Some transcendance problems in arithmetic and ananlytic functions.

J. Noguchi
International Workshop on Several Complex Variables, Complex Geometry
and Diophantine Geometry
14-18 August 2023
Institute of Mathematics, Academia Sinica, Taipei

- Explore more applications and related subjects of the Nevanlinna theory.

1. Problems and some background

In Lang's Monog. (Transcendental numbers) 1966:
Schanuel Conj. Let $\alpha_{1}, \ldots, \alpha_{\mathrm{n}} \in \mathbf{C}$ be linearly indep. over \mathbf{Q}. Then

$$
\operatorname{tr} \cdot \operatorname{deg}_{\mathbf{Q}}\left\{\alpha_{1}, \ldots, \alpha_{\mathrm{n}}, \mathrm{e}^{\alpha_{1}}, \ldots, \mathrm{e}^{\alpha_{\mathrm{n}}}\right\} \geq \mathrm{n} .
$$

Lang's Conj.: Let $f: \mathbf{C} \rightarrow A$ be an entire curve (non-constant; originally, 1-parameter subgroup) into an abelian variety A with Zariski dense image.
Let D be a hyperplane cut of A.
(i) Then, $f(\mathbf{C}) \cap D \neq \emptyset$?
(ii) $\# f(\mathbf{C}) \cap D=\infty$?

We discuss these problems for semi-abelian varieties from the viewpoint of Nevanlinna theory:
E. Borel. An entire curve $f: \mathbf{C} \rightarrow \mathbf{P}^{n}(\mathbf{C})$ omitting $n+2$ hyperplanes in general position.

Then, f is linearly degenerate.
Bloch-Ochiai. Let $f: \mathbf{C} \rightarrow A$ be an entire curve into an abelian variety.
Then the Zariski closure $\overline{f(\mathbf{C})}{ }^{\text {Zar }}$ is a translate of an algebraic subgroup.
A unified form (Borel+Bloch-Ochiai+N. 1977-'81):
Log Bloch-Ochiai. Let $f: \mathbf{C} \rightarrow A$ be an entire curve into a semi-abelian variety.

Then the Zariski closure $\overline{f(\mathbf{C})}^{\mathrm{Zar}}$ is a translate of an algebraic subgroup.
Remarks. Lang's Conjecture (i) was proved by Siu-Yeung (abelian case, '96), N. (semiabelian case, '98),, but (ii) was unanswered for long time, and proved by by Corvaja-N. in generalized form for semi-abelian varieties in 2011.

Big Picard type: For $f: \Delta^{*}(R) \rightarrow A$ (semi-abelian) with essential singularity at 0 , we have similar results (N. '81, ...), but not always.

Big Picard type: Let V, W be algebraic varieties (/C).
(1) $f: V \rightarrow W \Longrightarrow$ Extendable over \bar{V}.
(2) $f: V \rightarrow W$, transcendental (e.g., universal covering) \Longrightarrow "algebraic - algebraic".

2. Ax-Schanuel

Schanuel Conjecture:

(i) $n=1$: Gel'fond-Schneider (1934; Hilbert's 7th Problem).
(ii) $\mathrm{n}>1$: Open. Even in $\mathrm{n}=2$: With $\left(\alpha_{1}, \alpha_{2}\right)=(1, \pi \mathrm{i})$ it implies the Folklore: alg. indep. of e and π.
(iii) $\mathrm{e}, \mathrm{e}^{\pi}$ are alg. indep. (Nesterenko, '96). The elliptic modular function $\mathrm{j}(\tau)$ was used.

Formal Functional Analogue: J. Ax ('71, '72) proved the analogue:
Thm. 2.1 (Ax-Schanuel). Let $f(t)=\left(f_{j}(t)\right) \in(C[[t]])^{n}$. If $f_{j}(t)-f_{j}(0), 1 \leq j \leq n$, are linearly independent over \mathbf{Q}, then

$$
\text { tr. } \operatorname{deg}_{C}\left\{f_{1}(t), \ldots, f_{n}(t), e^{f_{1}(t)}, \ldots, e^{f_{n}(t)}\right\} \geq n+1
$$

More generally, he proved it for semi-ableian varieties, and dealt with t of several variables.
Ax's proof: By means of Kolchin's theory of differential algebra.
Our Aim : 1) Prove $A x-$ Schanule for entire $f_{j}(z)$ and a semi-abelian variety A by means of Nevanlina theory,
2) Study and prove a 2nd Main Theorem for the "extended exponential map"

$$
\widehat{\exp }_{\mathrm{A}} \mathrm{f}: \mathrm{z} \in \mathrm{C} \rightarrow\left(\exp _{\mathrm{A}} \mathrm{f}(\mathrm{z}), \mathrm{f}(\mathrm{z})\right) \in \mathrm{A} \times \operatorname{Lie}(\mathrm{A}) .
$$

N.B. There is no "value" in formal analytic functions, but there is for analytic functions: We may think of more problems.

