Generators for the level 2 twist subgroup of the mapping class group of a non-orientable surface and its abelianization

Genki Omori

joint work with Ryoma Kobayashi (Ishikawa National College of Technology)

Tokyo Institute of Technology
(Research Fellow of Japan Society for the Promotion of Science)

May 22, 2017
$N_{g}=\not \sharp_{g} \mathbb{R} P^{2}:$ a closed conn. non-ori. surface of genus $g \geq 1$.
$\mathcal{M}\left(N_{g}\right):=\operatorname{Diff}\left(N_{g}\right) /$ isotopy: the mapping class group of N_{g}, where Diff $\left(N_{g}\right):=\left\{f: N_{g} \rightarrow N_{g}\right.$ diffeo. $\}$.

Put $\mathbb{Z}_{2}:=\mathbb{Z} / 2 \mathbb{Z}$.

$$
\Gamma_{2}\left(N_{g}\right):=\operatorname{ker}\left(\mathcal{M}\left(N_{g}\right) \rightarrow \text { Aut } H_{1}\left(N_{g} ; \mathbb{Z}_{2}\right)\right)
$$

: the level 2 mapping class group of N_{g}.
$N_{g}=\sharp_{g} \mathbb{R} P^{2}$: a closed conn. non-ori. surface of genus $g \geq 1$.
$\mathcal{M}\left(N_{g}\right):=\operatorname{Diff}\left(N_{g}\right) /$ isotopy: the mapping class group of N_{g}, where Diff $\left(N_{g}\right):=\left\{f: N_{g} \rightarrow N_{g}\right.$ diffeo. $\}$.

Put $\mathbb{Z}_{2}:=\mathbb{Z} / 2 \mathbb{Z}$.

$$
\Gamma_{2}\left(N_{g}\right):=\operatorname{ker}\left(\mathcal{M}\left(N_{g}\right) \rightarrow \text { Aut } H_{1}\left(N_{g} ; \mathbb{Z}_{2}\right)\right)
$$

: the level 2 mapping class group of N_{g}.

Theorem (Hirose-Sato (2014))

For $g \geq 4$,

- $\Gamma_{2}\left(N_{g}\right)$ is generated by $\binom{g}{3}+\binom{g}{2}$ elements.
- $H_{1}\left(\Gamma_{2}\left(N_{g}\right) ; \mathbb{Z}\right) \cong \mathbb{Z}_{2}^{\binom{g}{3}+\binom{g}{2}}$.
\rightsquigarrow They used the mod 2 Johnson homomorphism to determine the abelianization of $\Gamma_{2}\left(N_{g}\right)$!!

Definition

c: a simple closed curve on N_{g}.

- c : one-sided $\stackrel{\text { def }}{\Longleftrightarrow}$ a neighborhood of c in N_{g} is a Möbius band.
- c: two-sided $\stackrel{\text { def }}{\Longleftrightarrow}$ a neighborhood of c in N_{g} is an annulus.

Definition

c: a simple closed curve on N_{g}.

- c: one-sided $\stackrel{\text { def }}{\Longleftrightarrow}$ a neighborhood of c in N_{g} is a Möbius band.
- c: two-sided $\stackrel{\text { def }}{\Longleftrightarrow}$ a neighborhood of c in N_{g} is an annulus.

For a two-sided simple closed curve c on N_{g}, we can define the Dehn twist t_{c} !!

Remark

We also need to take an orientation of the neighborhood of c to define t_{c}.
$\mathcal{T}\left(N_{g}\right):=\left\langle\left\{t_{c} \mid c:\right.\right.$ a two-sided simple closed curve on $\left.\left.N_{g}\right\}\right\rangle \triangleleft \mathcal{M}\left(N_{g}\right)$
: the twist subgroup of $\mathcal{M}\left(N_{g}\right)$.

Theorem (Lickorish (1965))

$\mathcal{T}\left(N_{g}\right) \subset \mathcal{M}\left(N_{g}\right):$ an index 2 subgroup.
$\mathcal{T}\left(N_{g}\right):=\left\langle\left\{t_{c} \mid c:\right.\right.$ a two-sided simple closed curve on $\left.\left.N_{g}\right\}\right\rangle \triangleleft \mathcal{M}\left(N_{g}\right)$
: the twist subgroup of $\mathcal{M}\left(N_{g}\right)$.

