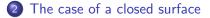
A normal generating set for the Torelli group of a compact non-orientable surface

Ryoma Kobayashi

National Institute of Technology, Ishikawa College.

May 22, 2017



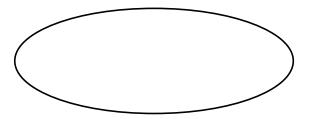
Orientable surface

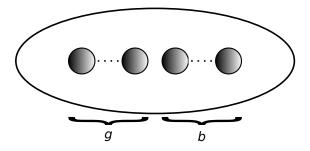
 Σ_g^b : a genus g compact orientable surface with b boundary components. The mapping class group of Σ_g^b is defined as

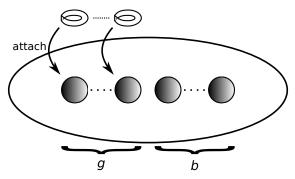
$$\mathcal{M}(\Sigma_g^b) = \{ f : \Sigma_g^b \stackrel{\text{diffeo.}}{\longrightarrow} \Sigma_g^b \mid \text{ori.-pres.}, f|_{\partial \Sigma_g^b} = \text{id} \}/\text{isotopy.}$$

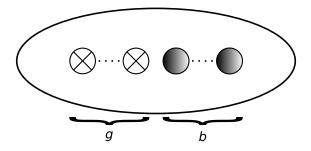
The Torelli group of Σ_q^b is defined as

$$\mathcal{I}(\Sigma_g^b) = \ker(\mathcal{M}(\Sigma_g^b) \to \operatorname{Aut}(H_1(\Sigma_g^b; \mathbb{Z}))).$$









 N^b_g : a genus $g \mbox{ compact non-orientable surface with } b \mbox{ boundary components.}$

The mapping class group of N_q^b is defined as

$$\mathcal{M}(N_g^b) = \{ f : N_g^b \stackrel{\text{diffeo.}}{\longrightarrow} N_g^b \mid f|_{\partial N_g^b} = \mathrm{id} \}/\mathrm{isotopy.}$$

The Torelli group of N_g^b is defined as

$$\mathcal{I}(N_g^b) = \ker(\mathcal{M}(N_g^b) \to \operatorname{Aut}(H_1(N_g^b; \mathbb{Z}))).$$

- A generating set for $\mathcal{I}(\Sigma_q^0)$ was found by Powell (1978).
- A finite generating set for $\mathcal{I}(\Sigma_q^0)$ was found by Johnson (1983).
- A generating set for $\mathcal{I}(\Sigma_q^b)$ was found by Putman (2007).

- A generating set for $\mathcal{I}(\Sigma_q^0)$ was found by Powell (1978).
- A finite generating set for $\mathcal{I}(\Sigma_q^0)$ was found by Johnson (1983).
- A generating set for $\mathcal{I}(\Sigma_q^b)$ was found by Putman (2007).

- A generating set for $\mathcal{I}(\Sigma_q^0)$ was found by Powell (1978).
- A finite generating set for $\mathcal{I}(\Sigma_q^0)$ was found by Johnson (1983).
- A generating set for $\mathcal{I}(\Sigma_q^b)$ was found by Putman (2007).

- A generating set for $\mathcal{I}(\Sigma_q^0)$ was found by Powell (1978).
- A finite generating set for $\mathcal{I}(\Sigma_q^0)$ was found by Johnson (1983).
- A generating set for $\mathcal{I}(\Sigma_q^b)$ was found by Putman (2007).

- A generating set for $\mathcal{I}(\Sigma_q^0)$ was found by Powell (1978).
- A finite generating set for $\mathcal{I}(\Sigma_q^0)$ was found by Johnson (1983).
- A generating set for $\mathcal{I}(\Sigma_q^b)$ was found by Putman (2007).

Problem

- Find a generating set for $\mathcal{I}(N_g^b)$.
- **2** Can $\mathcal{I}(N_g^0)$ be finitely generated?

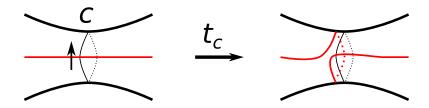
- A generating set for $\mathcal{I}(\Sigma_q^0)$ was found by Powell (1978).
- A finite generating set for $\mathcal{I}(\Sigma_q^0)$ was found by Johnson (1983).
- A generating set for $\mathcal{I}(\Sigma_q^b)$ was found by Putman (2007).

Problem

- Find a generating set for $\mathcal{I}(N_g^b)$.
- **2** Can $\mathcal{I}(N_q^0)$ be finitely generated?

Dehn twist

For a two sided simple closed curve c_r , the Dehn twist t_c is defined as



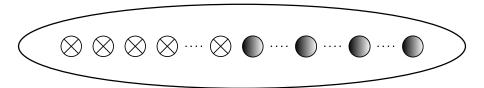
Theorem (Hirose-K. (b = 0), K. $(b \ge 1)$)

•
$$t_{\alpha}$$
, $t_{\beta}t_{\beta\prime}^{-1}$,

•
$$t_{\delta_i}$$
, t_{ρ_i} ($1 \le i \le b - 1$),

•
$$t_{\sigma_{ij}}$$
, $t_{ar{\sigma}_{ij}}$ ($1 \leq i < j \leq b-1$) and

•
$$t_{\gamma}$$
 (only if $g=4$).



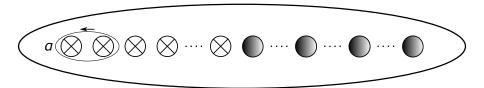
Theorem (Hirose-K. (b = 0), K. $(b \ge 1)$)

•
$$t_{\alpha}$$
, $t_{\beta}t_{\beta\prime}^{-1}$,

•
$$t_{\delta_i}$$
, t_{ρ_i} ($1 \le i \le b - 1$),

•
$$t_{\sigma_{ij}}$$
, $t_{ar{\sigma}_{ij}}$ ($1 \leq i < j \leq b-1$) and

•
$$t_{\gamma}$$
 (only if $g=4$).



Theorem (Hirose-K. (b = 0), K. $(b \ge 1)$)

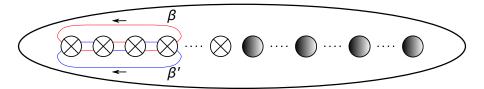
For $g \geq 4$ and $b \geq 0$, $\mathcal{I}(N_g^b)$ is normally generated by

• $t_{\alpha}, t_{\beta}t_{\beta\prime}^{-1},$

•
$$t_{\delta_i}, t_{\rho_i} \ (1 \le i \le b - 1),$$

•
$$t_{\sigma_{ij}}$$
, $t_{ar{\sigma}_{ij}}$ ($1 \leq i < j \leq b-1$) and

•
$$t_{\gamma}$$
 (only if $g=4$).



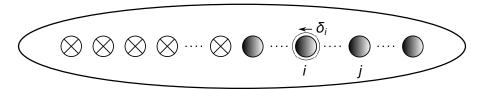
Theorem (Hirose-K. (b = 0), K. $(b \ge 1)$)

•
$$t_{\alpha}$$
, $t_{\beta}t_{\beta\prime}^{-1}$,

•
$$t_{\delta_i}$$
, t_{ρ_i} ($1 \le i \le b-1$),

•
$$t_{\sigma_{ij}}$$
, $t_{\bar{\sigma}_{ij}}$ ($1 \le i < j \le b - 1$) and

•
$$t_{\gamma}$$
 (only if $g=4$).



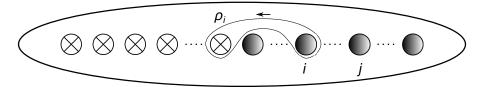
Theorem (Hirose-K. (b = 0), K. $(b \ge 1)$)

•
$$t_{\alpha}$$
, $t_{\beta}t_{\beta\prime}^{-1}$,

•
$$t_{\delta_i}$$
, $\frac{t_{\rho_i}}{(1 \le i \le b-1)}$,

•
$$t_{\sigma_{ij}}$$
, $t_{ar{\sigma}_{ij}}$ ($1 \leq i < j \leq b-1$) and

•
$$t_{\gamma}$$
 (only if $g=4$).



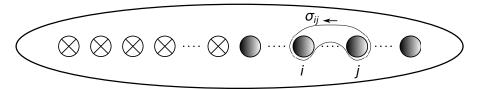
Theorem (Hirose-K. (b = 0), K. $(b \ge 1)$)

•
$$t_{\alpha}$$
, $t_{\beta}t_{\beta\prime}^{-1}$,

•
$$t_{\delta_i}$$
, t_{ρ_i} ($1 \le i \le b - 1$),

•
$$t_{\sigma_{ij}}$$
, $t_{\bar{\sigma}_{ij}}$ $(1 \le i < j \le b - 1)$ and

•
$$t_{\gamma}$$
 (only if $g=4$).



