Some transcendance problems in arithmetic and ananlytic functions.

J. Noguchi

International Workshop on Several Complex Variables, Complex Geometry and Diophantine Geometry 14—18 August 2023 Institute of Mathematics, Academia Sinica, Taipei

• Explore more applications and related subjects of the Nevanlinna theory.

1. Problems and some background

In Lang's Monog. (Transcendental numbers) 1966:

Schanuel Conj. Let $\alpha_1, \ldots, \alpha_n \in \mathbf{C}$ be linearly indep. over \mathbf{Q} . Then

 $\mathrm{tr.} \deg_{\mathbf{Q}} \{ \alpha_1, \ldots, \alpha_n, \mathsf{e}^{\alpha_1}, \ldots, \mathsf{e}^{\alpha_n} \} \geq \mathsf{n}.$

Lang's Conj.: Let $f : \mathbf{C} \to A$ be an entire curve (non-constant; originally, 1-parameter subgroup) into an abelian variety A with Zariski dense image.

Let D be a hyperplane cut of A.

- (i) Then, $f(\mathbf{C}) \cap D \neq \emptyset$?
- (ii) $\#f(\mathbf{C}) \cap D = \infty$?

We discuss these problems for semi-abelian varieties from the viewpoint of Nevanlinna theory:

E. Borel. An entire curve $f : \mathbf{C} \to \mathbf{P}^n(\mathbf{C})$ omitting n+2 hyperplanes in general position. Then, f is linearly degenerate.

Bloch-Ochiai. Let $f : \mathbf{C} \to A$ be an entire curve into an abelian variety.

Then the Zariski closure $\overline{f(\mathbf{C})}^{\text{Zar}}$ is a translate of an algebraic subgroup.

A unified form (Borel+Bloch-Ochiai+N. 1977-'81):

Log Bloch-Ochiai. Let $f : \mathbb{C} \to A$ be an entire curve into a semi-abelian variety.

Then the Zariski closure $\overline{f(\mathbf{C})}^{\text{Zar}}$ is a translate of an algebraic subgroup.

Remarks. Lang's Conjecture (i) was proved by Siu-Yeung (abelian case, '96), N. (semiabelian case, '98),, but (ii) was unanswered for long time, and proved by by Corvaja-N. in generalized form for semi-abelian varieties in 2011.

Big Picard type: For $f : \Delta^*(R) \to A$ (semi-abelian) with essential singularity at 0, we have similar results (N. '81, ...), but *not always*.

Big Picard type: Let V, W be algebraic varieties (/C).

(1) $f: V \to W \Longrightarrow$ Extendable over \overline{V} .

(2) $f: V \to W$, transcendental (e.g., universal covering) \implies "algebraic — algebraic".

2. Ax-Schanuel

Schanuel Conjecture:

- (i) n = 1: Gel'fond-Schneider (1934; Hilbert's 7th Problem).
- (ii) n > 1: Open. Even in n = 2: With $(\alpha_1, \alpha_2) = (1, \pi i)$ it implies the Folklore: alg. indep. of e and π .
- (iii) e, e^{π} are alg. indep. (Nesterenko, '96). The elliptic modular function $j(\tau)$ was used.

Formal Functional Analogue: J. Ax ('71, '72) proved the analogue:

Thm. 2.1 (Ax-Schanuel). Let $f(t) = (f_j(t)) \in (\mathbf{C}[[t]])^n$. If $f_j(t) - f_j(0)$, $1 \le j \le n$, are linearly independent over Q, then

$$\mathrm{tr.\,deg}_{\mathbf{C}}\{f_1(t),\ldots,f_n(t),e^{f_1(t)},\ldots,e^{f_n(t)}\}\geq n+1.$$

More generally, he proved it for semi-ableian varieties, and dealt with t of several variables. Ax's proof : By means of Kolchin's theory of differential algebra.

 ${\bf Our}~{\bf Aim}$: 1) Prove Ax-Schanule for entire $f_j(z)$ and a semi-abelian variety A by means of Nevanlina theory,

2) Study and prove a 2nd Main Theorem for the "extended exponential map"

 $\widehat{\exp}_A f: z \in \mathbf{C} \to (\exp_A f(z), f(z)) \in A \times \operatorname{Lie}(A).$

N.B. There is no "value" in formal analytic functions, but there is for analytic functions: We may think of more problems.

We mainly follow the developments of the theory for entire curves into A since <u>Lang's</u> Questions '66, and Log Bloch-Ochiai's Theorem.

