Generators for the level 2 twist subgroup of the mapping class group of a non-orientable surface and its abelianization

Genki Omori

joint work with Ryoma Kobayashi (Ishikawa National College of Technology)

Tokyo Institute of Technology (Research Fellow of Japan Society for the Promotion of Science)

May 22, 2017

 $N_g = \sharp_g \mathbb{R}P^2$: a closed conn. non-ori. surface of genus $g \ge 1$.

 $\mathcal{M}(N_g) := \operatorname{Diff}(N_g)/\operatorname{isotopy:} \text{ the mapping class group of } N_g, \text{ where } \operatorname{Diff}(N_g) := \{f : N_g \to N_g \text{ diffeo.}\}.$

Put $\mathbb{Z}_2 := \mathbb{Z}/2\mathbb{Z}$.

$$\Gamma_2(N_g) := \ker(\mathcal{M}(N_g) \to \operatorname{Aut} H_1(N_g; \mathbb{Z}_2))$$

: the level 2 mapping class group of N_q .

 $N_g = \sharp_g \mathbb{R}P^2$: a closed conn. non-ori. surface of genus $g \ge 1$.

 $\mathcal{M}(N_g) := \mathrm{Diff}(N_g) / \mathrm{isotopy:} \text{ the mapping class group of } N_g, \text{ where } \mathrm{Diff}(N_g) := \{f : N_g \to N_g \text{ diffeo.}\}.$

Put $\mathbb{Z}_2 := \mathbb{Z}/2\mathbb{Z}$.

$$\Gamma_2(N_g) := \ker(\mathcal{M}(N_g) \to \operatorname{Aut} H_1(N_g; \mathbb{Z}_2))$$

: the level 2 mapping class group of N_g .

Theorem (Hirose-Sato (2014))

For $g \geq 4$,

 \leadsto They used the mod 2 Johnson homomorphism to determine the abelianization of $\Gamma_2(N_g)!!$

Definition

c: a simple closed curve on N_g .

- c: one-sided $\stackrel{\text{def}}{\longleftrightarrow}$ a neighborhood of c in N_g is a Möbius band.
- c: two-sided $\stackrel{\text{def}}{\iff}$ a neighborhood of c in N_q is an annulus.

Definition

c: a simple closed curve on N_g .

- c: one-sided $\stackrel{\text{def}}{\longleftrightarrow}$ a neighborhood of c in N_g is a Möbius band.
- c: two-sided $\stackrel{\text{def}}{\iff}$ a neighborhood of c in N_g is an annulus.

For a two-sided simple closed curve c on N_g , we can define the Dehn twist $t_c!!$

Remark

We also need to take an orientation of the neighborhood of c to define t_c .

 $\mathcal{T}(N_g) := \left\langle \{t_c \mid c : \text{a two-sided simple closed curve on } N_g \} \right\rangle \lhd \mathcal{M}(N_g)$: the *twist subgroup* of $\mathcal{M}(N_g)$.

Theorem (Lickorish (1965))

 $\mathcal{T}(N_g) \subset \mathcal{M}(N_g)$: an index 2 subgroup.

 $\mathcal{T}(N_g) := \left\langle \{t_c \mid c : \text{a two-sided simple closed curve on } N_g \} \right\rangle \lhd \mathcal{M}(N_g)$: the *twist subgroup* of $\mathcal{M}(N_g)$.

Theorem (Lickorish (1965))

 $\mathcal{T}(N_g) \subset \mathcal{M}(N_g)$: an index 2 subgroup.

 $\mathcal{T}_2(N_g) := \Gamma_2(N_g) \cap \mathcal{T}(N_g)$: the level 2 twist subgroup of $\mathcal{M}(N_g)$.

Remark

•
$$\mathcal{T}_2(N_2) = \mathcal{T}_2(N_1) = \{1\}.$$

•
$$\mathcal{T}_2(N_3) \cong \ker(SL(2;\mathbb{Z}) \to SL(2;\mathbb{Z}_2)).$$

 $\mathcal{T}(N_g) := \left\langle \{t_c \mid c : \text{a two-sided simple closed curve on } N_g \} \right\rangle \lhd \mathcal{M}(N_g)$: the *twist subgroup* of $\mathcal{M}(N_g)$.

