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The étale cohomology of an algebraic variety defined over the rational
number field Q gives rise to an �-adic representation of the absolute Galois
group GQ of Q. To study such an �-adic representation, it is common to in-
vestigate its restriction to the decomposition group at each prime number p.
The purpose of this article is to survey our knowledge on the restrictions
at various primes. When the variety has bad reduction at p, we find an
interesting phenomenon called ramification. In this article we also report on
recent discoveries on ramification.

This article is closely related to but independent of [26].

1. Local-Global relation in number theory

1.1. The Beta function and the Jacobi sums. Consider the Jacobi sum

J(a, b) =
∑

x∈Fp\{0,1}
χa(x)χb(1− x),

where χ is a multiplicative character of Fp, that is, a character of the mul-
tiplicative group F×

p . This is an arithmetic analog of the Beta function

B(s, t) =
∫ 1

0
xs−1(1− x)t−1 dx.

Their formal similarity comes from the fact that the function x �→ xs is
a multiplicative character of R, and the summation in the Jacobi sum is
replaced by an integral in the Beta function. The Beta function and the
Jacobi sums share a number of similar properties.

The similarity is not superficial but is rooted in geometry. Let Cn be the
algebraic curve defined by the equation Xn+Y n = 1. The curve Cn is called
the Fermat curve. Both the Beta function and the Jacobi sum indeed come
from the cohomology of Cn.

Let us first consider the case of the Beta function. Let X be an algebraic
variety over Q. Between the singular cohomology and the de Rham cohomol-
ogy, the comparison isomorphism Hq(X(C),Q) ⊗Q C→ Hq

dR(X/Q)⊗Q C
is defined by the so-called period integrals. The Beta function B(s, t) is a
period integral for H1(Cn) if s and t are rational numbers with denomina-
tor n.
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On the other hand, if p does not divide n, the number of Fp-rational
points on Cn is expressed in terms of the Jacobi sums J(a, b) (see [41]).
The number of rational points on a variety over a finite field is related to
its cohomology. As many readers may already know, the étale cohomology
was defined by Grothendieck[2] in order to prove the Weil conjecture on the
congruence zeta-function, and it was indeed proved using étale cohomology,
see [12]. The congruence zeta-function is defined as a generating function
of the number of Fpm-rational points on the variety. The main point of
the proof is to express the congruence zeta-function as the characteristic
polynomial of the Frobenius operator acting on the étale cohomology. This
is how the Jacobi sum J(a, b) is related to the cohomology of the Fermat
curve Cn.

The cohomology of the Fermat curve Cn is thus related to the Beta func-
tion when we regard Q as a subfield of the complex number field C, and
to the Jacobi sums when we take a reduction modulo a prime number p.
This picture is the prototype of the local-global relation in modern number
theory.

Beta function
C↗

Fermat curve Cn =⇒ H1(Cn)

p
↘

Jacobi sum

(Global) (Local)

1.2. �-adic representations of the Galois group. Let S be the set of
all prime numbers together with the infinity symbol “∞”; i.e., S = {prime
numbers} 	 {∞} = {2, 3, 5, 7, . . . ,∞}. Our standard point of view is to
regard S as something analogous to an algebraic curve, and Q as its function
field. As each prime number p gives rise to an embedding of Q into the p-
adic number field Qp, we associate∞ to the embedding of Q into R = Q∞.
The embeddings corresponding to prime numbers are called finite places,
and the embedding of Q into R is called the infinite place. A principle in
modern number theory is that the finite places and the infinite place should
be treated completely equally. According to this point of view, a locally
constant sheaf, or a local system on S (more precisely on an open set of S)
is an �-adic representation of the absolute Galois group GQ.

In Topology a local system on a topological space S is nothing but a rep-
resentation of its fundamental group π1(S). The fundamental group π1(S)
controls the coverings of the space S. Since the absolute Galois group GQ

controls the coverings of (an open set of) S = {2, 3, 5, 7, . . . ,∞}, we consider
a representation of GQ as a local system on (an open set of) S.

