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Plan of Lectures

Talk 1: Is rep theory useful for global analysis? ‘

—Multiplicity: Approach from PDEs

Talk 2: Tempered homogeneous spaces
—Dynamical approach

Talk 3: Classification theory of tempered G/H
—Combinatorics of convex polyhedra

Talk 4:




Plan

Method Topic
Lecture 1 PDEs Multiplicity in C*(G/H)
Lecture 2 Dynamical approach LZ-estimate of L*(G/H)
Lecture 3 Combinatorics Classification of non-tempered G/H

e Plan for Today (Lecture 4)

0. Temperedness criterion (generalization)

Explore yet another relation of tempered homogeneous spaces

with other disciplines .
1. Topology: Deforming Lie algebras
2. Geometry: Geometric quantization



Plan of Lectures

Talk 1: Is rep theory useful for global analysis? ‘

—Multiplicity: Approach from PDEs

Talk 2: Tempered homogeneous spaces
—Dynamical approach

Talk 3: Classification theory of tempered G/H
—Combinatorics of convex polyhedra

Talk 4: Tempered homogeneous spaces
—Interaction with topology and geometry




Temperedness criterion (generalization)

Lecture 2 @ @

N 1%
semisimple linear

Method

(TheoremE)  Case 1 Dynamical approach

(TheoremF’)  Case 2 G D> H Global geometry + Case 1
semisimple  reductive

( (TheoremH)  Case 3 G > H Domination of G-spaces )

semisimple any

Today

(Theorem0) Case4 G > H “Limit algebras”
- any any



Reminder from Lecture 2

a: max split abelian subspace of a Lie algebra

py s defined for a linear action b~V by

) max 3 leigenvalues of Y )|
YN0y (Y) | ven) 3 leigenvalues of Y ¥ V|’




Levi decomposition

¢ (Hulanicki—Reiter) For solvable Lie groups, all unitary reps are
tempered.

e Levi decomposition

g= g @& u (Levi decomposition)
semisimple solvable
G > Gy (semisimple part)

e For a unitary representation x of a Lie group G, we shall discuss
temperedness of  as a representation of the semisimple part Gy .



Temperedness criterion in the general case

I Setting H c G real algebraic Lie groups.

We allow G and H to be non-reductive.
Take maximal semisimple subgroups H; and G of H and G,
respectively, such that Hy; c Gs . Consider

Gs cG"YL*(G/H)

*Y. Benoist-T. Kobayashi, Tempered homogeneous spaces IV, J. Inst. Math. Jussieu, 28 pages, 2022.
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Temperedness criterion in the general case

I Setting H c G real algebraic Lie groups.

We allow G and H to be non-reductive.
Take maximal semisimple subgroups H; and G of H and G,
respectively, such that Hy; c Gs . Consider

Gs cG"YL*(G/H)
Weset V:=g/b+g/gs--- H, -module

Theorem O* L*(G/H)is G -tempered < py < 1. I

> Py, < gy ON by
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Temperedness criterion in the general case

I Setting H c G real algebraic Lie groups.

We allow G and H to be non-reductive.
Take maximal semisimple subgroups H; and G of H and G,
respectively, such that Hy; c Gs . Consider

Gs cG"YL*(G/H)
WesetV:=g/b+g/gs--- H, -module

Theorem O* L*(G/H)is G -tempered < py < 1. I

When G is semisimple, i.e., G = G5, Theorem O implies:

Theorem H (Lecture 2: G semisimple, H reductive case)
L*(G/H) is G-tempered &< py < 1.

*Y. Benoist-T. Kobayashi, Tempered homogeneous spaces IV, J. Inst. Math. Jussieu, 28 pages, 2022.



Plan of Lecture 4
0. Temperedness criterion (generalization)

Explore yet another relation of tempered homogeneous spaces
with other disciplines .

1. Topology: Deforming Lie algebras

2. Geometry: Geometric quantization



Deformation of space forms S", R",and H"

SOm+1)" s"
]

SO(m)<R""™ R
'

SO, 1) H"

so(n+ 1)

so(n) < R”

so(n, 1)



Deformation of space forms S", R",and H"

K=SOmn+1)"> s* t=so(n+1)
! L “iimit algebra in g
MN = SO(n) <R" "> R" m+ 1 = so(n) < R”
1 L “limit algebra'in g
H=S0mn1)"" H" = so(n, 1)

View point from transformation groups

G =S50+ 1,1) contains K, MN, and H.




Deforming Lie algebras (1) — Example
Consider two equi-dimensional subalgebras of g = sl(n, R):

0 *
f=s0(n), n:{[ ]}

reductive 0 0
nilpotent

Observation “ sequence gj € SL(n,R) such that lim Ad(g;) T = n
]—)00

J
Proof. (n=2) Take g; = (2 . Then

0
0 27/

0 -1 0 =2%\j-ex_(0 -1
Aol(g,-)f_Aol(gj)R(1 0)—R(2_2j 0 )—>R(0 0)—n.