Theorem (Lickorish (1965))

 $\mathcal{T}(N_g) \subset \mathcal{M}(N_g)$: an index 2 subgroup.

 $\mathcal{T}_2(N_g) := \Gamma_2(N_g) \cap \mathcal{T}(N_g)$: the level 2 twist subgroup of $\mathcal{M}(N_g)$.

Remark

•
$$\mathcal{T}_2(N_2) = \mathcal{T}_2(N_1) = \{1\}.$$

•
$$\mathcal{T}_2(N_3) \cong \ker(SL(2;\mathbb{Z}) \to SL(2;\mathbb{Z}_2)).$$

Today's talk

- A finite generating set for $\mathcal{T}_2(N_g)$,
- The first homology group of $\mathcal{T}_2(N_g)$.

Crosscap pushing map

 $\overline{\mu: \text{ a one-sided s.c.c. on } N_g, \alpha: \text{ a s.c.c. on } N_g \text{ w}/ |\mu \cap \alpha| = 1, } Y_{\mu,\alpha}:$

Crosscap pushing map

 $\overline{\mu: \text{ a one-sided s.c.c. on } N_g, \alpha: \text{ a s.c.c. on } N_g \text{ w}/ |\mu \cap \alpha| = 1, } Y_{\mu,\alpha}:$

Crosscap pushing map

 $\begin{array}{c} \mu: \text{ a one-sided s.c.c. on } N_g, \ \alpha: \text{ a s.c.c. on } N_g \text{ w}/ \ |\mu \cap \alpha| = 1, \\ Y_{\mu,\alpha}: \end{array}$

 $\begin{array}{l} \alpha_{i_1,i_2,\ldots,i_n}: \text{the s.c.c. on } N_g \text{ for distinct } i_1,i_2,\ldots,i_n \in \{1,\ldots,g\},\\ \beta_{k;i,j}: \text{ the s.c.c. on } N_g \text{ for } k < i < j, \ j < k < i, \text{ or } i < j < k. \end{array}$

$$\begin{split} T_{i,j,k,l} &:= t_{\alpha_{i,j,k,l}}, \\ Y_{i,j} &:= Y_{\alpha_i,\alpha_{i,j}}: \text{ the Y-homeomorphism}, \\ a_{k;i,j} &:= Y_{\alpha_k,\alpha_{i,j,k}}, \\ b_{k;i,j} &:= Y_{\alpha_k,\beta_{k;i,j}}. \end{split}$$

Remark

•
$$T^2_{i,j,k,l} \in \mathcal{T}_2(N_g).$$

•
$$a_{k;i,j}, b_{k;i,j} \in \mathcal{T}_2(N_g).$$

•
$$Y_{i,j} \in \Gamma_2(N_g)$$
, but $Y_{i,j} \notin \mathcal{T}_2(N_g)$.

• $Y_{i,j}^2 \in \mathcal{T}_2(N_g).$

Theorem (R. Kobayashi-O.)

For
$$g \ge 3$$
, $\mathcal{T}_2(N_g)$ is generated by the following elements:
(i) $a_{k;i,i+1}$, $b_{k;i,i+1}$, $a_{k;k-1,k+1}$, $b_{k;k-1,k+1}$ $(1 \le k \le g, 1 \le i \le g-1, i \ne k-1, k)$,
(ii) $Y_{1,j}^2$ $(2 \le j \le g)$,
(iii) $T_{1,j,k,l}^2$ (when $g \ge 4$, $2 \le j < k < l \le g$).

Outline of the proof

$$\overline{\Gamma_2(N_g)/\mathcal{T}_2(N_g)} = \overline{\Gamma_2(N_g)}/(\Gamma_2(N_g) \cap \mathcal{T}(N_g)) \cong (\Gamma_2(N_g)\mathcal{T}(N_g))/\mathcal{T}(N_g)$$

= $\mathcal{M}(N_g)/\mathcal{T}(N_g)$
 $\cong \mathbb{Z}_2[Y_{1,2}].$

We use the Reidemeister-Schreier method for $\mathcal{T}_2(N_g) < \Gamma_2(N_g)$!! \Box

Theorem (R. Kobayashi-O.)