Recall that the absolute Galois group GQ = Gal(Q̄/Q) is the automor-
phism group Aut(Q̄) of an algebraic closure Q̄ of Q. If � is a prime num-
ber, an �-adic representation of GQ is a continuous representation GQ →
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GLQ�
(V ) 
 GLn(Q�), where V is an n-dimensional vector space over the �-

adic number field Q�. It is customary to use p for a prime number regarded
as a point in S, and � for the coefficient field of the local system. We need
to consider Hodge structures together with �-adic representations in order
to treat the infinite place equally (see [33]).

To an algebraic variety or a modular form over Q, we can associate an
�-adic representation (and a Hodge structure):

algebraic variety,
modular form

}
=⇒ �-adic representation

(+ Hodge structure)

Such a correspondence enables us to study algebraic geometric objects or
representation theoretic objects using �-adic representations, which is a lin-
ear algebraic object. Conversely, we can study Galois representation, a
highly arithmetic object, using geometric or representation theoretic meth-
ods. If we take the Fermat curve as the algebraic variety above, we obtain
the example given at the beginning. In practice, étale cohomology is a prin-
cipal tool to construct Galois representations. Though there are some other
methods, including that using fundamental groups or congruence, we do not
touch these here.

Let X be an algebraic variety over Q, and � a prime number. Then, the
natural action of GQ on Hq(XQ̄,Q�) gives rise to an �-adic representation
of GQ. As a Q�-vector space, Hq(XQ̄,Q�) is identified with the coefficient
extension Hq(X(C),Q) ⊗Q Q�, if we fix an embedding of Q̄ into C. The
corresponding Hodge structure is defined by the comparison isomorphism
Hq(X(C),Q) ⊗Q C → Hq

dR(X/Q) ⊗Q C of the singular cohomology with
the algebraic de Rham cohomology.

Example 1. Let E be an elliptic curve over Q. The Tate module T�E =
lim←− n Ker(�n : E(Q̄) → E(Q̄)) is a free Z�-module of rank 2, and it admits
a natural representation of the Galois group Gal(Q̄/Q). The �-adic repre-
sentation H1(EQ̄,Q�) is naturally identified with the dual Hom(T�E,Q�).
If we regard E(C) as the quotient C/T by a lattice T ⊂ C, then we have
T�E 
 T ⊗Z Z�, and H1(EQ̄,Q�) 
 Hom(T,Q�).

Example 2. Let f =
∑∞

q=1 anqn be a cusp form that is a simultaneous
eigenvector of all the Hecke operators Tn. Then we can construct a two-
dimensional �-adic representation Vf of the Galois group Gal(Q̄/Q) such
that at almost all prime numbers p, it is unramified and Tr(Frp : Vf ) = ap

(see [7]). This is called the �-adic representation associated to the modular
form f .

Many readers may know that Fermat’s Last Theorem was proved recently,
using such Galois representations (see [42]). It was in fact proved by show-
ing that the �-adic representation in Example 1 is isomorphic to the �-adic
representation associated to a modular form as in Example 2 (cf.[29]).
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1.3. The congruence zeta-function and Galois representations. A
standard method for studying a local system on S = {2, 3, 5, 7, . . . ,∞} is to
study the restriction at each point of S. We may consider each point of S as
something similar to a circle S1, which has a nontrivial fundamental group.
The reason is that a point of S is a prime number p and its fundamental
group is the absolute Galois group GFp . The absolute Galois group GFp =
Gal(F̄p/Fp) is the automorphism group Aut(F̄p) of an algebraic closure F̄p

of Fp. The p-th power map ϕp : F̄p → F̄p is a topological generator of
GFp . We call its inverse the geometric Frobenius isomorphism, and denote
it by Frp. From now on we identify the absolute Galois group GFp with
the profinite completion Ẑ of Z via the isomorphism Ẑ → GFp : 1 �→ Frp.
Each point of S has the completion of Z as its fundamental group, and it
resembles S1. By Chebotarev’s density theorem a local system of S is more
or less determined by its restriction at each point of S. Thus, to determine
the restrictions of a local system on S at points of S is an important step in
its study.