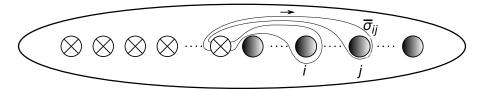
Theorem (Hirose-K. (b = 0), K. $(b \ge 1)$)

•
$$t_{\alpha}$$
, $t_{\beta}t_{\beta\prime}^{-1}$,

•
$$t_{\delta_i}$$
, t_{ρ_i} ($1 \le i \le b - 1$),

•
$$t_{\sigma_{ij}}$$
, $rac{t_{ar{\sigma}_{ij}}}{(1 \leq i < j \leq b-1)}$ and

•
$$t_{\gamma}$$
 (only if $g=4$).



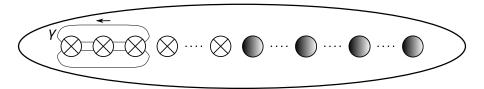
Theorem (Hirose-K. (b = 0), K. $(b \ge 1)$)

•
$$t_{\alpha}$$
, $t_{\beta}t_{\beta\prime}^{-1}$,

•
$$t_{\delta_i}$$
, t_{ρ_i} ($1 \le i \le b - 1$),

•
$$t_{\sigma_{ij}}$$
 , $t_{ar{\sigma}_{ij}}$ ($1 \leq i < j \leq b-1$) and

•
$$t_{\gamma}$$
 (only if $g = 4$).



Theorem (Hirose-K. (b = 0), K. $(b \ge 1)$)

•
$$t_{\alpha}$$
, $t_{\beta}t_{\beta\prime}^{-1}$,

•
$$t_{\delta_i}$$
, t_{ρ_i} ($1 \le i \le b - 1$),

•
$$t_{\sigma_{ij}}$$
, $t_{\bar{\sigma}_{ij}}$ ($1 \le i < j \le b - 1$) and

•
$$t_{\gamma}$$
 (only if $g = 4$).

The case of a closed surface

Theorem (Hirose-K.)

- For $g \geq 4$, $\mathcal{I}(N_g^0)$ is normally generated by
 - t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$ and
 - t_{γ} (only if g = 4).

$$\Gamma_2(N_g^b) = \ker(\mathcal{M}(N_g^b) \to \operatorname{Aut}(H_1(N_g^b; \mathbb{Z}/2\mathbb{Z}))).$$

The level-2 principal congruence subgroup of $GL(n; \mathbb{Z})$ is defined as

$$\Gamma_2(n) = \ker(GL(n;\mathbb{Z}) \to GL(n;\mathbb{Z}/2\mathbb{Z})).$$

$$\Gamma_2(N_g^b) = \ker(\mathcal{M}(N_g^b) \to \operatorname{Aut}(H_1(N_g^b; \mathbb{Z}/2\mathbb{Z}))).$$

The level-2 principal congruence subgroup of $GL(n; \mathbb{Z})$ is defined as

$$\Gamma_2(n) = \ker(GL(n;\mathbb{Z}) \to GL(n;\mathbb{Z}/2\mathbb{Z})).$$

$$\Gamma_2(N_g^b) = \ker(\mathcal{M}(N_g^b) \to \operatorname{Aut}(H_1(N_g^b; \mathbb{Z}/2\mathbb{Z}))).$$

The level-2 principal congruence subgroup of $GL(n; \mathbb{Z})$ is defined as

$$\Gamma_{\mathbf{2}}(n) = \ker(GL(n;\mathbb{Z}) \to GL(n;\mathbb{Z}/2\mathbb{Z})).$$

$$\Gamma_2(N_g^b) = \ker(\mathcal{M}(N_g^b) \to \operatorname{Aut}(H_1(N_g^b; \mathbb{Z}/2\mathbb{Z}))).$$

The level-2 principal congruence subgroup of $GL(n; \mathbb{Z})$ is defined as

$$\Gamma_2(n) = \ker(GL(n;\mathbb{Z}) \to GL(n;\mathbb{Z}/2\mathbb{Z})).$$

Lemma

We have the short exact sequence

$$1 \to \mathcal{I}(N_g^0) \to \Gamma_2(N_g^0) \to \Gamma_2(g-1) \to 1.$$

$$\Gamma_2(N_g^b) = \ker(\mathcal{M}(N_g^b) \to \operatorname{Aut}(H_1(N_g^b; \mathbb{Z}/2\mathbb{Z}))).$$

The level-2 principal congruence subgroup of $GL(n; \mathbb{Z})$ is defined as

$$\Gamma_2(n) = \ker(GL(n;\mathbb{Z}) \to GL(n;\mathbb{Z}/2\mathbb{Z})).$$

Lemma

We have the short exact sequence

$$1 \to \mathcal{I}(N_g^0) \to \Gamma_2(N_g^0) \to \Gamma_2(g-1) \to 1.$$

In general, if there is a short exact sequence

$$1 \to G \to \langle X \mid Y \rangle \stackrel{\phi}{\to} \langle \phi(X) \mid Z \rangle \to 1,$$

then G is normally generated by $\{\tilde{z} \mid \phi(\tilde{z}) \in Z\}$.

Crosscap slide

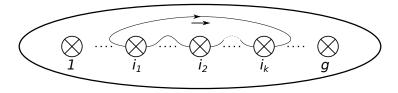
- m : a one sided simple closed curve,
- a : a two sided oriented simple closed curve,
- (m and a are intersect transversely at only one point)
- M : a regular neighborhood of m.

The crosscap slide $Y_{m,a}$ is defined as



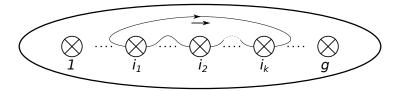
Generating sets for $\Gamma_2(N_q^0)$

For $1 \leq i_1 < i_2 < \cdots < i_k \leq g$, α_{i_1,\dots,i_k} is defined as



Generating sets for $\Gamma_2(N_q^0)$

For $1 \leq i_1 < i_2 < \cdots < i_k \leq g$, α_{i_1,\dots,i_k} is defined as

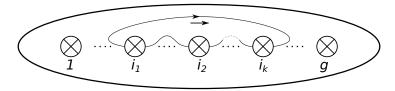


Theorem (Szepietowski (2013))

For $g \ge 4$, $\Gamma_2(N_g^0)$ is finitely generated by • $Y_{\alpha_i,\alpha_{i,j}}$ for $1 \le i \le g-1$, $1 \le j \le g$ and $i \ne j$, • $t^2_{\alpha_{i,j,k,l}}$ for $1 \le i < j < k < l \le g$.

Generating sets for $\Gamma_2(N_q^0)$

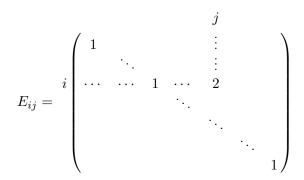
For $1 \leq i_1 < i_2 < \cdots < i_k \leq g$, α_{i_1,\dots,i_k} is defined as



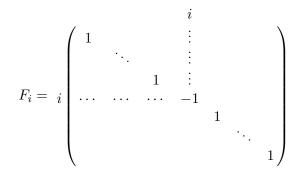
Theorem (Hirose-Sato (2014))

For $g \ge 4$, $\Gamma_2(N_g^0)$ is minimally generated by • $Y_{\alpha_i,\alpha_{i,j}}$ for $1 \le i \le g-1$, $1 \le j \le g$ and $i \ne j$, • $t^2_{\alpha_{1,j,k,l}}$ for $1 < j < k < l \le g$.

Presentations for $\Gamma_2(n)$



Presentations for $\Gamma_2(n)$



Presentations for $\Gamma_2(n)$

Theorem (cf. Fullarton (2014), K. (2015))

For $n \ge 1$, $\Gamma_2(n)$ has a finite presentation with the generators E_{ij} and F_i , for $1 \le i, j \le n$ with $i \ne j$, and with the relators F_i^2 ,

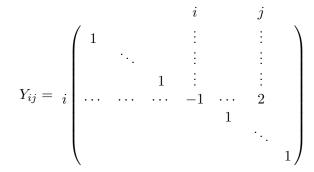
- (2) $(E_{ij}F_i)^2$, $(E_{ij}F_j)^2$, $(F_iF_j)^2$ (when $n \ge 2$),
- [E_{ij}, E_{ik}], [E_{ij}, E_{kj}], [E_{ij}, F_k], [E_{ij}, E_{ki}]E²_{kj} (when n ≥ 3),
 (E_{ji}E⁻¹_{ij}E⁻¹_{kj}E_{jk}E_{ik}E⁻¹_{ki})² for i < j < k (when n ≥ 3),

•
$$[E_{ij}, E_{kl}]$$
 (when $n \ge 4$),

where $1 \leq i, j, k, l \leq n$ are all different, $[X, Y] = X^{-1}Y^{-1}XY$.

$$Y_{ij} = \begin{cases} E_{ij}F_i & 1 \le i, j \le g-1, \\ F_i & 1 \le i, j \le g-1, j = g. \end{cases}$$

