The Kontsevich integral for bottom tangles in handlebodies: algebraic aspects

> Kazuo Habiro (RIMS) (joint with Gwénaël Massuyeau)

May 23, 2017 Johnson homomorphisms and related topics Graduate School of Mathematical Sciences, University of Tokyo

うして ふゆう ふほう ふほう うらつ

The functor $Z_q^{\varphi} \colon \mathcal{B}_q \longrightarrow \widehat{\mathbf{A}}^{\varphi}$

Theorem (Massuyeau–H)

For each Drinfeld associator $\varphi = \varphi(X, Y) \in \mathbb{Q}\langle\langle X, Y \rangle\rangle$, there is a braided monoidal functor

$$Z^{\varphi}_q: \ \mathcal{B}_q \longrightarrow \widehat{\mathbf{A}}^{\varphi}_q.$$

Here

- ▶ B_q is the non-strictification of the category B of bottom tangles in handlebodies,
- Â^φ_q is the non-strictification of the degree-completion of the category A of chord diagrams in handlebodies, equipped with a braided monoidal structure associated to φ,
- ► Z^φ_q is constructed by using the Kontsevich integral of (bottom) tangles in handlebodies.

The functor $Z_q^{\varphi} \colon \mathcal{B}_q \longrightarrow \widehat{\mathbf{A}}^{\varphi}$

Theorem (Massuyeau–H)

For each Drinfeld associator $\varphi = \varphi(X, Y) \in \mathbb{Q}\langle\langle X, Y \rangle\rangle$, there is a braided monoidal functor

$$Z_q^{\varphi}: \ \mathcal{B}_q \longrightarrow \widehat{\mathbf{A}}_q^{\varphi}.$$

Here

- ▶ B_q is the non-strictification of the category B of bottom tangles in handlebodies,
- Â^φ_q is the non-strictification of the degree-completion of the category A of chord diagrams in handlebodies, equipped with a braided monoidal structure associated to φ,

► Z^φ_q is constructed by using the Kontsevich integral of (bottom) tangles in handlebodies.

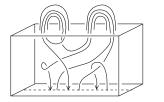
By ignoring subtleties, we have a functor $Z: \mathcal{B} \longrightarrow \widehat{A}$.

The category $\ensuremath{\mathcal{B}}$

The category $\ensuremath{\mathcal{B}}$ of bottom tangles in handlebodies

•
$$Ob(\mathcal{B}) = \mathbb{N} = \{0, 1, 2, ...\}.$$

• $\mathcal{B}(m, n) = \{n \text{-component bottom tangles in } V_m\}/\text{isotopy.}$



イロト 不得下 イヨト イヨト

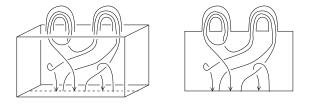
ж

The category $\ensuremath{\mathcal{B}}$

The category $\mathcal B$ of bottom tangles in handlebodies

•
$$Ob(\mathcal{B}) = \mathbb{N} = \{0, 1, 2, ...\}.$$

• $\mathcal{B}(m, n) = \{n \text{-component bottom tangles in } V_m\}/\text{isotopy.}$



Composition: Regard a morphism $m \longrightarrow n$ as a cobordism between $\Sigma_{m,1}$ and $\Sigma_{n,1}$, compose, and regard the result as a bottom tangle in a handlebody. (Thus \mathcal{B} may be regarded as a subcategory of a cobordism category.)

The Vassiliev filtration on $\mathbb{Q}\mathcal{B}$

Let $\mathbb{Q}\mathcal{B}$ be the \mathbb{Q} -linearization of \mathcal{B} .

- $Ob(\mathbb{QB}) = Ob(\mathcal{B}) = \mathbb{N}$,
- $(\mathbb{QB})(m,n) = \mathbb{Q}(\mathcal{B}(m,n)).$

The Vassiliev filtration on $\mathbb{Q}\mathcal{B}$

Let $\mathbb{Q}\mathcal{B}$ be the $\mathbb{Q}\text{-linearization}$ of $\mathcal{B}.$

•
$$\mathsf{Ob}(\mathbb{QB}) = \mathsf{Ob}(\mathcal{B}) = \mathbb{N}$$
,

•
$$(\mathbb{QB})(m,n) = \mathbb{Q}(\mathcal{B}(m,n)).$$

The Vassiliev filtration on $\mathbb{QB}(m, n)$:

$$\mathbb{QB}(m,n) = \mathcal{V}^0(m,n) \supset \mathcal{V}^1(m,n) \supset \ldots,$$

where $\mathcal{V}^d(m,n)$ is \mathbb{Q} -spanned by all the alternating sums

$$\sum_{S \subset \{1,\ldots,d\}} (-1)^{|S|} T_S$$

of d independent crossing/framing changes on bottom tangles T.