For
$$g \ge 3$$
, $\mathcal{T}_2(N_g)$ is generated by the following elements:
(i) $a_{k;i,i+1}$, $b_{k;i,i+1}$, $a_{k;k-1,k+1}$, $b_{k;k-1,k+1}$ $(1 \le k \le g, 1 \le i \le g-1, i \ne k-1, k)$,
(ii) $Y_{1,j}^2$ $(2 \le j \le g)$,
(iii) $T_{1,j,k,l}^2$ (when $g \ge 4$, $2 \le j < k < l \le g$).

Outline of the proof

$$\overline{\Gamma_2(N_g)/\mathcal{T}_2(N_g)} = \frac{\Gamma_2(N_g)}{(\Gamma_2(N_g))} \cap \mathcal{T}(N_g)) \cong (\Gamma_2(N_g)\mathcal{T}(N_g))/\mathcal{T}(N_g)$$

= $\mathcal{M}(N_g)/\mathcal{T}(N_g)$
 $\cong \mathbb{Z}_2[Y_{1,2}].$

We use the Reidemeister-Schreier method for $\mathcal{T}_2(N_g) < \Gamma_2(N_g) \parallel$

Theorem (R. Kobayashi-O.)

$$H_1(\mathcal{T}_2(N_g);\mathbb{Z}) \cong \begin{cases} \mathbb{Z}^2 \oplus \mathbb{Z}_2 & (g=3), \\ \mathbb{Z}_2^{\binom{g}{3} + \binom{g}{2} - 1} & (g \ge 5). \end{cases}$$

Remark

- $|\{\text{generators of } \mathcal{T}_2(N_3) \text{ in the thm.}\}| = \dim_{\mathbb{Z}_2} H_1(\mathcal{T}_2(N_3);\mathbb{Z}).$
- For $g \ge 5$, $|\{\text{generators of } \mathcal{T}_2(N_g) \text{ in the thm.}\}| - \dim_{\mathbb{Z}_2} H_1(\mathcal{T}_2(N_g); \mathbb{Z})$ $= \frac{1}{6}(g^3 + 6g^2 - 7g - 12) - (\binom{g}{3} + \binom{g}{2} - 1)$ $= g^2 - g - 1.$

Remark

- $|\{\text{generators of } \mathcal{T}_2(N_3) \text{ in the thm.}\}| = \dim_{\mathbb{Z}_2} H_1(\mathcal{T}_2(N_3);\mathbb{Z}).$
- For $g \ge 5$, $|\{\text{generators of } \mathcal{T}_2(N_g) \text{ in the thm.}\}| - \dim_{\mathbb{Z}_2} H_1(\mathcal{T}_2(N_g); \mathbb{Z}) = \frac{1}{6}(g^3 + 6g^2 - 7g - 12) - (\binom{g}{3} + \binom{g}{2} - 1) = g^2 - g - 1.$

Key theorem for the abelianization:

Theorem (R. Kobayashi-O.)

Put $H_1(\mathcal{T}_2(N_g)) := H_1(\mathcal{T}_2(N_g); \mathbb{Z}).$ We have the exact sequence

$$1 \longrightarrow \mathcal{T}_2(N_g) \longrightarrow \Gamma_2(N_g) \longrightarrow \mathbb{Z}_2[Y_{1,2}] \longrightarrow 0.$$

Put $H_1(\mathcal{T}_2(N_g)) := H_1(\mathcal{T}_2(N_g);\mathbb{Z}).$ We have the exact sequence

$$1 \longrightarrow \mathcal{T}_2(N_g) \longrightarrow \Gamma_2(N_g) \longrightarrow \mathbb{Z}_2[Y_{1,2}] \longrightarrow 0.$$

