density theorem) (see [33] Corollary
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3.9) shows that

If M is an irreducible R-module, then ψγγ+ξM is(6.5.2)

an irreducible
³
ψ
(γ,γ)
(γ+ξ,γ+ξ)R

´
-module or zero.

Retain notations in §6.2. Let γ := λ + ρl ∈ h∗ be in the weakly fair range. Let

us apply (6.5.2) to d : U(g) ³ Aλ+ρl(l : g). We expect a reasonable behavior under

translation (see Theorem(6.3.1)):

(6.5.3) ψ
(λ+ρl,λ+ρl)
(λ+ρl+ξ,λ+ρl+ξ)

Aλ+ρl+ξ(l : g) = Aλ+ρl(l : g).

But, in the (weakly) fair range, the behavior of Aλ+ρl(l : g) under translation is

not as good as those of RS
q (Cλ) and Rλ+ρl(l : g). Vogan pointed out that (6.5.3) is

guaranteed by the existence of Harish-Chandra bimodules Cλ and Cλ+ξ satisfying

(6.5.4)(a) ψ
(λ+ρl,λ+ρl)
(λ+ρl+ξ,λ+ρl+ξ)

Cλ+ξ = Cλ.

(6.5.4)(b) Each of Cλ+ξ and Cλ is generated by its unique GC-fixed vector as a Harish-

Chandra bimodule.

(6.5.4)(c) There are Harish-Chandra bimodule maps

Cλ+ξ → Rλ+ρl+ξ(l : g)

Cλ → Rλ+ρl(l : g)

that are non-zero on the GC-fixed vectors.

With a special choice of ξ and Cλ in §6.7, we shall check these conditions in §6.8-10.

6.6. notations about GL(n,C) and Sp(n,C)

Since we shall treat only complex reductive Lie groups in §6.6-10, we write GL(n)

for GL(n,C) and etc, for simplicity.
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First let GC = GL(n). Take a Cartan subalgebra h of g so that h consists of n × n

diagonal matrices with complex entries. Diagonal coordinates induce h∗ ' Cn as usual.

Let B be a Borel subgroup of GC consisting of upper triangular matrices. Let γ =

(γ1, . . . , γn) ∈ h∗. Define a Harish-Chandra bimodule for GC = GL(n) by,

[γ] ≡ [γ1, . . . , γn] = unique irreducible subquotient of Rγ(h : g)

containing the GC-fixed vectors.

We remark that [γ] = J(2γ) in the notation of [30] §11 when regarded as an irreducible

spherical representation of GC (as a real group).

Assume that the sequence (Re γj) is decreasing. With the above parametrization,

we have (see [30] Theorem 11.5, Lemma 11.11):

(6.6.1)(a) [γ] is the unique irreducible quotient of Rγ(h : g).

(6.6.1)(b) [γ] is finite dimensional iff γj − γj+1 ∈ N+ for any j.

(6.6.1)(c) [γ] is one dimensional iff γ = [c;−1, n] (§3.5) for some c ∈ C.

Next we look upon GL(n) as a reductive subgroup in Sp(n). Since GL(n) is of

maximal rank in Sp(n), h is also a Cartan subalgebra in sp(n). Let B̃(⊃ B) be the

Borel subgroup of Sp(n), making hni = (n, n− 1, . . . , 1) dominant for ∆(b̃, h).

Definition 6.6.2. An (ordered) partition of n is a sequence

π = (p1, . . . , ps)

of non-negative integers, such that
Ps

j=1 pj = n. Denote by P (π) the parabolic sub-

group of GL(n) containing B and having a Levi factor

(6.6.3) L(π)
def
= GL(p1)×GL(p2)× · · · ×GL(ps).

Similarly we denote by P̃ (π) the parabolic subgroup of Sp(n) containing B̃ with the

same Levi factor L(π).
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6.7. definition of Cλ

Suppose that we are given r, l ∈ N+, λj ∈ Z (0 ≤ j ≤ r) such that,

l ≥ λ0 ≥ λ1 ≥ · · · ≥ λr ≥ 0,(6.7.1)(a)

λ0 > 0.(6.7.1)(b)

Let {Λj}1≤j≤s+1 be the totality of distinct values in {λj ; 0 ≤ j ≤ r} ∪ {0} such that

(6.7.2)(a) Λ1 > · · · > Λs > Λs+1 = 0.

We shall ignore Λs+1 unless λr = 0. The next definition serves to simplify the notation

somewhat:

(6.7.2)(b) Λ0 := l + 1.

Set

(6.7.3) m(j) := ]{k ; λk = Λj , 1 ≤ k ≤ r} ∈ N (1 ≤ j ≤ s+ 1).

