On the matricial version of Fermat-Euler congruences

V.I. Arnold ${ }^{\star}$

Received: 1 July 2005 / Revised version: 16 December 2005 / Accepted: 16 December 2005
Published online: 2 April 2006
(c) The Mathematical Society of Japan and Springer-Verlag 2006

Communicated by: Kaoru Ono

Abstract

The congruences modulo the primary numbers $n=p^{a}$ are studied for the traces of the matrices A^{n} and $A^{n-\varphi(n)}$, where A is an integer matrix and $\varphi(n)$ is the number of residues modulo n, relatively prime to n.

We present an algorithm to decide whether these congruences hold for all the integer matrices A, when the prime number p is fixed. The algorithm is explicitly applied for many values of p, and the congruences are thus proved, for instance, for all the primes $p \leq 7$ (being untrue for the non-primary modulus $n=6$).

We prove many auxiliary congruences and formulate many conjectures and problems, which can be used independently.

Keywords and phrases: Young diagram, Newton-Girard formula, multinomial coefficients, Cesaro averaging, symmetric functions, finite Lobachevsky plane, Vieta mapping, Euler zeta function, Euler group, little Fermat Theorem, geometric progression, arithmetical turbulence

Mathematics Subject Classification (2000): 05A10, 05A17, 11A15, 11B50, 11T60, 51E20, 51E25
V.I. ARNOLD

CEREMADE, Universite Paris 9 - Dauphine, Place du Marechal de Lattre de Tassigny, 75775
Paris cedex 16, France and
Steklov Mathematical Institute, Gubkina str. 8, Moscow 119991, GSP-1, Russia

* Partially supported by RFBR, grant 05-01-00104.