We mainly follow the developments of the theory for entire curves into A since Lang's Questions '66, and Log Bloch-Ochiai's Theorem.

Arithmetic Thry.-O-minimal Thry.-Nevnalinna Thry.:
(i) Raynaud's Theorem (1983, Manin-Mumford Conj.):
$X \subset A$ subvariety $(/ K) . \Rightarrow X_{\text {tor }}=\bigcup_{\text {finite }}\left(\mathrm{a}+\mathrm{B}_{\text {tor }}\right)$,
where $\mathrm{a} \in \mathrm{X}_{\text {tor }}$ and alg. subgrp's. B .
Proof: By method of char. $\mathrm{p}>0$.
(ii) Later, many proofs by Coleman, Hindary, Hrushovski, I was personally motivated by Pila-Zannier (2008) with O-minimal method.
(iii) Yet another proof by Nevanliina thry. (Log Bloch-Ochiai of Big Picard type) + 'Ominimal' (N., Atti Accad. Naz. Rend. Lincei Mat. Appl. 29 (2018)).
(iv) For Ax-Schanuel by "O-minimal", other proofs due Tsimerman 2015, PeterzilStarchenko 2018,
(v) Yet Another Proof of Analy. Ax-Schanuel by Nevanlinna thry. : Today, 1st topic.

More on the Value Distribution: Today, 2nd topic:

N-, Analytic Ax-Schanuel for semi-abelian varieties and Nevanlinna theory, DoI:10.2969/jmsj/89588958, J. Math. Soc. Jpn., 2023.
....... Yet without "O-minimal".
(vi) Expectation: Analy. Ax-Schanuel + O-minimal + Arithmetic \Longrightarrow ??

Application of Ax-Shanuel:(e.g.) W.D. Brownawell and K.K. Kubota, The algebraic independence of Weierstrass functions and some related numbers, Acta Arith. 33 (1977), 111-149.

This is covered by the present result of analy. case.

3. Main Results

Jet Spaces. Let A be a semi-abelian variey of dim n :

$$
\begin{aligned}
0 & \rightarrow\left(\mathbf{C}^{*}\right)^{\mathrm{t}} \rightarrow \mathrm{~A} \rightarrow \mathrm{~A}_{0} \rightarrow 0 \quad \text { (with } \mathrm{A}_{0} \text { abelian var.) }, \\
\exp =\exp _{\mathrm{A}}: \operatorname{Lie}(\mathrm{A}) & \rightarrow \mathrm{A} \text { be an exponential map; }
\end{aligned}
$$

$\mathrm{f}: \mathrm{C} \rightarrow \operatorname{Lie}(\mathrm{A}) \cong \mathbf{C}^{\mathrm{n}}$ be an entire curve.
Set

$$
\widehat{\exp } f: z \in \mathbf{C} \rightarrow(\exp f(z), f(z)) \in A \times \operatorname{Lie}(A)
$$

Take its k-jet lift:

$$
J_{k}(\widehat{\exp } f): z \in \mathbf{C} \rightarrow\left(J_{k}(\exp f(z)), J_{k}(f(z))\right) \in J_{k}(A \times \operatorname{Lie}(A)) \cong J_{k}(A) \times J_{k}(\operatorname{Lie}(A)) .
$$

Speciality:

$$
\begin{array}{cc}
J_{k}(A) \cong A \times J_{k, A}, & \left.J_{k}(\operatorname{Lie}(A)) \cong \operatorname{Lie}(A) \times J_{k, \operatorname{Lie}(A)}\right) \\
J_{k}(A \times \operatorname{Lie}(A))=A \times J_{k, A} \times \operatorname{Lie}(A) \times J_{k, \operatorname{Lie}(A)}, & J_{k, A}=J_{k, \operatorname{Lie}(A)}, \\
J_{k}(\exp f)(z)=\left(\exp f(z), J_{k, \exp f}(z), f(z), J_{k, f}(z)\right), & J_{k, \exp f}(z)=J_{k, f}(z)(k \geq 1) .
\end{array}
$$

