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Let ∆ =
∑

∂2/∂x2
i be the Laplace operator on Rn. The heat equation is given by

∆u(x, t) =
∂

∂t
u(x, t)

lim
t→0+

u(x, t) = f(x)

where f can be a L2-function, a distribution or an element in some other natural
class of objects. The solution u(x, t) = et∆f(x) = Htf(x) is given by

(1) Htf(x) =
∫

Rn

f(y)ht(x− y) dy =
1

(4πt)n/2

∫

Rn

f(y)e−(x−y)·(x−y)/4t dy

where ht(x) = (4πt)−n/2e−x·x/4t is the heat kernel, i.e. the solution corresponding
to f = δ0. The map Ht : L2(Rn) → L2(Rn) is smoothing, in fact one reads of from
the explicit formula (1), that Rn 3 x 7→ Htf(x) ∈ C extends to an entire function on
Cn. The transform L2(Rn) 3 f 7→ Htf ∈ O(Cn) is the Segal-Bargmann transform.
Its image is the space of holomorphic functions F : Cn → C, such that

‖F‖2t := (2πt)−n/2

∫
|F (x + iy)|2e−‖y‖2/2t dxdy < ∞

and ‖f‖ = ‖Htf‖t.
The Heat equation has a natural generalization to all Riemannian manifolds.

The solution is again given by the Heat transform

u(x, t) = Htf(x) =
∫

f(y)ht(x, y) dy

where ht is the heat kernel, but – as there is no natural complexification in general –
it is not at all clear how to realize the image in a Hilbert space of holomorphic func-
tions. One exception is the class of semisimple Riemannian symmetric spaces. The
special case of K-invariant functions leads to generalizations of the Segal-Bargmann
transform for the heat equation related to arbitrary multiplicity functions.

In those two talks, we will discuss the following:
(1) The Heat equation and Segal-Bargmann transform on Rn. Our proof of

the unitarity and surjectivity will involve the restriction principle [2].
(2) Basic structure of symmetric spaces of noncompact type and the crown, [1].
(3) The image of the Segal Bargmann transform for Riemannian symmetric

spaces of the noncompact type, [1].
(4) The case of K-invariant functions and the Heckmann-Opdam hypergeomet-

ric transform, [3].
(5) (Only if there is time enough) the restriction principle for semisimple sym-

metric spaces, [2]
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All the following references, except [2, 11], are available on arxiv. The articles
[2, 11] can be downloaded from www.math.lsu.edu/∼preprint.
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