The Kontsevich integral for bottom tangles in handlebodies: algebraic aspects

Kazuo Habiro (RIMS)
(joint with Gwénaël Massuyeau)

May 23, 2017
Johnson homomorphisms and related topics
Graduate School of Mathematical Sciences, University of Tokyo

The functor $Z_{q}^{\varphi}: \mathcal{B}_{q} \longrightarrow \widehat{\mathbf{A}}^{\varphi}$

Theorem (Massuyeau-H)
For each Drinfeld associator $\varphi=\varphi(X, Y) \in \mathbb{Q}\langle\langle X, Y\rangle\rangle$, there is a braided monoidal functor

$$
Z_{q}^{\varphi}: \mathcal{B}_{q} \longrightarrow \widehat{\mathbf{A}}_{q}^{\varphi} .
$$

Here

- \mathcal{B}_{q} is the non-strictification of the category \mathcal{B} of bottom tangles in handlebodies,
- $\widehat{\mathbf{A}}_{q}^{\varphi}$ is the non-strictification of the degree-completion $\widehat{\mathbf{A}}$ of the category \mathbf{A} of chord diagrams in handlebodies, equipped with a braided monoidal structure associated to φ,
- Z_{q}^{φ} is constructed by using the Kontsevich integral of (bottom) tangles in handlebodies.

The functor $Z_{q}^{\varphi}: \mathcal{B}_{q} \longrightarrow \widehat{\mathbf{A}}^{\varphi}$

Theorem (Massuyeau-H)
For each Drinfeld associator $\varphi=\varphi(X, Y) \in \mathbb{Q}\langle\langle X, Y\rangle\rangle$, there is a braided monoidal functor

$$
Z_{q}^{\varphi}: \mathcal{B}_{q} \longrightarrow \widehat{\mathbf{A}}_{q}^{\varphi} .
$$

Here

- \mathcal{B}_{q} is the non-strictification of the category \mathcal{B} of bottom tangles in handlebodies,
- $\widehat{\mathbf{A}}_{q}^{\varphi}$ is the non-strictification of the degree-completion $\widehat{\mathbf{A}}$ of the category \mathbf{A} of chord diagrams in handlebodies, equipped with a braided monoidal structure associated to φ,
- Z_{q}^{φ} is constructed by using the Kontsevich integral of (bottom) tangles in handlebodies.
By ignoring subtleties, we have a functor $Z: \mathcal{B} \longrightarrow \widehat{\mathbf{A}}$.

The category \mathcal{B}

The category \mathcal{B} of bottom tangles in handlebodies

- $\operatorname{Ob}(\mathcal{B})=\mathbb{N}=\{0,1,2, \ldots\}$.
- $\mathcal{B}(m, n)=\left\{n\right.$-component bottom tangles in $\left.V_{m}\right\} /$ isotopy.

The category \mathcal{B}

The category \mathcal{B} of bottom tangles in handlebodies

- $\operatorname{Ob}(\mathcal{B})=\mathbb{N}=\{0,1,2, \ldots\}$.
- $\mathcal{B}(m, n)=\left\{n\right.$-component bottom tangles in $\left.V_{m}\right\} /$ isotopy.

Composition: Regard a morphism $m \longrightarrow n$ as a cobordism between $\Sigma_{m, 1}$ and $\Sigma_{n, 1}$, compose, and regard the result as a bottom tangle in a handlebody.
(Thus \mathcal{B} may be regarded as a subcategory of a cobordism category.)

The Vassiliev filtration on $\mathbb{Q B}$

Let $\mathbb{Q B}$ be the \mathbb{Q}-linearization of \mathcal{B}.

- $\operatorname{Ob}(\mathbb{Q B})=\operatorname{Ob}(\mathcal{B})=\mathbb{N}$,
- $(\mathbb{Q B})(m, n)=\mathbb{Q}(\mathcal{B}(m, n))$.

The Vassiliev filtration on $\mathbb{Q B}$

Let $\mathbb{Q B}$ be the \mathbb{Q}-linearization of \mathcal{B}.

- $\operatorname{Ob}(\mathbb{Q B})=\operatorname{Ob}(\mathcal{B})=\mathbb{N}$,
- $(\mathbb{Q B})(m, n)=\mathbb{Q}(\mathcal{B}(m, n))$.