By the five term exact sequence, we have the exact sequence

$$H_2(\mathbb{Z}_2) \longrightarrow H_1(\mathcal{T}_2(N_g))_{\mathbb{Z}_2} \longrightarrow H_1(\Gamma_2(N_g)) \longrightarrow H_1(\mathbb{Z}_2) \longrightarrow 0,$$

where

$$\begin{split} H_1(\mathcal{T}_2(N_g))_{\mathbb{Z}_2} &:= H_1(\mathcal{T}_2(N_g)) / \big\langle f \cdot m - m \mid m \in H_1(\mathcal{T}_2(N_g)), \ f \in \mathbb{Z}_2 \big\rangle. \\ &: \text{ the co-invariant part, where} \end{split}$$

Put $H_1(\mathcal{T}_2(N_g)) := H_1(\mathcal{T}_2(N_g);\mathbb{Z}).$ We have the exact sequence

$$1 \longrightarrow \mathcal{T}_2(N_g) \longrightarrow \Gamma_2(N_g) \longrightarrow \mathbb{Z}_2[Y_{1,2}] \longrightarrow 0.$$

By the five term exact sequence, we have the exact sequence

$$0 \longrightarrow H_1(\mathcal{T}_2(N_g))_{\mathbb{Z}_2} \longrightarrow H_1(\Gamma_2(N_g)) \longrightarrow H_1(\mathbb{Z}_2) \longrightarrow 0,$$

where

$$\begin{split} H_1(\mathcal{T}_2(N_g))_{\mathbb{Z}_2} &:= H_1(\mathcal{T}_2(N_g)) / \big\langle f \cdot m - m \mid m \in H_1(\mathcal{T}_2(N_g)), \ f \in \mathbb{Z}_2 \big\rangle. \\ &: \text{the co-invariant part, where} \end{split}$$

Put $H_1(\mathcal{T}_2(N_g)) := H_1(\mathcal{T}_2(N_g);\mathbb{Z}).$ We have the exact sequence

$$1 \longrightarrow \mathcal{T}_2(N_g) \longrightarrow \Gamma_2(N_g) \longrightarrow \mathbb{Z}_2[Y_{1,2}] \longrightarrow 0.$$

By the five term exact sequence, we have the exact sequence

$$0 \longrightarrow H_1(\mathcal{T}_2(N_g))_{\mathbb{Z}_2} \longrightarrow H_1(\Gamma_2(N_g)) \longrightarrow \mathbb{Z}_2 \longrightarrow 0,$$

where

$$\begin{split} H_1(\mathcal{T}_2(N_g))_{\mathbb{Z}_2} &:= H_1(\mathcal{T}_2(N_g)) / \big\langle f \cdot m - m \mid m \in H_1(\mathcal{T}_2(N_g)), \ f \in \mathbb{Z}_2 \big\rangle. \\ &: \text{the co-invariant part, where} \end{split}$$

Put $H_1(\mathcal{T}_2(N_g)) := H_1(\mathcal{T}_2(N_g); \mathbb{Z}).$ We have the exact sequence

$$1 \longrightarrow \mathcal{T}_2(N_g) \longrightarrow \Gamma_2(N_g) \longrightarrow \mathbb{Z}_2[Y_{1,2}] \longrightarrow 0.$$

By the five term exact sequence, we have the exact sequence

$$0 \longrightarrow H_1(\mathcal{T}_2(N_g))_{\mathbb{Z}_2} \longrightarrow \mathbb{Z}_2^{\binom{g}{3} + \binom{g}{2}} \longrightarrow \mathbb{Z}_2 \longrightarrow 0,$$

where

$$\begin{split} H_1(\mathcal{T}_2(N_g))_{\mathbb{Z}_2} &:= H_1(\mathcal{T}_2(N_g)) / \big\langle f \cdot m - m \mid m \in H_1(\mathcal{T}_2(N_g)), \ f \in \mathbb{Z}_2 \big\rangle. \\ &: \text{the co-invariant part, where} \end{split}$$

Put $H_1(\mathcal{T}_2(N_g)) := H_1(\mathcal{T}_2(N_g); \mathbb{Z}).$ We have the exact sequence

$$1 \longrightarrow \mathcal{T}_2(N_g) \longrightarrow \Gamma_2(N_g) \longrightarrow \mathbb{Z}_2[Y_{1,2}] \longrightarrow 0.$$