We consider:

$$
\begin{equation*}
J_{k}(\widehat{\exp } f)(z) \in A \times \operatorname{Lie}(A) \times J_{k, A} \hookrightarrow J_{k}(A \times \operatorname{Lie}(A)) . \tag{3.1}
\end{equation*}
$$

$\widehat{J}_{k, A}=\operatorname{Lie}(A) \times J_{k, A} \cong C^{n} \times C^{n k}$ is called the extended jet part.
$X_{k}(\widehat{\exp } f)={\overline{J_{k}(\widehat{\exp f})(\mathbf{C})}}^{\text {Zar }}$ is the Zariski closure of the image:

$$
\text { tr. } \operatorname{deg}_{\mathbf{C}} \widehat{\exp } f:=\operatorname{dim}_{\mathbf{C}} X_{0}(\widehat{\exp } f)=\operatorname{dim}_{\mathbf{C}} \overline{\widehat{\exp f(\mathbf{C}})^{\mathrm{Zar}}}
$$

Def. 3.2. f: $\mathbf{C} \rightarrow \operatorname{Lie}(A)$ is A-degnerate if \exists alg. subgroup $G \varsubsetneqq A$ s.t. $\exp f(\mathbf{C}) \subset$ $\exp f(0)+G($ coset type $)$.
N.B. $A=\left(\mathbf{C}^{*}\right)^{\mathrm{t}}: \mathrm{f}=\left(\mathrm{f}_{\mathrm{j}}\right)$ is $\left(\mathbf{C}^{*}\right)^{\mathrm{n}}$-degenerate $\Longleftrightarrow \mathrm{f}_{\mathrm{j}}, 1 \leq \mathrm{j} \leq \mathrm{n}$, are lin. dep./Q.

Thm. 3.1 (Analy. Ax-Schanuel). If an entire curve $f: C \rightarrow \operatorname{Lie}(A)$ is A-nondeg., then tr. $\operatorname{deg}_{\mathbf{C}} \widehat{\exp } \mathrm{f} \geq \mathrm{n}+1$.

Order Functions.

$f=\left(f_{1}, \ldots, f_{n}\right): z \in \mathbf{C} \rightarrow f(z) \in \mathbf{C}^{n} \cong \operatorname{Lie}(A)$, an entire curve.
Nevanlinna-Shimizu-Ahlfors order function:

$$
T\left(r, f_{j}\right)=T_{f_{j}}\left(r, \omega_{\mathrm{FS}}\right)=\int_{1}^{r} \frac{d t}{t} \int_{\Delta(t)} f^{*} \omega_{\mathrm{FS}} .
$$

Roughly, $\underline{T\left(r, f_{j}\right) \sim \log \max _{|z|=r}\left|f_{j}(z)\right| . ~}$
$\mathrm{T}_{\mathrm{f}}(\mathrm{r}):=\max _{1 \leq \mathrm{j} \leq \mathrm{n}} \mathrm{T}\left(\mathrm{r}, \mathrm{f}_{\mathrm{j}}\right)$.
$T_{\exp f}(r)=T_{\operatorname{expf}}\left(r, \omega_{L}\right)$ with the curvature form ω_{L} of a big l.b. $L \rightarrow \bar{A}$.
$T_{\widehat{\exp } f}(r):=T_{\exp f}(r)+T_{f}(r)$ for $\widehat{\exp } f: C \rightarrow A \times \operatorname{Lie}(A)$.
$S(r)=O\left(\log ^{+} \mathrm{T}_{\operatorname{expf}}(r)\right)+\mathrm{O}(\log r)+\mathrm{O}(1)\left\|=\mathrm{o}\left(\mathrm{T}_{\exp f}(r)\right)\right\|$ (with except'l intervals of total finite length).

Lem. 3.3 (Key). (i) $T_{f}(r)=S(r)$.
(ii) $T_{\overparen{\exp f}}(r)=T_{\exp f}(r)+S(r)$.