The Vassiliev filtration on $\mathbb{Q} \mathcal{B}(m, n)$:

$$
\mathbb{Q} \mathcal{B}(m, n)=\mathcal{V}^{0}(m, n) \supset \mathcal{V}^{1}(m, n) \supset \ldots,
$$

where $\mathcal{V}^{d}(m, n)$ is \mathbb{Q}-spanned by all the alternating sums

$$
\sum_{S \subset\{1, \ldots, d\}}(-1)^{|S|} T_{S}
$$

of d independent crossing/framing changes on bottom tangles T.

The Vassiliev filtration on $\mathbb{Q} \mathcal{B}$

Let $\mathbb{Q B}$ be the \mathbb{Q}-linearization of \mathcal{B}.

- $\operatorname{Ob}(\mathbb{Q B})=\operatorname{Ob}(\mathcal{B})=\mathbb{N}$,
- $(\mathbb{Q B})(m, n)=\mathbb{Q}(\mathcal{B}(m, n))$.

The Vassiliev filtration on $\mathbb{Q} \mathcal{B}(m, n)$:

$$
\mathbb{Q} \mathcal{B}(m, n)=\mathcal{V}^{0}(m, n) \supset \mathcal{V}^{1}(m, n) \supset \ldots,
$$

where $\mathcal{V}^{d}(m, n)$ is \mathbb{Q}-spanned by all the alternating sums

$$
\sum_{S \subset\{1, \ldots, d\}}(-1)^{|S|} T_{S}
$$

of d independent crossing/framing changes on bottom tangles T. Then $\mathbb{Q B}$ with $\mathcal{V}^{d}, d \geq 0$, is a filtered linear braided monoidal category, i.e.,

$$
\begin{gathered}
\mathcal{V}^{d}(n, p) \circ \mathcal{V}^{d^{\prime}}(m, n) \subset \mathcal{V}^{d+d^{\prime}}(m, p), \\
\mathcal{V}^{d}(m, n) \otimes \mathcal{V}^{d^{\prime}}\left(m^{\prime}, n^{\prime}\right) \subset \mathcal{V}^{d+d^{\prime}}\left(m+m^{\prime}, n+n^{\prime}\right)
\end{gathered}
$$

The associated graded $\operatorname{gr}(\mathbb{Q B})$ of $\mathbb{Q B}$

Let $\operatorname{gr}(\mathbb{Q B})$ be the associated graded of the Vassiliev filtration of $\mathbb{Q} \mathcal{B}$.

- $\operatorname{gr}^{d}(\mathbb{Q} \mathcal{B})(m, n)=\mathcal{V}^{d}(m, n) / \mathcal{V}^{d+1}(m, n)$.
$\operatorname{gr}(\mathbb{Q B})$ is a graded \mathbb{Q}-linear symmetric monoidal category.

The associated graded $\operatorname{gr}(\mathbb{Q B})$ of $\mathbb{Q B}$

Let $\operatorname{gr}(\mathbb{Q B})$ be the associated graded of the Vassiliev filtration of $\mathbb{Q} \mathcal{B}$.

- $\operatorname{gr}^{d}(\mathbb{Q} \mathcal{B})(m, n)=\mathcal{V}^{d}(m, n) / \mathcal{V}^{d+1}(m, n)$.
$\operatorname{gr}(\mathbb{Q B})$ is a graded \mathbb{Q}-linear symmetric monoidal category. Theorem (Massuyeau-H)
The functor $Z: \mathcal{B} \longrightarrow \widehat{\mathbf{A}}$ induces an isomorphism of a graded \mathbb{Q}-linear symmetric monoidal categories

$$
\operatorname{gr} Z: \operatorname{gr}(\mathbb{Q B}) \xrightarrow{\simeq} \operatorname{gr}(\widehat{\mathbf{A}})=\mathbf{A},
$$

The category \mathbf{A}

The category \mathbf{A} of chord diagrams in handlebodies:

- $\operatorname{Ob}(\mathbf{A})=\mathbb{N}$,
- $\mathbf{A}(m, n)=\frac{\mathbb{Q}\left\{\text { chord diagrams on bottom } n \text {-strands in } V_{m}\right\}}{\text { homotopy, 4T }}$

and

then

The category \mathbf{A}

The category \mathbf{A} of chord diagrams in handlebodies:

- $\operatorname{Ob}(\mathbf{A})=\mathbb{N}$,
- $\mathbf{A}(m, n)=\frac{\mathbb{Q}\left\{\text { chord diagrams on bottom } n \text {-strands in } V_{m}\right\}}{\text { homotopy, 4T }}$

The category \mathbf{A} is a graded, \mathbb{Q}-linear, symmetric, (strict) monoidal category.
Here the degree of a chord diagram is the number of chords.