Then we have $\Gamma_2(N_g^0) \ni Y_{\alpha_i,\alpha_{i,j}} \mapsto Y_{ij} \in \Gamma_2(g-1).$



$$Y_{ij} = \begin{cases} E_{ij}F_i & 1 \le i, j \le g-1, \\ F_i & 1 \le i, j \le g-1, j = g. \end{cases}$$

Then we have $\Gamma_2(N_g^0) \ni Y_{\alpha_i,\alpha_{i,j}} \mapsto Y_{ij} \in \Gamma_2(g-1).$

Proposition

For $g-1 \ge 1$, $\Gamma_2(g-1)$ has a finite presentation with the generators Y_{ij} for $1 \le i \le g-1$ and $1 \le j \le g$ with $i \ne j$, and with the relators

$$\ \, {\bf \bigcirc} \ \, [Y_{ik},Y_{jk}] \ \, {\rm for} \ \, 1\leq i,j\leq g-1 \ \, {\rm and} \ \, 1\leq k\leq g,$$

$$[Y_{ij}, Y_{ik}Y_{jk}] \text{ for } 1 \leq i, j \leq g-1 \text{ and } 1 \leq k \leq g,$$

$$\ \, {\bf O} \ \, [Y_{ij},Y_{kl}] \ \, {\rm for} \ \, 1\leq i,k\leq g-1 \ \, {\rm and} \ \, 1\leq j,l\leq g,$$

5
$$(Y_{ij}Y_{ik}Y_{il})^2$$
 for $1 \le i \le g - 1$ and $1 \le j, k, l \le g$,

6
$$(Y_{ji}Y_{ij}Y_{kj}Y_{jk}Y_{ik}Y_{ki})^2$$
 for $1 \le i, j, k \le g - 1$,

where $[X, Y] = X^{-1}Y^{-1}XY$ and i, j, k, l are all different.

Remark

 $(t^2_{\alpha_{i,j,k,l}} \mapsto T_{ijkl})$

For
$$g \ge 4$$
, $\Gamma_2(N_g^0)$ is generated by
• $Y_{\alpha_i,\alpha_{i,j}}$ for $1 \le i \le g - 1$, $1 \le j \le g$ and $i \ne j$,
• $t_{\alpha_{1,j,k,l}}^2$ for $1 < j < k < l \le g$.
 $\Gamma_2(g-1)$ is generated by Y_{ij} and T_{1jkl} , and has the relators
• Y_{ij}^2 for $1 \le i \le g - 1$ and $1 \le j \le g$,
• $[Y_{ik}, Y_{jk}]$ for $1 \le i, j \le g - 1$ and $1 \le k \le g$,
• $[Y_{ij}, Y_{ik}Y_{jk}]$ for $1 \le i, j \le g - 1$ and $1 \le k \le g$,
• $[Y_{ij}, Y_{kl}]$ for $1 \le i, k \le g - 1$ and $1 \le j, l \le g$,
• $(Y_{ij}Y_{ik}Y_{il})^2$ for $1 \le i \le g - 1$ and $1 \le j, k, l \le g$,
• $(Y_{ji}Y_{ij}Y_{kj}Y_{jk}Y_{ik}Y_{ki})^2$ for $1 \le i, j, k \le g - 1$,
• $(T_{1jkl} \cdot (a \text{ product of } Y_{ij}'s)$.

Remark

For
$$g \ge 4$$
, $\Gamma_2(N_g^0)$ is generated by
• $Y_{\alpha_i,\alpha_{i,j}}$ for $1 \le i \le g - 1$, $1 \le j \le g$ and $i \ne j$,
• $t_{\alpha_{1,j,k,l}}^2$ for $1 < j < k < l \le g$.
 $\Gamma_2(g - 1)$ is generated by Y_{ij} and T_{1jkl} , and has the relators
• Y_{ij}^2 for $1 \le i \le g - 1$ and $1 \le j \le g$,
• $[Y_{ik}, Y_{jk}]$ for $1 \le i, j \le g - 1$ and $1 \le k \le g$,
• $[Y_{ij}, Y_{ik}Y_{jk}]$ for $1 \le i, j \le g - 1$ and $1 \le k \le g$,
• $[Y_{ij}, Y_{kl}]$ for $1 \le i, k \le g - 1$ and $1 \le j, l \le g$,
• $(Y_{ij}Y_{ik}Y_{il})^2$ for $1 \le i \le g - 1$ and $1 \le j, k, l \le g$,
• $(Y_{ji}Y_{ij}Y_{kj}Y_{jk}Y_{ik}Y_{ki})^2$ for $1 \le i, j, k \le g - 1$,
• $T_{1jkl} \cdot$ (a product of Y_{ij} 's).

$$1 \to \mathcal{I}(N_g^0) \to \Gamma_2(N_g^0) \to \Gamma_2(g-1) \to 1$$

Let
$$Y_{\alpha_i,\alpha_{i,j}} = Y_{i;j}$$
 and $t^2_{\alpha_{i,j,k,l}} = T_{i,j,k,l}$.

For $g \geq 4$, $\mathcal{I}(N_a^0)$ is normally generated by followings in $\Gamma_2(N_a^0)$, • $Y_{i:j}^2$ for $1 \le i \le g-1$ and $1 \le j \le g$, **2** $[Y_{i;k}, Y_{j;k}]$ for $1 \le i, j \le g - 1$ and $1 \le k \le g$, **3** $[Y_{i;i}, Y_{i;k}Y_{i;k}]$ for $1 \le i \le g - 1$ and $1 \le j, k \le g$, **(** $Y_{i:i}, Y_{k:l}$) for $1 \le i, k \le g - 1$ and $1 \le j, l \le g$, **(** $Y_{i \cdot i} Y_{i \cdot k} Y_{i \cdot l})^2$ for $1 \le i \le q - 1$ and $1 \le j, k, l \le q$. **(** $Y_{i:i}Y_{i:i}Y_{k:i}Y_{j:k}Y_{i:k}Y_{k:i})^2$ for $1 \le i, j, k \le g - 1$, • $T_{1,i,k,l}$ · (a product of $Y_{i;j}$'s) for $1 < j < k < l \leq q$, where i, j, k, l are all different.

$$1 \to \mathcal{I}(N_g^0) \to \Gamma_2(N_g^0) \to \Gamma_2(g-1) \to 1$$

Let
$$Y_{\alpha_i,\alpha_{i,j}} = Y_{i;j}$$
 and $t^2_{\alpha_{i,j,k,l}} = T_{i,j,k,l}$.

For $g \geq 4$, $\mathcal{I}(N_a^0)$ is normally generated by followings in $\Gamma_2(N_a^0)$, • $Y_{i:j}^2$ for $1 \le i \le g-1$ and $1 \le j \le g$, **2** $[Y_{i;k}, Y_{j;k}]$ for $1 \le i, j \le g - 1$ and $1 \le k \le g$, **3** $[Y_{i;i}, Y_{i;k}Y_{i;k}]$ for $1 \le i \le g - 1$ and $1 \le j, k \le g$, **(** $Y_{i:i}, Y_{k:l}$) for $1 \le i, k \le g - 1$ and $1 \le j, l \le g$, **(** $Y_{i \cdot i} Y_{i \cdot k} Y_{i \cdot l})^2$ for $1 \le i \le q - 1$ and $1 \le j, k, l \le q$. **(** $Y_{i:i}Y_{i:i}Y_{k:i}Y_{j:k}Y_{i:k}Y_{k:i})^2$ for $1 \le i, j, k \le g - 1$, • $T_{1,i,k,l}$ · (a product of $Y_{i;j}$'s) for $1 < j < k < l \leq q$, where i, j, k, l are all different.

$$1 \to \mathcal{I}(N_g^0) \to \Gamma_2(N_g^0) \to \Gamma_2(g-1) \to 1$$

Let
$$Y_{\alpha_i,\alpha_{i,j}} = Y_{i;j}$$
 and $t^2_{\alpha_{i,j,k,l}} = T_{i,j,k,l}$.

For $g \geq 4$, $\mathcal{I}(N_a^0)$ is normally generated by followings in $\Gamma_2(N_a^0)$, • $Y_{i \cdot i}^2$ for $1 \le i \le g-1$ and $1 \le j \le g$, **2** $[Y_{i:k}, Y_{i:k}]$ for $1 \le i, j \le g - 1$ and $1 \le k \le g$, **3** $[Y_{i;j}, Y_{i;k}Y_{j;k}]$ for $1 \le i \le g - 1$ and $1 \le j, k \le g$, **(** $Y_{i:i}, Y_{k:l}$) for $1 \le i, k \le g - 1$ and $1 \le j, l \le g$, **6** $(Y_{i:i}Y_{i:k}Y_{i:l})^2$ for $1 \le i \le g-1$ and $1 \le j, k, l \le g$, • $(Y_{i;i}Y_{i;j}Y_{k;j}Y_{j;k}Y_{i;k}Y_{k;i})^2$ for $1 \le i, j, k \le q-1$, • $T_{1,j,k,l}$ · (a product of $Y_{i;j}$'s) for $1 < j < k < l \leq q$, where i, j, k, l are all different.