Remark 7 sequence g; € S L(n,R) such that lim Ad(g;))n = f. I
Jo®




Limit algebras (2) — Formulation
By forgetting the Lie algebra structure of g, one considers

Ad dim g
G Gr(g) := U Grp(g), (Grassmann variety).
m=0

b: a subalgebra of g, with dimension m.

~> Ty may be regarded as a point of Gr,,(g).

Gr(g) D Ad(G)h, which may or may not be closed. I

submanifold

Gr(g) D Ad(G)h 2 b,  (limit algebra)

Definition ( limit algebra ) b, (C g) is a limit algebra of hin g
if ¥ sequence g; € G such that lim Ad(g;)h = be in Gr(g).
]—)00



Limit algebras (3) — Properties

g Db subalgebra ~» Gr(g) D Ad(G)h 2 b, (limit algebra)

Remark Limit algebra is not unique.

Basic properties
0) b itself is a limit algebra of .
1) Any limit algebra b, is an equi-dimensional Lie algebra.

abelian abelian
2) Ifhis 4 nilpotent then any limit algebra b, is also { nilpotent
solvable solvable .

“Semisimple” ) may collapse to “ solvable ” b, but not vice versa.



Limit algebras (4) — Example

gD b subalgebra ~» Gr(g) D Ad(G)) > b (limit algebra)

Remark b is determined not only by 1 itself but by
how ) is embedded in g .

Exercise Fix p, and considerh = sl, — g=sl,,,
Find a necessary and sufficient condition on (p, ¢)
such that Ad(G)h > 7 solvable b, .

P q




Deforming Lie algebras to solvable ones

Example § = sl, — g =sl,4,
P 4

q<p p does not have a solvable limit.

g=p+1 7* has a solvable limit.
q

Definition (solvable limit algebra) b c g Lie algebras

We say b has a solvable limit in g if

I{g;} € G such that lim Ad(g,)b is a solvable Lie algebra.
J—o0 —




Variety of all Lie algebras £ and its subset S
Formulation: Consider the variety of all subalgebras in g.

dim g

Gr(g) = ]_[ Gry(9) .-+ algebraic variety
N=0

L :={subalgebras of g} --- algebraic variety

U

S :={he £:AdG)h > b, solvable }

U

{solvable subalgs} -+ algebraic variety

I Question What does S look like in £ ?




Variety of all Lie algebras £ and its subset S
g: Lie algebra.

L :={subalgebras of g}
U

S :={he L£:AdG)h > b solvable }

I Question What does S look like in £ ?

p q p q

P=q p<q-1



Topology of S = {h : Ad(G)h > b, solvable}
Suppose g is an algebraic Lie algebra /C.

Open ProblemP Is S openin L£? I




Topology of S = {h : Ad(G)h > b, solvable}
Suppose g is an algebraic Lie algebra /C.

Open ProblemP Is S openin L£? I

Theorem Q*

(1) S isclosedin L.
(2) 'S isopenandclosedin L if gis semisimple.

Recall

L := {subalgebras of g}
U
S :={he L£:AdG)H > b, solvable }

Our proof for Theorem Q uses unitary representation theory.

* Y. Benoist-T. Kobayashi, Tempered homogeneous spaces 1V, J. Inst. Math. Jussieu, 28 pages, 2022.



S and temperedness of L>(G/H)

G :complex algebraic Lie group,
H : algebraic subgroup.

We recall
L := {subalgebras of g}
u
S :={he L£:AdG)H > ., solvable }
Theorem R*

L*(G/H) is Gs-tempered < he S.

Since temperedness criterionp . < 2p o/b in Theorem O is a

closed condition, 8 is closed in £, showing Theorem Q (1).



Sketch of Proof of Theorem R (easier part)
We explain an easier part of the inplication in Theorem R.

L*(G/H)is Gytempered = h e S.
Take b, € Ad(G)h such that Ad(G)b., is closed. We show

Pa, < 2pq/n ON by = b is solvable.

e Can assume b = h,. '2

e Can find a parabolic q of g such that ) is an ideal of g
AN

Pa. < 2pg/n 0N b implies b = 0 after some elementary

computation. Hence, } is solvable.



Plan of Lecture 4
0. Temperedness criterion (generalization)

Explore yet another relation of tempered homogeneous spaces
with other disciplines .

1. Topology: Deforming Lie algebras

2. Geometry: Geometric quantization



Geometric quantization and temperedness

Ad: G — GLgr(g) adjoint representation.
Ad*: G - GLr(g") coadjoint representation.
Coadjoint orbit O, := Ad*(G)A for A € g".