The category \mathbf{A}

The category \mathbf{A} of chord diagrams in handlebodies:

- $\operatorname{Ob}(\mathbf{A})=\mathbb{N}$,
- $\mathbf{A}(m, n)=\frac{\mathbb{Q}\left\{\text { chord diagrams on bottom } n \text {-strands in } V_{m}\right\}}{\text { homotopy, 4T }}$

The category \mathbf{A} is a graded, \mathbb{Q}-linear, symmetric, (strict) monoidal category.
Here the degree of a chord diagram is the number of chords.

Remark

The category \mathbf{A} of chord diagrams in handlebodies, and the category of Jacobi diagrams (i.e., vertex-oriented unitrivalent graphs) in handlebodies are the same.

Coalgebra enrichment of \mathbf{A}

The space $\mathbf{A}(m, n)$ admits a coalgebra structure

$$
\Delta: \mathbf{A}(m, n) \longrightarrow \mathbf{A}(m, n) \otimes \mathbf{A}(m, n), \quad \epsilon: \mathbf{A}(m, n) \longrightarrow \mathbb{Q}
$$

defined by

$$
\Delta(X, D)=\sum_{D^{\prime} \sqcup D^{\prime \prime}=D}\left(X, D^{\prime}\right) \otimes\left(X, D^{\prime \prime}\right), \quad \epsilon(X, D)=\delta_{|D|, 0}
$$

Coalgebra enrichment of \mathbf{A}

The space $\mathbf{A}(m, n)$ admits a coalgebra structure

$$
\Delta: \mathbf{A}(m, n) \longrightarrow \mathbf{A}(m, n) \otimes \mathbf{A}(m, n), \quad \epsilon: \mathbf{A}(m, n) \longrightarrow \mathbb{Q}
$$

defined by

$$
\Delta(X, D)=\sum_{D^{\prime} \sqcup D^{\prime \prime}=D}\left(X, D^{\prime}\right) \otimes\left(X, D^{\prime \prime}\right), \quad \epsilon(X, D)=\delta_{|D|, 0}
$$

Proposition (Massuyeau-H)
The symmetric monoidal category \mathbf{A} is enriched over cocommutative coalgebras;

Coalgebra enrichment of \mathbf{A}

The space $\mathbf{A}(m, n)$ admits a coalgebra structure

$$
\Delta: \mathbf{A}(m, n) \longrightarrow \mathbf{A}(m, n) \otimes \mathbf{A}(m, n), \quad \epsilon: \mathbf{A}(m, n) \longrightarrow \mathbb{Q}
$$

defined by

$$
\Delta(X, D)=\sum_{D^{\prime} \sqcup D^{\prime \prime}=D}\left(X, D^{\prime}\right) \otimes\left(X, D^{\prime \prime}\right), \quad \epsilon(X, D)=\delta_{|D|, 0}
$$

Proposition (Massuyeau-H)

The symmetric monoidal category \mathbf{A} is enriched over cocommutative coalgebras; i.e., the following are coalgebra maps

$$
\begin{gathered}
\circ=o_{m, n, p}: \mathbf{A}(n, p) \otimes \mathbf{A}(m, n) \longrightarrow \mathbf{A}(m, p) \quad(m, n, p \geq 0), \\
\mathbb{Q} \longrightarrow \mathbf{A}(m, m), \quad 1 \longmapsto \mathrm{id}_{m} \quad(m \geq 0), \\
\otimes: \mathbf{A}(m, n) \otimes \mathbf{A}\left(m^{\prime}, n^{\prime}\right) \longrightarrow \mathbf{A}\left(m+m^{\prime}, n+n^{\prime}\right) \quad\left(m, n, m^{\prime}, n^{\prime} \geq 0\right), \\
\mathbb{Q} \longrightarrow \mathbf{A}(m+n, n+m), \quad 1 \longmapsto P_{m, n} \quad(m, n \geq 0) .
\end{gathered}
$$