Clearly
Ps+1

j=1m(j) = r ≥ s− 1 (or ≥ s when λr = 0). Let

λ(0) = [λ0 +N − 1;−1, N ] := (λ0 +N − 1,λ0 +N − 2, . . . ,λ0).

Define

ν(j) : = [Λj−1 − 1;−1,Λj−1 − Λj ](6.7.4)(a)

= (Λj−1 − 1,Λj−1 − 2, . . . ,Λj) (1 ≤ j ≤ s).

If Λs ≥ 2, we also define

ν(s+1) := [Λs − 1;−1,Λs − 1] ≡ hΛs − 1i(6.7.4)(b)

= (Λs − 1, . . . , 2, 1).
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With this notation, if {λ1, . . . ,λr} 3 1 (equivalently, if Λs = 1), then (ν(1), ν(2), . . . , ν(s))

is a grouping of (l, l − 1, . . . , 2, 1). If {λ1, . . . ,λr} 63 1 (equivalently, if Λs ≥ 2), then

(ν(1), ν(2), . . . , ν(s), ν(s+1)) is a grouping of (l, l−1, . . . , 2, 1). If {λ1, . . . ,λr} 3 0 (equiv-

alently, if λr = Λs+1 = 0 and m(s+ 1) > 0), then (Λ1
m(1),Λ2

m(2), . . . ,Λs
m(s), 0m(s+1))

is a grouping of (λ1,λ2, . . . ,λr). If {λ1, . . . ,λr} 63 0 (equivalently, if λr 6= 0), then

(Λ1
m(1),Λ2

m(2), . . . ,Λs
m(s)) is a grouping of (λ1,λ2, . . . ,λr).

Put

(6.7.5) π := (N, 1m(1),Λ0 − Λ1, . . . , 1m(s),Λs−1 − Λs,Λs − 1, 1m(s+1)),

an ordered partition of n = N + r + l. Then according to notation (6.6.3), a reductive

subgroup L(π) of Sp(n) is given by,

GL(N)×
sY
j=1

³
GL(1)m(j) ×GL(Λj−1 − Λj)

´
×GL(Λs − 1)×GL(1)m(s+1).

More precisely, if {λ1, . . . ,λr} 3 1 (equivalently, if Λs = 1), then the above GL(Λs − 1)

and the below [ν(s+1)] should be omitted. Similarly, if λr > 0 (equivalently, ifm(s+1) =

0), then the above GL(1)m(s+1) and the below [Λs+1]
m(s+1) should be omitted. We

define a Harish-Chandra bimodule for L(π) by

(6.7.6) σλ
def
= [λ(0)]⊗

sO
j=1

³
[Λj ]

m(j) ⊗ [ν(j)]
´
⊗ [ν(s+1)]⊗ [Λs+1]m(s+1),

and a Harish-Chandra bimodule for Sp(n) by

(6.7.7) Cλ
def
= Ind(P̃ (π) ↑ Sp(n))(σλ).

Finally, take

(6.7.8) ξ := (l − λ0)N ⊕ 0n−N .
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We define σλ+ξ and Cλ+ξ similarly by changing only λ(0). We shall prove Theo-

rem(6.3.1) by checking (6.5.4)(a)-(c) for these Cλ, Cλ+ξ in the subsequent three sub-

sections.

The somewhat complicated notation of Λi, m(i), ν
(j) and π will be used throughout

§6. The following figure would be helpful useful to memorize the definition.

• •

•

•

• •

•

•

• •

•

•
•

•
• •

Λ1
m(1)

ν(1)

Λ2
m(2)

ν(2)

Λs
m(s)

ν(s)

ν(s+1)

Λs+1
m(s+1)

. . .

Figure 6.7.9

6.8. verification of (6.5.4)(a)

The proof of (6.5.4)(a) depends on the following

Lemma 6.8.1. In the setting of (6.7.1)-(6.7.5),(6.7.8), set

γ := (λ(0),Λ1
m(1), ν(1),Λ2

m(2), ν(2), . . . ,Λs
m(s), ν(s), ν(s+1), 0m(s+1)).
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Let μ ∈ h∗ ' Cn be a weight in F (Sp(n),−ξ). Assume that

⎧⎨⎩
μ is dominant for ∆+(l(π), h),

γ + ξ + μ = w · γ for some w ∈W (sp(n)).

Then

μ = −ξ.

Write ρl(π) = ρ(∆+(l(π))). We note that the above conclusion is equivalent to

A(∆+(l(π)); γ + ξ − ρl(π) . γ − ρl(π)) = {γ − ρl(π)}

in terms of our definition in §3.3 for a pair l(π) ⊂ sp(n).

Assuming this lemma for a while, we verify (6.5.4)(a).

