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The functor Zϕ
q : Bq −→ Âϕ

Theorem (Massuyeau–H)

For each Drinfeld associator ϕ = ϕ(X ,Y ) ∈ Q〈〈X ,Y 〉〉, there is a
braided monoidal functor

Zϕ
q : Bq −→ Âϕ

q .

Here

I Bq is the non-strictification of the category B of bottom
tangles in handlebodies,

I Âϕ
q is the non-strictification of the degree-completion Â of the

category A of chord diagrams in handlebodies, equipped with
a braided monoidal structure associated to ϕ,

I Zϕ
q is constructed by using the Kontsevich integral of

(bottom) tangles in handlebodies.

By ignoring subtleties, we have a functor Z : B −→ Â.
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category A of chord diagrams in handlebodies, equipped with
a braided monoidal structure associated to ϕ,

I Zϕ
q is constructed by using the Kontsevich integral of

(bottom) tangles in handlebodies.

By ignoring subtleties, we have a functor Z : B −→ Â.



The category B
The category B of bottom tangles in handlebodies

I Ob(B) = N = {0, 1, 2, . . .}.
I B(m, n) = {n-component bottom tangles in Vm}/isotopy.

Composition: Regard a morphism m −→ n as a cobordism between
Σm,1 and Σn,1, compose, and regard the result as a bottom tangle
in a handlebody.
(Thus B may be regarded as a subcategory of a cobordism
category.)
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The Vassiliev filtration on QB
Let QB be the Q-linearization of B.

I Ob(QB) = Ob(B) = N,
I (QB)(m, n) = Q(B(m, n)).

The Vassiliev filtration on QB(m, n):

QB(m, n) = V0(m, n) ⊃ V1(m, n) ⊃ . . . ,

where Vd(m, n) is Q-spanned by all the alternating sums∑
S⊂{1,...,d}

(−1)|S |TS

of d independent crossing/framing changes on bottom tangles T .
Then QB with Vd , d ≥ 0, is a filtered linear braided monoidal
category, i.e.,

Vd(n, p) ◦ Vd ′
(m, n) ⊂ Vd+d ′

(m, p),

Vd(m, n)⊗ Vd ′
(m′, n′) ⊂ Vd+d ′

(m + m′, n + n′).
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The associated graded gr(QB) of QB

Let gr(QB) be the associated graded of the Vassiliev filtration of
QB.

I grd(QB)(m, n) = Vd(m, n)/Vd+1(m, n).

gr(QB) is a graded Q-linear symmetric monoidal category.

Theorem (Massuyeau–H)

The functor Z : B −→ Â induces an isomorphism of a graded
Q-linear symmetric monoidal categories

gr Z : gr(QB)
'−→ gr(Â) = A,
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The category A

The category A of chord diagrams in handlebodies:

I Ob(A) = N,

I A(m, n) =
Q{chord diagrams on bottom n-strands in Vm}

homotopy, 4T



If

D = : 2 −→ 3

and

D ′ = : 2 −→ 2,

then

D ◦ D ′ = : 2 −→ 3.



The category A

The category A of chord diagrams in handlebodies:

I Ob(A) = N,

I A(m, n) =
Q{chord diagrams on bottom n-strands in Vm}

homotopy, 4T

The category A is a graded, Q-linear, symmetric, (strict) monoidal
category.
Here the degree of a chord diagram is the number of chords.

Remark
The category A of chord diagrams in handlebodies, and the
category of Jacobi diagrams (i.e., vertex-oriented unitrivalent
graphs) in handlebodies are the same.
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Coalgebra enrichment of A
The space A(m, n) admits a coalgebra structure

∆: A(m, n) −→ A(m, n)⊗ A(m, n), ε : A(m, n) −→ Q

defined by

∆(X ,D) =
∑

D′tD′′=D

(X ,D ′)⊗ (X ,D ′′), ε(X ,D) = δ|D|,0.