Coalgebra enrichment of \mathbf{A}

The space $\mathbf{A}(m, n)$ admits a coalgebra structure

$$
\Delta: \mathbf{A}(m, n) \longrightarrow \mathbf{A}(m, n) \otimes \mathbf{A}(m, n), \quad \epsilon: \mathbf{A}(m, n) \longrightarrow \mathbb{Q}
$$

defined by

$$
\Delta(X, D)=\sum_{D^{\prime} \cup D^{\prime \prime}=D}\left(X, D^{\prime}\right) \otimes\left(X, D^{\prime \prime}\right), \quad \epsilon(X, D)=\delta_{|D|, 0}
$$

Proposition (Massuyeau-H)

The symmetric monoidal category A is enriched over cocommutative coalgebras; i.e., ...

Corollary (Massuyeau-H)
The category $\widehat{\mathbf{A}}$ admits a (symmetric monoidal) subcategory $\mathbf{A}^{\text {grp }}$ whose hom spaces $\mathbf{A}^{\text {grp }}(m, n)$ consist of grouplike elements,

Coalgebra enrichment of \mathbf{A}

The space $\mathbf{A}(m, n)$ admits a coalgebra structure

$$
\Delta: \mathbf{A}(m, n) \longrightarrow \mathbf{A}(m, n) \otimes \mathbf{A}(m, n), \quad \epsilon: \mathbf{A}(m, n) \longrightarrow \mathbb{Q}
$$

defined by

$$
\Delta(X, D)=\sum_{D^{\prime} \cup D^{\prime \prime}=D}\left(X, D^{\prime}\right) \otimes\left(X, D^{\prime \prime}\right), \quad \epsilon(X, D)=\delta_{|D|, 0}
$$

Proposition (Massuyeau-H)

The symmetric monoidal category A is enriched over cocommutative coalgebras; i.e., ...

Corollary (Massuyeau-H)

The category $\widehat{\mathbf{A}}$ admits a (symmetric monoidal) subcategory $\mathbf{A}^{\text {grp }}$ whose hom spaces $\mathbf{A}^{\text {grp }}(m, n)$ consist of grouplike elements, in which $Z: \mathcal{B} \longrightarrow \widehat{\mathbf{A}}$ takes values.

Hopf algebra in \mathbf{A}

Define morphisms in \mathbf{A} by

Hopf algebra in \mathbf{A}

Define morphisms in A by

Proposition (Massuyeau-H)
($1, \mu, \eta, \Delta, \epsilon, S$) form a cocommutative Hopf algebra in the symmetric monoidal category \mathbf{A}.

Casimir 2-tensor

Definition

A Casimir 2-tensor for a cocommutative Hopf algebra H in a linear symmetric monoidal category \mathcal{C} is a morphism $c: I \rightarrow H^{\otimes 2}$ s.t.

$$
\begin{aligned}
P_{H, H C}=c & \text { (symmetric) } \\
\left(\Delta \otimes \mathrm{id}_{H}\right) c=c_{13}+c_{23} & \text { (left primitive) } \\
\left(\mathrm{ad} \otimes \mathrm{ad}^{2}\left(\mathrm{id}_{H} \otimes P_{H, H} \otimes \mathrm{id}_{H}\right)(\Delta \otimes c)=c \epsilon\right. & \text { (ad-invariant). }
\end{aligned}
$$

Casimir 2-tensor

Definition

A Casimir 2-tensor for a cocommutative Hopf algebra H in a linear symmetric monoidal category \mathcal{C} is a morphism $c: I \rightarrow H^{\otimes 2}$ s.t.

$$
\begin{aligned}
P_{H, H} C=c & \text { (symmetric) } \\
\left(\Delta \otimes \mathrm{id}_{H}\right) c=c_{13}+c_{23} & \text { (left primitive) } \\
\left(\mathrm{ad} \otimes \mathrm{ad}^{\left(\Delta \mathrm{id}_{H} \otimes P_{H, H} \otimes \mathrm{id}_{H}\right)(\Delta \otimes c)=c \epsilon}\right. & \text { (ad-invariant). }
\end{aligned}
$$

By a Casimir Hopf algebra in \mathcal{C}, we mean a cocommutative Hopf algebra in \mathcal{C} equipped with a Casimir 2-tensor.