Proof of (6.5.4)(a). Set γ = λ+ ρl as in §6.5.

ψ
(γ,γ)
(γ+ξ,γ+ξ)Cλ+ξ

=P(γ,γ)

³
Ind(P̃ (π) ↑ Sp(n))(σλ+ξ)⊗ End(F (g,−ξ))

´
'P(γ,γ)

³
Ind(P̃ (π) ↑ Sp(n))(σλ+ξ ⊗ End(F (g,−ξ)))

´
.

As the above Lemma(6.8.1) assures that

A
¡
(γ + ξ − ρl(π), γ + ξ − ρl(π)) . (γ − ρl(π), γ − ρl(π))

¢
={(γ − ρl(π), γ − ρl(π))}

for l(π)⊗R C ⊂ sp(n,C)⊗R C, the last Harish-Chandra bimodule is isomorphic to

Ind(P̃ (π) ↑ Sp(n))(σλ) = Cλ (cf. Lemma(3.4.1)(2)). Hence (6.5.4)(a). ¤

Lemma(6.8.1) is deduced from the following two elementary claims.
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Claim 6.8.2. Let γ = (γ1, . . . , γn), ξ = L
N ⊕ 0n−N ∈ Zn satisfy γk ≥ 0 for any k and

L ≥ 0. Let μ ∈ Zn be a weight of F (Sp(n),−ξ). Assume that

(6.8.3) γ + ξ + μ = w · γ

for some w, an element of the Weyl group W (sp(n)) ' Sn n Z2n. Then the following

holds.

−L ≤ μk ≤ 0 for any k (1 ≤ k ≤ n).(6.8.4)(a)

nX
k=1

μk = −NL.(6.8.4)(b)

(6.8.3) holds for some w ∈ Sn.(6.8.4)(c)

If N + 1 ≤ k ≤ n and γk ≤ min
1≤j≤N

γj , then μk = 0.(6.8.4)(d)

Proof. As every weight of F (Sp(n),−ξ) lies in the convex hull of the extremal weights,

we have

(6.8.5) −Lmin(N,#I) ≤
X
j∈I

μj ≤ Lmin(N,#I),

for any subset I ⊂ {1, . . . , n}. In particular, applying the above inequality to I =

{1, . . . , n}, we have

nX
k=1

(γ + ξ + μ)k =

nX
k=1

γk +NL+

nX
k=1

μk ≥
nX
k=1

γk +NL−NL =
nX
k=1

γk.

On the other hand, since γk ≥ 0 for any k, we have

nX
k=1

(γ + ξ + μ)k =

nX
k=1

(w · γ)k ≤
nX
k=1

γk,

from (6.8.3). Thus the both sides must be equal, so that we have (6.8.4)(b),(c). Now

(6.8.4)(a) follows from (6.8.4)(b) by applying (6.8.5) to I = {1, . . . , n}\{k} and I = {k}.
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It remains to check (6.8.4)(d). From (6.8.4)(a), we have

(γ + ξ + μ)j =

⎧⎨⎩
γj + L+ μj ≥ γj if 1 ≤ j ≤ N ,

γj + μj ≤ γj if N + 1 ≤ j ≤ n.

Fix k such that γk ≤ min
1≤j≤N

γj . Then

{j ; 1 ≤ j ≤ n, (γ + ξ + μ)j ≥ γk}

={1, 2, . . . , N} ∪ {j ; N + 1 ≤ j ≤ n, (γ + μ)j ≥ γk}

⊂{1, 2, . . . , N} ∪ {j ; N + 1 ≤ j ≤ n, γj ≥ γk}

={j ; 1 ≤ j ≤ n, γj ≥ γk}.

Since γ + ξ + μ is a permutation of γ ((6.8.4)(c)), both sets must coincide. Thus we

have

γj ≥ γk ⇒ γj + μj ≥ γk

for any j with N + 1 ≤ j ≤ n. Therefore if we assume moreover N + 1 ≤ k ≤ n, then

we have γk + μk ≥ γk by taking j = k. Hence μk = 0 from (6.8.4)(a). ¤

Claim 6.8.6. Suppose we are in the setting of Claim(6.8.2) with the same hypotheses.

Set J := {k ; γk > min
1≤j≤N

γj} and J 0 := {k ; N + 1 ≤ k ≤ n, k /∈ J}. Assume moreover

that

(6.8.7) min
j∈J

μj ≥ min
j∈J 0

μj ,

If J 0 is not empty, then μ = −ξ.