Proof. Use the complex Poisson integral + Borel's technic.
Proof of Analytic Ax-Schanuel Thm.3.1.
The A-nondegeneracy and the Log Bloch-Ochiai imply $\overline{\operatorname{expf}(\mathbf{C})}^{\text {Zar }}=\mathrm{A}$:

$$
\begin{equation*}
\text { tr. } \operatorname{deg}_{\mathbf{C}} \exp \mathrm{f}=\mathrm{n} \tag{3.4}
\end{equation*}
$$

Lem. 3.5. $\operatorname{tr} \cdot \operatorname{deg}_{\mathbf{C}(f)} \mathbf{C}\left(f,(\exp f)^{*} \mathbf{C}(\mathrm{~A})\right) \geq 1$.
Pf. If " $=0$ ", $(\exp f)^{*} \mathbf{C}(A)$ is alg. over $\left(f_{j}\right)$, so that $\mathrm{T}_{\exp f}(\mathrm{r})=\mathrm{O}\left(\mathrm{T}_{\mathrm{f}}(\mathrm{r})\right)=\mathrm{o}\left(\mathrm{T}_{\operatorname{expf}}(\mathrm{r})\right)$ by Key Lem. 3.3; Contradiction!
(3.4) \Rightarrow tr. $\operatorname{deg}_{C} \widehat{\exp } f \geq n$. Suppose tr. $\operatorname{deg}_{C} \widehat{\exp } f=n . \Rightarrow f_{j}$ are alg. $/(\exp f)^{*} C(A)$.
$\Longrightarrow \exists$ non-trivial alg. relations

$$
\begin{equation*}
\mathrm{P}_{\mathrm{j}}\left(\mathrm{f}_{\mathrm{j}}, \hat{\phi}\right)=\mathrm{P}_{\mathrm{j}}\left(\mathrm{f}_{\mathrm{j}}, \hat{\phi}_{1}, \ldots, \hat{\phi}_{\mathrm{n}}\right)=0, \quad 1 \leq \mathrm{j} \leq \mathrm{n} \tag{3.6}
\end{equation*}
$$

where $\left\{\phi_{j}\right\}_{j=1}^{n}$ is a transcendental basis of $\mathbf{C}(A)$, and $\hat{\phi}_{j}:=\phi_{j} \circ \exp f$.
Lem. $3.5 \Rightarrow \operatorname{tr} . \operatorname{deg}_{\mathrm{C}}\left\{\mathrm{f}_{\mathrm{j}}\right\}_{\mathrm{j}=1}^{\mathrm{n}}<\mathrm{n}$: That is, \exists a non-trivial alg. relation

$$
\begin{equation*}
Q\left(f_{1}, \ldots, f_{n}\right)=0 \tag{3.7}
\end{equation*}
$$

Eliminate $\mathrm{f}_{\mathrm{j}}(1 \leq \mathrm{j} \leq \mathrm{n})$ in (3.6) and (3.7). \Rightarrow Alg. rel. in $\hat{\phi}_{j}$'s $\Rightarrow \mathrm{f}$ is A-degnerate: Contradiction!
Example. (Brownawell-Kubota) A product of elliptic curves, $\mathrm{A}:=\prod^{\mathrm{n}} \mathrm{E}_{\mathrm{j}}$ and alg. indep. $\mathrm{f}=\left(\mathrm{f}_{\mathrm{j}}\right): \mathbf{C} \rightarrow \operatorname{Lie}(\mathrm{A}):$

$$
\operatorname{tr} . \operatorname{deg}_{C}\left\{f_{1}, \ldots, f_{n}, \wp_{1}\left(f_{1}\right), \ldots, \wp_{m}\left(f_{n}\right)\right\} \geq n+1 .
$$

Here one may claim the same for more generally $\underline{\text { A-nondegenerate }} \mathrm{f}=\left(\mathrm{f}_{\mathrm{j}}\right)$: e.g., with $f_{1}(z)=z, f_{2}(z)=z$ and non-isogenious $E_{j}(j=1,2)$,

$$
\operatorname{tr} \cdot \operatorname{deg}_{C}\left\{\mathrm{z}, \wp_{1}(\mathrm{z}), \wp_{2}(\mathrm{z})\right\}=3 .
$$