Theorem (Lickorish (1965))

$\mathcal{T}\left(N_{g}\right) \subset \mathcal{M}\left(N_{g}\right)$: an index 2 subgroup.
$\mathcal{T}_{2}\left(N_{g}\right):=\Gamma_{2}\left(N_{g}\right) \cap \mathcal{T}\left(N_{g}\right)$: the level 2 twist subgroup of $\mathcal{M}\left(N_{g}\right)$.

Remark

- $\mathcal{T}_{2}\left(N_{2}\right)=\mathcal{T}_{2}\left(N_{1}\right)=\{1\}$.
- $\mathcal{T}_{2}\left(N_{3}\right) \cong \operatorname{ker}\left(S L(2 ; \mathbb{Z}) \rightarrow S L\left(2 ; \mathbb{Z}_{2}\right)\right)$.
$\mathcal{T}\left(N_{g}\right):=\left\langle\left\{t_{c} \mid c:\right.\right.$ a two-sided simple closed curve on $\left.\left.N_{g}\right\}\right\rangle \triangleleft \mathcal{M}\left(N_{g}\right)$: the twist subgroup of $\mathcal{M}\left(N_{g}\right)$.

Theorem (Lickorish (1965))

$\mathcal{T}\left(N_{g}\right) \subset \mathcal{M}\left(N_{g}\right):$ an index 2 subgroup.
$\mathcal{T}_{2}\left(N_{g}\right):=\Gamma_{2}\left(N_{g}\right) \cap \mathcal{T}\left(N_{g}\right):$ the level 2 twist subgroup of $\mathcal{M}\left(N_{g}\right)$.

Remark

- $\mathcal{T}_{2}\left(N_{2}\right)=\mathcal{T}_{2}\left(N_{1}\right)=\{1\}$.
- $\mathcal{T}_{2}\left(N_{3}\right) \cong \operatorname{ker}\left(S L(2 ; \mathbb{Z}) \rightarrow S L\left(2 ; \mathbb{Z}_{2}\right)\right)$.

Today's talk

- A finite generating set for $\mathcal{T}_{2}\left(N_{g}\right)$,
- The first homology group of $\mathcal{T}_{2}\left(N_{g}\right)$.

Crosscap pushing map
μ : a one-sided s.c.c. on N_{g}, α : a s.c.c. on N_{g} w/ $|\mu \cap \alpha|=1$, $Y_{\mu, \alpha}$:

Crosscap pushing map
μ : a one-sided s.c.c. on N_{g}, α : a s.c.c. on N_{g} w/ $|\mu \cap \alpha|=1$, $Y_{\mu, \alpha}$:

Crosscap pushing map
μ : a one-sided s.c.c. on N_{g}, α : a s.c.c. on N_{g} w $/|\mu \cap \alpha|=1$, $Y_{\mu, \alpha}$:

$\alpha_{i_{1}, i_{2}, \ldots, i_{n}}$: the s.c.c. on N_{g} for distinct $\beta_{k ; i, j}$: the s.c.c. on N_{g} for $k<i<j, j$

$$
\begin{aligned}
& T_{i, j, k, l}:=t_{\alpha_{i, j, k, l}}, \\
& Y_{i, j}:=Y_{\alpha_{i}, \alpha_{i, j}}: \text { the Y-homeomorphism, } \\
& a_{k ; i, j}:=Y_{\alpha_{k}, \alpha_{i, j, k}} \\
& b_{k ; i, j}:=Y_{\alpha_{k}, \beta_{k ; i, j}}
\end{aligned}
$$

$$
\begin{aligned}
& , i_{2}, \ldots, i_{n} \in\{1, \ldots, g\} \\
& k<i, \text { or } i<j<k
\end{aligned}
$$

Remark

- $T_{i, j, k, l}^{2} \in \mathcal{T}_{2}\left(N_{g}\right)$.
- $a_{k ; i, j}, b_{k ; i, j} \in \mathcal{T}_{2}\left(N_{g}\right)$.
- $Y_{i, j} \in \Gamma_{2}\left(N_{g}\right)$, but $Y_{i, j} \notin \mathcal{T}_{2}\left(N_{g}\right)$.
- $Y_{i, j}^{2} \in \mathcal{T}_{2}\left(N_{g}\right)$.