うして ふゆう ふほう ふほう うらつ

The Vassiliev filtration on $\mathbb{Q}\mathcal{B}$

Let $\mathbb{Q}\mathcal{B}$ be the \mathbb{Q} -linearization of \mathcal{B} .

•
$$\mathsf{Ob}(\mathbb{QB}) = \mathsf{Ob}(\mathcal{B}) = \mathbb{N}$$
,

$$\blacktriangleright (\mathbb{QB})(m,n) = \mathbb{Q}(\mathcal{B}(m,n)).$$

The Vassiliev filtration on $\mathbb{QB}(m, n)$:

$$\mathbb{QB}(m,n) = \mathcal{V}^0(m,n) \supset \mathcal{V}^1(m,n) \supset \ldots,$$

where $\mathcal{V}^d(m,n)$ is \mathbb{Q} -spanned by all the alternating sums

$$\sum_{\mathcal{S} \subset \{1,...,d\}} (-1)^{|\mathcal{S}|} \mathcal{T}_{\mathcal{S}}$$

of *d* independent crossing/framing changes on bottom tangles *T*. Then $\mathbb{Q}\mathcal{B}$ with \mathcal{V}^d , $d \ge 0$, is a filtered linear braided monoidal category, i.e.,

$$\mathcal{V}^d(n,p)\circ\mathcal{V}^{d'}(m,n)\subset\mathcal{V}^{d+d'}(m,p), \ \mathcal{V}^d(m,n)\otimes\mathcal{V}^{d'}(m',n')\subset\mathcal{V}^{d+d'}(m+m',n+n').$$

うして ふゆう ふほう ふほう うらつ

The associated graded $gr(\mathbb{QB})$ of \mathbb{QB}

Let $gr(\mathbb{Q}\mathcal{B})$ be the associated graded of the Vassiliev filtration of $\mathbb{Q}\mathcal{B}.$

うして ふゆう ふほう ふほう うらつ

• $\operatorname{gr}^{d}(\mathbb{QB})(m,n) = \mathcal{V}^{d}(m,n)/\mathcal{V}^{d+1}(m,n).$

 $gr(\mathbb{Q}\mathcal{B})$ is a graded $\mathbb{Q}\text{-linear}$ symmetric monoidal category.

The associated graded $gr(\mathbb{QB})$ of \mathbb{QB}

Let $gr(\mathbb{QB})$ be the associated graded of the Vassiliev filtration of \mathbb{QB} .

• $\operatorname{gr}^{d}(\mathbb{QB})(m,n) = \mathcal{V}^{d}(m,n)/\mathcal{V}^{d+1}(m,n).$

 $gr(\mathbb{Q}\mathcal{B})$ is a graded $\mathbb{Q}\text{-linear}$ symmetric monoidal category.

Theorem (Massuyeau–H)

The functor $Z: \mathcal{B} \longrightarrow \widehat{\mathbf{A}}$ induces an isomorphism of a graded \mathbb{Q} -linear symmetric monoidal categories

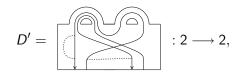
$$\operatorname{gr} Z : \operatorname{gr}(\mathbb{Q}\mathcal{B}) \xrightarrow{\simeq} \operatorname{gr}(\widehat{\mathbf{A}}) = \mathbf{A},$$

うして ふゆう ふほう ふほう うらつ

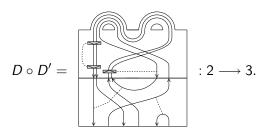
The category **A** of chord diagrams in handlebodies:

lf

 and



then



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

The category **A**

The category **A** of chord diagrams in handlebodies:

The category **A** is a graded, \mathbb{Q} -linear, symmetric, (strict) monoidal category.

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ・ うらぐ

Here the *degree* of a chord diagram is the number of chords.

The category **A**

The category **A** of chord diagrams in handlebodies:

The category **A** is a graded, \mathbb{Q} -linear, symmetric, (strict) monoidal category.

うして ふゆう ふほう ふほう うらつ

Here the *degree* of a chord diagram is the number of chords.

Remark

The category **A** of chord diagrams in handlebodies, and the category of *Jacobi diagrams* (i.e., vertex-oriented unitrivalent graphs) in handlebodies are the same.