Arithmetic Thry.–O-minimal Thry.–Nevnalinna Thry.:

- (i) Raynaud's Theorem (1983, Manin-Mumford Conj.): X ⊂ A subvariety (/K). ⇒ X_{tor} = U_{finite}(a + B_{tor}), where a ∈ X_{tor} and alg. subgrp's. B. Proof: By method of <u>char. p > 0</u>.
- (ii) Later, many proofs by Coleman, Hindary, Hrushovski, I was personally motivated by Pila-Zannier (2008) with O-minimal method.
- (iii) Yet another proof by <u>Nevanliina thry. (Log Bloch-Ochiai of Big Picard type) + 'O-</u>minimal' (N., Atti Accad. Naz. Rend. Lincei Mat. Appl. **29** (2018)).

- (iv) For <u>Ax-Schanuel by "O-minimal</u>", other proofs due Tsimerman 2015, Peterzil-Starchenko 2018,
- (v) Yet Another Proof of Analy. Ax-Schanuel by Nevanlinna thry. : Today, 1st topic.

More on the Value Distribution: Today, 2nd topic:

N—, Analytic Ax-Schanuel for semi-abelian varieties and Nevanlinna theory, DOI:10.2969/jmsj/89588958, J. Math. Soc. Jpn., 2023.

······ Yet without "O-minimal".

(vi) **Expectation**: Analy. Ax-Schanuel + O-minimal + Arithmetic \implies ??

Application of Ax-Shanuel:(e.g.) W.D. Brownawell and K.K. Kubota, The algebraic independence of Weierstrass functions and some related numbers, Acta Arith. **33** (1977), 111–149.

This is covered by the present result of analy. case.

3. Main Results

Jet Spaces. Let A be a semi-abelian variey of dim n:

 $0 \to ({\mathbf C}^*)^t \to A \to A_0 \to 0 \quad ({\rm with} \ A_0 \ {\rm abelian} \ {\rm var.}),$

 $\exp=\exp_A:\operatorname{Lie}(A)\to A$ be an exponential map;

 $f: \mathbf{C} \to \operatorname{Lie}(A) \cong \mathbf{C}^n$ be an entire curve.

Set

$$\widehat{\exp} f: z \in \mathbf{C} \to (\exp f(z), f(z)) \in \mathsf{A} \times \operatorname{Lie}(\mathsf{A}).$$

Take its k-jet lift:

 $J_k(\widehat{\exp} f): z \in \mathbf{C} \to (J_k(\exp f(z)), J_k(f(z))) \in J_k(A \times \operatorname{Lie}(A)) \cong J_k(A) \times J_k(\operatorname{Lie}(A)).$

Speciality:

$$\begin{split} J_k(A) &\cong A \times J_{k,A}, & J_k(\operatorname{Lie}(A)) \cong \operatorname{Lie}(A) \times J_{k,\operatorname{Lie}(A)} \\ J_k(A \times \operatorname{Lie}(A)) &= A \times J_{k,A} \times \operatorname{Lie}(A) \times J_{k,\operatorname{Lie}(A)}, & J_{k,A} = J_{k,\operatorname{Lie}(A)}, \\ J_k(\widehat{\exp} f)(z) &= (\exp f(z), J_{k,\exp f}(z), f(z), J_{k,f}(z)), & J_{k,\exp f}(z) = J_{k,f}(z) \ (k \geq 1). \end{split}$$

We consider:

$$(3.1) \qquad \qquad J_k(\widehat{\exp}\,f)(z)\in A\times \operatorname{Lie}(A)\times J_{k,A}\hookrightarrow J_k(A\times \operatorname{Lie}(A)).$$

$$\begin{split} \widehat{J}_{k,A} &= \operatorname{Lie}(A) \times J_{k,A} \cong \mathbf{C}^n \times \mathbf{C}^{nk} \text{ is called the extended jet part.} \\ X_k(\widehat{\exp} f) &= \overline{J_k(\widehat{\exp} f)(\mathbf{C})}^{\operatorname{Zar}} \text{ is the Zariski closure of the image:} \end{split}$$

$$\mathrm{tr.} \deg_{\mathbf{C}} \widehat{\exp} \, f := \dim_{\mathbf{C}} X_0(\widehat{\exp} \, f) = \dim_{\mathbf{C}} \overline{\widehat{\exp} \, f(\mathbf{C})}^{\mathrm{Zar}}.$$

$$\mathbf{N.B.} \ A = (\mathbf{C}^*)^t: \ f = (f_j) \ \mathrm{is} \ (\mathbf{C}^*)^n \mathrm{-degenerate} \Longleftrightarrow f_j, 1 \leq j \leq n, \ \mathrm{are} \ \mathrm{lin}. \ \mathrm{dep}./\mathbf{Q}.$$

Thm. 3.1 (Analy. Ax-Schanuel). If an entire curve $f : \mathbf{C} \to \operatorname{Lie}(A)$ is A-nondeg., then $\operatorname{tr.deg}_{\mathbf{C}} \widehat{\exp} f \ge n + 1$.