$\underline{j<k<i}$

$i<j<k$

Theorem (R. Kobayashi-O.)

For $g \geq 3, \mathcal{T}_{2}\left(N_{g}\right)$ is generated by the following elements:
(i) $a_{k ; i, i+1}, b_{k ; i, i+1}, a_{k ; k-1, k+1}, b_{k ; k-1, k+1} \quad(1 \leq k \leq g, 1 \leq i \leq g-1$, $i \neq k-1, k)$,
(ii) $Y_{1, j}^{2} \quad(2 \leq j \leq g)$,
(iii) $T_{1, j, k, l}^{2} \quad$ (when $g \geq 4,2 \leq j<k<l \leq g$).

Outline of the proof

$$
\begin{aligned}
\overline{\Gamma_{2}\left(N_{g}\right) / \mathcal{T}_{2}\left(N_{g}\right)} & =\Gamma_{2}\left(N_{g}\right) /\left(\Gamma_{2}\left(N_{g}\right) \cap \mathcal{T}\left(N_{g}\right)\right) \cong\left(\Gamma_{2}\left(N_{g}\right) \mathcal{T}\left(N_{g}\right)\right) / \mathcal{T}\left(N_{g}\right) \\
& =\mathcal{M}\left(N_{g}\right) / \mathcal{T}\left(N_{g}\right) \\
& \cong \mathbb{Z}_{2}\left[Y_{1,2}\right] .
\end{aligned}
$$

We use the Reidemeister-Schreier method for $\mathcal{T}_{2}\left(N_{g}\right)<\Gamma_{2}\left(N_{g}\right)$!! \square

Theorem (R. Kobayashi-O.)

For $g \geq 3, \mathcal{T}_{2}\left(N_{g}\right)$ is generated by the following elements:
(i) $a_{k ; i, i+1}, b_{k ; i, i+1}, a_{k ; k-1, k+1}, b_{k ; k-1, k+1} \quad(1 \leq k \leq g, 1 \leq i \leq g-1$, $i \neq k-1, k)$,
(ii) $Y_{1, j}^{2} \quad(2 \leq j \leq g)$,
(iii) $T_{1, j, k, l}^{2} \quad$ (when $g \geq 4,2 \leq j<k<l \leq g$).

Outline of the proof

$$
\begin{aligned}
\overline{\Gamma_{2}\left(N_{g}\right) / \mathcal{T}_{2}\left(N_{g}\right)} & =\Gamma_{2}\left(N_{g}\right) /\left(\Gamma_{2}\left(N_{g}\right) \cap \mathcal{T}\left(N_{g}\right)\right) \cong\left(\Gamma_{2}\left(N_{g}\right) \mathcal{T}\left(N_{g}\right)\right) / \mathcal{T}\left(N_{g}\right) \\
& =\mathcal{M}\left(N_{g}\right) / \mathcal{T}\left(N_{g}\right) \\
& \cong \mathbb{Z}_{2}\left[Y_{1,2}\right] .
\end{aligned}
$$

We use the Reidemeister-Schreier method for $\mathcal{T}_{2}\left(N_{g}\right)<\Gamma_{2}\left(N_{g}\right)$!! \square

Theorem (R. Kobayashi-O.)

$$
H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right) ; \mathbb{Z}\right) \cong \begin{cases}\mathbb{Z}^{2} \oplus \mathbb{Z}_{2} & (g=3) \\ \mathbb{Z}_{2}^{\left(\frac{g}{3}\right)+\binom{g}{2}-1} & (g \geq 5)\end{cases}
$$

Remark

- $\mid\left\{\right.$ generators of $\mathcal{T}_{2}\left(N_{3}\right)$ in the thm. $\} \mid=\operatorname{dim}_{\mathbb{Z}_{2}} H_{1}\left(\mathcal{T}_{2}\left(N_{3}\right) ; \mathbb{Z}\right)$.
- For $g \geq 5$,
|\{generators of $\mathcal{T}_{2}\left(N_{g}\right)$ in the thm. $\} \mid-\operatorname{dim}_{\mathbb{Z}_{2}} H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right) ; \mathbb{Z}\right)$
$=\frac{1}{6}\left(g^{3}+6 g^{2}-7 g-12\right)-\left(\binom{g}{3}+\binom{g}{2}-1\right)$
$=g^{2}-g-1$.