Let X be an n-dimensional non-singular projective variety over Q. In or-
der to determine the �-adic cohomology of X at each prime p, it often suffices
to study the reduction, X mod p. As we will see soon, for almost all p the
congruence zeta-function of X mod p determines the �-adic representation
at p. The reduction X mod p is a projective variety over Fp that is defined
by the reduction modulo p of the equations of X with integral coefficients.
X is said to have good reduction at p if X mod p is non-singular. X has
good reduction modulo p except for the finite number of primes p.

For example, if an elliptic curve E is defined by the equation y2 = 4x3 −
g2x−g3 with g2, g3 ∈ Z, then E has good reduction at p if p does not divide
6Δ = 6(g3

2 − 27g2
3). Fermat curve Cn has good reduction at p if p does not

divide n. The modular curve X0(N) of level N has good reduction at p if p
does not divide N .

If X has good reduction at p and � is different from p, then the restriction
of the �-adic representation Hq(XQ̄,Q�) at p is described by the congruence
zeta-function of X mod p as follows (see [11]).

As we will see in §2.1, the geometric Frobenius isomorphism Frp at p
acts on the space Hq(XQ̄,Q�). We denote its characteristic polynomial by
Pq(t) = det(1 − Frp t : Hq(XQ̄,Q�)). The Pq(t)’s for various q satisfy the
following equality

P1(t) · · · · · P2n−1(t)
P0(t) · P2(t) · · · · · P2n(t)

= exp
( ∞∑

m=1

Nm(X mod p)
m

tm
)
,(1)

where Nm(X mod p) is the number of Fpm-rational points on X mod p. The
right-hand side of the equality (1) is the definition of the congruence zeta-
function Z(X mod p, t) of the variety X mod p over Fp.

As a consequence of the Weil conjecture (see §2.4), the polynomials Pq(t)
do not have a common root, and the decomposition of the left-hand side of
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the equality (1) is uniquely determined. In other words the characteristic
polynomial Pq(t) = det(1− Frp t : Hq(XQ̄,Q�)) is obtained by counting the
number of rational points on X mod p.

number of Fpm-rational points on X mod p

=⇒ congruence zeta-function Z(X mod p, t)

=⇒ characteristic polynomial of Frp on Hq(XQ̄,Q�).

Example 3. (a) Let E be an elliptic curve over Q. Suppose that E has
good reduction at p. Define ap(E) by the equation

(the number of Fp-rational points on E mod p) = p + 1− ap(E).

Then we have P1(t) = 1− ap(E)t + pt2.
(b) If X is the Fermat curve Cn, then for any multiplicative character χ of
Fp of exact order n we have

P1(t) =
∏

a,b,a+b�≡0modn

(1− J(a, b)t).

This shows that the �-adic representation H1(Cn,Q̄,Q�) is described by the
Jacobi sums.
(c) If p does not divide N , the numerator P1(t) of the congruence zeta-
function of X0(N) mod p is the product of 1 − ap(fi)t + pt2, where fi =∑∞

n=1 an(fi)qn are modular forms of weight 2 and level dividing N (see
[36]).

In this way, the restriction of a Galois representation at a prime p is
described by its congruence zeta-function. However, in order to apply this
general theory to a prime p, it must satisfy the following condition:
(0) X has good reduction at p, and p �= �.

For fixed X and �, there are only finitely many points in S = {2, 3, 5, . . . ,∞}
that do not satisfy the condition (0), and they fall into one of the following
cases:
(1) the infinite place ∞,
(2) p = �, or
(3) p at which X does not have good reduction and p �= �.

Thus, the points in S are divided into four classes according to (0) to (3):

S = {good primes} 	 {∞} 	 {�} 	 {bad primes}.
The restriction of an �-adic representation at a good prime is described

by the congruence zeta-function. Consequently, only finitely many points
requires more detailed study. Case (1) is related to Hodge theory, and we will
not touch it in this article. Case (2) is the subject of p-adic Hodge theory.
A satisfactory general theory has been established on this, thanks to many
mathematicians including Fontaine, Messing, Faltings, Hyodo, Kato, Tsuji,
et al. (see [14], [40]). Ramification theory deals with Case (3). At such
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primes, each variety shows its own distinguishing properties. In the sequel
we explain recent developments in ramification theory.