Lemma (Kostant—Kirillov—Souriau)
Every coadjoint orbit O, carries a natural symplectic structure.

“Geometric quantization”:

450, = AdG)A ~> 1, €C

symplectic mfd unitary rep

Expect
g*/ Ad*(G) = G



From orbit philosophy by Kirillov—Kostant
We assume now G is a complex reductive Lie group.

g o gfeg = {1 € g : Ad"(G)A is of maximal dimension},
g*obht ={1eg": =0}

Orbit philosophy by Kirillov—Kostant

Ad*(G)h*/ Ad*(G) = Supp(L*(G/H))
N N
g*/ Ad*(G) = G
U U
g;‘cg/ Ad* (G) = Gtcmp

Remark h* N g, # 0 & b N g, S bt I




Geometric quantization and temperedness

9 —
“Geometric quantization™: ¢* 2 0, = Ad"(G)A ~ m €G

symplectic mfd unitary rep
Ad(Db/ Ad(G) = Supp(L*(G/H))
n n
g /A (G) = G
u U
Gieg/ Ad(G) = Giemp
Theorem S*

Suppose G is a complex reductive Lie group,

and H a connected closed subgroup. Then (i) < (ii).
(i) G L*(G/H) is tempered.

(ii) gree N B # 0.

gfeg :={1€ g : Ad"(G) - 1 is of maximal dimension}
b :={1eg”: Al =0}

* Y. Benoist-T. Kobayashi, Tempered homogeneous spaces 1V, J. Inst. Math. Jussieu, 28 pages, 2022.



Further interactions for “tempered spaces”

Theorem T Let g be a complex reductive Lie algebra.
The following 4 conditions on a Lie subalgebra §) are equivalent.

(i) (Analysis ) L*(G/H) is tempered .
(ii) (combinatorics) 2pp £ py.

(iii) (Geometric quantization) — h* N gy, # 0in g*.

(iv) ( Topology ) h has a solvable limitin g .

Application Representation theory = Topology

Corollary U ( Topology ) The property “having solvable limit” is an
open and closed condition for subalgebras in a complex reductive
Lie algebra g, namely, 'S is open and closed in L.

* Y. Benoist-T. Kobayashi, Tempered homogeneous spaces 1V, J. Inst. Math. Jussieu, 28 pages, 2022.



Sketch of Proof for Theorem S: Tempered homogeneous spaces

Thm TLet g be a complex reductive Lie algebra.

The following 4 conditions on a Lie subalgebra b are equivalent.
(i) (unitary rep) Lz(G/H) is tempered .

(i) (combinatorics) 2oy < pq-

(iii) (orbit method) bt N gj % 0ing*.

(iv) (limit algebra) b has a solvable limitin g.

Analysis (i)
Lecture 2
dynamical system / \ geom quantizatior
Classification < Algebra (ii) = Geometry (iii)

Lecture 3

AV 7

Topology (iv)



Reductive homogeneous space G/H

real reductive groups
reductive subgroup

T Q

reductive homogeneous spaces

real spherical spaces

spherical spaces
(and their real forms)

symmetric spaces

We shall also discuss when G and H are not nesssarily reductive.



Basic Questions
in Group-Theoretic Analysis on Manifolds

GX o~ GO, LX), -
Geometry Function Space

Basic Question 1 (Lecture 1)
Does the group G “control well” C*(X)?
Use a system of PDEs.

Formulation Consider the dimension of

Homg(r,C¥(X)) for 7 € Irr(G).

infinite, finite, bounded, Oor1

control better



Basic Questions
in Group-Theoretic Analysis on Manifolds

GYX w GTYCRX), LX), -
Geometry Function Space =

Basic Question 1 (Lecture 1)
Does the group G “control well” C*(X)?
Use a system of PDEs.

Lecture 1

Theorem B *The following conditions are all equivalent:

(i) (Analysis & rep theory) There exists C > 0 s.t.
dim Homg(mr, C*(X)) < C for all 7 € Irr(G).

(i) (Complex geometry) Xc is Ge-spherical.

(i)’ (Algebra) The ring Dg(X) is commutative.

(ii)” (Algebra) The ring Dg(X) is a polynomial ring.




Basic Questions
in Group-Theoretic Analysis on Manifolds
GX o GTYCR0), LX), -+
Geometry Function Space

Basic Question 1 (Lecture 1)
Does the group G “control well” C*(X)?
Use a system of PDEs.

Basic Question 2 (Lectures 2—4)
What is the spectrum of L*(X)?
Can we decompose L*(X) by irreducible tempered reps?

Use ideas of dynamical system, combinatorics, and deformation.




Thank you very much!
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