 $(\mathcal{I}(N_g^0) \lhd \mathcal{M}(N_g^0), \mathcal{I}(N_g^0) \lhd \Gamma_2(N_g^0), \Gamma_2(N_g^0) < \mathcal{M}(N_g^0).)$

Let
$$Y_{\alpha_i,\alpha_{i,j}} = Y_{i;j}$$
 and $t^2_{\alpha_{i,j,k,l}} = T_{i,j,k,l}$.

For $g \geq 4$, $\mathcal{I}(N_a^0)$ is normally generated by followings in $\mathcal{M}(N_a^0)$, • $Y_{i \cdot i}^2$ for $1 \le i \le g-1$ and $1 \le j \le g$, **2** $[Y_{i:k}, Y_{i:k}]$ for $1 \le i, j \le g - 1$ and $1 \le k \le g$, **3** $[Y_{i;j}, Y_{i;k}Y_{j;k}]$ for $1 \le i \le g - 1$ and $1 \le j, k \le g$, **(** $Y_{i:i}, Y_{k:l}$) for $1 \le i, k \le g - 1$ and $1 \le j, l \le g$, **6** $(Y_{i:i}Y_{i:k}Y_{i:l})^2$ for $1 \le i \le g-1$ and $1 \le j, k, l \le g$, **(** $Y_{i:i}Y_{i:i}Y_{k:i}Y_{j:k}Y_{i:k}Y_{k:i})^2$ for $1 \le i, j, k \le g - 1$, • $T_{1,j,k,l}$ · (a product of $Y_{i;j}$'s) for $1 < j < k < l \leq q$, where i, j, k, l are all different.

 $(\mathcal{I}(N_g^0) \lhd \mathcal{M}(N_g^0), \mathcal{I}(N_g^0) \lhd \Gamma_2(N_g^0), \Gamma_2(N_g^0) < \mathcal{M}(N_g^0).)$

Let
$$Y_{\alpha_i,\alpha_{i,j}} = Y_{i;j}$$
 and $t^2_{\alpha_{i,j,k,l}} = T_{i,j,k,l}$.

For $g \geq 4$, $\mathcal{I}(N_a^0)$ is normally generated by followings in $\mathcal{M}(N_a^0)$, • $Y_{i:i}^2$ for $1 \le i \le g-1$ and $1 \le j \le g$, ② $[Y_{i;k}, Y_{j;k}]$ for $1 \le i, j \le g - 1$ and $1 \le k \le g$, **3** $[Y_{i;i}, Y_{i;k}Y_{i;k}]$ for $1 \le i \le g - 1$ and $1 \le j, k \le g$, **(** $Y_{i:i}, Y_{k:l}$) for $1 \le i, k \le g - 1$ and $1 \le j, l \le g$. **(** $Y_{i:i}Y_{i:k}Y_{i:l}$)² for $1 \le i \le q - 1$ and $1 \le j, k, l \le q$, **(** $Y_{i:i}Y_{i:i}Y_{k:i}Y_{j:k}Y_{i:k}Y_{k:i})^2$ for $1 \le i, j, k \le g - 1$, • $T_{1,j,k,l}$ · (a product of $Y_{i;j}$'s) for $1 < j < k < l \leq q$, where i, j, k, l are all different.

We checked that these are products of conjugations of t_{α} , $t_{\beta}t_{\beta'}^{-1}$ and t_{γ} .

We have

Theorem (Hirose-K. (2016))

For $g \geq 4$, $\mathcal{I}(N_g^0)$ is normally generated by

- t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$ and
- t_{γ} (only if g = 4).

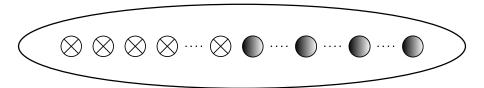
Theorem (K.)

For $g \ge 4$ and $b \ge 1$, $\mathcal{I}(N_q^b)$ is normally generated by

•
$$t_{\delta_i}, t_{\rho_i} \ (1 \le i \le b - 1),$$

•
$$t_{\sigma_{ij}}$$
, $t_{ar{\sigma}_{ij}}$ ($1 \leq i < j \leq b-1$) and

•
$$t_{\gamma}$$
 (only if $g=4$).



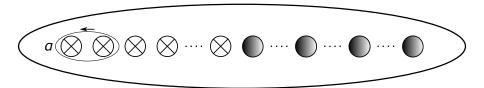
Theorem (K.)

For $g \ge 4$ and $b \ge 1$, $\mathcal{I}(N_g^b)$ is normally generated by

•
$$t_{\delta_i}, t_{\rho_i} \ (1 \le i \le b - 1),$$

•
$$t_{\sigma_{ij}}$$
, $t_{ar{\sigma}_{ij}}$ ($1 \leq i < j \leq b-1$) and

•
$$t_{\gamma}$$
 (only if $g=4$).



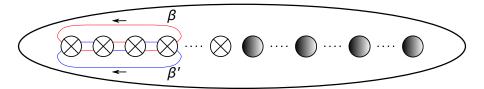
Theorem (K.)

For $g \ge 4$ and $b \ge 1$, $\mathcal{I}(N_g^b)$ is normally generated by

•
$$t_{\delta_i}, t_{\rho_i} \ (1 \le i \le b - 1),$$

•
$$t_{\sigma_{ij}}$$
, $t_{ar{\sigma}_{ij}}$ ($1 \leq i < j \leq b-1$) and

•
$$t_{\gamma}$$
 (only if $g=4$).



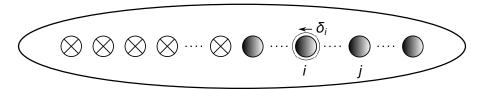
Theorem (K.)

For $g \ge 4$ and $b \ge 1$, $\mathcal{I}(N_q^b)$ is normally generated by

•
$$t_{\delta_i}$$
, t_{ρ_i} ($1 \le i \le b - 1$),

•
$$t_{\sigma_{ij}}$$
, $t_{ar{\sigma}_{ij}}$ ($1 \leq i < j \leq b-1$) and

•
$$t_{\gamma}$$
 (only if $g=4$).



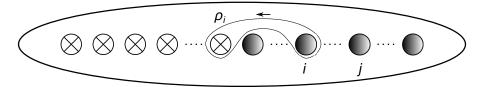
Theorem (K.)

For $g \geq 4$ and $b \geq 1$, $\mathcal{I}(N_q^b)$ is normally generated by

•
$$t_{\delta_i}, t_{\rho_i} \ (1 \le i \le b - 1),$$

•
$$t_{\sigma_{ij}}$$
, $t_{ar{\sigma}_{ij}}$ ($1 \leq i < j \leq b-1$) and

•
$$t_{\gamma}$$
 (only if $g=4$).



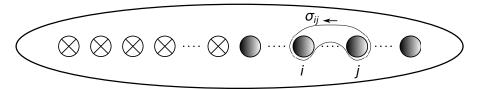
Theorem (K.)

For $g \ge 4$ and $b \ge 1$, $\mathcal{I}(N_g^b)$ is normally generated by

•
$$t_{\delta_i}, t_{\rho_i} \ (1 \le i \le b - 1),$$

•
$$t_{\sigma_{ij}}$$
, $t_{\bar{\sigma}_{ij}}$ $(1 \le i < j \le b - 1)$ and

•
$$t_{\gamma}$$
 (only if $g=4$).



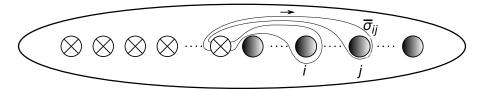
Theorem (K.)

For $g \geq 4$ and $b \geq 1$, $\mathcal{I}(N_g^b)$ is normally generated by

•
$$t_{\delta_i}, t_{\rho_i} \ (1 \le i \le b - 1),$$

•
$$t_{\sigma_{ij}}$$
, $t_{\bar{\sigma}_{ij}}$ ($1 \le i < j \le b - 1$) and

•
$$t_{\gamma}$$
 (only if $g=4$).



Theorem (K.)

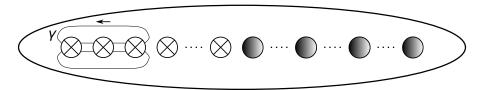
For $g \ge 4$ and $b \ge 1$, $\mathcal{I}(N_g^b)$ is normally generated by

• $t_{\alpha}, t_{\beta}t_{\beta\prime}^{-1}$,

•
$$t_{\delta_i}, t_{\rho_i} \ (1 \le i \le b - 1),$$

•
$$t_{\sigma_{ij}}$$
, $t_{ar{\sigma}_{ij}}$ ($1 \leq i < j \leq b-1$) and

• t_{γ} (only if g = 4).



Theorem (K.)