Proof. First we show that μj = 0 (N + 1 ≤ j ≤ n) if J 0 6= ∅. Indeed, μj = 0 when

j ∈ J 0 by (6.8.4)(d). If J 0 6= ∅, this implies μj = 0 (j ∈ J) because of (6.8.4)(a) and

(6.8.7). Therefore μj = 0 for j ∈ J ∪ J 0 = {N + 1, N + 2, . . . , n}. Now (6.8.4)(a),(b)

determines μ1 = −L. ¤
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6.9. verification of (6.5.4)(b)

Retain notations in §6.7. Set

n(j) :=

⎧⎨⎩
N +m(1) + Λ0 − Λ1 (j = 1),

m(j) + Λj−1 − Λj (2 ≤ j ≤ s).

Proof of (6.5.4)(b). Define the partition π̃ of n by

π̃ := (n(1), . . . , n(s),Λs − 1, 1m(s+1)),

and associate a parabolic subgroup P̃ (π̃) of Sp(n) (Definition(6.6.2)) with the Levi

factor

L(π̃) =

⎛⎝ sY
j=1

Gj

⎞⎠×GL(Λs − 1)×GL(1)m(s+1).
Here Gj ' GL(n(j)) stands for the obvious j-th block of L(π̃). Set

C
(j)
λ :=

⎧⎨⎩
Ind(P̃ (π) ∩G1 ↑ G1)([λ(0)]⊗ [Λ1]m(1) ⊗ [ν(1)]) (j = 1)

Ind(P̃ (π) ∩Gj ↑ Gj)([Λj ]m(j) ⊗ [ν(j)]) (2 ≤ j ≤ s).

Then appealing to induction by stages, we have

Cλ = Ind(P̃ (π̃) ↑ Sp(n))
µ
(
s
⊗
j=1
C
(j)
λ )⊗ [ν(s+1)]⊗ [Λs+1]m(s+1)

¶
.

As C
(j)
λ is an irreducible bimodule for Gj due to Barbasch and Vogan ([30] Proposition

12.2), each Harish-Chandra bimodule map for Gj

U(g1)/I(λ
(0),Λ1, . . . ,Λ1, ν

(1))→ C
(1)
λ

U(gj)/I(Λj , . . . ,Λj , ν
(j))→ C

(j)
λ (2 ≤ j ≤ s)

is surjective. From Theorem 5.5 of [33] combined with the exactness of the functor

Ind(P̃ (π̃) ↑ Sp(n)), the bimodule map

U(sp(n))/I(γ)→ Cλ
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is also surjective (γ is defined in (6.3.2)(a)). Therefore Cλ is generated by a unique (up

to scalar) Sp(n)-fixed vector as a Harish-Chandra bimodule for Sp(n).

The similar argument is available for λ+ ξ. More precisely, one should replace π̃ by

its refinement according to n(1) = N + (m(1) + Λ0 − Λ1). Thus we have shown the

condition (6.5.4)(b). ¤

6.10. verification of (6.5.4)(c)

Retain notations in Theorem(6.3.1) and §6.6-7. Suppose we are in the setting of

(6.7.1-4). Define another ordered partition of n = N + r + l by

π0 = (N, 1m(1), . . . , 1m(s+1),Λ0 − Λ1, . . . ,Λs − Λs+1)

= (N, 1r,Λ0 − Λ1, . . . ,Λs − Λs+1),

a permutation of π (Definition(6.7.5)). We define a Harish-Chandra bimodule for L(π0)

by

(σ0)λ := [λ
(0)]⊗ (

s+1
⊗
j=1
[Λj ]

m(j))⊗ (
s+1
⊗
j=1
[ν(j)]),

and a Harish-Chandra bimodule for Sp(n) by

(C 0)λ := Ind(P̃ (π
0) ↑ Sp(n))((σ0)λ).

We will construct Harish-Chandra bimodule maps for Sp(n):

Cλ → (C 0)λ(6.10.1)

(C 0)λ → Rγ(l : g)(6.10.2)

that are non-zero on Sp(n)-fixed vectors.

As for the first map (6.10.1), it is proved on GL(n) level. In fact, put

γ̃ := (tλ(0),Λ
m(1)
1 , tν(1), . . . ,Λm(s)s , tν(s), tν(s+1),Λ

m(s+1)
s+1 ) ∈ Cn,

γ̃0 := (tλ(0),Λm(1)1 , . . . ,Λm(s)s ,Λ
m(s+1)
s+1 , tν(1), . . . , tν(s), tν(s+1)) ∈ Cn,
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Then there is a commutative diagram of intertwining operators between Harish-Chandra

bimodules (see Definition(6.6.2)):

Ind(B ↑ GL(n))(Rγ̃(h : h)) −−−−→ Ind(B ↑ GL(n))(Rγ̃0(h : h))

∪ ∪

Ind(P (π) ↑ GL(n))(σλ) −−−−→ Ind(P (π0) ↑ GL(n))((σ0)λ).