The space A(m, n) admits a coalgebra structure

$$\Delta \colon \mathbf{A}(m,n) \longrightarrow \mathbf{A}(m,n) \otimes \mathbf{A}(m,n), \quad \epsilon \colon \mathbf{A}(m,n) \longrightarrow \mathbb{Q}$$

defined by

$$\Delta(X,D) = \sum_{D'\sqcup D''=D} (X,D')\otimes (X,D''), \quad \epsilon(X,D) = \delta_{|D|,0}.$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

The space A(m, n) admits a coalgebra structure

$$\Delta \colon \mathbf{A}(m,n) \longrightarrow \mathbf{A}(m,n) \otimes \mathbf{A}(m,n), \quad \epsilon \colon \mathbf{A}(m,n) \longrightarrow \mathbb{Q}$$

defined by

$$\Delta(X,D) = \sum_{D'\sqcup D''=D} (X,D')\otimes (X,D''), \quad \epsilon(X,D) = \delta_{|D|,0}.$$

Proposition (Massuyeau–H)

The symmetric monoidal category **A** is enriched over cocommutative coalgebras;

The space A(m, n) admits a coalgebra structure

$$\Delta \colon \mathbf{A}(m,n) \longrightarrow \mathbf{A}(m,n) \otimes \mathbf{A}(m,n), \quad \epsilon \colon \mathbf{A}(m,n) \longrightarrow \mathbb{Q}$$

defined by

$$\Delta(X,D) = \sum_{D'\sqcup D''=D} (X,D')\otimes (X,D''), \quad \epsilon(X,D) = \delta_{|D|,0}.$$

Proposition (Massuyeau–H)

The symmetric monoidal category **A** is enriched over cocommutative coalgebras; i.e., the following are coalgebra maps

$$\circ = \circ_{m,n,p} : \mathbf{A}(n,p) \otimes \mathbf{A}(m,n) \longrightarrow \mathbf{A}(m,p) \quad (m,n,p \ge 0),$$

$$\mathbb{Q} \longrightarrow \mathbf{A}(m,m), \quad 1 \longmapsto \mathrm{id}_m \quad (m \ge 0),$$

$$\otimes : \mathbf{A}(m,n) \otimes \mathbf{A}(m',n') \longrightarrow \mathbf{A}(m+m',n+n') \quad (m,n,m',n' \ge 0),$$

$$\mathbb{Q} \longrightarrow \mathbf{A}(m+n,n+m), \quad 1 \longmapsto P_{m,n} \quad (m,n \ge 0).$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

The space A(m, n) admits a coalgebra structure

$$\Delta \colon \mathbf{A}(m,n) \longrightarrow \mathbf{A}(m,n) \otimes \mathbf{A}(m,n), \quad \epsilon \colon \mathbf{A}(m,n) \longrightarrow \mathbb{Q}$$

defined by

$$\Delta(X,D) = \sum_{D'\sqcup D''=D} (X,D')\otimes (X,D''), \quad \epsilon(X,D) = \delta_{|D|,0}.$$

Proposition (Massuyeau–H)

The symmetric monoidal category **A** is enriched over cocommutative coalgebras; i.e., ...

Corollary (Massuyeau-H)

The category $\widehat{\mathbf{A}}$ admits a (symmetric monoidal) subcategory \mathbf{A}^{grp} whose hom spaces $\mathbf{A}^{\text{grp}}(m, n)$ consist of grouplike elements,

The space A(m, n) admits a coalgebra structure

$$\Delta \colon \mathbf{A}(m,n) \longrightarrow \mathbf{A}(m,n) \otimes \mathbf{A}(m,n), \quad \epsilon \colon \mathbf{A}(m,n) \longrightarrow \mathbb{Q}$$

defined by

$$\Delta(X,D) = \sum_{D'\sqcup D''=D} (X,D')\otimes (X,D''), \quad \epsilon(X,D) = \delta_{|D|,0}.$$

Proposition (Massuyeau–H)

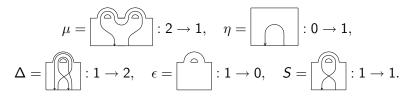
The symmetric monoidal category **A** is enriched over cocommutative coalgebras; i.e., ...

Corollary (Massuyeau-H)

The category $\widehat{\mathbf{A}}$ admits a (symmetric monoidal) subcategory \mathbf{A}^{grp} whose hom spaces $\mathbf{A}^{\text{grp}}(m, n)$ consist of grouplike elements, in which $Z: \mathcal{B} \longrightarrow \widehat{\mathbf{A}}$ takes values.