For $g \geq 4$ and $b \geq 1$, $\mathcal{I}(N_g^b)$ is normally generated by

•
$$t_{\delta_i}$$
, t_{ρ_i} ($1 \le i \le b - 1$),

•
$$t_{\sigma_{ij}}$$
, $t_{\bar{\sigma}_{ij}}$ ($1 \le i < j \le b - 1$) and

•
$$t_{\gamma}$$
 (only if $g = 4$).

Capping homomorphisms

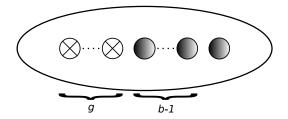
 $* \in N_g^{b-1}$: a point in the interior of $N_g^{b-1}.$

$$\mathcal{M}(N_g^{b-1},*) = \operatorname{Diff}(N_g^{b-1}, \partial N_g^{b-1} \cup \{*\}) / \operatorname{isotopy}$$

Capping homomorphisms

 $* \in N_g^{b-1}$: a point in the interior of $N_g^{b-1}.$

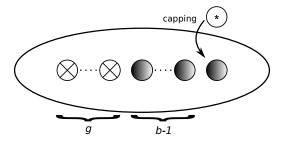
$$\mathcal{M}(N_g^{b-1},*) = \mathrm{Diff}(N_g^{b-1}, \partial N_g^{b-1} \cup \{*\})/\mathrm{isotopy}$$



Capping homomorphisms

 $* \in N_g^{b-1}$: a point in the interior of $N_g^{b-1}.$

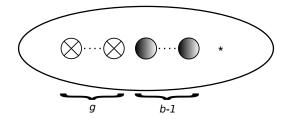
$$\mathcal{M}(N_g^{b-1},*) = \operatorname{Diff}(N_g^{b-1}, \partial N_g^{b-1} \cup \{*\}) / \operatorname{isotopy}$$



Capping homomorphisms

 $* \in N_g^{b-1}$: a point in the interior of $N_g^{b-1}.$

$$\mathcal{M}(N_g^{b-1},*) = \mathrm{Diff}(N_g^{b-1}, \partial N_g^{b-1} \cup \{*\})/\mathrm{isotopy}$$



Capping homomorphisms

 $* \in N_g^{b-1}$: a point in the interior of $N_g^{b-1}.$

$$\mathcal{M}(N_g^{b-1},*) = \operatorname{Diff}(N_g^{b-1}, \partial N_g^{b-1} \cup \{*\}) / \operatorname{isotopy}$$

We can regard N_g^b as a subsurface of N_g^{b-1} not containing *, by the natural embedding $N_g^b \hookrightarrow N_g^{b-1}.$ The capping homomorphism is

$$\mathcal{C}_g^b: \mathcal{M}(N_g^b) \to \mathcal{M}(N_g^{b-1}, *)$$

Capping homomorphisms

 $* \in N_g^{b-1}$: a point in the interior of $N_g^{b-1}.$

$$\mathcal{M}(N_g^{b-1},*) = \mathrm{Diff}(N_g^{b-1}, \partial N_g^{b-1} \cup \{*\}) / \mathrm{isotopy}$$

We can regard N_g^b as a subsurface of N_g^{b-1} not containing *, by the natural embedding $N_g^b \hookrightarrow N_g^{b-1}.$ The capping homomorphism is

$$\mathcal{C}_g^b: \mathcal{M}(N_g^b) \to \mathcal{M}(N_g^{b-1}, *)$$

Remark

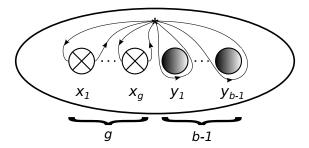
- ker \mathcal{C}_g^b is generated by t_{δ_b} .
- $\ker C_g^b|_{\mathcal{I}(N_q^b)}$ is generated by t_{δ_b} .
- \mathcal{C}^b_g and $\mathcal{C}^b_g|_{\mathcal{I}(N^b_g)}$ are not surjective.

Pushing and Forgetful homomorphisms

•
$$\mathcal{P}_g^{b-1}: \pi_1(N_g^{b-1}, *) \to \mathcal{M}(N_g^{b-1}, *)$$
: the pushing homomorphism.
• $\mathcal{F}_g^{b-1}: \mathcal{M}(N_g^{b-1}, *) \to \mathcal{M}(N_g^{b-1})$: the forgetful homomorphism.

Pushing and Forgetful homomorphisms

• $\mathcal{P}_g^{b-1}: \pi_1(N_g^{b-1}, *) \to \mathcal{M}(N_g^{b-1}, *)$: the pushing homomorphism. • $\mathcal{F}_g^{b-1}: \mathcal{M}(N_g^{b-1}, *) \to \mathcal{M}(N_g^{b-1})$: the forgetful homomorphism.



Pushing and Forgetful homomorphisms

•
$$\mathcal{P}_g^{b-1}: \pi_1(N_g^{b-1}, *) \to \mathcal{M}(N_g^{b-1}, *)$$
: the pushing homomorphism.
• $\mathcal{F}_g^{b-1}: \mathcal{M}(N_g^{b-1}, *) \to \mathcal{M}(N_g^{b-1})$: the forgetful homomorphism.

$$\operatorname{Diff}(N_g^{b-1}, \partial N_g^{b-1} \cup \{*\}) \to \operatorname{Diff}(N_g^{b-1}, \partial N_g^{b-1})$$

Pushing and Forgetful homomorphisms

•
$$\mathcal{P}_g^{b-1}: \pi_1(N_g^{b-1}, *) \to \mathcal{M}(N_g^{b-1}, *)$$
: the pushing homomorphism.
• $\mathcal{F}_g^{b-1}: \mathcal{M}(N_g^{b-1}, *) \to \mathcal{M}(N_g^{b-1})$: the forgetful homomorphism.

Remark

We have short exact sequences

$$\begin{aligned} \pi_1(N_g^{b-1},*) & \xrightarrow{\mathcal{P}_g^{b-1}} & \mathcal{M}(N_g^{b-1},*) & \xrightarrow{\mathcal{F}_g^{b-1}} & \mathcal{M}(N_g^{b-1}) & \longrightarrow 1, \\ \\ \pi_1(N_g^{b-1},*) & \longrightarrow & \mathcal{I}(N_g^{b-1},*) & \longrightarrow & \mathcal{I}(N_g^{b-1}) & \longrightarrow 1. \\ \end{aligned}$$

$$\begin{aligned} \mathcal{I}(N_g^{b-1},*) &= \ker(\mathcal{M}(N_g^{b-1},*) \to \operatorname{Aut}(H_1(N_g^b;\mathbb{Z}))) \end{aligned}$$

By the short exact sequence

$$1 \to \ker \mathcal{C}^b_g|_{\mathcal{I}(N^b_g)} \to \mathcal{I}(N^b_g) \to \mathcal{C}^b_g(\mathcal{I}(N^b_g)) \to 1,$$

 $\mathcal{I}(N_g^b)$ is normally generated by

- \bullet lifts of normal generators of $\mathcal{C}^b_g(\mathcal{I}(N^b_g))$ in $\mathcal{C}^b_g(\mathcal{M}(N^b_g))$ and
- $\ker \mathcal{C}_g^b|_{\mathcal{I}(N_g^b)}$.

By the short exact sequence

$$1 \to \ker \mathcal{C}^b_g|_{\mathcal{I}(N^b_g)} \to \mathcal{I}(N^b_g) \to \mathcal{C}^b_g(\mathcal{I}(N^b_g)) \to 1,$$

 $\mathcal{I}(N_g^b)$ is normally generated by

- lifts of normal generators of $\mathcal{C}^b_g(\mathcal{I}(N^b_g))$ in $\mathcal{C}^b_g(\mathcal{M}(N^b_g))$ and
- $\ker \mathcal{C}_g^b|_{\mathcal{I}(N_g^b)}$.

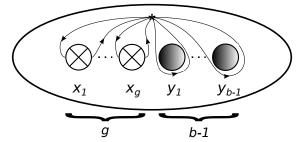
By the short exact sequence

$$1 \to \ker \mathcal{C}^b_g|_{\mathcal{I}(N^b_g)} \to \mathcal{I}(N^b_g) \to \mathcal{C}^b_g(\mathcal{I}(N^b_g)) \to 1,$$

 $\mathcal{I}(N^b_q)$ is normally generated by

- \bullet lifts of normal generators of $\mathcal{C}^b_g(\mathcal{I}(N^b_g))$ in $\mathcal{C}^b_g(\mathcal{M}(N^b_g))$ and
- t_{δ_b} .