Order Functions.

 $f = (f_1, \dots, f_n) : z \in \mathbf{C} \to f(z) \in \mathbf{C}^n \cong \operatorname{Lie}(A), \text{ an entire curve.}$

Nevanlinna-Shimizu-Ahlfors order function:

$$\mathsf{T}(\mathsf{r},\mathsf{f}_j) = \mathsf{T}_{\mathsf{f}_j}(\mathsf{r},\omega_{\mathrm{FS}}) = \int_1^\mathsf{r} \frac{\mathsf{d} \mathsf{t}}{\mathsf{t}} \int_{\Delta(\mathsf{t})} \mathsf{f}^* \omega_{\mathrm{FS}}.$$

Roughly, $\underline{T(r, f_j)} \sim \log \max_{|z|=r} |f_j(z)|$.

$$\begin{split} T_f(r) &:= \max_{1 \leq j \leq n} T(r, f_j). \\ T_{\exp f}(r) &= T_{\exp f}(r, \omega_L) \text{ with the curvature form } \omega_L \text{ of a big l.b. } L \to \bar{A}. \\ T_{\widehat{\exp} f}(r) &:= T_{\exp f}(r) + T_f(r) \text{ for } \widehat{\exp} f : \mathbf{C} \to A \times \operatorname{Lie}(A). \\ S(r) &= O\left(\log^+ T_{\exp f}(r)\right) + O(\log r) + O(1) || = o(T_{\exp f}(r)) || \text{ (with except'l intervals of total finite length).} \end{split}$$

Proof. Use the complex Poisson integral + Borel's technic.

Proof of Analytic Ax-Schanuel Thm.3.1.

The A-nondegeneracy and the Log Bloch–Ochiai imply $\overline{\exp f(\mathbf{C})}^{\text{Zar}} = A$:

 $(3.4) tr. \deg_{\mathbf{C}} \exp \mathsf{f} = \mathsf{n}.$

Lem. 3.5. tr. deg_{C(f)} $C(f, (\exp f)^*C(A)) \ge 1$.

Pf. If "= 0", $(\exp f)^* C(A)$ is alg. over (f_j) , so that $T_{\exp f}(r) = O(T_f(r)) = o(T_{\exp f}(r))$ by Key Lem. 3.3; Contradiction!

 $(3.4) \Rightarrow \operatorname{tr.deg}_{\mathbf{C}} \widehat{\exp} f \ge n$. Suppose $\operatorname{tr.deg}_{\mathbf{C}} \widehat{\exp} f = n \Rightarrow \underline{f_j} \text{ are alg. } /(\exp f)^* \mathbf{C}(A)$. $\Longrightarrow \exists \text{ non-trivial alg. relations}$

$$(3.6) \qquad \qquad \mathsf{P}_{j}(\mathsf{f}_{j},\hat{\phi})=\mathsf{P}_{j}(\mathsf{f}_{j},\hat{\phi}_{1},\ldots,\hat{\phi}_{n})=0, \quad 1\leq j\leq n,$$

where $\{\phi_j\}_{j=1}^n$ is a transcendental basis of $\mathbf{C}(\mathbf{A})$, and $\hat{\phi}_j := \phi_j \circ \exp \mathbf{f}$. Lem. 3.5 \Rightarrow tr. deg_C $\{\mathbf{f}_j\}_{j=1}^n < \mathbf{n}$: That is, \exists a non-trivial alg. relation (3.7) $\mathbf{Q}(\mathbf{f}_1, \dots, \mathbf{f}_n) = \mathbf{0}$.

Eliminate f_j $(1 \le j \le n)$ in (3.6) and (3.7). \Rightarrow Alg. rel. in $\hat{\phi}_j$'s \Rightarrow f is A-degnerate: Contradiction!