By the five term exact sequence, we have the exact sequence

$$0 \longrightarrow H_1(\mathcal{T}_2(N_g))_{\mathbb{Z}_2} \longrightarrow \mathbb{Z}_2^{\binom{g}{3} + \binom{g}{2}} \longrightarrow \mathbb{Z}_2 \longrightarrow 0,$$

where

$$\begin{split} H_1(\mathcal{T}_2(N_g))_{\mathbb{Z}_2} &:= H_1(\mathcal{T}_2(N_g)) / \big\langle f \cdot m - m \mid m \in H_1(\mathcal{T}_2(N_g)), \ f \in \mathbb{Z}_2 \big\rangle. \\ &: \text{the co-invariant part, where} \end{split}$$

 $\mathbb{Z}_2 = \Gamma_2(N_g) / \mathcal{T}_2(N_g) \curvearrowright H_1(\mathcal{T}_2(N_g)) = \mathcal{T}_2(N_g)^{\mathsf{ab}}: \text{ conjugations}.$

Proposition (by using the normal generating set for $\mathcal{T}_2(N_g)$)

For $g \geq 5$, the action $\mathbb{Z}_2 \curvearrowright H_1(\mathcal{T}_2(N_g))$ is trivial.

Genki Omori (Tokyo Tech.)

Put $H_1(\mathcal{T}_2(N_g)) := H_1(\mathcal{T}_2(N_g); \mathbb{Z}).$ We have the exact sequence

$$1 \longrightarrow \mathcal{T}_2(N_g) \longrightarrow \Gamma_2(N_g) \longrightarrow \mathbb{Z}_2[Y_{1,2}] \longrightarrow 0.$$

By the five term exact sequence, we have the exact sequence

$$0 \longrightarrow H_1(\mathcal{T}_2(N_g)) \longrightarrow \mathbb{Z}_2^{\binom{g}{3} + \binom{g}{2}} \longrightarrow \mathbb{Z}_2 \longrightarrow 0,$$

where

$$\begin{split} H_1(\mathcal{T}_2(N_g))_{\mathbb{Z}_2} &:= H_1(\mathcal{T}_2(N_g)) / \big\langle f \cdot m - m \mid m \in H_1(\mathcal{T}_2(N_g)), \ f \in \mathbb{Z}_2 \big\rangle. \\ &: \text{the co-invariant part, where} \end{split}$$

 $\mathbb{Z}_2 = \Gamma_2(N_g) / \mathcal{T}_2(N_g) \curvearrowright H_1(\mathcal{T}_2(N_g)) = \mathcal{T}_2(N_g)^{\mathsf{ab}}: \text{ conjugations}.$

Proposition (by using the normal generating set for $\mathcal{T}_2(N_g)$)

For $g \geq 5$, the action $\mathbb{Z}_2 \curvearrowright H_1(\mathcal{T}_2(N_g))$ is trivial.

Remark (by a private communication with B. Szepietowski)

- The conjugate action $\mathbb{Z}_2 \curvearrowright H_1(\mathcal{T}_2(N_4))$ is not trivial.
- $[T_{1,2,3,4}^2] \in H_1(\mathcal{T}_2(N_4))$ has infinite order.

Proposition

 \mathcal{G} : the subgroup of $\mathcal{T}_2(N_g)$ which is normally generated by $a_{1;2,3}$ in $\mathcal{M}(N_g)$. For $g \geq 4$, \mathcal{G} is generated by involutions.

Theorem (R. Kobayashi-O. (again))

For g = 3 or g ≥ 5, T₂(N_g) is normally generated by a_{1;2,3} in M(N_g).
T₂(N₄) is normally generated by a_{1;2,3} and T²_{1,2,3,4} in M(N₄).

 $\rightsquigarrow \mathcal{T}_2(N_4)$ is not normally generated by $a_{1;2,3}$ in $\mathcal{M}(N_4)$.