 $\begin{array}{l} x_i, \ y_j: \mbox{ the generators of } \pi_1(N_g^{b-1},*). \\ p: \pi_1(N_g^{b-1},*) \to \pi_1(N_g^0,*): \mbox{ the projection (w/} \ p(x_i) = x_i, \ p(y_j) = 1). \\ \mbox{ For } x \in \pi_1(N_g^{b-1},*) \mbox{ we can denote } p(x) = x_{i_1}^{\varepsilon_1} x_{i_2}^{\varepsilon_2} \cdots x_{i_t}^{\varepsilon_t} \ (\varepsilon_k = \pm 1). \end{array}$



 $\begin{array}{l} x_i, \ y_j: \mbox{ the generators of } \pi_1(N_g^{b-1},*). \\ p: \pi_1(N_g^{b-1},*) \rightarrow \pi_1(N_g^0,*): \mbox{ the projection (w/} \ p(x_i) = x_i, \ p(y_j) = 1). \\ \mbox{ For } x \in \pi_1(N_g^{b-1},*) \mbox{ we can denote } p(x) = x_{i_1}^{\varepsilon_1} x_{i_2}^{\varepsilon_2} \cdots x_{i_t}^{\varepsilon_t} \ (\varepsilon_k = \pm 1). \end{array}$

$$\begin{aligned}
O_i(x) &= \ \#\{i_{2k-1} \mid i_{2k-1} = i\}, \\
E_i(x) &= \ \#\{i_{2k} \mid i_{2k} = i\}, \\
\Gamma_g^{b-1} &= \ \{x \in \pi_1(N_g^{b-1}, *) \mid O_i(x) = E_i(x), 1 \le i \le g\}
\end{aligned}$$

 $\begin{array}{l} x_i, \ y_j: \mbox{ the generators of } \pi_1(N_g^{b-1},*). \\ p: \pi_1(N_g^{b-1},*) \rightarrow \pi_1(N_g^0,*): \mbox{ the projection (w/} \ p(x_i) = x_i, \ p(y_j) = 1). \\ \mbox{ For } x \in \pi_1(N_g^{b-1},*) \mbox{ we can denote } p(x) = x_{i_1}^{\varepsilon_1} x_{i_2}^{\varepsilon_2} \cdots x_{i_t}^{\varepsilon_t} \ (\varepsilon_k = \pm 1). \end{array}$

$$\begin{aligned} O_i(x) &= \ \#\{i_{2k-1} \mid i_{2k-1} = i\}, \\ E_i(x) &= \ \#\{i_{2k} \mid i_{2k} = i\}, \\ \Gamma_g^{b-1} &= \ \{x \in \pi_1(N_g^{b-1}, *) \mid O_i(x) = E_i(x), 1 \le i \le g\} \end{aligned}$$

$$\begin{aligned} x &= x_1 y_2 x_2 x_3^{-1} y_5 y_1^{-2} x_1 x_2^{-1} y_4^3 x_3^{-1} \Longrightarrow p(x) = x_1 x_2 x_3^{-1} x_1 x_2^{-1} x_3^{-1}. \\ O_1(x) &= E_1(x) = 1, \ O_2(x) = E_2(x) = 1, \ O_3(x) = E_3(x) = 1, \\ O_i(x) &= E_i(x) = 0 \ (i \ge 4). \\ \rightsquigarrow x \in \Gamma_g^{b-1}. \end{aligned}$$

 $\begin{array}{l} x_i, \ y_j: \mbox{ the generators of } \pi_1(N_g^{b-1},*). \\ p: \pi_1(N_g^{b-1},*) \rightarrow \pi_1(N_g^0,*): \mbox{ the projection (w/} \ p(x_i) = x_i, \ p(y_j) = 1). \\ \mbox{ For } x \in \pi_1(N_g^{b-1},*) \mbox{ we can denote } p(x) = x_{i_1}^{\varepsilon_1} x_{i_2}^{\varepsilon_2} \cdots x_{i_t}^{\varepsilon_t} \ (\varepsilon_k = \pm 1). \end{array}$

$$\begin{aligned}
O_i(x) &= \ \#\{i_{2k-1} \mid i_{2k-1} = i\}, \\
E_i(x) &= \ \#\{i_{2k} \mid i_{2k} = i\}, \\
\Gamma_g^{b-1} &= \ \{x \in \pi_1(N_g^{b-1}, *) \mid O_i(x) = E_i(x), 1 \le i \le g\}
\end{aligned}$$

$$\begin{aligned} x &= x_1 y_2 x_2 x_3^{-1} y_5 y_1^{-2} x_1 x_2^{-1} y_4^3 x_3^{-1} \Longrightarrow p(x) = x_1 x_2 x_3^{-1} x_1 x_2^{-1} x_3^{-1}. \\ O_1(x) &= E_1(x) = 1, \ O_2(x) = E_2(x) = 1, \ O_3(x) = E_3(x) = 1, \\ O_i(x) &= E_i(x) = 0 \ (i \ge 4). \\ &\rightsquigarrow x \in \Gamma_g^{b-1}. \end{aligned}$$

 $\begin{array}{l} x_i, \ y_j: \mbox{ the generators of } \pi_1(N_g^{b-1},*). \\ p: \pi_1(N_g^{b-1},*) \rightarrow \pi_1(N_g^0,*): \mbox{ the projection (w/} \ p(x_i) = x_i, \ p(y_j) = 1). \\ \mbox{ For } x \in \pi_1(N_g^{b-1},*) \mbox{ we can denote } p(x) = x_{i_1}^{\varepsilon_1} x_{i_2}^{\varepsilon_2} \cdots x_{i_t}^{\varepsilon_t} \ (\varepsilon_k = \pm 1). \end{array}$

$$\begin{aligned} O_i(x) &= \ \#\{i_{2k-1} \mid i_{2k-1} = i\}, \\ E_i(x) &= \ \#\{i_{2k} \mid i_{2k} = i\}, \\ \Gamma_g^{b-1} &= \ \{x \in \pi_1(N_g^{b-1}, *) \mid O_i(x) = E_i(x), 1 \le i \le g\} \end{aligned}$$

$$\begin{aligned} x &= x_1 y_2 x_2 x_3^{-1} y_5 y_1^{-2} x_1 x_2^{-1} y_4^3 x_3^{-1} \Longrightarrow p(x) = x_1 x_2 x_3^{-1} x_1 x_2^{-1} x_3^{-1}.\\ O_1(x) &= E_1(x) = 1, \ O_2(x) = E_2(x) = 1, \ O_3(x) = E_3(x) = 1,\\ O_i(x) &= E_i(x) = 0 \ (i \ge 4).\\ \rightsquigarrow x \in \Gamma_g^{b-1}. \end{aligned}$$

 $\begin{array}{l} x_i, \ y_j: \mbox{ the generators of } \pi_1(N_g^{b-1},*). \\ p: \pi_1(N_g^{b-1},*) \rightarrow \pi_1(N_g^0,*): \mbox{ the projection (w/} \ p(x_i) = x_i, \ p(y_j) = 1). \\ \mbox{ For } x \in \pi_1(N_g^{b-1},*) \mbox{ we can denote } p(x) = x_{i_1}^{\varepsilon_1} x_{i_2}^{\varepsilon_2} \cdots x_{i_t}^{\varepsilon_t} \ (\varepsilon_k = \pm 1). \end{array}$

$$\begin{aligned} O_i(x) &= \ \#\{i_{2k-1} \mid i_{2k-1} = i\}, \\ E_i(x) &= \ \#\{i_{2k} \mid i_{2k} = i\}, \\ \Gamma_g^{b-1} &= \ \{x \in \pi_1(N_g^{b-1}, *) \mid O_i(x) = E_i(x), 1 \le i \le g\} \end{aligned}$$

$$\begin{aligned} x &= x_1 y_2 x_2 x_3^{-1} y_5 y_1^{-2} x_1 x_2^{-1} y_4^3 x_3^{-1} \Longrightarrow p(x) = x_1 x_2 x_3^{-1} x_1 x_2^{-1} x_3^{-1}. \\ O_1(x) &= E_1(x) = 1, \ O_2(x) = E_2(x) = 1, \ O_3(x) = E_3(x) = 1, \\ O_i(x) &= E_i(x) = 0 \ (i \ge 4). \\ &\rightsquigarrow x \in \Gamma_g^{b-1}. \end{aligned}$$

 $\begin{array}{l} x_i, \ y_j: \mbox{ the generators of } \pi_1(N_g^{b-1},*). \\ p: \pi_1(N_g^{b-1},*) \rightarrow \pi_1(N_g^0,*): \mbox{ the projection (w/} \ p(x_i) = x_i, \ p(y_j) = 1). \\ \mbox{ For } x \in \pi_1(N_g^{b-1},*) \mbox{ we can denote } p(x) = x_{i_1}^{\varepsilon_1} x_{i_2}^{\varepsilon_2} \cdots x_{i_t}^{\varepsilon_t} \ (\varepsilon_k = \pm 1). \end{array}$

$$\begin{aligned} O_i(x) &= \ \#\{i_{2k-1} \mid i_{2k-1} = i\}, \\ E_i(x) &= \ \#\{i_{2k} \mid i_{2k} = i\}, \\ \Gamma_g^{b-1} &= \ \{x \in \pi_1(N_g^{b-1}, *) \mid O_i(x) = E_i(x), 1 \le i \le g\} \end{aligned}$$

$$\begin{aligned} x &= x_1 y_2 x_2 x_3^{-1} y_5 y_1^{-2} x_1 x_2^{-1} y_4^3 x_3^{-1} \Longrightarrow p(x) = x_1 x_2 x_3^{-1} x_1 x_2^{-1} x_3^{-1}. \\ O_1(x) &= \frac{E_1(x)}{E_1(x)} = 1, \ O_2(x) = E_2(x) = 1, \ O_3(x) = E_3(x) = 1, \\ O_i(x) &= E_i(x) = 0 \ (i \ge 4). \\ \rightsquigarrow x \in \Gamma_g^{b-1}. \end{aligned}$$