2. Galois representations of local fields

2.1. The Galois group of a local field. In Topology to study the de-
generation of a local system along the boundary is to study its monodromy
action along it. Similarly, to study the �-adic representation Hq(XQ̄,Q�)
of GQ at a bad prime p is to study the restriction to the absolute Galois
group GQp = Gal(Q̄p/Qp) ⊂ GQ of the p-adic field Qp. The structure of
the absolute Galois group GQp is described as follows (see [34]).

Let Qp(ζm, p � m) be the extension of Qp obtained by adjoining all the
m-th roots of unity, where m is prime to p. It is the maximal unramified
extension of Qp, and we denote it by Qur

p . Also, let Qur
p (p1/m, p � m) be the

extension of Qur
p obtained by adjoining all the m-th roots of p, where m is

prime to p. It is the maximal tamely ramified extension of Qp, and we denote
it by Qtr

p . The normal subgroups of GQp = Gal(Q̄p/Qp) corresponding to
these extensions via Galois theory are customarily written as follows:

Qp ⊂ Qur
p ⊂ Qtr

p ⊂ Q̄p

� � � �
GQp ⊃ I ⊃ P ⊃ 1

The subgroup I is called the inertia group, and P the wild inertia group.
The quotient group GQp/I is canonically identified with the absolute Ga-

lois group GFp = Gal(F̄p/Fp) of the finite field Fp. Recall that the group
GFp is identified with the profinite completion Ẑ = lim←− nZ/nZ of Z via the
map 1 �→ Frp. The quotient group I/P is identified with the inverse limit
lim←− p�mμm, where μm = {ζ ∈ F̄p|ζm = 1} is the subgroup of F̄p consisting
of all the m-th roots of unity. Hence it is noncanonically isomorphic to the
subgroup Ẑ′ of Ẑ obtained by removing the p-component Zp. The quotient
I/P is an algebraic analog of the monodromy of the punctured disk. The
group P is particular to number theory, and it is a fairly large pro-p group.
It is as large as the countably many power of the Pontryagin dual of the
discrete group F̄p.

GQp/I = GFp = Ẑ topologically generated by Frp,

I/P = lim←− p�mμm 
 Ẑ′ corresponds to topological monodromy,

P a large pro-p group.

An �-adic representation of the absolute Galois group GQp is said to be
unramified if its restriction to the inertia group I is trivial. An unramified
representation is identified with a representation of GFp through the canon-
ical isomorphism GQp/I → GFp , and is determined by the action of the
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generator Frp. If a variety X has good reduction at p �= �, then the �-adic
representation Hq(XQ̄,Q�) is unramified at p, and the action of GQp is de-
termined by the action of Frp. Furthermore, the characteristic polynomial
of Frp is determined by the congruence zeta-function as we have seen in the
previous section.

¿From now on we consider the case where the variety X does not have
good reduction at p. In this case we need to deal with ramified representa-
tions of GQp . Two problems arise regarding this:

Problem A. Determine the isomorphism class of Hq(XQ̄,Q�) as an �-adic
representation of GQp .

Problem B. Compute the invariants of Hq(XQ̄,Q�) arising from its ram-
ification.

In the sequel we will formulate each of these problems more precisely,
and we will discuss recent progresses. As for Problem A, we would like
to determine the isomorphism class at all p as precisely as in the case of
good reduction, where it is described by the congruence zeta-function. As
for Problem B, we would like to understand phenomena particular to the
bad reduction case, as all the invariants related to ramification are trivial
at the primes of good reduction. It turns out that the relation of Galois
representations with the differential forms provides solutions to Problem B.

2.2. �-adic representations of local fields. The Problem A may be an-
swered using a certain type of trace formula, as long as we assume the Tate
conjecture and the weight-monodromy conjecture. To explain this further,
we recall the fact that an �-adic representation ρ : GQp → GL(V ) is deter-
mined by a pair consisting of a representation ρ′ of the Weil group and a
nilpotent endomorphism N (see [10]). The Weil group WQp is the subgroup
of all the elements of GQp whose image in GFp is a power of Frp:

WQp ⊂ GQp

↓ ↓
〈Frp〉 (
 Z) ⊂ GFp (
 Ẑ)

Take a lift F of the geometric Frobenius Frp to the Weil group WQp . By
the monodromy theorem of Grothendieck ([35]), there exists a unique pair
(ρ′, N), where ρ′ : WQp → GLQl