Remark

- $\mid\left\{\right.$ generators of $\mathcal{T}_{2}\left(N_{3}\right)$ in the thm. $\} \mid=\operatorname{dim}_{\mathbb{Z}_{2}} H_{1}\left(\mathcal{T}_{2}\left(N_{3}\right) ; \mathbb{Z}\right)$.
- For $g \geq 5$,
|\{generators of $\mathcal{T}_{2}\left(N_{g}\right)$ in the thm. $\} \mid-\operatorname{dim}_{\mathbb{Z}_{2}} H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right) ; \mathbb{Z}\right)$
$=\frac{1}{6}\left(g^{3}+6 g^{2}-7 g-12\right)-\left(\binom{g}{3}+\binom{g}{2}-1\right)$
$=g^{2}-g-1$.

Key theorem for the abelianization:

Theorem (R. Kobayashi-O.)

- For $g=3$ or $g \geq 5$, $\mathcal{T}_{2}\left(N_{g}\right)$ is normally generated by $a_{1 ; 2,3}$ in $\mathcal{M}\left(N_{g}\right)$.
- $\mathcal{T}_{2}\left(N_{4}\right)$ is normally generated by $a_{1 ; 2,3}$ and $T_{1,2,3,4}^{2}$ in $\mathcal{M}\left(N_{4}\right)$.

The abelianization of $\mathcal{T}_{2}\left(N_{g}\right)$ for $g \geq 5$
Put $H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right):=H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right) ; \mathbb{Z}\right)$.
We have the exact sequence

$$
1 \longrightarrow \mathcal{T}_{2}\left(N_{g}\right) \longrightarrow \Gamma_{2}\left(N_{g}\right) \longrightarrow \mathbb{Z}_{2}\left[Y_{1,2}\right] \longrightarrow 0 .
$$

The abelianization of $\mathcal{T}_{2}\left(N_{g}\right)$ for $g \geq 5$
Put $H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right):=H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right) ; \mathbb{Z}\right)$.
We have the exact sequence

$$
1 \longrightarrow \mathcal{T}_{2}\left(N_{g}\right) \longrightarrow \Gamma_{2}\left(N_{g}\right) \longrightarrow \mathbb{Z}_{2}\left[Y_{1,2}\right] \longrightarrow 0 .
$$

By the five term exact sequence, we have the exact sequence

$$
H_{2}\left(\mathbb{Z}_{2}\right) \longrightarrow H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right)_{\mathbb{Z}_{2}} \longrightarrow H_{1}\left(\Gamma_{2}\left(N_{g}\right)\right) \longrightarrow H_{1}\left(\mathbb{Z}_{2}\right) \longrightarrow 0
$$

where

$$
\begin{aligned}
H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right)_{\mathbb{Z}_{2}} & :=H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right) /\left\langle f \cdot m-m \mid m \in H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right), f \in \mathbb{Z}_{2}\right\rangle \\
& : \text { the co-invariant part, where }
\end{aligned}
$$

$$
\mathbb{Z}_{2}=\Gamma_{2}\left(N_{g}\right) / \mathcal{T}_{2}\left(N_{g}\right) \curvearrowright H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right)=\mathcal{T}_{2}\left(N_{g}\right)^{\text {ab }}: \text { conjugations. }
$$

The abelianization of $\mathcal{T}_{2}\left(N_{g}\right)$ for $g \geq 5$
Put $H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right):=H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right) ; \mathbb{Z}\right)$.
We have the exact sequence

$$
1 \longrightarrow \mathcal{T}_{2}\left(N_{g}\right) \longrightarrow \Gamma_{2}\left(N_{g}\right) \longrightarrow \mathbb{Z}_{2}\left[Y_{1,2}\right] \longrightarrow 0 .
$$