The point here is that these horizontal maps are non-zero on GL(n)-fixed vectors ([28]

Chapter 4, see also [30] Theorem 11.5). By inducing it to Sp(n), the induced Harish-

Chandra bimodule map

Cλ ' Ind(P̃ ((n)) ↑ Sp(n)) Ind(P (π) ↑ GL(n))(σλ)

→ (C 0)λ ' Ind(P̃ ((n)) ↑ Sp(n)) Ind(P (π0) ↑ GL(n))((σ0)λ)

is non-zero on the Sp(n)-fixed vector.

As for the second map (6.10.2) we use induction by stages according to

L(π0) ⊂ LC := GL(N)×GL(1)r × Sp(l) ⊂ Sp(n).

Then the desired result is obtained from the corresponding one for LC, that is,

Ind(P̃ (π0) ∩ LC ↑ LC)((σ0)λ)→ Rγ(l : l)

is a surjective Harish-Chandra bimodule map for LC.

The argument for λ+ ξ is quite similar.

6.11. proof of Corollary(6.4.1)

Suppose we are in the setting of Corollary(6.4.1). Define the parabolic subalgebra

q = l+ u of g such that q ⊂ p, h ⊂ l ⊂ m and l ' gl(n1)⊕ gl(1)n−n1−l ⊕ sp(l).
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We proceed by induction on n. Put g0 := gl(n1) ⊕ sp(n− n1), s0 := dim(n ∩ k ∩ g0).

We will show that Rs
p(Cλ) is irreducible as U(g)-module assuming the irreducibility in

the sp(n − n1) case. If γn1 ≥ l, then γ is weakly good with respect to p + g0 ⊂ g and

so the inductive assumption assures that
¡
Rg
p

¢s
(Cλ) '

³
Rg
p+g0

´s−s0
(
³
Rg0

p∩g0
´s0
(Cλ))

is irreducible (or zero) (Fact(1.4.1)(1), Lemma(3.2.1)). Thus we shall concentrate on

the case where γn1 < l.

First recall that our assumption on γ = λ + ρm implies that γ is in the weakly fair

range with respect to both q ⊂ g and p ⊂ g. We have a surjective Harish-Chandra

bimodule map for MC (cf. (6.6.1)):

Ind(MC ∩QC ↑MC) (Rγ(l : l))→ Rγ(m : m).

Applying the exact functor Ind(PC ↑ GC) with trivial n action, we have a surjective

Harish-Chandra bimodule map for GC:

Rγ(l : g)→ Rγ(m : g).

Here we used Rγ(l : g) ' Ind(PC ↑ GC) Ind(MC ∩ QC ↑ MC) (Rγ(l : l)). Thus the

U(g)-action on Rs
p(Cλ) factors through algebra homomorphisms

U(g)→ Rγ(l : g)³ Rγ(m : g).

Now we apply Theorem(6.3.1) to r = n2+ · · ·+nk, N = n1 andM = Rs
p(Cλ+ξ). (As

γ is a Z(m)-infinitesimal character of a one dimensional representation, γ is of the form

(6.3.2)(a) with (6.3.2)(b).) Choose ξ as in Theorem(6.3.1), then Rs
p(Cλ+ξ) is irreducible

by the inductive assumption as we saw, in the case γn1 ≥ l. Therefore if we show

(6.11.1) ψγγ+ξRs
p(Cλ+ξ) = Rs

p(Cλ),

then we are done. From Lemma(3.4.1)(2), it suffices to show

μ = −ξ,
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if μ ∈ h∗ ' Cn is a weight in F (Sp(n),−ξ) satisfying

⎧⎨⎩
μ is dominant for ∆+(m, h),

γ + ξ + μ = w · γ for some w ∈W (sp(n)).

This is derived from Lemma(6.8.1) by the following observation: With notation in

Lemma(6.8.1), reorder π, γ as

π0 := (N, 1m(1)+···+m(s)+m(s+1),Λ0 − Λ1, . . . ,Λs−1 − Λs,Λs − 1),

γ0 := (λ(0),λ1, . . . ,λr, ν
(1), . . . , ν(s), ν(s+1)).

The same statement for γ0, l(π0) as in Lemma(6.8.1) holds (use an inner automorphism

of Sp(n)) and its assumption is satisfied under (6.11.2) because l(π0) ⊂ m. (Recall that

(ν(1), ν(2), . . . , ν(s), ν(s+1)) is a grouping of (l, l− 1, . . . , 2, 1).) Hence (6.11.1) holds and

Corollary(6.4.1) is proved.