(V ) is a continuous representation of the
Weil group WQp , and N is a nilpotent endomorphism of V characterized
by the following property: The kernel of the restriction of ρ′ to the inertia
group I ⊂WQp is an open subgroup of I and we have

ρ(Fnσ) = ρ′(Fnσ) exp(t�(σ)N)

for all n ∈ Z and σ ∈ I. Here t� : I → I/P → Z� is the composition
of a noncanonical isomorphism I/P → Ẑ′ and the projection of Ẑ′ to the
�-component Z�. For Fnσ ∈ WQp (n ∈ Z, σ ∈ I), we have an equality
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Tr ρ(Fnσ) = Tr ρ′(Fnσ). Conversely, since WQp is a dense subgroup of
GQp , an �-adic representation ρ of GQp is determined by a pair (ρ′, N):

�-adic representation ρ of GQp

⇐⇒
{

continuous representation ρ′ of WQp

+ nilpotent endomorphism N .

2.3. The trace formula. If an �-adic representation ρ : GQp → V arises
from Hq(XQ̄,Q�) of an algebraic variety X, how can we determine the cor-
responding ρ′ and N? First we consider ρ′. The fundamental framework to
solve this problem is given by the Tate conjecture. For an �-adic representa-
tion V of the absolute Galois group GF = Gal(F̄ /F ) of a field F , we denote
by V (q) the �-adic representation obtained by tensoring the q-th power of
the �-adic cyclotomic character.

Conjecture (Tate Conjecture [37],[38]). Let F be a finite field, a number
field, or, more generally, a finitely generated field over a prime field. Let X
be a non-singular projective variety over F . Let q be a nonnegative integer,
and � a prime number different from the characteristic of F . Then for an
�-adic representation V = H2q(XF̄ ,Q�(q)) of GF we have the following.

1. The invariant part V GF is generated by algebraic cycles.
2. The generalized eigenspace {v ∈ V | (σ − 1)dim V v = 0 for all σ ∈ GF }

is equal to the invariant part V GF .

An algebraic cycle in H2q(XF̄ ,Q�(q)) is a linear combination of cycle
classes [Z], where Z is a subvariety of codimension q. The only general class
of varieties over number fields for which the Tate conjecture is proved is the
following:
• X is an abelian variety, and q = 1 ([13]).

Apart from this, the conjecture has been verified for a number of varieties
by constructing algebraic cycles case by case.

The second part of the Tate conjecture is often referred to as the semi-
simplicity conjecture. The semi-simplicity conjecture for varieties over the
residue field implies that the representation ρ′ of WQp is semi-simple. Since
the isomorphism class of a semi-simple representation is determined by its
trace, in order to determine ρ′, it suffices to know the traces Tr ρ′(Fnσ)
(n ∈ Z, σ ∈ I). In fact, it suffices to know them for n ≥ 0.

The Tate conjecture also implies that the Künneth projectors are given
by algebraic correspondences on X. An algebraic correspondence on X is a
linear combination Γ (with coefficients in Q) of the classes of subvarieties in
X ×X of dimension d = dim X. An algebraic correspondence Γ induces a
GF -equivariant endomorphism Γ ∗ on Hq(XF̄ ,Q�). The statement that the
Künneth projectors are given by algebraic correspondences means that for
any non-negative integer q, there exists an algebraic correspondence Γq such



GALOIS REPRESENTATIONS IN ARITHMETIC GEOMETRY II 9

that the endomorphism Γ ∗
q of Hq′(XF̄ ,Q�) is the identity for q = q′ and 0

for q �= q′. All in all, to determine ρ′, it suffices to know the alternating sum
2d∑

q=0

(−1)qTr(Γ ∗ ◦ Fnσ : Hq(XQ̄p
,Q�))

for an algebraic correspondence Γ .
We have recently obtained a formula for this alternating sum.