Casimir 2-tensor

Definition

A Casimir 2-tensor for a cocommutative Hopf algebra H in a linear symmetric monoidal category \mathcal{C} is a morphism $c: I \rightarrow H^{\otimes 2}$ s.t.

$$
\begin{aligned}
P_{H, H} C=c & \text { (symmetric) } \\
\left(\Delta \otimes \mathrm{id}_{H}\right) c=c_{13}+c_{23} & \text { (left primitive) } \\
\left(\mathrm{ad} \otimes \mathrm{ad}^{\prime}\right)\left(\mathrm{id}_{H} \otimes P_{H, H} \otimes \mathrm{id}_{H}\right)(\Delta \otimes c)=c \epsilon & \text { (ad-invariant). }
\end{aligned}
$$

By a Casimir Hopf algebra in \mathcal{C}, we mean a cocommutative Hopf algebra in \mathcal{C} equipped with a Casimir 2-tensor.

Fact
$c=\square: 0 \rightarrow 2$ is a Casimir 2-tensor in \mathbf{A}.

Casimir 2-tensor

Definition

A Casimir 2-tensor for a cocommutative Hopf algebra H in a linear symmetric monoidal category \mathcal{C} is a morphism $c: I \rightarrow H^{\otimes 2}$ s.t.

$$
\begin{aligned}
P_{H, H} C=c & \text { (symmetric) } \\
\left(\Delta \otimes \mathrm{id}_{H}\right) c=c_{13}+c_{23} & \text { (left primitive) } \\
\left(\mathrm{ad} \otimes \mathrm{ad}^{\prime}\right)\left(\mathrm{id}_{H} \otimes P_{H, H} \otimes \mathrm{id}_{H}\right)(\Delta \otimes c)=c \epsilon & \text { (ad-invariant) }
\end{aligned}
$$

By a Casimir Hopf algebra in \mathcal{C}, we mean a cocommutative Hopf algebra in \mathcal{C} equipped with a Casimir 2-tensor.

Fact
$c=\square: 0 \rightarrow 2$ is a Casimir 2-tensor in \mathbf{A}.
Theorem (Massuyeau-H)
As a \mathbb{Q}-linear symmetric strict monoidal category, A is freely generated by a Casimir Hopf algebra.

Convolution algebra structure of $\mathbf{A}(m, n)$

$\mathbf{A}(m, n)$ is an algebra with multiplication given by convolution

$$
*: \mathbf{A}(m, n) \otimes \mathbf{A}(m, n) \longrightarrow \mathbf{A}(m, n)
$$

with unit $\eta^{\otimes n} \epsilon^{\otimes m}$.

Convolution algebra structure of $\mathbf{A}(m, n)$

$\mathbf{A}(m, n)$ is an algebra with multiplication given by convolution

$$
*: \mathbf{A}(m, n) \otimes \mathbf{A}(m, n) \longrightarrow \mathbf{A}(m, n)
$$

with unit $\eta^{\otimes n} \epsilon^{\otimes m}$.
Convolution makes $\mathbf{A}(m, n)$ a graded algebra.

Convolution algebra structure of $\mathbf{A}(m, n)$

$\mathbf{A}(m, n)$ is an algebra with multiplication given by convolution

$$
*: \mathbf{A}(m, n) \otimes \mathbf{A}(m, n) \longrightarrow \mathbf{A}(m, n)
$$

with unit $\eta^{\otimes n} \epsilon^{\otimes m}$.
Convolution makes $\mathbf{A}(m, n)$ a graded algebra.
The degree 0 part $\mathbf{A}_{0}(m, n)$ satisfies

$$
\mathbf{A}_{0}(m, n)\left(\simeq \mathbb{Q} \operatorname{Hom}\left(F_{n}, F_{m}\right)\right) \simeq \mathbb{Q}\left[F_{m}^{n}\right] .
$$