96 TOSHIYUKI KOBAYASHI

7. Proof of vanishing results outside the fair range

This section is devoted to Part(2) of Theorems 1 and 2 (see §2): the vanishing

result, when j 6= S ≡ dim(u ∩ k), for the derived functor modules Rj
q(Cλ) with small

parameter λ such that Cλ lies outside the fair range. WhenG = SO0(p, q), the condition

(2.6.2) implies that Cλ (resp. Cλ0) lies in the weakly fair range with respect to q (resp.

q0). Then Part(2) of Theorem 3 is a direct consequence of Fact(1.4.2)(1-a). When

G = U(p, q), we can apply Lemma(3.4.1)(2) and Fact(1.4.2)(1-a). This is fairly easy

and we shall give a preliminary Lemma(7.1.1). The rest of this section (§7.2-4) will be

devoted to the case G = Sp(p, q). The non-trivial part there is only the crossing of the

wall λr = 0.

7.1. proof in complex case

When G = U(p, q), the iteration of the following lemma and Lemma(3.4.1)(2) reduces

the vanishing of Rj
q(Cλ) (j 6= S) under the condition (2.4.2) to that under the condition

λ1 > λ2 > · · · > λr > Q ≥ λr+1 ≥ · · · ≥ λr+s.

Similarly, this is then reduced to the vanishing under the condition

λ1 > λ2 > · · · > λr > Q > −Q > λr+1 > · · · > λr+s.

Now the vanishing ofRj
q(Cλ) (j 6= S) in this last case is well known (see Fact(1.4.1)(1-a)

or Fact(1.4.2)(1-a)). So it suffices to show

Lemma(7.1.1). Let G = U(p, q) and q = q(r, s) = l + u (r + s ≤ p) be a θ-stable

parabolic subalgebra. Retain notations as in §2.3. Let λ = (λ1, . . . ,λr+s) ∈ t∗. Fix
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i (1 ≤ i ≤ r + s) and set λ0 := λ+ fi ∈ t∗. Assume

λi ≥ −Q.(7.1.2)(a)

λj 6= λi + 1 for any j (1 ≤ j ≤ r + s).(7.1.2)(b)

Then A (λ0 . λ) = {λ} (see §3.3 for definition).

Proof. Fix a positive system ∆+(l, h) so that ρl = (

r+sz }| {
0, . . . , 0, Q,Q − 1, . . . ,−Q). We

shall prove A(∆+(l, h);λ0 . λ) = {λ}. (Then we tell a fortiori A(∆+(l, h);λ0 . λ) is

independent of a particular choice of ∆+(l, h). This is the reason why we omit ∆+(l, h)

in the statement of Lemma(7.1.1).)

Suppose μ = (μ1, . . . ,μp+q) ∈ A(∆+(l, h);λ0 . λ). As μ − λ0 is a weight of a p +

q dimensional representation F (gl(p+ q,C),−fi) = F (gl(p+ q,C),−f1), we can find

k (1 ≤ k ≤ p+ q) such that

(7.1.3) μ = λ0 − fk = λ+ fi − fk.

Thus μ− λ0 is dominant for ∆+(l, h) iff 1 ≤ k ≤ r + s or k = p+ q.

Let us observe that k 6= p + q. If μ were to be λ + fi − fp+q, then (7.1.2)(a) and

(7.1.3) would imply

#{j ; (μ+ ρl)j = −Q− 1} = #{j ; (λ+ ρl)j = −Q− 1}+ 1,

contradicting to the fact that μ+ ρl ∈ Sp+q · (λ+ ρl). Therefore we have 1 ≤ k ≤ r+ s

and μ = λ + fi − fk ∈ t∗. Then μ + ρl ∈ Sp+q · (λ + ρl) implies μ ∈ Sr+s · λ. Now

(7.1.2)(b) assures k = i and μ = λ+ fi − fi = λ. Hence A(∆+(l, h);λ0 . λ) = {λ}. ¤

7.2. vanishing result in quaternionic case

The rest of this section will be devoted to proving Theorem 1 (2). That is,
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Theorem 7.2.1. Let G = Sp(p, q) and fix an integer r (1 ≤ r ≤ p). Set Q := p+ q− r

and let q ≡ q(r) be a θ-stable parabolic subalgebra as in §2.1. Retain the notation

there. If λ = (λ1, . . . ,λr) ∈ Zr ⊂ t∗ satisfies

(7.2.2) λ1 ≥ λ2 ≥ · · · ≥ λr−1 ≥ |λr|, λr ≥ −Q,

then Rj
q(Cλ) = 0 for any j 6= S.

Remark 7.2.3. The assumption λr ≥ −Q in (7.2.2) is crucial. In fact, it does happen

that RS−i
q (Cλ) 6= 0 (i = 0, 1) when λr < −Q. (I checked this when p = r by using

Vogan’s Uα calculus.)