Theorem 1 ([32]). Let X be a non-singular proper algebraic variety of di-
mension d over Qp, Γ an algebraic correspondence on X, F a lift of the
geometric Frobenius, n a nonnegative integer, and σ an element of the in-
ertia group I. Then there exist a non-singular projective variety W over an
algebraic closure F̄p and an algebraic correspondence Γ ′ on W such that for
a prime number � �= p we have

2d∑
q=0

(−1)q Tr(Γ ∗ ◦ Fnσ : Hq(XQ̄p
,Q�)) = (Γ ′,ΔW ),

where the right-hand side is the intersection number of Γ ′ with the diagonal
ΔW of W ×W .

Theorem 1 means that the arithmetic of an �-adic representation coming
from an algebraic variety over a local field (the left-hand side) is reduced
to the geometry of a variety over a finite field obtained by the reduction
modulo p (the right-hand side). While elements of the Galois group appear
in the left-hand side, it should be remarked that the right-hand side is purely
geometric. If X has good reduction at p, Γ = Δ, and n = 1, then we can take
X mod p as W and the graph of the Frobenius endomorphism F : W →W
as Γ ′. This corresponds to the fact described in §1.3 that the action of the
Frobenius is determined by the congruence zeta-function. To be precise, we
need to assume the semi-simplicity conjecture to determine completely the
action of the Galois group GFp , which was omitted there for simplicity. If
the variety X has a semi-stable model, then as W we can take the disjoint
union of the irreducible components, together with their intersections, of the
reduction of a semi-stable model.

It is a consequence of Theorem 1 that the alternating sum in the left-hand
side is independent of �. In the analog of positive characteristic, Terasoma
[39] has shown that when Γ = Δ, each term in the sum is independent of
�, using weight-monodromy conjecture, which is proved in this case. In the
case � = p, we can formulate a similar conjecture using p-adic Hodge theory.
Theorem 1 is proved in [32] by reducing to the Lefschetz trace formula using
functorial properties of the weight spectral sequence ([25]) and alteration
([6]). Theorem 1 had already been known to hold for the following cases:
• X is an abelian variety ([16]).
• Γ is the diagonal Δ ([23]).
• σ is an element of the wild inertia group P ([20]).
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• X is a Kuga-Sato variety, or its analog over a Shimura curve, and Γ is
a certain type of the Hecke correspondences ([28], [31]).

A Kuga-Sato variety is a compactification of the fibered product of the
universal elliptic curves over modular curves. As an application of the last
case, we see that the restriction to the decomposition group GQp of a p-adic
representation associated to an elliptic modular form or a Hilbert modular
form is compatible with the local Langlands correspondence in the sense of
p-adic Hodge theory.

2.4. The weight-monodromy conjecture. While the representation ρ′
is related to the Tate conjecture, the endomorphism N is related to the Weil
conjecture.

Theorem (Weil Conjecture [12]). Let X be a non-singular proper variety
over a finite field Fp, � a prime number different from p, and q a nonnegative
integer. Then, the eigenvalues of the geometric Frobenius Frp acting on
Hq(XF̄p

,Q�) are algebraic integers all of whose complex conjugates have
absolute value pq/2.

Algebraic integers satisfying the last property in the Weil conjecture are
called Weil numbers of weight q. The Weil conjecture says that if we de-
compose the polynomial Pq(t) = det(1 − Frp t : Hq(XF̄p

,Q�)) in §1.3 into
Pq(t) =

∏
i(1− αit), then each αi is a Weil number of weight q.

The weight-monodromy conjecture is a generalization of the Weil con-
jecture to the varieties over local fields. In general, for a nilpotent en-
domorphism N of a vector space V , the increasing sequence of subspaces
Mi =

∑
j−k=i KerN j+1 ∩ ImNk ⊂ V satisfies the following properties.

1. Mi = V,M−i = 0 for a sufficiently large i.
2. NMi ⊂Mi−2.
3. For i > 0 the linear map N i induces an isomorphism N i : GrM

i V =
Mi/Mi−1 → GrM

−iV .

For example, if N2 = 0, then we have M−2 = 0,M−1 = ImN , M0 =
KerN,M1 = V . If V is an �-adic representation of the Galois group of a
local field, and N is the nilpotent endomorphism of V determined as in §2.2,
the sequence M = (Mi)i∈Z is called the monodromy filtration on V . In this
case each Mi is a subrepresentaion.