Hopf algebra in ${\boldsymbol{\mathsf{A}}}$

Define morphisms in A by

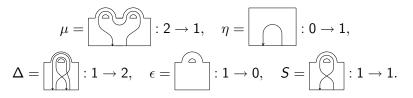


・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Hopf algebra in $\boldsymbol{\mathsf{A}}$

Define morphisms in **A** by



Proposition (Massuyeau–H)

 $(1, \mu, \eta, \Delta, \epsilon, S)$ form a cocommutative Hopf algebra in the symmetric monoidal category **A**.

Definition

A *Casimir* 2-*tensor* for a cocommutative Hopf algebra H in a linear symmetric monoidal category C is a morphism $c: I \to H^{\otimes 2}$ s.t.

$$\begin{split} P_{H,H}c &= c \quad (\text{symmetric}) \\ (\Delta \otimes \text{id}_H)c &= c_{13} + c_{23} \quad (\text{left primitive}), \\ (\text{ad} \otimes \text{ad})(\text{id}_H \otimes P_{H,H} \otimes \text{id}_H)(\Delta \otimes c) &= c\epsilon \quad (\text{ad-invariant}). \end{split}$$

Definition

A *Casimir* 2-*tensor* for a cocommutative Hopf algebra H in a linear symmetric monoidal category C is a morphism $c: I \to H^{\otimes 2}$ s.t.

$$\begin{split} P_{H,H}c &= c \quad (\text{symmetric}) \\ (\Delta \otimes \text{id}_H)c &= c_{13} + c_{23} \quad (\text{left primitive}), \\ (\text{ad} \otimes \text{ad})(\text{id}_H \otimes P_{H,H} \otimes \text{id}_H)(\Delta \otimes c) &= c\epsilon \quad (\text{ad-invariant}). \end{split}$$

By a *Casimir Hopf algebra* in C, we mean a cocommutative Hopf algebra in C equipped with a Casimir 2-tensor.

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ・ うらぐ

Definition

A *Casimir* 2-*tensor* for a cocommutative Hopf algebra H in a linear symmetric monoidal category C is a morphism $c: I \to H^{\otimes 2}$ s.t.

$$\begin{split} P_{H,H}c &= c \quad (\text{symmetric})\\ (\Delta \otimes \text{id}_H)c &= c_{13} + c_{23} \quad (\text{left primitive}),\\ (\text{ad} \otimes \text{ad})(\text{id}_H \otimes P_{H,H} \otimes \text{id}_H)(\Delta \otimes c) &= c\epsilon \quad (\text{ad-invariant}). \end{split}$$

By a *Casimir Hopf algebra* in C, we mean a cocommutative Hopf algebra in C equipped with a Casimir 2-tensor.

ション ふゆ アメリア メリア しょうめん

Fact

$$c =$$
 : 0 \rightarrow 2 is a Casimir 2-tensor in **A**

Definition

A *Casimir* 2-*tensor* for a cocommutative Hopf algebra H in a linear symmetric monoidal category C is a morphism $c: I \to H^{\otimes 2}$ s.t.

$$\begin{split} P_{H,H}c &= c \quad (\text{symmetric})\\ (\Delta \otimes \text{id}_H)c &= c_{13} + c_{23} \quad (\text{left primitive}),\\ (\text{ad} \otimes \text{ad})(\text{id}_H \otimes P_{H,H} \otimes \text{id}_H)(\Delta \otimes c) &= c\epsilon \quad (\text{ad-invariant}). \end{split}$$

By a *Casimir Hopf algebra* in C, we mean a cocommutative Hopf algebra in C equipped with a Casimir 2-tensor.

Fact

$$c =$$
: 0 \rightarrow 2 is a Casimir 2-tensor in **A**.

Theorem (Massuyeau–H)

As a \mathbb{Q} -linear symmetric strict monoidal category, **A** is freely generated by a Casimir Hopf algebra.

A(m, n) is an algebra with multiplication given by *convolution*

$$*: \mathbf{A}(m,n) \otimes \mathbf{A}(m,n) \longrightarrow \mathbf{A}(m,n)$$

with unit $\eta^{\otimes n} \epsilon^{\otimes m}$.

A(m, n) is an algebra with multiplication given by *convolution*

$$*: \mathbf{A}(m,n) \otimes \mathbf{A}(m,n) \longrightarrow \mathbf{A}(m,n)$$

・ロト ・ 日 ・ モート ・ 田 ・ うへぐ

with unit $\eta^{\otimes n} \epsilon^{\otimes m}$. Convolution makes $\mathbf{A}(m, n)$ a graded algebra.