Proposition (Massuyeau–H)

The symmetric monoidal category A is enriched over
cocommutative coalgebras; i.e., the following are coalgebra maps

◦ = ◦m,n,p : A(n, p)⊗ A(m, n) −→ A(m, p) (m, n, p ≥ 0),

Q −→ A(m,m), 1 7−→ idm (m ≥ 0),

⊗ : A(m, n)⊗ A(m′, n′) −→ A(m + m′, n + n′) (m, n,m′, n′ ≥ 0),

Q −→ A(m + n, n + m), 1 7−→ Pm,n (m, n ≥ 0).
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The category Â admits a (symmetric monoidal) subcategory Agrp

whose hom spaces Agrp(m, n) consist of grouplike elements,

in
which Z : B −→ Â takes values.
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Hopf algebra in A

Define morphisms in A by

µ = : 2 → 1, η = : 0 → 1,

∆ = : 1 → 2, ε = : 1 → 0, S = : 1 → 1.

Proposition (Massuyeau–H)

(1, µ, η,∆, ε, S) form a cocommutative Hopf algebra in the
symmetric monoidal category A.
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Casimir 2-tensor

Definition
A Casimir 2-tensor for a cocommutative Hopf algebra H in a linear
symmetric monoidal category C is a morphism c : I → H⊗2 s.t.

PH,Hc = c (symmetric)

(∆⊗ idH)c = c13 + c23 (left primitive),

(ad⊗ ad)(idH ⊗PH,H ⊗ idH)(∆⊗ c) = cε (ad-invariant).

By a Casimir Hopf algebra in C, we mean a cocommutative Hopf
algebra in C equipped with a Casimir 2-tensor.

Fact

c = : 0 → 2 is a Casimir 2-tensor in A.

Theorem (Massuyeau–H)

As a Q-linear symmetric strict monoidal category, A is freely
generated by a Casimir Hopf algebra.
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Convolution algebra structure of A(m, n)

A(m, n) is an algebra with multiplication given by convolution

∗ : A(m, n)⊗ A(m, n) −→ A(m, n)

with unit η⊗nε⊗m.

Convolution makes A(m, n) a graded algebra.
The degree 0 part A0(m, n) satisfies

A0(m, n) (' Q Hom(Fn,Fm)) ' Q[F n
m].

Let A(m, n)triv ⊂ A(m, n) be spanned by chord diagrams (X ,D)
with X “trivial”.
Then we have a linear isomorphism

A(m, n)triv ⊗ A0(m, n)
∗−→
'

A(m, n).
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Ribbon quasi-Hopf algebra

A quasi-Hopf algebra is a generalization of a Hopf algebra, where
coassociativity

(∆⊗ idH)∆ = (idH ⊗∆)∆

does not hold, but holds up to a specified 3-tensor Φ ∈ H⊗3:

Φ · (∆⊗ idH)∆(x) · Φ−1 = (idH ⊗∆)∆(x).

There are notions of quasi-triangular quasi-Hopf algebras and
ribbon quasi-Hopf algebras.
These notions are translated into symmetric monoidal categories.



A ribbon quasi-Hopf algebra in Â

Theorem (Massuyeau–H)

For each Drinfeld associator ϕ = ϕ(X ,Y ) ∈ Q〈〈X ,Y 〉〉, there is a
ribbon quasi-Hopf algebra structure in Â such that the morphisms
µ, η, ∆, ε, S are as before, and

Φ = ϕ∗(c12, c23) : 0 −→ 3,

R = exp∗(c/2) : 0 −→ 2,

r = exp∗(µc/2) : 0 −→ 1,

where ∗ denotes convolution.

Remark
Let g be a Lie algebra and let t ∈ g⊗ g be an ad-invariant
symmetric tensor. Then, by Drinfeld’s work, there is a ribbon
quasi-Hopf algebra structure on U(g)[[~]]. The above theorem may
be regarded as a diagrammatic version of this fact.