Convolution algebra structure of $\mathbf{A}(m, n)$

$\mathbf{A}(m, n)$ is an algebra with multiplication given by convolution

$$
*: \mathbf{A}(m, n) \otimes \mathbf{A}(m, n) \longrightarrow \mathbf{A}(m, n)
$$

with unit $\eta^{\otimes n} \epsilon^{\otimes m}$.
Convolution makes $\mathbf{A}(m, n)$ a graded algebra.
The degree 0 part $\mathbf{A}_{0}(m, n)$ satisfies

$$
\mathbf{A}_{0}(m, n)\left(\simeq \mathbb{Q} \operatorname{Hom}\left(F_{n}, F_{m}\right)\right) \simeq \mathbb{Q}\left[F_{m}^{n}\right] .
$$

Let $\mathbf{A}(m, n)_{\text {triv }} \subset \mathbf{A}(m, n)$ be spanned by chord diagrams (X, D) with X "trivial".
Then we have a linear isomorphism

$$
\mathbf{A}(m, n)_{\text {triv }} \otimes \mathbf{A}_{0}(m, n) \xrightarrow[\simeq]{*} \mathbf{A}(m, n) .
$$

Convolution algebra structure of $\mathbf{A}(m, n)$

$\mathbf{A}(m, n)$ is an bialgebra with multiplication given by convolution

$$
*: \mathbf{A}(m, n) \otimes \mathbf{A}(m, n) \longrightarrow \mathbf{A}(m, n)
$$

with unit $\eta^{\otimes n} \epsilon^{\otimes m}$.
Convolution makes $\mathbf{A}(m, n)$ a graded cocommutative bialgebra. The degree 0 part $\mathbf{A}_{0}(m, n)$ satisfies

$$
\mathbf{A}_{0}(m, n)\left(\simeq \mathbb{Q} \operatorname{Hom}\left(F_{n}, F_{m}\right)\right) \simeq \mathbb{Q}\left[F_{m}^{n}\right] .
$$

Let $\mathbf{A}(m, n)_{\text {triv }} \subset \mathbf{A}(m, n)$ be spanned by chord diagrams (X, D) with X "trivial".
Then we have a coalgebra isomorphism

$$
\mathbf{A}(m, n)_{\text {triv }} \otimes \mathbf{A}_{0}(m, n) \xrightarrow[\simeq]{\sim} \mathbf{A}(m, n) .
$$

Ribbon quasi-Hopf algebra

A quasi-Hopf algebra is a generalization of a Hopf algebra, where coassociativity

$$
\left(\Delta \otimes \mathrm{id}_{H}\right) \Delta=\left(\mathrm{id}_{H} \otimes \Delta\right) \Delta
$$

does not hold, but holds up to a specified 3-tensor $\Phi \in H^{\otimes 3}$:

$$
\Phi \cdot\left(\Delta \otimes \mathrm{id}_{H}\right) \Delta(x) \cdot \Phi^{-1}=\left(\mathrm{id}_{H} \otimes \Delta\right) \Delta(x) .
$$

There are notions of quasi-triangular quasi-Hopf algebras and ribbon quasi-Hopf algebras.
These notions are translated into symmetric monoidal categories.

A ribbon quasi-Hopf algebra in $\widehat{\mathbf{A}}$

Theorem (Massuyeau-H)
For each Drinfeld associator $\varphi=\varphi(X, Y) \in \mathbb{Q}\langle\langle X, Y\rangle\rangle$, there is a ribbon quasi-Hopf algebra structure in $\widehat{\mathbf{A}}$ such that the morphisms $\mu, \eta, \Delta, \epsilon, S$ are as before, and

$$
\begin{aligned}
\Phi & =\varphi_{*}\left(c_{12}, c_{23}\right): 0 \longrightarrow 3 \\
R & =\exp _{*}(c / 2): 0 \longrightarrow 2 \\
\mathbf{r} & =\exp _{*}(\mu c / 2): 0 \longrightarrow 1
\end{aligned}
$$

where $*$ denotes convolution.

Remark

Let \mathfrak{g} be a Lie algebra and let $t \in \mathfrak{g} \otimes \mathfrak{g}$ be an ad-invariant symmetric tensor. Then, by Drinfeld's work, there is a ribbon quasi-Hopf algebra structure on $U(\mathfrak{g})[[\hbar]]$. The above theorem may be regarded as a diagrammatic version of this fact.

