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Ng = ♯gRP 2 : a closed conn. non-ori. surface of genus g ≥ 1.

M(Ng) := Diff(Ng)/isotopy: the mapping class group of Ng, where
Diff(Ng) := {f : Ng → Ng diffeo.}.

Put Z2 := Z/2Z.

Γ2(Ng) := ker(M(Ng) → Aut H1(Ng;Z2))

: the level 2 mapping class group of Ng.

.
Theorem (Hirose-Sato (2014))
..

......

For g ≥ 4,

Γ2(Ng) is generated by
(
g
3

)
+

(
g
2

)
elements.

H1(Γ2(Ng);Z) ∼= Z(
g
3)+(

g
2)

2 .

⇝ They used the mod 2 Johnson homomorphism to determine the
abelianization of Γ2(Ng)!!
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.
Definition
..

......

c: a simple closed curve on Ng.

c: one-sided
def⇐⇒ a neighborhood of c in Ng is a Möbius band.

c: two-sided
def⇐⇒ a neighborhood of c in Ng is an annulus.

For a two-sided simple closed curve c on Ng, we can define the Dehn twist
tc!!
.
Remark
..
......We also need to take an orientation of the neighborhood of c to define tc.
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T (Ng) :=
⟨
{tc | c : a two-sided simple closed curve on Ng}

⟩
�M(Ng)

: the twist subgroup of M(Ng).

.
Theorem (Lickorish (1965))
..
......T (Ng) ⊂ M(Ng): an index 2 subgroup.

T2(Ng) := Γ2(Ng) ∩ T (Ng): the level 2 twist subgroup of M(Ng).

.
Remark
..

......

T2(N2) = T2(N1) = {1}.
T2(N3) ∼= ker(SL(2;Z) → SL(2;Z2)).

Today’s talk

A finite generating set for T2(Ng),

The first homology group of T2(Ng).
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Crosscap pushing map
µ: a one-sided s.c.c. on Ng, α: a s.c.c. on Ng w/ |µ ∩ α| = 1，
Yµ,α:
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αi1,i2,...,in : the s.c.c. on Ng for distinct i1, i2, . . . , in ∈ {1, . . . , g},
βk;i,j : the s.c.c. on Ng for k < i < j, j < k < i, or i < j < k.

Ti,j,k,l := tαi,j,k,l
,

Yi,j := Yαi,αi,j : the Y-homeomorphism,
ak;i,j := Yαk,αi,j,k

,
bk;i,j := Yαk,βk;i,j

.

.
Remark
..

......

T 2
i,j,k,l ∈ T2(Ng).

ak;i,j , bk;i,j ∈ T2(Ng).

Yi,j ∈ Γ2(Ng), but Yi,j ̸∈ T2(Ng).

Y 2
i,j ∈ T2(Ng).
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.
Theorem (R. Kobayashi-O.)
..

......

For g ≥ 3, T2(Ng) is generated by the following elements:
(i) ak;i,i+1, bk;i,i+1, ak;k−1,k+1, bk;k−1,k+1 (1 ≤ k ≤ g, 1 ≤ i ≤ g − 1,

i ̸= k − 1, k),
(ii) Y 2

1,j (2 ≤ j ≤ g),

(iii) T 2
1,j,k,l (when g ≥ 4, 2 ≤ j < k < l ≤ g).

Outline of the proof
Γ2(Ng)/T2(Ng) = Γ2(Ng)/(Γ2(Ng) ∩ T (Ng)) ∼= (Γ2(Ng)T (Ng))/T (Ng)

= M(Ng)/T (Ng)
∼= Z2[Y1,2].

We use the Reidemeister-Schreier method for T2(Ng) < Γ2(Ng) !! 2

.
Theorem (R. Kobayashi-O.)
..

......

H1(T2(Ng);Z) ∼=

{
Z2 ⊕ Z2 (g = 3),

Z(
g
3)+(

g
2)−1

2 (g ≥ 5).
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.
Remark
..

......

|{generators of T2(N3) in the thm.}| = dimZ2 H1(T2(N3);Z).
For g ≥ 5,
|{generators of T2(Ng) in the thm.}| − dimZ2 H1(T2(Ng);Z)
= 1

6(g
3 + 6g2 − 7g − 12)− (

(
g
3

)
+
(
g
2

)
− 1)

= g2 − g − 1.

Key theorem for the abelianization:
.
Theorem (R. Kobayashi-O.)
..

......

For g = 3 or g ≥ 5,
T2(Ng) is normally generated by a1;2,3 in M(Ng).

T2(N4) is normally generated by a1;2,3 and T 2
1,2,3,4 in M(N4).
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The abelianization of T2(Ng) for g ≥ 5

Put H1(T2(Ng)) := H1(T2(Ng);Z).
We have the exact sequence

1 −→ T2(Ng) −→ Γ2(Ng) −→ Z2[Y1,2] −→ 0.

By the five term exact sequence, we have the exact sequence

−→ −→ −→ −→ 0,

where

H1(T2(Ng))Z2 := H1(T2(Ng))/
⟨
f ·m−m | m ∈ H1(T2(Ng)), f ∈ Z2

⟩
.

: the co-invariant part, where

Z2

= Γ2(Ng)/T2(Ng)

↷ H1(T2(Ng))

= T2(Ng)
ab

: conjugations.

.
Proposition (by using the normal generating set for T2(Ng))
..
......For g ≥ 5, the action Z2 ↷ H1(T2(Ng)) is trivial.
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An observation for the abelianization of T2(N4)

.
Remark (by a private communication with B. Szepietowski)
..

......

The conjugate action Z2 ↷ H1(T2(N4)) is not trivial.

[T 2
1,2,3,4] ∈ H1(T2(N4)) has infinite order.

.
Proposition
..

......

G: the subgroup of T2(Ng) which is normally generated by a1;2,3 in
M(Ng).
For g ≥ 4, G is generated by involutions.

.
Theorem (R. Kobayashi-O. (again))
..

......

For g = 3 or g ≥ 5, T2(Ng) is normally generated by a1;2,3 in M(Ng).

T2(N4) is normally generated by a1;2,3 and T 2
1,2,3,4 in M(N4).

⇝ T2(N4) is not normally generated by a1;2,3 in M(N4).
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Hirose-Sato defined the mod 2 Johnson homomorphism
τ1 : Γ2(Ng

∗) → A∗ for some Z2-vector space A∗.

.
Theorem (R. Kobayashi-O. (again))
..

......

T2(N4) is generated by the following elements:
(i) a1;2,3, a1;3,4, a2;1,3, a2;3,4, a3;1,2, a3;2,4, a4;1,2, a4;2,3,

b1;2,3, b1;3,4, b2;1,3, b2;3,4, b3;1,2, b3;2,4, b4;1,2, b4;2,1, Y
2
1,2, Y

2
1,3, Y

2
1,4,

(ii) T 2
1,2,3,4.

Observations: for g = 4,

[T 2
1,2,3,4] ∈ H1(T2(N4)) has infinite order,

[ak;i,j ] ∈ H1(T2(N4)) has order n ≤ 2 (∵ G is generated by
involutions),

Y 2
i,j ∈ G (=⇒ [Y 2

i,j ] ∈ H1(T2(N4)) also has order n ≤ 2),

τ̄1(ak;i,j) ̸= 0 and τ̄1(Y
2
i,j) = 0 in A,

⇝ 8 ≥ ∃d ≥ 1 s.t. H1(T2(N4)) ∼= Zd
2 ⊕ Z[T 2

1,2,3,4].
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Thank you for your attention !
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