 $\begin{array}{l} x_i, \ y_j: \mbox{ the generators of } \pi_1(N_g^{b-1},*). \\ p: \pi_1(N_g^{b-1},*) \rightarrow \pi_1(N_g^0,*): \mbox{ the projection (w/} \ p(x_i) = x_i, \ p(y_j) = 1). \\ \mbox{ For } x \in \pi_1(N_g^{b-1},*) \mbox{ we can denote } p(x) = x_{i_1}^{\varepsilon_1} x_{i_2}^{\varepsilon_2} \cdots x_{i_t}^{\varepsilon_t} \ (\varepsilon_k = \pm 1). \end{array}$

$$\begin{aligned} O_i(x) &= \ \#\{i_{2k-1} \mid i_{2k-1} = i\}, \\ E_i(x) &= \ \#\{i_{2k} \mid i_{2k} = i\}, \\ \Gamma_g^{b-1} &= \ \{x \in \pi_1(N_g^{b-1}, *) \mid O_i(x) = E_i(x), 1 \le i \le g\} \end{aligned}$$

$$\begin{aligned} x &= x_1 y_2 x_2 x_3^{-1} y_5 y_1^{-2} x_1 x_2^{-1} y_4^3 x_3^{-1} \Longrightarrow p(x) = x_1 x_2 x_3^{-1} x_1 x_2^{-1} x_3^{-1}. \\ O_1(x) &= \frac{E_1(x)}{E_1(x)} = 1, \ O_2(x) = E_2(x) = 1, \ O_3(x) = E_3(x) = 1, \\ O_i(x) &= E_i(x) = 0 \ (i \ge 4). \\ \rightsquigarrow x \in \Gamma_g^{b-1}. \end{aligned}$$

 $\begin{array}{l} x_i, \ y_j: \mbox{ the generators of } \pi_1(N_g^{b-1},*). \\ p: \pi_1(N_g^{b-1},*) \rightarrow \pi_1(N_g^0,*): \mbox{ the projection (w/} \ p(x_i) = x_i, \ p(y_j) = 1). \\ \mbox{ For } x \in \pi_1(N_g^{b-1},*) \mbox{ we can denote } p(x) = x_{i_1}^{\varepsilon_1} x_{i_2}^{\varepsilon_2} \cdots x_{i_t}^{\varepsilon_t} \ (\varepsilon_k = \pm 1). \end{array}$

$$\begin{aligned} O_i(x) &= \ \#\{i_{2k-1} \mid i_{2k-1} = i\}, \\ E_i(x) &= \ \#\{i_{2k} \mid i_{2k} = i\}, \\ \Gamma_g^{b-1} &= \ \{x \in \pi_1(N_g^{b-1}, *) \mid O_i(x) = E_i(x), 1 \le i \le g\} \end{aligned}$$

$$\begin{aligned} x &= x_1 y_2 x_2 x_3^{-1} y_5 y_1^{-2} x_1 x_2^{-1} y_4^3 x_3^{-1} \Longrightarrow p(x) = x_1 x_2 x_3^{-1} x_1 x_2^{-1} x_3^{-1}. \\ O_1(x) &= E_1(x) = 1, \ O_2(x) = E_2(x) = 1, \ O_3(x) = E_3(x) = 1, \\ O_i(x) &= E_i(x) = 0 \ (i \ge 4). \\ \rightsquigarrow x \in \Gamma_g^{b-1}. \end{aligned}$$

$$\begin{array}{l} \textcircled{P}_g^{b-1}(\Gamma_g^{b-1}) \text{ is the normal closure of } \mathcal{P}_g^{b-1}(x_g^2), \ \mathcal{P}_g^{b-1}(y_j) \text{ and } \\ \mathcal{P}_g^{b-1}(x_gy_jx_g^{-1}) \ (1 \leq j \leq b-1) \text{ in } \mathcal{C}_g^b(\mathcal{M}(N_g^b)). \end{array}$$

$$\begin{array}{ccccc} \mathcal{M}(N_g^b) & \stackrel{\mathcal{C}_g^b}{\to} & \mathcal{M}(N_g^{b-1}, *) & \stackrel{\mathcal{F}_g^{b-1}}{\to} & \mathcal{M}(N_g^{b-1}) \\ \cup & \cup & \cup & \cup \\ \mathcal{I}(N_g^b) & \twoheadrightarrow & \mathcal{C}_g^b(\mathcal{I}(N_g^b)) & \twoheadrightarrow & \mathcal{I}(N_g^{b-1}) \end{array}$$

- $(\mathfrak{C}^b_g(\mathcal{I}(N^b_g)) \to \mathcal{I}(N^{b-1}_g)) = \mathcal{P}^{b-1}_g(\Gamma^{b-1}_g).$
- $\begin{array}{l} \bullet \quad \mathcal{P}_g^{b-1}(\Gamma_g^{b-1}) \text{ is the normal closure of } \mathcal{P}_g^{b-1}(x_g^2), \, \mathcal{P}_g^{b-1}(y_j) \text{ and} \\ \mathcal{P}_g^{b-1}(x_gy_jx_g^{-1}) \, \left(1 \leq j \leq b-1\right) \text{ in } \mathcal{C}_g^b(\mathcal{M}(N_g^b)). \end{array}$

$${ o } \ker(\mathcal{C}^b_g(\mathcal{I}(N^b_g)) \to \mathcal{I}(N^{b-1}_g)) = \mathcal{P}^{b-1}_g(\Gamma^{b-1}_g).$$

 $\begin{array}{l} \textcircled{\begin{subarray}{l} {\mathfrak P}_g^{b-1}(\Gamma_g^{b-1}) \text{ is the normal closure of } {\mathcal P}_g^{b-1}(x_g^2), \ {\mathcal P}_g^{b-1}(y_j) \text{ and } \\ {\mathcal P}_g^{b-1}(x_gy_jx_g^{-1}) \ (1 \leq j \leq b-1) \text{ in } {\mathcal C}_g^b({\mathcal M}(N_g^b)). \end{array}$

$$\begin{array}{l} \bullet \ \mathcal{F}_{g}^{b-1}(\mathcal{C}_{g}^{b}(\mathcal{I}(N_{g}^{b}))) = \mathcal{I}(N_{g}^{b-1}). \\ \bullet \ \ker(\mathcal{C}_{g}^{b}(\mathcal{I}(N_{g}^{b})) \to \mathcal{I}(N_{g}^{b-1})) = \mathcal{P}_{g}^{b-1}(\Gamma_{g}^{b-1}). \\ \bullet \ \mathcal{P}_{g}^{b-1}(\Gamma_{g}^{b-1}) \ \text{is the normal closure of } \mathcal{P}_{g}^{b-1}(x_{g}^{2}), \ \mathcal{P}_{g}^{b-1}(y_{j}) \ \text{and} \ \mathcal{P}_{g}^{b-1}(x_{g}y_{j}x_{g}^{-1}) \ (1 \leq j \leq b-1) \ \text{in } \mathcal{C}_{g}^{b}(\mathcal{M}(N_{g}^{b})). \end{array}$$

$$\begin{array}{l} \textcircled{3} \quad \mathcal{P}_g^{b-1}(\Gamma_g^{b-1}) \text{ is the normal closure of } \mathcal{P}_g^{b-1}(x_g^2), \ \mathcal{P}_g^{b-1}(y_j) \text{ and } \\ \mathcal{P}_g^{b-1}(x_gy_jx_g^{-1}) \ (1 \leq j \leq b-1) \text{ in } \mathcal{C}_g^b(\mathcal{M}(N_g^b)). \end{array}$$

Corollary

 $\begin{array}{l} \mathcal{C}^b_g(\mathcal{I}(N^b_g)) \text{ is normally generated by } \mathcal{P}^{b-1}_g(x^2_g), \, \mathcal{P}^{b-1}_g(y_j), \, \mathcal{P}^{b-1}_g(x_gy_jx_g^{-1}) \\ (1 \leq j \leq b-1) \text{ and lifts by } \mathcal{F}^{b-1}_g \text{ of normal generators of } \mathcal{I}(N^{b-1}_g), \text{ in } \\ \mathcal{C}^b_g(\mathcal{M}(N^b_g)). \end{array}$

$$1 \to \ker \mathcal{C}^b_g|_{\mathcal{I}(N^b_g)} \to \mathcal{I}(N^b_g) \to \mathcal{C}^b_g(\mathcal{I}(N^b_g)) \to 1$$

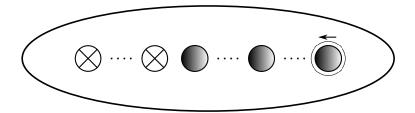
- t_{δ_b} and
- lifts by \mathcal{C}^b_g of normal generators of $\mathcal{C}^b_g(\mathcal{I}(N^b_g)).$

$$1 \to \ker \mathcal{C}^b_g|_{\mathcal{I}(N^b_g)} \to \mathcal{I}(N^b_g) \to \mathcal{C}^b_g(\mathcal{I}(N^b_g)) \to 1$$

- t_{δ_b} and
- lifts by \mathcal{C}^b_g of
 - $\mathcal{P}_g^{b-1}(x_g^2)$, $\mathcal{P}_g^{b-1}(y_j)$, $\mathcal{P}_g^{b-1}(x_g y_j x_g^{-1})$ $(1 \le j \le b-1)$ and • lifts by \mathcal{F}_g^{b-1} of normal generators of $\mathcal{I}(N_g^{b-1})$.