7.3. maximal parabolic case

First we prove Theorem 7.2.1 in the case where r = 1 so that q is a maximal parabolic

subalgebra in g. This is a main part in the proof.

Lemma 7.3.1. Theorem(7.2.1) holds when r = 1.

Proof. We write λ(n) := n ∈ t∗ ' C for n ∈ Z. Then Cλ(n) is in the weakly fair range

iff n ≥ 0. Because of the vanishing theorem, Rj
q(Cλ(n)) = 0 (j 6= S), in the weakly fair

range (Fact(1.4.2)(1-a)), we should concentrate our attention on 0 > n ≥ −Q. Then

thanks to Lemma(3.4.1), it suffices to treat only the case where n = −1 because

A (λ(−i) . λ(−i− 1)) = {λ(−i− 1)} (−1 ≥ i ≥ −Q+ 1).

(See §3.3 for notation.) Let us prove the vanishing result for λ = λ(−1). For this, we

apply Lemma(3.4.1)(3-a,b) and Claim(3.4.7). But we give a little detailed explanation

of it for the benefit of the reader. First observe that

A (λ(1) . λ(0)) = A (λ(−1) . λ(0)) = {λ(0)},(7.3.2)(a)

A (λ(0) . λ(1)) = A (λ(0) . λ(−1)) = {λ(1),λ(−1)},(7.3.2)(b)
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and that Rj
q(Cλ(1)) = Rj

q(Cλ(0)) = 0 for j 6= S. From (7.3.2)(a), we have

ψ
λ(0)+ρl
λ(1)+ρl

(Rj
q(Cλ(1))) = Rj

q(Cλ(0)),

ψ
λ(0)+ρl
λ(−1)+ρl(R

j
q(Cλ(−1))) = Rj

q(Cλ(0)).

Applying Claim(3.4.7) with F = F (Sp(p, q),λ(1)) (' C2p+2q), we have a filtration of

q-modules:

{0} = F0 ⊂ F1 ⊂ F2 ⊂ F3 = F

such that F1 ' Cλ(1), F2/F1 ' 1 £ F (Sp(p− 1, q), (1, 0, . . . , 0)) and F/F2 ' Cλ(−1).

From (7.3.2)(b) and Lemma(3.4.1)(3-b)0, we have a long exact sequence of (g, K)-

modules:

0→ RS−1
q (Cλ(−1))→ RS

q (Cλ(1))→ ψ
λ(1)+ρl
λ(0)+ρl

(RS
q (Cλ(0)))→ RS

q (Cλ(−1))→ 0,

and Rj
q(Cλ(−1)) = 0 for j 6= S − 1, S. Since RS

q (Cλ(1)) is (nonzero) irreducible by

Corollary(6.4.1), we have either

RS−1
q (Cλ(−1)) = 0,

or

RS−1
q (Cλ(−1)) ' RS

q (Cλ(1)).

But the latter case is impossible. Indeed, applying ψ
λ(0)+ρl
λ(1)+ρl

= ψ
λ(0)+ρl
λ(−1)+ρl to the latter

(false) isomorphism, we would have RS−1
q (Cλ(0)) = RS

q (Cλ(0)). Since Cλ(0) is in the

weakly fair range, we have RS−1
q (Cλ(0)) = 0, while RS

q (Cλ(0)) 6= 0 by Corollary(4.3.6).

This is a contradiction. Therefore Rj
q(Cλ(−1)) = 0 for all j 6= S. This completes the

proof. ¤

7.4. general parabolic case
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Proof of Theorem(7.2.1). Fix λ = (λ1, . . . ,λr) satisfying (7.2.2). The spectral sequence

of induction by stages (Lemma(3.2.1)) corresponding to

L := Tr × Sp(p− r, q) ⊂M := Tr−1 × Sp(p− r + 1, q) ⊂ G = Sp(p, q)

collapses to

(7.4.1)
³
Rg
q(r−1)

´i ¡
Rm
q∩m

¢S0
(Cλ) ' Ri+S0

q (Cλ),

from the vanishing result Lemma(7.3.1) applied to a maximal parabolic subalgebra

q ∩m ⊂ m and Q = (p− r + 1) + q − 1 = p+ q − r. Here S0 = dim(u ∩ k ∩m). Take a

weight μ = (μ1, . . . ,μr−1,λr) ∈ Zr ⊂ t∗ such that

μ1 > μ2 > · · · > μr−1 > max(|λr|, Q).

SinceRS0
q∩m(Cμ) is in the good range with respect to q(r−1) ⊂ g, we haveRj

q(Cμ) = 0

for j 6= S. We can easily find a sequence λ(0) = μ,λ(1), . . . ,λ(n) = λ so that

A
³
λ(i−1) . λ(i)

´
= {λ(i)} for i = 1, 2, . . . , n.