Conjecture (Weight-monodromy Conjecture [9]). Let X be a non-singular
proper variety over the p-adic field Qp, � a prime number different from
p, and q a nonnegative integer. Suppose that F ∈ WQp is a lift of the
geometric Frobenius Frp, and M is the monodromy filtration of the �-adic
representation V = Hq(XQ̄p

,Q�). Then, the eigenvalues of F acting on
GrM

i V are Weil numbers of weight q + i.

Known cases of the weight-monodromy conjecture are as follows.
• When q ≤ 2 ([25]).
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• X is a Kuga-Sato variety, or its analog over a Shimura curve ([28], [30],
[31]).
• An analog for local fields of positive characteristic ([12], [18]).

The Weil conjecture implies that the weight-monodromy conjecture is equiv-
alent to that the filtration of Hq(XQ̄p

,Q�) defined by the weight spectral
sequence (see [25]) is the same as the monodromy filtration.

The semi-simplicity conjecture and the weight-monodromy conjecture im-
ply that the isomorphism class of the pair (ρ′, N) depends only on the
isomorphism class of ρ′, and hence is determined by Tr ρ′. Since we can
compute Tr ρ′ using Theorem 1 under the Tate conjecture, the isomorphism
class of the �-adic representation Hq(XQ̄p

,Q�) may be determined as in the
following chart.

Theorem 1 (= trace formula)
+ Tate conjecture
+ weight-monodromy conj.

⎫⎬
⎭ =⇒ isom. class of

(ρ′, N) =⇒ isom. class of
Hq(XQ̄p

,Q�)

3. Ramification theory

Problem B (in §2.1) deals with the ramification theory in higher dimen-
sion. An impressive feature of the ramification theory is the deep relation
of Galois representations with differential forms. While the comparison the-
orem between the singular (resp. p-adic) cohomology and the de Rham
cohomology are built into Hodge (resp. p-adic Hodge) theory from the be-
ginning, there is no functor directly relating the �-adic cohomology to the de
Rham cohomology. Nonetheless, it often happens that the invariants arising
from ramifications of �-adic cohomology are expressed in terms of differen-
tial forms or the de Rham cohomology. A typical example is the conductor
formula discussed below.

3.1. The conductor formula. Among the invariants of the ramification
of an �-adic Galois representation of a local field the most fundamental one
is the conductor. The wild ramification group P ⊂ GQp has a decreasing
sequence (Gv)v∈Q,v>0 of normal subgroups of P , called the filtration by the
ramification groups (see [34]). For an �-adic representation V of GQp , its
Swan conductor is defined by

Sw V =
∑

v∈Q,v>0

v · dim V Gv+
/V Gv

,

where Gv+ =
⋃

v′>v Gv′ , and V Gv
and V Gv+

indicate the invariant parts.
The Swan conductor Sw V is a nonnegative integer. The action of P on V
is trivial if and only if Sw V = 0.
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Let X be a non-singular proper variety over Qp of dimension n−1. Bloch
conjectured in [4] that the alternating sum

Sw(X/Qp) =
2(n−1)∑

q=0

(−1)q Sw Hq(XQ̄p
,Q�)

can be calculated geometrically in the following way. Let XZp be a proper
regular model of X over the p-adic integer ring Zp. The localized Chern
class of the sheaf of differential forms Ω1

XZp/Zp
on XZp determines a 0-cycle

class cn(Ω1
XZp/Zp

) ∈ CH0(XFp) supported on the closed fiber.

Conjecture (Bloch’s conductor formula [4]). With above notation we have

χ(XQ̄p
)− χ(XF̄p

) + Sw(X/Qp) = − deg(−1)ncn(Ω1
XZp/Zp

),

where χ =
∑

q(−1)q dim Hq is the Euler number of the �-adic cohomology,
and deg is the degree of a 0-cycle class.