By the five term exact sequence, we have the exact sequence

$$
0 \longrightarrow H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right)_{\mathbb{Z}_{2}} \longrightarrow H_{1}\left(\Gamma_{2}\left(N_{g}\right)\right) \longrightarrow H_{1}\left(\mathbb{Z}_{2}\right) \longrightarrow 0,
$$

where

$$
\begin{aligned}
H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right)_{\mathbb{Z}_{2}} & :=H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right) /\left\langle f \cdot m-m \mid m \in H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right), f \in \mathbb{Z}_{2}\right\rangle \\
& : \text { the co-invariant part, where }
\end{aligned}
$$

$$
\mathbb{Z}_{2}=\Gamma_{2}\left(N_{g}\right) / \mathcal{T}_{2}\left(N_{g}\right) \curvearrowright H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right)=\mathcal{T}_{2}\left(N_{g}\right)^{\text {ab }}: \text { conjugations. }
$$

The abelianization of $\mathcal{T}_{2}\left(N_{g}\right)$ for $g \geq 5$
Put $H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right):=H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right) ; \mathbb{Z}\right)$.
We have the exact sequence

$$
1 \longrightarrow \mathcal{T}_{2}\left(N_{g}\right) \longrightarrow \Gamma_{2}\left(N_{g}\right) \longrightarrow \mathbb{Z}_{2}\left[Y_{1,2}\right] \longrightarrow 0 .
$$

By the five term exact sequence, we have the exact sequence

$$
0 \longrightarrow H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right)_{\mathbb{Z}_{2}} \longrightarrow H_{1}\left(\Gamma_{2}\left(N_{g}\right)\right) \longrightarrow \mathbb{Z}_{2} \longrightarrow 0,
$$

where

$$
\begin{aligned}
H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right)_{\mathbb{Z}_{2}} & :=H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right) /\left\langle f \cdot m-m \mid m \in H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right), f \in \mathbb{Z}_{2}\right\rangle \\
& : \text { the co-invariant part, where }
\end{aligned}
$$

$$
\mathbb{Z}_{2}=\Gamma_{2}\left(N_{g}\right) / \mathcal{T}_{2}\left(N_{g}\right) \curvearrowright H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right)=\mathcal{T}_{2}\left(N_{g}\right)^{\text {ab }}: \text { conjugations. }
$$

The abelianization of $\mathcal{T}_{2}\left(N_{g}\right)$ for $g \geq 5$
Put $H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right):=H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right) ; \mathbb{Z}\right)$.
We have the exact sequence

$$
1 \longrightarrow \mathcal{T}_{2}\left(N_{g}\right) \longrightarrow \Gamma_{2}\left(N_{g}\right) \longrightarrow \mathbb{Z}_{2}\left[Y_{1,2}\right] \longrightarrow 0 .
$$

By the five term exact sequence, we have the exact sequence

$$
0 \longrightarrow H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right)_{\mathbb{Z}_{2}} \longrightarrow \mathbb{Z}_{2}^{\binom{9}{3}+\binom{g}{2}} \longrightarrow \mathbb{Z}_{2} \longrightarrow 0,
$$

where

$$
H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right)_{\mathbb{Z}_{2}}:=H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right) /\left\langle f \cdot m-m \mid m \in H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right), f \in \mathbb{Z}_{2}\right\rangle
$$

: the co-invariant part, where
$\mathbb{Z}_{2}=\Gamma_{2}\left(N_{g}\right) / \mathcal{T}_{2}\left(N_{g}\right) \curvearrowright H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right)=\mathcal{T}_{2}\left(N_{g}\right)^{\text {ab }}:$ conjugations.

The abelianization of $\mathcal{T}_{2}\left(N_{g}\right)$ for $g \geq 5$
Put $H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right):=H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right) ; \mathbb{Z}\right)$.
We have the exact sequence

$$
1 \longrightarrow \mathcal{T}_{2}\left(N_{g}\right) \longrightarrow \Gamma_{2}\left(N_{g}\right) \longrightarrow \mathbb{Z}_{2}\left[Y_{1,2}\right] \longrightarrow 0 .
$$

By the five term exact sequence, we have the exact sequence

$$
0 \longrightarrow H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right)_{\mathbb{Z}_{2}} \longrightarrow \mathbb{Z}_{2}^{\binom{9}{3}+\binom{g}{2}} \longrightarrow \mathbb{Z}_{2} \longrightarrow 0,
$$

where

$$
H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right)_{\mathbb{Z}_{2}}:=H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right) /\left\langle f \cdot m-m \mid m \in H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right), f \in \mathbb{Z}_{2}\right\rangle
$$

: the co-invariant part, where
$\mathbb{Z}_{2}=\Gamma_{2}\left(N_{g}\right) / \mathcal{T}_{2}\left(N_{g}\right) \curvearrowright H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right)=\mathcal{T}_{2}\left(N_{g}\right)^{\text {ab }}$: conjugations.
Proposition (by using the normal generating set for $\mathcal{T}_{2}\left(N_{g}\right)$)
For $g \geq 5$, the action $\mathbb{Z}_{2} \curvearrowright H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right)$ is trivial.