Hirose-Sato defined the mod 2 Johnson homomorphism $\tau_1: \Gamma_2(N_g^*) \to A^*$ for some \mathbb{Z}_2 -vector space A^* .

Theorem (R. Kobayashi-O. (again))

 $\mathcal{T}_2(N_4)$ is generated by the following elements:

(i) $a_{1;2,3}, a_{1;3,4}, a_{2;1,3}, a_{2;3,4}, a_{3;1,2}, a_{3;2,4}, a_{4;1,2}, a_{4;2,3}, b_{1;2,3}, b_{1;3,4}, b_{2;1,3}, b_{2;3,4}, b_{3;1,2}, b_{3;2,4}, b_{4;1,2}, b_{4;2,1}, Y_{1,2}^2, Y_{1,3}^2, Y_{1,4}^2,$ (ii) $T_{1,2,3,4}^2$. Hirose-Sato defined the mod 2 Johnson homomorphism $\bar{\tau}_1: \Gamma_2(N_g) \to A$ for some \mathbb{Z}_2 -vector space A.

Theorem (R. Kobayashi-O. (again))

 $\mathcal{T}_2(N_4)$ is generated by the following elements:

(i) $a_{1;2,3}, a_{1;3,4}, a_{2;1,3}, a_{2;3,4}, a_{3;1,2}, a_{3;2,4}, a_{4;1,2}, a_{4;2,3},$ $b_{1;2,3}, b_{1;3,4}, b_{2;1,3}, b_{2;3,4}, b_{3;1,2}, b_{3;2,4}, b_{4;1,2}, b_{4;2,1}, Y_{1,2}^2, Y_{1,3}^2, Y_{1,4}^2,$ (ii) $T_{1,2,3,4}^2$. Hirose-Sato defined the mod 2 Johnson homomorphism $\bar{\tau}_1: \Gamma_2(N_g) \to A$ for some \mathbb{Z}_2 -vector space A.

Theorem (R. Kobayashi-O. (again))

 $\begin{aligned} \mathcal{T}_2(N_4) \text{ is generated by the following 9 elements:} \\ \textbf{(i)} \ a_{1;2,3}, \ a_{1;3,4}, \ a_{2;1,3}, \ a_{3;1,2}, \ a_{3;2,4}, \\ Y_{1,2}^2, \ Y_{1,3}^2, \ Y_{1,4}^2, \\ \textbf{(ii)} \ T_{1,2,3,4}^2. \end{aligned}$

Hirose-Sato defined the mod 2 Johnson homomorphism $\bar{\tau}_1: \Gamma_2(N_g) \to A$ for some \mathbb{Z}_2 -vector space A.

Theorem (R. Kobayashi-O. (again))

 $\begin{aligned} \mathcal{T}_2(N_4) \text{ is generated by the following 9 elements:} \\ \textbf{(i)} \ a_{1;2,3}, \ a_{1;3,4}, \ a_{2;1,3}, \ a_{3;1,2}, \ a_{3;2,4}, \\ Y_{1,2}^2, \ Y_{1,3}^2, \ Y_{1,4}^2, \\ \textbf{(ii)} \ T_{1,2,3,4}^2. \end{aligned}$

Observations: for g = 4,

- $[T^2_{1,2,3,4}] \in H_1(\mathcal{T}_2(N_4))$ has infinite order,
- $[a_{k;i,j}] \in H_1(\mathcal{T}_2(N_4))$ has order $n \leq 2$ (:: \mathcal{G} is generated by involutions),
- $Y_{i,j}^2 \in \mathcal{G} \iff [Y_{i,j}^2] \in H_1(\mathcal{T}_2(N_4))$ also has order $n \leq 2$),

•
$$ar{ au}_1(a_{k;i,j})
eq 0$$
 and $ar{ au}_1(Y^2_{i,j})=0$ in A ,

 $\rightsquigarrow 8 \geq \exists d \geq 1 \text{ s.t. } H_1(\mathcal{T}_2(N_4)) \cong \mathbb{Z}_2^d \oplus \mathbb{Z}[T^2_{1,2,3,4}].$

Thank you for your attention !