Example. (Brownawell-Kubota) A product of elliptic curves, $A := \prod^{n} E_{j}$ and <u>alg. indep.</u> $f = (f_{j}) : \mathbf{C} \to \text{Lie}(A)$:

$$\mathrm{tr.deg}_{\mathbf{C}}\{f_1,\ldots,f_n,\wp_1(f_1),\ldots,\wp_m(f_n)\}\geq n+1.$$

Here one may claim the same for more generally <u>A-nondegenerate</u> $f = (f_j)$: e.g., with $f_1(z) = z, f_2(z) = z$ and <u>non-isogenious</u> E_j (j = 1, 2),

 $\mathrm{tr.} \deg_{\mathbf{C}} \{ z, \wp_1(z), \wp_2(z) \} = 3.$

 $\overline{\operatorname{Lie}(E_1)\times\operatorname{Lie}(E_2)}\times A=\mathbf{P}^2(\mathbf{C})\times E_1\times E_2,$

$$\mathsf{T}_{\widehat{\exp} \mathsf{f}}(\mathsf{r}) = \frac{\pi \mathsf{r}^2}{2} \left(\frac{1}{\lambda_1} + \frac{1}{\lambda_2} + \mathsf{o}(1) \right),$$

where λ_j are the areas of the fundamental parallelograms of \wp_j (j = 1, 2). Let $\mathsf{P}(\mathsf{z}_1, \mathsf{z}_2, \mathsf{w}_1, \mathsf{w}_2)$ be a polynomials of degrees $\mathsf{d}_1, \mathsf{d}_2$ in $\mathsf{w}_1, \mathsf{w}_2$ respectively, and $\Xi_{\mathsf{P}} = \{\mathsf{P}(\mathsf{z}, \mathsf{z}, \wp_1(\mathsf{z}), \wp_2(\mathsf{z})) = 0\}$. Then

$$\mathbf{N}_{\infty}(\mathbf{r}, \Xi_{\mathsf{P}}) = \int_{1}^{r} \frac{\#(\Xi_{P} \cap \Delta(t))}{t} dt = N_{1}(r, \Xi_{P}) + o(r^{2})$$
$$= \pi r^{2} \left(\frac{d_{1}}{\lambda_{1}} + \frac{d_{2}}{\lambda_{2}} + o(1)\right).$$

4. Nevanlinna thry. for $\widehat{\exp} f$

Thm. 4.1 (2nd Main Thm.). Let $f : \mathbb{C} \to \text{Lie}(A)$ be A-nondegenerate.

(i) For a reduced alg. subset $Z \subset X_k(\widehat{\exp} f) \ (\subset A \times \widehat{J}_{k,A}) \ (k \geqq 0), \ \exists \, \bar{A} \times \overline{\hat{J}}_{k,A}, \ a \ proj.$ compactification with closures $\bar{X}_k(\widehat{\exp} f)$ and \bar{Z} such that

(4.1)
$$\mathsf{T}_{\mathsf{J}_{\mathsf{k}}(\widehat{\exp} \mathsf{f})}(\mathsf{r}, \omega_{\bar{\mathsf{Z}}}) = \mathsf{N}_{1}(\mathsf{r}, \mathsf{J}_{\mathsf{k}}(\widehat{\exp} \mathsf{f})^{*}\mathsf{Z}) + \mathsf{S}_{\varepsilon}(\mathsf{r}),$$

where $S_{\varepsilon}(\mathbf{r}) \leq \varepsilon T_{\exp f}(\mathbf{r}) \mid|_{\varepsilon} (\forall \varepsilon > 0)$, and $\omega_{\bar{z}}$ is a sort of curvature form associated with \bar{Z} .

(ii) If $\operatorname{codim}_{X_k(\widehat{\exp} f)} Z \geq 2$, then

(4.2)
$$\mathsf{T}_{\widehat{\exp} \mathsf{f}}(\mathsf{r}, \omega_{\overline{\mathsf{Z}}}) = \mathsf{S}_{\varepsilon}(\mathsf{r}).$$

(iii) (k = 0) If D is a reduced divisor on A × Lie(A) and $D \not\supseteq X_0(\widehat{\exp} f)$, then

$$\begin{array}{l} (4.3) \qquad \qquad \mathsf{T}_{\widehat{\exp} \mathsf{f}}(\mathsf{r},\omega_{\bar{\mathsf{D}}}) = \mathsf{N}_1(\mathsf{r},(\widehat{\exp} \mathsf{f})^*\mathsf{D}) + \mathsf{S}_\varepsilon(\mathsf{r}). \\ \\ \text{where } \bar{\mathsf{D}} \subset \bar{\mathsf{A}} \times \overline{\mathrm{Lie}(\mathsf{A})}. \end{array}$$

Pf. $\exists \ell \in \mathbf{N}$ such that

$$\mathsf{T}_{\mathsf{J}_{\mathsf{k}}(\widehat{\exp} \mathsf{f})}(\mathsf{r},\omega_{\bar{\mathsf{Z}}}) = \mathsf{N}_{\ell}(\mathsf{r},\mathsf{J}_{\mathsf{k}}(\widehat{\exp} \mathsf{f})^*\mathsf{Z}) + \mathsf{S}(\mathsf{r}).$$

Here, using this and codim $Z \ge 2$, we prove (ii).