If X is the spectrum of a finite extension of Qp, then the above formula is
nothing but the classical conductor-discriminant formula. If E is an elliptic
curve, then it is proved in ([27]) to be equivalent to the formula of Tate-Ogg
([24]). Bloch [4] proved the conductor formula when X is an algebraic curve.
The formula asserts that the invariant arising from the ramification of �-adic
cohomology of X may be calculated geometrically using differential forms.
This formula may also be considered as an arithmetic analog of the Lefschetz
trace formula χ(VF̄ ) = (ΔV ,ΔV ) = (−1)n deg cn(Ω1

V/F ), where V is a n-
dimensional non-singular proper variety over F . As an application of the
conductor formula, a relation between the sign of the functional equation of
the Hasse-Weil L-function and the Galois module structure of the de Rham
cohomology for a variety over Q is established by Chinburg-Pappas-Taylor
in [5].

Theorem 2 ([20]). If the reduced closed fiber XFp,red is a divisor of XZp

with normal crossing, then Bloch’s conductor formula holds.

Theorem 2 implies that if the divisor D = XFp,red has an embedded reso-
lution of singularilities in the strong sense, then Bloch’s conductor formula
holds. A divisor D is said to have an embedded resolution of singularilities
in the strong sense if D can be modified to a divisor with normal crossing
by repeating blowing-ups XZp at non-singular subschemes.

3.2. Perspective. We raise the following three topics as open problems in
ramification theory.

1. The conductor formula with coefficient sheaf.
2. The ε-factor.
3. Analogy with integrable connections with irregular singularities.
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(1) The problem is to find a ramification theoretic formula for the Swan
conductor Sw(U,F) =

∑2n
q=0(−1)qSwHq(UK̄ ,F) for a non-singular variety

U of dimension n over a local field K and a smooth �-adic sheaf F on U . In
the case n = 1 and rankF = 1, such a formula is obtained by Kato ([19]).
A formula seems within reach in higher dimension in the case rankF = 1 by
virtue of the conductor formula for an automorphism proved in [20]. Thus
the problem is to generalize it to higher rank case.

In order to formulate it, the rank 1 case suggests to study the filtration
by ramification groups of the absolute Galois group of the local fields at
the generic points of the boundary. The residue fields of such local fields
are imperfect if dim U > 1. In a joint work with Abbés ([1]), a filtration is
defined for such local fields using rigid geometry. Fujiwara had also defined
a filtration by a similar idea ([15]), which imspired our definition. We still
do not know much about the properties of the filtration. There remain many
tasks before formulating the conductor formula with coefficient sheaf. The
conductor formula for an algebraic correspondence mentioned above should
be a first step toward it.
(2) The ε-factor is an arithmetic invariant of ramification finer than the
conductor ([10]). It plays important roles in the functional equation of
Hasse-Weil L-functions and in the formulation of the local Langlands cor-
respondence, which has been proved recently by Harris and Taylor ([17]).
The problem is to find a formula for the ε-factor of the �-adic cohomology
defined by ε(U,F) =

∏2n
q=0 ε(K,Hq(UK̄ ,F))(−1)q . The problem is open even

in the case dim U = 1 and rankF = 1. Related problems are studied by
Yasuda [43] and by Kobayashi [21].
(3) Analogy between wild ramification of �-adic sheaves and irregular singu-
larities of integrable connections on varieties of characteristic 0 was already
pointed out in [8]. Let K be a function field over a field k of characteristic 0,
U a non-singular variety over K and (E ,∇) an integrable connection on U .
Then the Gauss-Manin connection ∇GM : Hq(U,DRU/K(E)) = Hq(U,E ⊗
Ω•

U/K) → Hq(U,DRU/K(E)) ⊗ Ω1
K/k is defined on the relative de Rham

cohomology. It is a counterpart of the �-adic representation Hq(UF̄ ,F) of
the absolute Galois group GF for an �-adic sheaf F on a smooth variety
U over a field F of characteristic p > 0. For the latter, if F is finite and
dimU = 1, the product formula ([10],[22]) is the equality between the alter-
nating product

∏
q det(−Fr : Hq(UF̄ ,F))(−1)q and the product of the local

ε-factors.
In the case where U is a smooth curve over a function field K over a field

k of characteristic 0, Beilinson, Bloch and Esnault study the determinant
det(RΓ (U,DRU/K(E)),∇GM ) of the Gauss-Manin connection as a connec-
tion on the K-vector space of dimension 1. Recently, in [3] they obtained
a formula quite analogous to the product formula mentioned above. The
analogy between wild ramification and irregular singularities is mysterious
and quite interesting.
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