A(m, n) is an algebra with multiplication given by *convolution*

$$*: \mathbf{A}(m,n) \otimes \mathbf{A}(m,n) \longrightarrow \mathbf{A}(m,n)$$

with unit $\eta^{\otimes n} \epsilon^{\otimes m}$. Convolution makes $\mathbf{A}(m, n)$ a graded algebra. The degree 0 part $\mathbf{A}_0(m, n)$ satisfies

$$\mathbf{A}_0(m,n) \ (\simeq \mathbb{Q} \operatorname{Hom}(F_n,F_m)) \ \simeq \mathbb{Q}[F_m^n].$$

うして ふゆう ふほう ふほう うらつ

A(m, n) is an algebra with multiplication given by *convolution*

$$*: \mathbf{A}(m,n) \otimes \mathbf{A}(m,n) \longrightarrow \mathbf{A}(m,n)$$

with unit $\eta^{\otimes n} \epsilon^{\otimes m}$. Convolution makes $\mathbf{A}(m, n)$ a graded algebra. The degree 0 part $\mathbf{A}_0(m, n)$ satisfies

$$\mathbf{A}_0(m,n) \ (\simeq \mathbb{Q} \operatorname{Hom}(F_n,F_m)) \ \simeq \mathbb{Q}[F_m^n].$$

Let $\mathbf{A}(m, n)_{\text{triv}} \subset \mathbf{A}(m, n)$ be spanned by chord diagrams (X, D) with X "trivial".

Then we have a linear isomorphism

$$\mathbf{A}(m,n)_{\mathrm{triv}}\otimes \mathbf{A}_0(m,n) \xrightarrow{*}_{\simeq} \mathbf{A}(m,n).$$

うして ふゆう ふほう ふほう うらつ

A(m, n) is an bialgebra with multiplication given by *convolution*

*:
$$\mathbf{A}(m,n) \otimes \mathbf{A}(m,n) \longrightarrow \mathbf{A}(m,n)$$

with unit $\eta^{\otimes n} \epsilon^{\otimes m}$. Convolution makes $\mathbf{A}(m, n)$ a graded cocommutative bialgebra. The degree 0 part $\mathbf{A}_0(m, n)$ satisfies

$$\mathbf{A}_0(m,n) \ (\simeq \mathbb{Q} \operatorname{Hom}(F_n,F_m)) \ \simeq \mathbb{Q}[F_m^n].$$

Let $\mathbf{A}(m, n)_{\text{triv}} \subset \mathbf{A}(m, n)$ be spanned by chord diagrams (X, D) with X "trivial".

Then we have a coalgebra isomorphism

$$\mathbf{A}(m,n)_{\mathrm{triv}}\otimes \mathbf{A}_0(m,n) \xrightarrow{*}_{\simeq} \mathbf{A}(m,n).$$

Ribbon quasi-Hopf algebra

A *quasi-Hopf algebra* is a generalization of a Hopf algebra, where coassociativity

$$(\Delta \otimes \operatorname{id}_H)\Delta = (\operatorname{id}_H \otimes \Delta)\Delta$$

does not hold, but holds up to a specified 3-tensor $\Phi \in H^{\otimes 3}$:

$$\Phi \cdot (\Delta \otimes \mathrm{id}_H) \Delta(x) \cdot \Phi^{-1} = (\mathrm{id}_H \otimes \Delta) \Delta(x).$$

There are notions of *quasi-triangular quasi-Hopf algebras* and *ribbon quasi-Hopf algebras*.

These notions are translated into symmetric monoidal categories.

ション ふゆ アメリア メリア しょうめん

A ribbon quasi-Hopf algebra in $\widehat{\mathbf{A}}$

Theorem (Massuyeau–H)

For each Drinfeld associator $\varphi = \varphi(X, Y) \in \mathbb{Q}\langle\langle X, Y \rangle\rangle$, there is a ribbon quasi-Hopf algebra structure in $\widehat{\mathbf{A}}$ such that the morphisms $\mu, \eta, \Delta, \epsilon, S$ are as before, and

$$\begin{array}{lll} \Phi &= \varphi_*(c_{12},c_{23}) &: 0 \longrightarrow 3, \\ R &= \exp_*(c/2) &: 0 \longrightarrow 2, \\ \mathbf{r} &= \exp_*(\mu c/2) &: 0 \longrightarrow 1, \end{array}$$

where * denotes convolution.

Remark

Let \mathfrak{g} be a Lie algebra and let $t \in \mathfrak{g} \otimes \mathfrak{g}$ be an ad-invariant symmetric tensor. Then, by Drinfeld's work, there is a ribbon quasi-Hopf algebra structure on $U(\mathfrak{g})[[\hbar]]$. The above theorem may be regarded as a diagrammatic version of this fact.