Using (ii), we deduce

$$\mathsf{N}_\ell(\mathsf{r},\mathsf{J}_\mathsf{k}(\widehat{\exp}\,\mathsf{f})^*\mathsf{Z})-\mathsf{N}_1(\mathsf{r},\mathsf{J}_\mathsf{k}(\widehat{\exp}\,\mathsf{f})^*\mathsf{Z})=\mathsf{S}_\varepsilon(\mathsf{r}),$$

 \implies (i).

As an aplication we have:

Thm. 4.2. Let $\widehat{\exp} f : \mathbb{C} \to A \times \operatorname{Lie}(A)$ and $\overline{D} \subset \overline{A} \times \overline{\operatorname{Lie}(A)}$ be as in (iii) above. Assume that some positive multiple $\nu \overline{D}$ contains a <u>big divisor</u> coming from \overline{A} . Then \exists irred. comp. $D' \subset D \cap X_0(\widehat{\exp} f)$ such that $\widehat{\exp} f(\mathbb{C}) \cap D'$ is Zariski dense in D'; in

particular, $|\widehat{\exp} f(\mathbf{C}) \cap \mathsf{D}| = \infty$.

This follows from the estimates in 2nd Main Thm. with $N_1(r, *)$ (essential).

Remark. For exp $f : \mathbb{C} \to A$, by Corvaja-N. ('12), answering a <u>question in Lang's Monog.</u> '<u>66</u>.

The proof of the 2nd Main Thm. 4.1 is rather long but we carry out the proof along the way as for $\exp f: \mathbb{C} \to A$ (N.-Winkelmann-Yamanoi) by making use of Key Lem 3.3.

The next theorem says that the distribution $(\widehat{\exp} f)^*D$ on C contains an ample information of \widehat{A} , D and f; we have the following <u>unicity theorem of H. Cartan–P. Erdös–K. Yamanoi</u> type (cf. Yamanoi Forum Math. 2004, Corvaja-N. Math. Ann. 2012)

Thm. 4.3 (Unicity). Let A_j (j = 1, 2) be two semi-abelian varieties and let D_j (j = 1, 2) be effective reduced A_j -big divisors on \widehat{A}_j with

 $\widehat{\mathrm{St}}(\mathsf{D}_j):=\{x\in \widehat{\mathsf{A}}_j: x+\mathsf{D}_j=\mathsf{D}_j\}=\{0\}.$

Let $f_j: \mathbf{C} \to \operatorname{Lie}(\mathsf{A}_j)$ be Aj-nondegenerate. Assume that

 $\operatorname{Supp}{(\widehat{\exp}_{A_1}f_1)^*D_1} = \operatorname{Supp}{(\widehat{\exp}_{A_2}f_2)^*D_2}.$

Then $\exists \alpha : A_1 \xrightarrow{\cong} A_2$ with $\hat{\alpha} : \widehat{A}_1 \to \widehat{A}_2$, such that

- $\hat{\alpha}^* \mathsf{D}_2 = \mathsf{D}_1$,
- $\widehat{\exp}_{A_2} f_2 = \hat{\alpha} \circ \widehat{\exp}_{A_1} f_1$, up to translations of \widehat{A}_j .

Remarks to some extensions:

- (i) $\mathbf{C} \Rightarrow \Delta(\mathbf{r})^*$ (isolated essential singularity, Big Picard type).
- (ii) $\mathbf{C} \Rightarrow$ affine alg. curve.

(iii) $\mathbf{C} \Rightarrow$ (parabolic) Riemann surface with involving a counting function of Euler numbers.

(iv) Hyperbolic case?

Hyperbolic Bloch–Ochiai by "O-minimal", Pila, Ulmo, Mok, ...: How related?

In Thm 4.2 we have $|\widehat{\exp} f(\mathbf{C}) \cap \mathsf{D}| = \infty$.

Question: What is the cluster set of $\widehat{\exp} f(\mathbf{C}) \cap D$, the set of accumulation points of $\widehat{\exp} f(\mathbf{C}) \cap D$?

This question makes sense for $\exp f(\mathbf{C}) \cap \mathsf{D}$ with $\mathsf{D} \subset \mathsf{A}$, too.

Also recall:

Analy. Ax-Schanuel + O-minimal + Arithmetic \implies ??

Thank you for your attention!!

Aug. 2023 at Acad. Sinica, Taipei