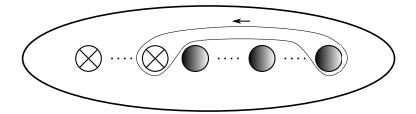
$$1 \to \ker \mathcal{C}^b_g|_{\mathcal{I}(N^b_g)} \to \mathcal{I}(N^b_g) \to \mathcal{C}^b_g(\mathcal{I}(N^b_g)) \to 1$$

- t_{δ_b} and
- lifts by \mathcal{C}_g^b of
 - $\mathcal{P}_g^{b-1}(x_g^2)$, $\mathcal{P}_g^{b-1}(y_j)$, $\mathcal{P}_g^{b-1}(x_g y_j x_g^{-1})$ $(1 \le j \le b-1)$ and • lifts by \mathcal{F}_a^{b-1} of normal generators of $\mathcal{I}(N_a^{b-1})$.



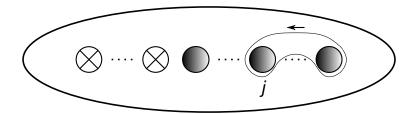
$$1 \to \ker \mathcal{C}^b_g|_{\mathcal{I}(N^b_g)} \to \mathcal{I}(N^b_g) \to \mathcal{C}^b_g(\mathcal{I}(N^b_g)) \to 1$$

- t_{δ_b} and
- lifts by \mathcal{C}^b_g of
 - $\mathcal{P}_g^{b-1}(x_g^2)$, $\mathcal{P}_g^{b-1}(y_j)$, $\mathcal{P}_g^{b-1}(x_g y_j x_g^{-1})$ $(1 \le j \le b-1)$ and • lifts by \mathcal{F}_g^{b-1} of normal generators of $\mathcal{I}(N_g^{b-1})$.



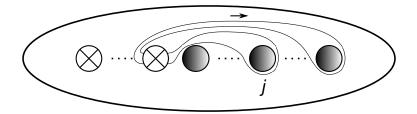
$$1 \to \ker \mathcal{C}^b_g|_{\mathcal{I}(N^b_g)} \to \mathcal{I}(N^b_g) \to \mathcal{C}^b_g(\mathcal{I}(N^b_g)) \to 1$$

- t_{δ_b} and
- lifts by \mathcal{C}^b_g of
 - $\mathcal{P}_g^{b-1}(x_g^2)$, $\mathcal{P}_g^{b-1}(y_j)$, $\mathcal{P}_g^{b-1}(x_g y_j x_g^{-1})$ $(1 \le j \le b-1)$ and • lifts by \mathcal{F}_a^{b-1} of normal generators of $\mathcal{I}(N_a^{b-1})$.



$$1 \to \ker \mathcal{C}^b_g|_{\mathcal{I}(N^b_g)} \to \mathcal{I}(N^b_g) \to \mathcal{C}^b_g(\mathcal{I}(N^b_g)) \to 1$$

- t_{δ_b} and
- lifts by \mathcal{C}^b_g of
 - $\mathcal{P}_g^{b-1}(x_g^2)$, $\mathcal{P}_g^{b-1}(y_j)$, $\mathcal{P}_g^{b-1}(x_g y_j x_g^{-1})$ $(1 \le j \le b-1)$ and • lifts by \mathcal{F}_g^{b-1} of normal generators of $\mathcal{I}(N_g^{b-1})$.



$$1 \to \ker \mathcal{C}^b_g|_{\mathcal{I}(N^b_g)} \to \mathcal{I}(N^b_g) \to \mathcal{C}^b_g(\mathcal{I}(N^b_g)) \to 1$$

- $t_{\delta_b}\text{, }t_{\rho_b}\text{, }t_{\sigma_{jb}}\text{, }t_{\bar{\sigma}_{jb}}$ and
- lifts by $\mathcal{F}_g^{b-1} \circ \mathcal{C}_g^b$ of normal generators of $\mathcal{I}(N_g^{b-1}).$

For $g \ge 4$, $\mathcal{I}(N_g^0)$ is normally generated by t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$ (and t_{γ}).

For $g \ge 4$, $\mathcal{I}(N_g^0)$ is normally generated by t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$ (and t_{γ}).

 $\mathcal{I}(N_g^1)$ is normally generated by t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$, t_{δ_1} , t_{ρ_1} (and t_{γ}).

For $g \ge 4$, $\mathcal{I}(N_g^0)$ is normally generated by t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$ (and t_{γ}).

 $\mathcal{I}(N_g^1)$ is normally generated by t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$, t_{δ_1} , t_{ρ_1} (and t_{γ}). $\mathcal{I}(N_g^2)$ is normally generated by t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$, t_{δ_1} , t_{ρ_1} , t_{δ_2} , t_{ρ_2} , $t_{\sigma_{12}}$, $t_{\bar{\sigma}_{12}}$ (and t_{γ}).

For $g \ge 4$, $\mathcal{I}(N_g^0)$ is normally generated by t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$ (and t_{γ}).

 $\mathcal{I}(N_g^1)$ is normally generated by t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$, t_{δ_1} , t_{ρ_1} (and t_{γ}). $\mathcal{I}(N_g^2)$ is normally generated by t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$, t_{δ_1} , t_{ρ_1} , t_{δ_2} , t_{ρ_2} , $t_{\sigma_{12}}$, $t_{\bar{\sigma}_{12}}$ (and t_{γ}).

For $g \ge 4$, $\mathcal{I}(N_g^0)$ is normally generated by t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$ (and t_{γ}).

 $\mathcal{I}(N_g^1)$ is normally generated by t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$, t_{δ_1} , t_{ρ_1} (and t_{γ}). $\mathcal{I}(N_g^2)$ is normally generated by t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$, t_{δ_1} , t_{ρ_1} , t_{δ_2} , t_{ρ_2} , $t_{\sigma_{12}}$, $t_{\bar{\sigma}_{12}}$ (and t_{γ}).

Theorem (K.)

For $g \ge 4$ and $b \ge 1$, $\mathcal{I}(N_q^b)$ is normally generated by

•
$$t_{\alpha}$$
, $t_{\beta}t_{\beta\prime}^{-1}$,

•
$$t_{\delta_i}$$
, t_{ρ_i} ($1 \le i \le b$),

•
$$t_{\sigma_{ij}}$$
, $t_{ar{\sigma}_{ij}}$ ($1 \leq i < j \leq b$) and

•
$$t_{\gamma}$$
 (only if $g=4$).

For $g \ge 4$, $\mathcal{I}(N_g^0)$ is normally generated by t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$ (and t_{γ}).

 $\mathcal{I}(N_g^1)$ is normally generated by t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$, t_{δ_1} , t_{ρ_1} (and t_{γ}). $\mathcal{I}(N_g^2)$ is normally generated by t_{α} , $t_{\beta}t_{\beta\prime}^{-1}$, t_{δ_1} , t_{ρ_1} , t_{δ_2} , t_{ρ_2} , $t_{\sigma_{12}}$, $t_{\bar{\sigma}_{12}}$ (and t_{γ}).

Theorem (K.)

For $g \ge 4$ and $b \ge 1$, $\mathcal{I}(N_q^b)$ is normally generated by

•
$$t_{\alpha}$$
, $t_{\beta}t_{\beta\prime}^{-1}$,

•
$$t_{\delta_i}$$
, t_{ρ_i} ($1 \le i \le b - 1$),

•
$$t_{\sigma_{ij}}$$
, $t_{ar{\sigma}_{ij}}$ ($1 \leq i < j \leq b-1$) and

•
$$t_{\gamma}$$
 (only if $g = 4$).

Thank you for your attention!