$\overline{\operatorname{Lie}\left(E_{1}\right) \times \operatorname{Lie}\left(E_{2}\right)} \times A=P^{2}(\mathbf{C}) \times E_{1} \times E_{2}$,

$$
\mathrm{T}_{\widehat{\exp } \mathrm{f}}(\mathrm{r})=\frac{\pi \mathrm{r}^{2}}{2}\left(\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\mathrm{o}(1)\right)
$$

wherer λ_{j} are the areas of the fundamental parallelograms of $\wp_{j}(j=1,2)$.
Let $P\left(z_{1}, z_{2}, w_{1}, w_{2}\right)$ be a polynomials of degrees d_{1}, d_{2} in w_{1}, w_{2} respectively, and $\Xi_{P}=\left\{P\left(z, z, \wp_{1}(z), \wp_{2}(z)\right)=0\right\}$. Then

$$
\begin{aligned}
\mathrm{N}_{\infty}\left(\mathrm{r}, \Xi_{\mathrm{P}}\right) & =\int_{1}^{r} \frac{\#\left(\Xi_{P} \cap \Delta(t)\right)}{t} d t=N_{1}\left(r, \Xi_{P}\right)+o\left(r^{2}\right) \\
& =\pi r^{2}\left(\frac{d_{1}}{\lambda_{1}}+\frac{d_{2}}{\lambda_{2}}+o(1)\right)
\end{aligned}
$$

4. Nevanlinna thry. for $\widehat{\exp f}$

Thm. 4.1 (2nd Main Thm.). Let $\mathrm{f}: \mathrm{C} \rightarrow \operatorname{Lie}(\mathrm{A})$ be A -nondegenerate.
(i) For a reduced alg. subset $Z \subset X_{k}(\widehat{\exp } f)\left(\subset A \times \widehat{J}_{k, A}\right)(k \geqq 0), \exists \bar{A} \times \bar{J}_{k, A}$, a proj. compactification with closures $\bar{X}_{k}(\widehat{\exp } f)$ and \bar{Z} such that

$$
\begin{equation*}
T_{J_{k}(\widehat{\exp } f)}\left(r, \omega_{\bar{Z}}\right)=N_{1}\left(r, J_{k}(\widehat{\exp } f)^{*} Z\right)+S_{\varepsilon}(r), \tag{4.1}
\end{equation*}
$$

where $\quad S_{\varepsilon}(r) \leq \varepsilon \mathrm{T}_{\exp }(\mathrm{r}) \|_{\varepsilon}(\forall \varepsilon>0)$, and $\omega_{\bar{Z}}$ is a sort of curvature form associated with \bar{Z}.
(ii) If $\operatorname{codim}_{X_{k}(\widehat{\exp } f)} Z \geqq 2$, then

$$
\begin{equation*}
\mathrm{T}_{\widehat{\exp \mathrm{f}}}\left(\mathrm{r}, \omega_{\overline{\mathrm{Z}}}\right)=\mathrm{S}_{\varepsilon}(\mathrm{r}) \tag{4.2}
\end{equation*}
$$

(iii) $(\mathrm{k}=0)$ If D is a reduced divisor on $\mathrm{A} \times \operatorname{Lie}(\mathrm{A})$ and $D \not \supset X_{0}(\widehat{\exp } f)$, then

$$
\begin{equation*}
\mathrm{T}_{\widehat{\exp \mathrm{f}}}\left(\mathrm{r}, \omega_{\overline{\mathrm{D}}}\right)=\mathrm{N}_{1}\left(\mathrm{r},(\widehat{\exp } \mathrm{f})^{*} \mathrm{D}\right)+\mathrm{S}_{\varepsilon}(\mathrm{r}) . \tag{4.3}
\end{equation*}
$$

where $\bar{D} \subset \bar{A} \times \overline{\operatorname{Lie}(A)}$.
Pf. $\exists \ell \in \mathbf{N}$ such that

$$
\mathrm{T}_{\mathrm{J}_{k}(\widehat{\exp f})}\left(\mathrm{r}, \omega_{\bar{Z}}\right)=\mathrm{N}_{\ell}\left(\mathrm{r}, \mathrm{~J}_{\mathrm{k}}(\widehat{\exp } \mathrm{f})^{*} \mathrm{Z}\right)+\mathrm{S}(\mathrm{r}) .
$$

Here, using this and codim $\mathrm{Z} \geq 2$, we prove (ii).
Using (ii), we deduce

$$
N_{\ell}\left(r, J_{k}(\widehat{\exp } f)^{*} Z\right)-N_{1}\left(r, J_{k}(\widehat{\exp } f)^{*} Z\right)=S_{\varepsilon}(r),
$$

$\Longrightarrow \quad$ (i).
As an aplication we have:
Thm. 4.2. Let $\widehat{\exp f}: C \rightarrow A \times \operatorname{Lie}(A)$ and $\bar{D} \subset \bar{A} \times \overline{\operatorname{Lie}(A)}$ be as in (iii) above.
Assume that some positive multiple $\nu \overline{\mathrm{D}}$ contains a big divisor coming from $\overline{\mathrm{A}}$.
Then \exists irred. comp. $D^{\prime} \subset D \cap X_{0}(\widehat{\exp } f)$ such that $\widehat{\exp } f(\mathbf{C}) \cap D^{\prime}$ is Zariski dense in D^{\prime}; in particular, $|\widehat{\exp } f(\mathbf{C}) \cap \mathrm{D}|=\infty$.