The abelianization of $\mathcal{T}_{2}\left(N_{g}\right)$ for $g \geq 5$
Put $H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right):=H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right) ; \mathbb{Z}\right)$.
We have the exact sequence

$$
1 \longrightarrow \mathcal{T}_{2}\left(N_{g}\right) \longrightarrow \Gamma_{2}\left(N_{g}\right) \longrightarrow \mathbb{Z}_{2}\left[Y_{1,2}\right] \longrightarrow 0 .
$$

By the five term exact sequence, we have the exact sequence

$$
0 \longrightarrow H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right) \longrightarrow \mathbb{Z}_{2}^{\binom{g}{3}+\binom{g}{2}} \longrightarrow \mathbb{Z}_{2} \longrightarrow 0
$$

where

$$
H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right)_{\mathbb{Z}_{2}}:=H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right) /\left\langle f \cdot m-m \mid m \in H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right), f \in \mathbb{Z}_{2}\right\rangle
$$

: the co-invariant part, where
$\mathbb{Z}_{2}=\Gamma_{2}\left(N_{g}\right) / \mathcal{T}_{2}\left(N_{g}\right) \curvearrowright H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right)=\mathcal{T}_{2}\left(N_{g}\right)^{\text {ab }}$: conjugations.
Proposition (by using the normal generating set for $\mathcal{T}_{2}\left(N_{g}\right)$)
For $g \geq 5$, the action $\mathbb{Z}_{2} \curvearrowright H_{1}\left(\mathcal{T}_{2}\left(N_{g}\right)\right)$ is trivial.

An observation for the abelianization of $\mathcal{T}_{2}\left(N_{4}\right)$

Remark (by a private communication with B . Szepietowski)

- The conjugate action $\mathbb{Z}_{2} \curvearrowright H_{1}\left(\mathcal{T}_{2}\left(N_{4}\right)\right)$ is not trivial.
- $\left[T_{1,2,3,4}^{2}\right] \in H_{1}\left(\mathcal{T}_{2}\left(N_{4}\right)\right)$ has infinite order.

Proposition

\mathcal{G} : the subgroup of $\mathcal{T}_{2}\left(N_{g}\right)$ which is normally generated by $a_{1 ; 2,3}$ in $\mathcal{M}\left(N_{g}\right)$.
For $g \geq 4, \mathcal{G}$ is generated by involutions.

Theorem (R. Kobayashi-O. (again))

- For $g=3$ or $g \geq 5, \mathcal{T}_{2}\left(N_{g}\right)$ is normally generated by $a_{1 ; 2,3}$ in $\mathcal{M}\left(N_{g}\right)$.
- $\mathcal{T}_{2}\left(N_{4}\right)$ is normally generated by $a_{1 ; 2,3}$ and $T_{1,2,3,4}^{2}$ in $\mathcal{M}\left(N_{4}\right)$.
$\rightsquigarrow \mathcal{T}_{2}\left(N_{4}\right)$ is not normally generated by $a_{1 ; 2,3}$ in $\mathcal{M}\left(N_{4}\right)$.

Hirose-Sato defined the mod 2 Johnson homomorphism $\tau_{1}: \Gamma_{2}\left(N_{g}{ }^{*}\right) \rightarrow A^{*}$ for some \mathbb{Z}_{2}-vector space A^{*}.