Hence an inductive argument shows Rj
q(Cλ) = 0 for all j 6= S from Lemma(3.4.1). ¤
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8. Proof of the inequivalence results

In this section we shall show the results on pairwise inequivalence among RS
q (Cλ)’s,

i.e. Part (4) of the Theorems in §2. Our method is based on the K-spectrum calculated

in §4. In view of the Z(g)-infinitesimal characters, the non-trivial cases are when G =

Sp(p, q) or when G = SO0(p, q) with p = 2r.

8.1. quarternionic case

Suppose we are in the setting of §2.2. It suffices to compare the modules with the

same Z(g)-infinitesimal character to prove Part (4) of Theorem 1. That is, we must

show:

Proposition 8.1.1. Let G = Sp(p, q) and fix an integer r (1 ≤ r ≤ p). Retain the

notation in §2.1. Let λ = (λ1, . . . ,λr−1,λr) ∈ Zr ⊂ t∗ satisfy

(8.1.2)

⎧⎨⎩
λ1 > λ2 > · · · > λr−1 > λr > 0,

λr−2q ≥ Q+ 1(≡ p+ q − r + 1) when r > 2q.

If we set λ0 = (λ1, . . . ,λr−1,−λr), then RS
q (Cλ) 6' RS

q (Cλ0) as a (g,K)-module.

Proof. Let l (0 ≤ l ≤ r − 1) be an integer such that λl > Q ≥ λl+1. We may assume

λl >> Q so that λl − p + q + l − 1 ≥ 0. We may also assume Q ≥ λr. This is

possible because the general statement is derived from the corresponding one in this

special case by reduction to absurdity (use the translation principle). In our present

situation, Ri
q(Cλ) = Ri

q(Cλ0) = 0 when i 6= S by Theorem(7.2.1). Hence, it suffices

to find μ ∈ t∗ such that M(q,λ,μ) 6= M(q,λ0,μ) (see §4.1 for notation). We define
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b, b0 ∈ Zr by (4.3.1) and k, k0 ∈ N by (4.3.4) corresponding to λ, λ0 respectively. Set

δ = (b1, . . . , bk, 0, . . . , 0), δ
0 = (b01, . . . , b

0
k0 , 0, . . . , 0) ∈ Zr. Let us show

M(q,λ, δ0) < M(q,λ0, δ0).

As bl = λl−p+q+l−1 ≥ 0 from our assumption, we have k, k0 ≥ l and Q ≥ λk+1, λ
0
k0+1

respectively. We divide now into two cases according as δ = δ0 or not.

(I) δ 6= δ0.

In this case we have
Pr

i=1 δ
0
i <

Pr
i=1 δi =

Pk
i=1 bi. Hence, M(q,λ, δ0) = 0 <

M(q,λ0, δ0) from Proposition(4.3.2)(2)-(3) (see also Remark(4.3.5)).

(II) δ = δ0.

In this case we have k = k0. Combining Proposition(4.3.2)(2) with the explicit

formula of d(n, l;x) in Lemma(4.2.6) and putting P := p− q + 1, then we have

M(q,λ, δ)

M(q,λ0, δ0)
=
d(2q, r − k;−λk+1 + P, . . . ,−λr−1 + P,−λr + P )
d(2q, r − k;−λk+1 + P, . . . ,−λr−1 + P,λr + P )

=

2q−r+kQ
j=1

(j − λr + p− q)
Q

k+1≤j<r
(λj − λr)

2q−r+kQ
j=1

(j + λr + p− q)
Q

k+1≤j<r
(λj + λr)

< 1.

Hence M(q,λ, δ0) =M(q,λ, δ) < M(q,λ0, δ0). ¤

8.2. orthogonal case

Suppose we are in the setting of §2.6 and §4.5. Assume p = 2r and (2.6.3). Put

δ := μλ|tc = (λ1 +
q

2
− r + 1, . . . ,λr−1 +

q

2
− 1,λr +

q

2
) ∈ (tc1)∗,

δ0 := μ0λ0 |tc = (λ1 +
q

2
− r + 1, . . . ,λr−1 +

q

2
− 1,−λr −

q

2
) ∈ (tc1)∗,
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Then δ 6= δ0 and

M(q,λ, δ) =M(q0,λ0, δ0) = 1

M(q,λ, δ0) =M(q0,λ0, δ) = 0

This follows from Proposition(4.5.2), but is easy to check directly because μλ, μ
0
λ0 are

∆+(k) dominant in this case. Since RS−j
q (Cλ) = RS−j

q0 (Cλ0) = 0 when j 6= 0, we have

RS
q (Cλ) 6' RS

q0(Cλ0).
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