This follows from the estimates in 2nd Main Thm. with $N_{1}(r, *)$ (essential).

Remark. For $\exp f: \mathbf{C} \rightarrow \mathrm{A}$, by Corvaja-N. ('12), answering a question in Lang's Monog. '66.

The proof of the 2nd Main Thm. 4.1 is rather long but we carry out the proof along the way as for $\exp \mathrm{f}: \mathbf{C} \rightarrow \mathrm{A}$ (N.-Winkelmann-Yamanoi) by making use of Key Lem 3.3.

The next theorem says that the distribution ($\widehat{\exp } f)^{*} \mathbf{D}$ on \mathbf{C} contains an ample information of \widehat{A}, D and f; we have the following unicity theorem of H. Cartan-P. Erdös-K. Yamanoi type (cf. Yamanoi Forum Math. 2004, Corvaja-N. Math. Ann. 2012)

Thm. 4.3 (Unicity). Let $A_{j}(j=1,2)$ be two semi-abelian varieties and let $D_{j}(j=1,2)$ be effective reduced A_{j}-big divisors on \widehat{A}_{j} with

$$
\widehat{\mathrm{St}}\left(\mathrm{D}_{\mathrm{j}}\right):=\left\{\mathrm{x} \in \widehat{\mathrm{~A}}_{\mathrm{j}}: \mathrm{x}+\mathrm{D}_{\mathrm{j}}=\mathrm{D}_{\mathrm{j}}\right\}=\{0\}
$$

Let $f_{j}: \mathbf{C} \rightarrow \operatorname{Lie}\left(A_{j}\right)$ be $\underline{A_{j}}$-nondegenerate. Assume that

$$
\operatorname{Supp}\left(\widehat{\exp }_{A_{1}} f_{1}\right)^{*} D_{1}=\operatorname{Supp}\left(\widehat{\exp }_{A_{2}} f_{2}\right)^{*} D_{2}
$$

Then $\exists \alpha: \mathrm{A}_{1} \xrightarrow{\cong} \mathrm{~A}_{2}$ with $\hat{\alpha}: \widehat{\mathrm{A}}_{1} \rightarrow \widehat{\mathrm{~A}}_{2}$, such that

- $\hat{\alpha}^{*} D_{2}=D_{1}$,
- $\widehat{\exp }_{\mathrm{A}_{2}} \mathrm{f}_{2}=\hat{\alpha} \circ \widehat{\exp }_{\mathrm{A}_{1}} \mathrm{f}_{1}$, up to translations of $\widehat{\mathrm{A}}_{\mathrm{j}}$.

Remarks to some extensions:
(i) $\mathbf{C} \Rightarrow \Delta(r)^{*}$ (isolated essential singularity, Big Picard type).
(ii) $\mathbf{C} \Rightarrow$ affine alg. curve.
(iii) $\mathrm{C} \Rightarrow$ (parabolic) Riemann suface with involving a counting function of Euler numbers.
(iv) Hyperbolic case?

Hyperbolic Bloch-Ochiai by "O-minimal", Pila, Ulmo, Mok, ...: How related?
In Thm 4.2 we have $|\widehat{\exp f}(\mathbf{C}) \cap \mathrm{D}|=\infty$. Question: What is the cluster set of $\widehat{\exp } f(\mathbf{C}) \cap \mathrm{D}$, the set of accumulation points of $\widehat{\exp } f(\mathbf{C}) \cap \mathrm{D}$?
This question makes sense for $\exp f(\mathbf{C}) \cap \mathrm{D}$ with $\mathrm{D} \subset \mathrm{A}$, too.
Also recall:

$$
\text { Analy. Ax-Schanuel }+ \text { O-minimal }+ \text { Arithmetic } \Longrightarrow \text { ?? }
$$

Thank you for your attention!!

Aug. 2023 at Acad. Sinica, Taipei