Theorem (R. Kobayashi-O. (again))

$\mathcal{T}_{2}\left(N_{4}\right)$ is generated by the following elements:
(i) $a_{1 ; 2,3}, a_{1 ; 3,4}, a_{2 ; 1,3}, a_{2 ; 3,4}, a_{3 ; 1,2}, a_{3 ; 2,4}, a_{4 ; 1,2}, a_{4 ; 2,3}$, $b_{1 ; 2,3}, b_{1 ; 3,4}, b_{2 ; 1,3}, b_{2 ; 3,4}, b_{3 ; 1,2}, b_{3 ; 2,4}, b_{4 ; 1,2}, b_{4 ; 2,1}, Y_{1,2}^{2}, Y_{1,3}^{2}, Y_{1,4}^{2}$,
(ii) $T_{1,2,3,4}^{2}$.

Hirose-Sato defined the mod 2 Johnson homomorphism $\bar{\tau}_{1}: \Gamma_{2}\left(N_{g}\right) \rightarrow A$ for some \mathbb{Z}_{2}-vector space A.

Theorem (R. Kobayashi-O. (again))

$\mathcal{T}_{2}\left(N_{4}\right)$ is generated by the following elements:
(i) $a_{1 ; 2,3}, a_{1 ; 3,4}, a_{2 ; 1,3}, a_{2 ; 3,4}, a_{3 ; 1,2}, a_{3 ; 2,4}, a_{4 ; 1,2}, a_{4 ; 2,3}$, $b_{1 ; 2,3}, b_{1 ; 3,4}, b_{2 ; 1,3}, b_{2 ; 3,4}, b_{3 ; 1,2}, b_{3 ; 2,4}, b_{4 ; 1,2}, b_{4 ; 2,1}, Y_{1,2}^{2}, Y_{1,3}^{2}, Y_{1,4}^{2}$,
(ii) $T_{1,2,3,4}^{2}$.

Hirose-Sato defined the mod 2 Johnson homomorphism $\bar{\tau}_{1}: \Gamma_{2}\left(N_{g}\right) \rightarrow A$ for some \mathbb{Z}_{2}-vector space A.

Theorem (R. Kobayashi-O. (again))
$\mathcal{T}_{2}\left(N_{4}\right)$ is generated by the following 9 elements:
(i) $a_{1 ; 2,3}, a_{1 ; 3,4}, a_{2 ; 1,3}, a_{3 ; 1,2}, a_{3 ; 2,4}$,
$Y_{1,2}^{2}, Y_{1,3}^{2}, Y_{1,4}^{2}$,
(ii) $T_{1,2,3,4}^{2}$.

Hirose-Sato defined the mod 2 Johnson homomorphism $\bar{\tau}_{1}: \Gamma_{2}\left(N_{g}\right) \rightarrow A$ for some \mathbb{Z}_{2}-vector space A.

Theorem (R. Kobayashi-O. (again))

$\mathcal{T}_{2}\left(N_{4}\right)$ is generated by the following 9 elements:
(i) $a_{1 ; 2,3}, a_{1 ; 3,4}, a_{2 ; 1,3}, a_{3 ; 1,2}, a_{3 ; 2,4}$,
$Y_{1,2}^{2}, Y_{1,3}^{2}, Y_{1,4}^{2}$,
(ii) $T_{1,2,3,4}^{2}$.

Observations: for $g=4$,

- $\left[T_{1,2,3,4}^{2}\right] \in H_{1}\left(\mathcal{T}_{2}\left(N_{4}\right)\right)$ has infinite order,
- $\left[a_{k ; i, j}\right] \in H_{1}\left(\mathcal{T}_{2}\left(N_{4}\right)\right)$ has order $n \leq 2(\because \mathcal{G}$ is generated by involutions),
- $Y_{i, j}^{2} \in \mathcal{G}\left(\Longrightarrow\left[Y_{i, j}^{2}\right] \in H_{1}\left(\mathcal{T}_{2}\left(N_{4}\right)\right)\right.$ also has order $\left.n \leq 2\right)$,
- $\bar{\tau}_{1}\left(a_{k ; i, j}\right) \neq 0$ and $\bar{\tau}_{1}\left(Y_{i, j}^{2}\right)=0$ in A,
$\rightsquigarrow 8 \geq \exists d \geq 1$ s.t. $H_{1}\left(\mathcal{T}_{2}\left(N_{4}\right)\right) \cong \mathbb{Z}_{2}^{d} \oplus \mathbb{Z}\left[T_{1,2,3,4}^{2}\right]$.

Thank you for your attention!

